Masoumeh
Shafieinejad,
PhD
candidate
David
R.
Cheriton
School
of
Computer
Science
We present a construction for hash-based one-time group signature schemes, and develop a traceable post-quantum multi-time group signature upon it. A group signature scheme allows group members to anonymously sign a message on behalf of the whole group. The signatures are unforgeable and the scheme enables authorized openers to trace the signature back to the original signer when needed.
Our construction utilizes three nested layers to build the group signature scheme. The first layer is key management; it deploys a transversal design to assign keys to the group members and the openers, providing the construction with traceability. The second layer utilizes hash pools to build the group public verification key, to connect group members together, and to provide anonymity. The final layer is a post-quantum hash-based signature scheme, that adds unforgeability to our construction. We extend our scheme to multi-time signatures by using Merkle trees, and show that this process keeps the scalability property of Merkle-based signatures, while it supports the group members signing any number of messages.