Ivana
Kajić,
PhD
candidate
David
R.
Cheriton
School
of
Computer
Science
The representation of semantic knowledge poses a central modelling decision in many models of cognitive phenomena. However, not all such representations reflect properties observed in human semantic networks. Here, we evaluate the psychological plausibility of two distributional semantic models widely used in natural language processing: word2vec and GloVe. We use these models to construct directed and undirected semantic networks and compare them to networks of human association norms using a set of graph-theoretic analyses.
Our results show that all such networks display small-world characteristics, while only undirected networks show similar degree distributions to those in the human semantic network. Directed networks also exhibit a hierarchical organization that is reminiscent of the human semantic network.