Master’s Thesis Presentation • Artificial Intelligence — Predicting Repository Upkeep with Textual Personality AnalysisExport this event to calendar

Friday, August 16, 2019 — 1:30 PM EDT

Alexander Sachs, Master’s candidate
David R. Cheriton School of Computer Science

GitHub is an excellent democratic source of software. Unlike traditional work groups however, GitHub repositories are primarily anonymous and virtual. Traditional strategies for improving the productivity of a work group often include external consultation agencies that do in-person interviews. The resulting data from these interviews are then reviewed and their recommendations provided. In the online world however, where colleagues are often anonymous and geographically dispersed, it is often impossible to apply such approaches.

We developed experimental methods to discern the same information that one would normally obtain through in-person interviews through automated means. Here we provide this automated method of data collection and analysis that can later be applied for the purposes of recommendation agents.

Comments from individual developers were collected via various GitHub APIs. That data was then converted into personality traits for each individual through textual persona extraction and mapped to a personality space called SYMLOG. The resulting dynamics between each of the personalities of the developers of each repository are analyzed though SYMLOG to predict how successful each project is likely to be. These predictions are compared against valid preexisting success metrics.

Location 
DC - William G. Davis Computer Research Centre
2314
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

S M T W T F S
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
  1. 2020 (2)
    1. January (2)
  2. 2019 (255)
    1. December (21)
    2. November (25)
    3. October (16)
    4. September (20)
    5. August (18)
    6. July (12)
    7. June (23)
    8. May (23)
    9. April (32)
    10. March (25)
    11. February (16)
    12. January (24)
  3. 2018 (220)
    1. December (16)
    2. November (19)
    3. October (26)
    4. September (22)
    5. August (17)
    6. July (20)
    7. June (13)
    8. May (25)
    9. April (34)
    10. March (24)
    11. February (3)
    12. January (1)
  4. 2017 (36)
  5. 2016 (21)
  6. 2015 (36)
  7. 2014 (33)
  8. 2013 (23)
  9. 2012 (4)
  10. 2011 (1)
  11. 2010 (1)
  12. 2009 (1)
  13. 2008 (1)