Site menu:

Lecture notes

Notes will be updated the day before lecture. The latex template is created by John Watrous.

Notes [pdf]


Lecture 1 (Jan 6): Introduction
  • overview (chapter 1) and course information
  • linear algebra (appendix A.1) and graph spectrum (chapter 2)
Lecture 2 (Jan 8): Cheeger's inequality
  • Laplacian matrix (chapter 2) and started chapter 3
Lecture 3 (Jan 13): Cheeger's inequality
  • chapter 3
Lecture 4 (Jan 15): random walks
  • chapter 4
Lecture 5 (Jan 20): expander graphs: properties
  • chapter 5.1-5.3
Lecture 6 (Jan 22): expander graphs: constructions
  • chapter 5.4, chapter 6
Lecture 7 (Jan 27): expander graphs: applications
  • chapter 7
Lecture 8 (Jan 29): higher-order Cheeger inequality
  • chapter 8
Lecture 9 (Feb 3): improved Cheeger inequality
  • chapter 9
Lecture 10 (Feb 5): fastest mixing time, vertex expansion, and reweighted eigenvalues
  • chapter 10
Lecture 11 (Feb 10): reweighted eigenvalues for directed graphs and hypergraphs
  • chapter 11
Lecture 12 (Feb 12): small sparse cuts from random walks
  • chapter 12
Lecture 13 (Feb 24): expander decomposition
  • chapter 13
Lecture 14 (Feb 26): threshold rank decomposition
  • chapter 14
Lecture 15 (Mar 3): spectral sparsification, matrix concentration, and effective resistance
  • chapter 15.1-15.3
Lecture 16 (Mar 5): spectral sparsification, matrix concentration, and effective resistance
  • chapter 15.4-15.5, appendix C
Lecture 17 (Mar 10): spectral sparsification via potential function
  • chapter 16
Lecture 18 (Mar 12): spectral sparsification and algorithmic discrepancy theory
  • chapter 17
Lecture 19 (Mar 17): high-dimensional expanders
  • chapter 18.1-18.3
Lecture 20 (Mar 19): high order random walks
  • chapter 18.4, 19.1-19.2
Lecture 21 (Mar 24): spectral independence
  • chapter 19.3, 20.1-20.2
Lecture 22 (Mar 26): cut-matching games
  • chapter 21
Lecture 23 (Mar 31): matrix multiplicative weight update
  • chapter 22
Lecture 24 (Apr 2): finishing up
  • chapter 20.3-20.5, 16.6