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Chapter 1

Overview

This course begins with a review of classical results in spectral graph theory, followed by an explo-
ration of several recent major developments, with a focus on algorithmic results.

Classical Results

After we introduce basic concepts and results from linear algebra, we study Cheeger's inequality,
a foundational result in spectral graph theory. This theorem states the spectral gap1 is large if
and only if the graph expansion2 is large. This connection between an algebraic quantity and a
combinatorial property has three major applications.

1. Random Walks on Graphs

Analyzing the mixing time of random walks3 is an important topic with numerous applications in
random sampling and approximate counting [LPW06]. A basic result in spectral graph theory is
that the mixing time of random walks is roughly equal to the inverse of the spectral gap. Cheeger's
inequality thus implies that a graph has small mixing time if and only if it has large expansion,
providing a combinatorial characterization useful for analyzing mixing time.

2. Expander Graphs

Expander graphs, typically de�ned as sparse graphs with large expansion, have surprisingly many ap-
plications in theoretical computer science and mathematics [HLW06]. Cheeger's inequality provides
an e�cient method to certify that a graph has large expansion, which is crucial in the construc-
tion of expander graphs. We will study the basic properties of expander graphs and Ramanujan
graphs4, a combinatorial construction called the zig-zag product, and several interesting applications
of expander graphs.

1De�ned as the di�erence between the �rst and second eigenvalues.
2Which quanti�es how well a graph is connected by comparing the number of edges leaving a subset of vertices

to the size of the subset.
3De�ned as the number of steps required for the probability distribution on vertices to converge to the limiting

distribution.
4Expander graphs with the maximum possible spectral gap, roughly speaking.
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3. Graph Partitioning

The proof of Cheeger's inequality provides a fast algorithm to output a subset of vertices of approx-
imately minimal expansion. This is known as the spectral partitioning algorithm, a widely-used
heuristic in practical graph partitioning applications with good performance, e.g. [SM00].

Recent Developments

The recent developments still center around these three primary themes, but introduce signi�cantly
new ideas and techniques, extending the reach of spectral graph theory.

1. Generalizations of Cheeger's Inequality and Graph Partitioning

Spectral graph theory has a long history, but only in the last decade have researchers begun to
explore graph partitioning using higher eigenvalues, inspired by the in�uential work on small-set
expansion [ABS10]. We study the so-called higher-order Cheeger inequality [LOT14, LRTV12] and
improved Cheeger inequality [KLL+13], which use higher eigenvalues to design multi-way graph
partitioning algorithm and to analyze the classical spectral partitioning algorithm. Until recently,
all Cheeger-type inequalities apply only to edge expansion of undirected graphs. We discuss how to
use reweighted eigenvalues to extend these inequalities to vertex expansion [KLT22], as well as to
directed graphs and hypergraphs [LTW23].

2. Random Walks and Graph Decompositions

Random walks can be used to design local graph partitioning algorithms with a running time
depending only on the output size, providing a valuable algorithmic tool for processing massive
graphs [ST13]. We present a uni�ed spectral analysis for this result and the small-set expansion
result in [ABS10]. We also study the combinatorial approach used in [ST13], based on the Lovász-
Simonovits curve, which can be applied to analyze other di�usion processes and to obtain improved
analyses. Finally, we discuss how these results can be used to develop graph decomposition algo-
rithms, which are crucial tools for designing both fast and approximation algorithms.

3. Spectral Sparsi�cation and Applications

Expander graphs can be seen as sparse approximations of complete graphs. Spectral sparsi�ca-
tion involves constructing a sparse graph that approximates the spectral properties of a dense
graph [ST11]. The study of this problem has been highly productive, leading to signi�cant re-
sults and techniques. The analysis of a natural random sampling algorithm [SS11] brought the
tools of matrix concentration inequalities to the �eld, with important applications in designing fast
algorithms for solving Laplacian linear equations []. The design of optimal spectral sparsi�cation al-
gorithms led to the potential function developed in [BSS14, ALO15], with applications in designing
approximation algorithms and far-reaching consequences in mathematics [MSS14]. We will study
these results as well as recent developments in spectral sparsi�cation for directed graphs and a new
discrepancy-theoretic approach for constructing spectral sparsi�ers.
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4. Semide�nite Programming and Approximation Algorithms

Expander graphs satisfy a local-to-global property that is useful for designing approximation al-
gorithms [AKK+08]. We study the correlation rounding method for semide�nite programming
developed in [BRS11, GS11] which extends this approach to low threshold rank graphs5. We also
discuss the subspace enumeration method [Kol10] and the subexponential time approximation al-
gorithm for Unique Games [ABS10]. It remains an open question whether these methods can be
extended to obtain a subexponential time approximation algorithm for the maximum cut problem
beyond the Goemans-Williamson approximation ratio.

5. Cut-Matching Game and Matrix Multiplicative Update

The cut-matching game is an iterative framework for constructing expanders through �ows and
cuts, originally developed to design fast algorithms for approximating edge expansion [KRV09].
It has since found unexpected applications in designing both fast and approximation algorithms
for other graph problems. We study the original proof in [KRV09] and a more systematic proof
using the matrix multiplicative method [AK16]. We further study an almost linear-time O(

√
log n)-

approximation algorithm for edge expansion [She09], building on the expander �ow framework in
the seminal work [ARV09].

6. High-Dimensional Expanders and Mixing Time

High-dimensional expanders generalize expander graphs to higher dimensions [Lub18], with recent
breakthrough applications in error correcting codes and analysis of random walks. We study how
this new concept provides a local-to-global way to bound the spectral gap of the random walk ma-
trix [Opp18, KO20], leading to an elegant solution to the matroid expansion conjecture [ALOV19].
We will also see how this approach is sharpened to develop the spectral independence frame-
work [AL20, ALO20], a powerful method for analyzing the mixing time of random walks.
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Chapter 2

Graph Spectrum

The linear algebraic approach to algorithmic graph theory views graphs as matrices and use concepts
and tools in linear algebra to design and analyze algorithms for graph problems.

Spectral graph theory focuses on using eigenvalues and eigenvectors of matrices associated with the
graph to study its combinatorial properties. While it may not be clear why eigenvalues provide
useful information about the combinatorial properties of graphs, they do, and a surprising amount
of information can be obtained from them.

In this chapter, we consider the adjacency matrix and the Laplacian matrix of an undirected graph,
and study some basic results in spectral graph theory such as characterizations of bipartiteness and
connectedness. General references for this chapter include [Spi19, Tre17].

2.1 Adjacency Matrix

We start with simple graphs for simplicity. The generalization to weighted graphs is straightforward.

De�nition 2.1 (Adjacency Matrix of Simple Graph). Given a simple graph G = (V = [n], E), the
adjacency matrix A(G) is an n × n matrix where Aij = Aji = 1 if ij ∈ E(G) and Aij = Aji = 0
otherwise.

The adjacency matrix of an undirected graph is symmetric. Therefore, by the spectral theorem
for real symmetric matrices in Theorem A.5, the adjacency matrix has an orthonormal basis of
eigenvectors with real eigenvalues. We denote the eigenvalues of the adjacency matrix by

α1 ≥ α2 ≥ · · · ≥ αn.

Let us begin with some examples and compute their spectra.

Example 2.2 (Complete Graphs). If G is a complete graph, then A(G) = J − I, where J denotes
the all-one matrix. Any vector is an eigenvector of I with eigenvalue 1. Hence, the eigenvalues of
A are one less than those of J . Since J is rank 1, there are n − 1 eigenvalues of 0. The all-ones
vector is an eigenvector of J with eigenvalue n. Thus, n− 1 is an eigenvalue of A with multiplicity
1, and −1 is an eigenvalue of A with multiplicity n− 1.

This example exhibits the largest gap between the largest eigenvalue and the second largest eigenvalue.

9
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Example 2.3 (Complete Bipartite Graphs). Let Kp,q be the complete bipartite graph with p vertices
on one side and q vertices on the other side. Its adjacency matrix A(Kp,q) is rank 2, so 0 is
an eigenvalue with multiplicity p + q − 2, and there are two non-zero eigenvalues α and β. By
Fact A.35, the sum of the eigenvalues is equal to the trace of A, which is 0 since there are no
self-loops. Thus, α = −β. To determine α, consider the characteristic polynomial det(xI − A) =
(x−α)(x+α)xp+q−2 = xp+q−α2xp+q−2. Using the Leibniz formula for determinants in Fact A.26,
any term contributing to xp+q−2 must have p+q−2 diagonal entries, with the remaining two entries
must be −Aij and −Aji for some i, j. There are totally pq such terms (one for each edge), and
the sign of the corresponding permutation is −1 because it has only one inversion pair. Therefore,
α2 = pq, and thus |α| =

√
pq. To conclude, the spectrum is (

√
pq, 0, . . . , 0,−√pq), where 0 is an

eigenvalue with multiplicity p+ q − 2.

In Section 2.5, you are asked to compute the spectrum of the cycles and the hypercubes.

Bipartiteness

It turns out that bipartite graphs can be characterized by the spectrum of their adjacency matrix.
The following lemma says that the spectrum of a bipartite graph is symmetric around the origin on
the real line.

Lemma 2.4 (Spectrum of Bipartite Graph is Symmetric). If G is a bipartite graph and α is an
eigenvalue of A(G) with multiplicity k, then −α is also an eigenvalue of A(G) with multiplicity k.

Proof. If G is a bipartite graph, we can permute its rows and columns of G to obtain the form

A(G) =

(
0 B
B> 0

)
.

Suppose u =

(
x
y

)
is an eigenvector of A(G) with eigenvalue α. Then

(
0 B
B> 0

)(
x
y

)
= α

(
x
y

)
⇐⇒ B>x = αy and By = αx.

Now consider

(
x
−y

)
. It satis�es:

(
0 B
B> 0

)(
x
−y

)
=

(
−By
B>x

)
=

(
−αx
αy

)
= −α

(
x
−y

)
.

Thus,

(
x
−y

)
is an eigenvector of A(G) with eigenvalue −α. By construction, k linearly independent

eigenvectors with eigenvalue α correspond to k linearly independent eigenvectors with eigenvalue
−α, so their multiplicity is the same.

The next lemma shows that the converse is also true. The proof is by a trace argument that is
commonly applied in bounding eigenvalues of random graphs.

Lemma 2.5 (Symmetric Spectrum Implies Bipartiteness). Let G be an undirected graph and let
α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. If αi = −αn−i+1 for each 1 ≤ i ≤ n, then
G is a bipartite graph.

10
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Proof. Let k be any positive odd number. Then
∑n

i=1 α
k
i = 0, by the symmetry of the spectrum.

Note that αk1 ≥ αk2 ≥ . . . ≥ αkn are the eigenvalues of Ak, because if Av = αv then Akv = αkv. By
Fact A.35, it follows that Tr(Ak) =

∑n
i=1 α

k
i = 0. Observe that (Ak)i,j is the number of length-

k walks from i to j in G, which can be proved by a simple induction. Now suppose G has an
odd cycle of length k. Then (Ak)i,i > 0 for each vertex i in the odd cycle, and this would imply
that Tr(Ak) =

∑n
i=1(Ak)i,i > 0, since each diagonal entry of Ak is non-negative. Therefore, since

Tr(Ak) = 0, G must have no odd cycles and is thus a bipartite graph.

Combining Lemma 2.4 and Lemma 2.5, a graph is bipartite if and only if the spectrum of its
adjacency matrix is symmetric around the origin.

Proposition 2.6 (Spectral Characterization of Bipartite Graphs). Let G be an undirected graph
and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Then G is a bipartite graph if and
only if αi = −αn−i+1 for each 1 ≤ i ≤ n.

When the graph is connected, the characterization is even simpler. In Section 2.5, you are asked to
prove that a connected graph is bipartite if and only if α1 = −αn.

Largest Eigenvalue

Here we see some upper and lower bounds on the largest eigenvalue of the adjacency matrix.

Lemma 2.7 (Max Degree Upper Bound). Let G = (V,E) be an undirected graph with maximum
degree d, and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Then α1 ≤ d.

Proof. Let v be an eigenvector with eigenvalue α1. Let j be a vertex with v(j) ≥ v(i) for all
i ∈ V (G). Then

α1 · v(j) = (Av)(j) =
∑

i:ij∈E(G)

v(i) ≤
∑

i:ij∈E(G)

v(j) = deg(j) · v(j) ≤ d · v(j),

which implies that α1 ≤ d.

Following the proof more closely, we can characterize the connected graphs for which α1 equals the
maximum degree.

Exercise 2.8 (Tight Max Degree Upper Bound). Let G be a connected undirected graph with
maximum degree d and the largest eigenvalue α1 = d. Then G is a d-regular graph.

The maximum degree upper bound can be far from tight. In Section 2.5, you are asked to prove
that the maximum eigenvalue of a tree of maximum degree d is at most 2

√
d− 1.

On the other hand, the average degree provides a lower bound on the largest eigenvalue. More
generally, the largest eigenvalue is at least the average degree of the densest induced subgraph. One
corollary of this is that the largest eigenvalue is at least the size of a maximum clique minus one.

Exercise 2.9 (Average Degree Lower Bound). Let G = (V,E) be an undirected graph with largest
eigenvalue α1. For a subset S ⊆ V and a vertex v ∈ S, let degS(v) :=

∣∣{u | uv ∈ E and u ∈ S}
∣∣ be

the degree of v induced in S. Then

α1 ≥ max
S:S⊆V

1

|S|
∑
v∈S

degS(v).

11
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The largest eigenvalue of the adjacency matrix of a connected graph is always of multiplicity one, as
guaranteed by the Perron-Frobenius Theorem A.18. The spectrum of the adjacency matrix satis�es

d ≥ α1 > α2 ≥ . . . ≥ αn ≥ −d.

We will see a combinatorial characterization of the spectral radius of a matrix when we study
the Expander Mixing Lemma later. However, there does not seem to be a simple graph-theoretic
characterization of the largest eigenvalue of the adjacency matrix. See Section 2.5 for a question in
this direction.

2.2 Laplacian Matrix

The Laplacian matrix plays a more important role in spectral graph theory than the adjacency
matrix, as we will see some reasons shortly.

De�nition 2.10 (Diagonal Degree Matrix). Let G = (V,E) be an undirected graph with V (G) = [n].
The diagonal degree matrix D(G) of G is the n × n diagonal matrix with Di,i = deg(i) for each
1 ≤ i ≤ n.

De�nition 2.11 (Laplacian Matrix). Let G be an undirected graph. The Laplacian matrix L(G) of
G is de�ned as L(G) := D(G)−A(G), where D(G) is the diagonal degree matrix in De�nition 2.10
and A(G) is the adjacency matrix in De�nition 2.1.

For d-regular graphs, the diagonal degree matrix D(G) is simply d · In, and so the spectrums of the
adjacency matrix and the Laplacian matrix are essentially the same. That is, let α1 ≥ α2 ≥ . . . ≥ αn
be the eigenvalues of the adjacency matrix, and λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of the
Laplacian matrix. For d-regular graphs, it holds that λi = d − αi for 1 ≤ i ≤ n, and thus the i-th
largest eigenvalue of A corresponds to the i-th smallest eigenvalue of L.

Throughout this course, we use the convention that the eigenvalues of A are denoted by {αi}ni=1 and
those of L are denoted by {λi}ni=1. The eigenvalues of A are ordered in non-increasing order while
those of L are ordered in non-decreasing order. When we refer to the k-th eigenvalue of a graph,
we mean either the k-th largest eigenvalue of the adjacency matrix or the k-th smallest eigenvalue
of the Laplacian matrix.

For non-regular graphs, relating the eigenvalues of the adjacency matrix and the Laplacian matrix
is more challenging. On the one hand, as discussed earlier, it is not clear what is a good characteri-
zation of α1 for non-regular graphs. On the other hand, the smallest eigenvalue λ1 of the Laplacian
matrix is always equal to zero, as we will soon demonstrate.

We de�ne a matrix for the proof, which will also be useful later.

De�nition 2.12 (Edge Incidence Matrix). Let G = (V,E) be an undirected graph with V (G) = [n]
and m = |E|. For each edge e = ij ∈ E, let be be the n-dimensional vector with the i-th position
equal to +1, the j-th position equal to −1, and all other positions equal to 0. Let B(G) be the n×m
edge incidence matrix whose columns are {be | e ∈ E}.
For an edge e ∈ E, let Le be its Laplacian matrix, where (Le)i,i = (Le)j,j = 1 and (Le)i,j = (Le)j,i =
−1. Note that the Laplacian Le of an edge e can be written as beb

>
e , and the Laplacian of the graph

G can be written as
L(G) =

∑
e∈E

Le =
∑
e∈E

beb
>
e = B(G) ·B(G)>.

12
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Using this de�nition, we see that zero is always the smallest eigenvalue of the Laplacian matrix.

Lemma 2.13 (Smallest Eigenvalue of Laplacian Matrix). The Laplacian matrix L(G) of an undi-
rected graph G is positive semide�nite, and its smallest eigenvalue is zero with the all-ones vector
being a corresponding eigenvector.

Proof. As L can be written as BB>, as shown in De�nition 2.12, it follows that L is a positive
semide�nite matrix by Fact A.9. Thus, all eigenvalues of L are non-negative. It is straightforward
to verify that L~1 = 0, so 0 is the smallest eigenvalue, and ~1 is the corresponding eigenvector.

Having a trivial smallest eigenvalue and a simple corresponding eigenvector is one reason that
Laplacian matrix is easier to work with. Another reason is that the Laplacian matrix has a quadratic
form which has a nice combinatorial interpretation.

Lemma 2.14 (Quadratic Form for Laplacian Matrix). Let L be the Laplacian matrix of an undi-
rected graph G = (V,E) with V (G) = [n]. For any vector x ∈ Rn,

x>Lx =
∑
ij∈E

(
x(i)− x(j)

)2
.

Proof. Using the decomposition of L in De�nition 2.12,

x>Lx = x>
( ∑
ij∈E

Lij

)
x = x>

( ∑
ij∈E

bijb
>
ij

)
x =

∑
ij∈E

x>bijb
>
ijx =

∑
ij∈E

(
x(i)− x(j)

)2
.

Lemma 2.13 and Lemma 2.14 will be used to derive a useful formulation for the second smallest
eigenvalue of the Laplacian matrix when we study Cheeger's inequality.

Connectedness

It turns out that the second smallest eigenvalue of the Laplacian matrix can be used to determine
whether the graph is connected or not.

Proposition 2.15 (Spectral Characterization of Connected Graphs). Let G be an undirected graph
and let λ1 ≤ . . . ≤ λn be the eigenvalues of its Laplacian matrix L. Then G is a connected graph if
and only if λ2 > 0.

Proof. Suppose G is disconnected. Then the vertex set can be partitioned into two sets S1 and S2

such that there are no edges between them. For a subset S ⊆ V , let χS ∈ Rn be the characteristic
vector of S. It is easy to verify that both χS1 and χS2 are eigenvectors of L with eigenvalue 0. Since
χS1 and χS2 are linearly independent, it follows that 0 is an eigenvalue with multiplicity at least 2,
and thus λ2 = 0.

Conversely, suppose G is connected. Let x be an eigenvector with eigenvalue 0. Then its quadratic
form xTLx = 0, and so

∑
ij∈E(x(i)−x(j))2 = 0 by Lemma 2.14, which implies that x(i) = x(j) for

every edge ij ∈ E. Since G is connected, it follows that x = c ·~1 for some c, and thus the eigenspace
corresponding to eigenvalue 0 is one-dimensional. Therefore, the eigenvalue 0 has multiplicity 1,
which implies λ2 > 0.
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The proof of Proposition 2.15 can be extended to the following generalization.

Exercise 2.16 (Spectral Characterization of Number of Components). Prove that the Laplacian
matrix L(G) of an undirected graph G has 0 as its eigenvalue with multiplicity k if and only if G
has k connected components.

2.3 Normalized Adjacency and Laplacian Matrix

Recall that the spectrum of the adjacency matrix satis�es

d ≥ α1 ≥ α2 ≥ . . . ≥ αn ≥ −d,

where the upper and lower bounds depend on the maximum degree d of the graph. This often
introduces a dependency on d when relating these eigenvalues to combinatorial parameters.

To remove this dependency and state the Cheeger's inequality more cleanly, we consider the nor-
malized version of the adjacency matrix and the Laplacian matrix. These normalized matrices were
popularized and systematically studied in Chung's book [Chu97] to generalize results for regular
graphs to all graphs.

De�nition 2.17 (Normalized Adjacency and Laplacian Matrix). Let G be an undirected graph with
no isolated vertices. The normalized adjacency matrix A(G) of G is de�ned as

A(G) := D−
1
2AD−

1
2 ,

where D is the diagonal degree matrix in De�nition 2.10 and A is the adjacency matrix in De�ni-
tion 2.1. The normalized Laplacian matrix L(G) of G is de�ned as

L(G) := D−
1
2LD−

1
2 ,

where L is the Laplacian matrix in De�nition 2.11. Note that L(G) = I −A(G).

We will use the same notation conventions as before. The eigenvalues of A(G) are denoted by
α1 ≥ α2 ≥ . . . ≥ αn, and those of L(G) are denoted by λ1 ≤ λ2 ≤ . . . ≤ λn. Since L(G) = I−A(G)
as stated in De�nition 2.17, the spectra of L(G) and A are essentially equivalent such that λi = 1−αi
for 1 ≤ i ≤ n. After normalization, the eigenvalues are bounded as follows.

Lemma 2.18 (Normalized Eigenvalues). Let G be an undirected graph with no isolated vertices.
Let α1 ≥ . . . ≥ αn be the eigenvalues of its normalized adjacency matrix and λ1 ≤ . . . ≤ λn be the
eigenvalues of its normalized Laplacian matrix. Then 1 = α1 ≥ αn ≥ −1 and 0 = λ1 ≤ λn ≤ 2.

Proof. First, we show that λ1 = 0. Note that 0 is an eigenvalue of L, as

L
(
D

1
2~1
)

=
(
D−

1
2LD−

1
2
)(
D

1
2~1
)

=
(
D−

1
2L~1

)
= 0.

Furthermore, note that

L = D−
1
2LD−

1
2 = D−

1
2BB>D−

1
2 =

(
D−

1
2B
)(
D−

1
2B
)>

where B is the edge incidence matrix de�ned in De�nition 2.12. It follows that L = I − A is a
positive semide�nite matrix by Fact A.9, and thus 0 is the smallest eigenvalue of L. This implies
that α1 = 1 as λ1 = 1− α1.
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Next, we prove that αn ≥ −1. We will show that D+A is also a positive semide�nite matrix. Then
the same argument as above implies that I + A = D−

1
2 (D + A)D−

1
2 is also positive semide�nite,

and thus 1 + αn ≥ 0. There are at least two ways to see that D + A is positive semide�nite. One
way is to de�ne B̄ as the �unsigned� matrix of B, where B̄ij = |Bij | for all i, j ∈ V . Using a similar
argument as in De�nition 2.12, we can verify that D + A = B̄B̄>. Another way is to use a similar
decomposition as in De�nition 2.12 and see that the quadratic form of D +A can be written as

x>(D +A)x =
∑
ij∈E

(
xi + xj

)2
,

which is a sum of squares and thus non-negative. This implies that λn ≤ 2, as λn = 1− αn.

2.4 Generalizations

We discuss two natural directions to generalize these basic results, one direction with many inter-
esting results, while the other direction not much is known.

Quantitative Generalizations for Undirected Graphs

So far, we have used the graph spectrum to deduce simple combinatorial properties of the graph,
such as bipartiteness and connectedness. These properties are easy to deduce directly by simple
combinatorial methods, such as breadth �rst search or depth �rst search. One might wonder why
these spectral characterizations are useful.

The key feature of the spectral characterizations is that they can be generalized quantitatively to
prove robust generalizations of the basic results. For example:

� λ2 is close to zero if and only if the graph is close to being disconnected. This is the content
of Cheeger's inequality.

� λn is close to 2 if and only if the graph has a structure close to a bipartite component. This
is an analog of Cheeger's inequality for λn.

� λk is close to zero if and only if the graph is close to having k connected components. This is
a generalization called the higher-order Cheeger's inequality.

These results form the basis of many spectral graph algorithms. We will see precise statements and
proofs of these results in later chapters.

Directed Graphs and Hypergraphs

For directed graphs, we can consider its adjacency matrix A and Laplacian matrix L = D − A,
where D is the diagonal out-degree matrix. We may ask whether the spectrum of these matrices
can be related to the combinatorial properties of the directed graph. However, since these matrices
are no longer symmetric, the eigenvalues can be complex numbers, and very little is known about
the relationship between the spectrum and combinatorial properties of directed graphs.

For hypergraphs, it is not even clear what the natural associated matrices should be. It has been
an open direction to develop a spectral theory for directed graphs and hypergraphs.
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In this course, we will keep these directions in mind and mention reasonable questions and known
results whenever possible. For directed graphs, we will discuss a recent generalization of Cheeger's
inequality using reweighted eigenvalues, as well as how to de�ne directed spectral sparsi�ers and
solve directed Laplacian equations. For hypergraphs, we will introduce the active research area of
high-dimensional expanders, which provides a promising framework for developing an interesting
spectral theory for hypergraphs.

2.5 Problems

Problem 2.19 (Cycles). Compute the Laplacian spectrum of Cn, the cycle with n vertices.

Hint: The eigenvectors of the Laplacian matrix of Cn involve the n-th roots of unity.

Problem 2.20 (Hypercubes). A hypercube of n-dimension is an undirected graph with 2n ver-
tices. Each vertex corresponds to a string of n bits. Two vertices have an edge if and only if their
corresponding strings di�er by exactly one bit.

1. Given two undirected graphs G = (V,E) and H = (U,F ), we de�ne G×H as the undirected
graph with vertex set V × U , where two vertices (v1, u1) and (v2, u2) have an edge if and only
if either (1) v1 = v2 and u1u2 ∈ F , or (2) u1 = u2 and v1v2 ∈ E. Let x be an eigenvector of
the Laplacian of G with eigenvalue α, and let y be an eigenvector of the Laplacian of H with
eigenvalue β. Show that we can use x and y to construct an eigenvector of the Laplacian of
G×H with eigenvalue α+ β.

2. Use (1), or otherwise, to compute the Laplacian spectrum of the hypercube of n dimension.

Problem 2.21 (Spectral Characterization of Connected Bipartite Graphs). Let G be a connected
undirected graph, and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Prove that G is
bipartite if and only if α1 = −αn.

You may need to use the Perron-Frobenius result in Theorem A.18 and also the optimization for-
mulation of eigenvalues in De�nition A.11 to solve this problem.

Problem 2.22 (Largest Eigenvalue of a Tree). Prove that the maximum eigenvalue of the adjacency
matrix of a tree with maximum degree d is at most 2

√
d− 1.

(This bound is important in the study of Ramanujan graphs.)

Question 2.23 (Largest Eigenvalue of Graphs of Bounded Arborcity). A graph G = (V,E) is of
arboricity k if k is the minimum number of edge-disjoint forests required to cover all the edges of
the graph. A classic result in combinatorial optimization by Nash-Williams states that

k = max
S⊆V

⌈ |E(S, S)|
|S| − 1

⌉
,

which is closely related to the density of the densest subgraph.

What is the best upper bound on the largest eigenvalue of the adjacency matrix of a graph of arboricity
k, expressed in terms of k and the maximum degree d?

Problem 2.24 (Number of Spanning Trees). Let G = (V,E) be an undirected graph with V = [n].
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1. Let B be the edge incidence matrix of G as de�ned in De�nition 2.12. Prove that the determi-
nant of any (n−1)× (n−1) submatrix of B is ±1 if and only if the n−1 edges corresponding
to the columns form a spanning tree of G.

2. Let L be the Laplacian matrix of G and let L′ be the matrix obtained from L by deleting the
last row and last column. Use (1), or otherwise, to prove that det(L′) is equal to the number
of spanning trees in G.

You may use the Cauchy-Binet formula in Fact A.30 to solve this problem.

Problem 2.25 (Wilf's Theorem). Let G be an undirected graph, and let α1 be the largest eigenvalue
of its adjacency matrix. Prove that χ(G) ≤ bα1c+ 1, where χ(G) is the chromatic number of G.

You may �nd the Cauchy interlacing Theorem A.15 useful.
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Chapter 3

Cheeger's Inequality

Recall that a graph G is connected if and only if λ2 > 0, where λ2 is the second smallest eigenvalue of
the normalized Laplacian matrix. Informally, Cheeger's inequality is a robust generalization that a
graph is well-connected if and only if λ2 is large. This connection between a combinatorial property
and an algebraic quantity is important in the theory of random walks and the study of expander
graphs, which we will explore in next chapters. Moreover, the proof of Cheeger's inequality provides
an e�cient algorithm for graph partitioning, which is useful in both theory and practice.

Cheeger's original inequality was proved in the setting of Riemannian manifolds [Che70]. The
inequality in the graph setting was established in several works in the 1980s [Dod84, AM85, Alo86,
SJ89]. In this chapter, we begin by motivating the formulation of Cheeger's inequality in the graph
setting, using edge conductance as a measure of well-connectedness. We then interpret λ2 as a
continuous relaxation of edge conductance to establish the easy direction of Cheeger's inequality.
Next, we follow the exposition of Trevisan [Tre08], which explains the hard direction through a
rounding algorithm to relate the continuous relaxation to the discrete property. Finally, we present
the spectral partitioning algorithm and discuss its strengths and limitations.

3.1 Cheeger's Inequality for Graphs

Cheeger's original inequality relates the isoperimetric constant of a manifold to the second smallest
eigenvalue of its Laplace operator.

The discrete analog of the Laplace operator is the Laplacian matrix, as de�ned in De�nition 2.11.
For a more detailed explanation of why the Laplacian matrix is the discrete analog of the Laplace
operator, please see [HLW06, page 472]. To provide a quick intuition: one application of the Laplace
operator is in de�ning the heat equation ∂u/∂t = ∆u, where u(x, t) represents the temperature at
point x at time t and ∆ is the Laplacian operator. The discrete analog of the heat equation is
du/dt = −Lu, which implies that

du(i)

dt
= −Lu(i) = −

∑
j:ji∈E

(u(i)− u(j)).

This equation states that the rate of change of u(i) is proportional to the net �ow of heat from
vertex i to its neighboring vertices.

The isoperimetric constant of a Riemannian manifold quanti�es how well-connected the manifold is
by measuring the ratio of the volume of the boundary of a subset to the volume of the subset itself.
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More formally, the Cheeger constant is de�ned as

h(M) := inf
S

µn−1(∂S)

min{µn(S), µn(M \ S)}
= inf

S:µn(S)≤ 1
2
µn(M)

µn−1(∂S)

µn(S)
,

where ∂A denotes the boundary of an open subset A, and µn and µn−1 denotes the n-dimensional
and (n− 1)-dimensional measures respectively.

A natural way to de�ne an isoperimetric constant of a graph is to measure the volume using the
edges of the graph. (Other natural de�nitions will be discussed in Section 3.5.)

De�nition 3.1 (Edge Conductance). Let G = (V,E) be an undirected graph. The conductance of
a subset S ⊆ V and the conductance of the graph G are de�ned as

φ(S) :=
|δ(S)|
vol(S)

and φ(G) := min
S⊆V :vol(S)≤|E|

φ(S),

where δ(S) denotes the set of edges with exactly one endpoint in S, and vol(S) :=
∑

v∈S deg(v) is
the volume of the subset S. Note that the constraint vol(S) ≤ |E| is equivalent to vol(S) ≤ 1

2 vol(V )
as vol(V ) = 2|E|. Note also that for all S ⊆ V , it holds that 0 ≤ φ(S) ≤ 1, as φ(S) is the ratio of
the number of edges cut by S to the total degree in S.

Cheeger's original inequality [Che70] states that for a compact Riemannian manifold M ,

λ ≥ h(M)2

4
,

where λ is the smallest positive eigenvalue of the Laplace operator.

The corresponding inequality in the graph setting was established in several works during the
1980s [Dod84, AM85, Alo86, SJ89], with motivating applications in constructing expander graphs
and analyzing random walks. We present the following version, which uses the second smallest
eigenvalue of the normalized Laplacian matrix, as formulated by Chung [Chu97]. This provides the
cleanest bound for non-regular graphs, without any dependency on the maximum degree.

Theorem 3.2 (Cheeger's Inequality for Graphs). Let G = (V,E) be an undirected graph, and
let λ2 be the second smallest eigenvalue of its normalized Laplacian matrix L(G), as de�ned in
De�nition 2.17. Then

λ2

2
≤ φ(G) ≤

√
2λ2.

The �rst inequality is called the easy direction, and the second inequality is called the hard direction
which is the graph analog of Cheeger's original inequality for Riemannian manifolds. We will see
that the easy direction corresponds to using the second eigenvalue as a �relaxation� for graph
conductance, while the hard direction corresponds to �rounding� a fractional solution for graph
conductance to an integral solution.

An important implication of Cheeger's inequality is that λ2, the second smallest eigenvalue of the
normalized Laplacian matrix, can be used to certify that a graph is an expander graph. We say that
a graph G is an expander graph if φ(G) ≥ c for some constant 0 < c < 1. Sparse expander graphs
are highly e�cient combinatorial objects with numerous applications in theoretical computer science
and mathematics [HLW06]. Cheeger's inequality implies that a graph is an expander if and only if λ2

is a constant bounded away from zero. This provides an algebraic method for constructing expander
graphs, bringing deep mathematical tools into their study, and leading to signi�cant advances in
the �eld.
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3.2 Easy Direction: Continuous Relaxation

We prove the easy direction of Cheeger's inequality in this section. The key observation is that λ2

and φ(G) can be written as optimization problems of the same form.

We start with the optimization formulation of the second eigenvalue of the normalized Laplacian
matrix using the Rayleigh quotient in De�nition A.11.

Lemma 3.3 (Optimization Formulation for λ2). Let G = (V = [n], E) be an undirected graph, and
λ2 be the second smallest eigenvalue of its normalized Laplacian matrix L(G). Then

λ2 = min
x∈Rn

∑
ij∈E

(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

subject to
∑
i∈V

deg(i) · x(i) = 0.

Proof. By the Rayleigh quotient characterization in Lemma A.13,

λ2 = min
x∈Rn:x⊥v1

RL(x) = min
x∈Rn:x⊥D

1
2~1

x>Lx

x>x
= min

x∈Rn:x⊥D
1
2~1

x>D−
1
2LD−

1
2x

x>x
,

where v1 is the �rst eigenvector for the normalized Laplacian matrix, which is parallel to D
1
2~1 from

Lemma 2.18. By a change of variable x = D
1
2 y for y ∈ Rn, this can be rewritten as

λ2 = min
y∈Rn:D

1
2 y⊥D

1
2~1

y>Ly

y>Dy
= min

y∈Rn:
∑

i∈V deg(i)·y(i)=0

∑
ij∈E

(
y(i)− y(j)

)2∑
i∈V deg(i) · y(i)2

,

where the last equality follows from the quadratic form of the Laplacian matrix in Lemma 2.14.

Next, we observe that the graph conductance can also be written in the same form.

Lemma 3.4 (Optimization Formulation for Graph Conductance). Let G = (V = [n], E) be an
undirected graph. Then

φ(G) = min
x∈{0,1}n

∑
ij∈E

(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

subject to
∑
i∈V

deg(i) · x(i)2 ≤ |E|.

Proof. For a set S ⊆ V , let χS ∈ {0, 1}n be the characteristic vector of S. Note that

φ(S) =
|δ(S)|
vol(S)

=

∑
ij∈δ(S) 1∑
i∈S deg(i)

=

∑
ij∈E |χS(i)− χS(j)|∑
i∈V deg(i) · χS(i)

=

∑
ij∈E(χS(i)− χS(j))2∑
i∈V deg(i) · χS(i)2

=
χ>SLχS

χ>SDχS
.

Each vector x in {0, 1}n corresponds to the characteristic vector of the subset S := {i | x(i) = 1}.
The graph conductance φ(G) minimizes over subsets with volume at most |E|, which corresponds
to the constraint that

∑
i∈V deg(i) · x(i)2 ≤ |E|.
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Intuition: Continuous Relaxation

There are two di�erences between these two formulations in Lemma 3.3 and Lemma 3.4: one involves
the domain, and the other involves the constraint.

The major di�erence is that the former optimizes over the continuous domain x ∈ Rn, while the
latter optimizes over the discrete domain x ∈ {0, 1}n. A good way to think of the relationship
between the two optimization problems is that the former problem is a relaxation of the latter.
This is a common idea in the design of approximation algorithms. The latter problem is actually
an NP-hard combinatorial optimization problem. The relaxation idea is to optimize over a larger
continuous domain, so that the problem becomes solvable in polynomial time. Since we optimize
over a larger domain, the objective value of the former problem can only be smaller than that of
the latter, and so we expect that λ2 ≤ φ(G). This is the main intuition behind the easy direction.

In this course, we will see that this is a common theme in spectral graph theory, where the spectral
quantities involve the continuous domain x ∈ Rn while the combinatorial properties involve discrete
domains such as x ∈ {0, 1}n or x ∈ {−1, 1}n.
For these two formulations, however, the constraints are also di�erent. And it turns out that the
inequality λ2 ≤ φ(G) does not hold, but the slightly weaker inequality λ2 ≤ 2φ(G) does.

Proof of the Easy Direction

To upper bound λ2, we just need to �nd a vector x satisfying the constraint
∑

i∈V deg(i) · x(i) = 0,
and compute its Rayleigh quotient RL(x). Let S ⊆ V be an optimal solution to graph conductance,
with φ(S) = φ(G) and vol(S) ≤ |E|. Consider the following binary-valued solution z ∈ Rn with

z(i) =

{
1

vol(S) if i ∈ S
− 1

vol(V−S) if i 6∈ S
.

By construction,
∑

i∈V deg(i) · z(i) =
∑

i∈S deg(i)/ vol(S)−
∑

i∈V−S deg(i)/ vol(V −S) = 0. Thus,
z is a feasible solution to the optimization problem for λ2 in Lemma 3.3, and it follows that

λ2 ≤
∑

ij∈E
(
z(i)− z(j)

)2∑
i∈V deg(i) · z(i)2

=
|δ(S)| ·

(
1

vol(S) + 1
vol(V−S)

)2
1

vol(S) + 1
vol(V−S)

=
|δ(S)| · 2|E|

vol(S) · vol(V − S)
≤ 2φ(S),

where the last inequality uses the assumption that vol(S) ≤ |E| which implies that |E| ≤ vol(V −S).
This completes the proof of the easy direction.

3.3 Hard Direction: Rounding Algorithm

By optimizing over a larger domain, the objective value of the continuous problem will typically be
smaller than that of the discrete problem. The hard direction is to prove that λ2 cannot be much
smaller than φ(G), ensuring that λ2 is a good approximation to φ(G).

For graph conductance, the objective is to �nd an integral solution z ∈ {0, 1}n that minimizes the
ratio in Lemma 3.4. However, once the problem is relaxed to the continuous domain, the optimal
solution x ∈ Rn to λ2 may be very smooth and continuous. The task in the hard direction is to
prove that there always exists an integral solution z whose objective value is not much worse than
that of x. A common approach in approximation algorithms is to design a procedure to �round� the
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continuous solution x to an integral solution z, while bounding the objective value of z in terms of
the objective value of x. This is the approach taken by Trevisan [Tre08], providing a more intuitive
proof of Cheeger's inequality.

Ideas and Overview

We can think of the optimizer x ∈ Rn to the optimization problem in Lemma 3.3 as an embedding of
the vertices of the graph into the real line, such that the total squared edge length

∑
ij∈E(x(i)−x(j))2

is small. To produce an integral solution z, a natural idea is to do a �threshold rounding�, where we
pick a threshold t and set z(i) = 0 if x(i) < t and z(i) = 1 if x(i) ≥ t. The intuition is that if most
edges are short in this embedding, then there must exist a threshold with not many edges crossing.
A simple analogy is that if the average number of nonzeros in the rows of a matrix is small, then
there must exist a column with few nonzeros. This intuition can be made precise by introducing
the intermediate optimization problem of the following `1-form:

min
y∈Rn

+

∑
ij∈E

∣∣y(i)− y(j)
∣∣∑

i∈V deg(i) · y(i)
.

The proof of the hard direction consists of the following three steps:

1. Truncate an optimal solution to λ2 in Lemma 3.3 to obtain a solution x ∈ Rn+ that satis�es

∑
ij∈E

(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

≤ λ2 and vol(supp(x)) ≤ |E|, (3.1)

where supp(x) := {i ∈ V | x(i) 6= 0} is the support set of the vector x. This step is to ensure
that the output of the rounding algorithm has volume at most |E|. The assumption that
the optimal solution to λ2 satis�es the constraint

∑
i∈V deg(i) · x(i) = 0 is only used here.

This step can be thought of as bridging the gap between the constraints in Lemma 3.3 and
Lemma 3.4.

2. Use the solution x to construct a solution y ∈ Rn+ that satis�es∑
ij∈E |y(i)− y(j)|∑
i∈V deg(i) · y(i)

≤
√

2λ2 and vol(supp(y)) ≤ |E|. (3.2)

This step can be interpreted as embedding from `22 to `1, and it incurs the square root loss in
Cheeger's inequality.

3. Apply the threshold rounding procedure described above to y to obtain a set S satisfying

φ(S) ≤
√

2λ2 and vol(S) ≤ |E|.

This step is lossless and relies on a simple probabilistic analysis.

With this overview in mind, we proceed to present the details in reverse order, as the main ideas
are in the last two steps.
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Threshold Rounding

In the threshold rounding step, we take a vector y ∈ Rn+ from (3.2) and outputs a set S ⊆ supp(y)
with the same objective value. Our analysis follows that of Trevisan [Tre08], whose idea is to choose
a random t > 0 and consider the level set St := {i ∈ V | y(i) ≥ t}. The conductance of St is then
bounded by separately computing the expectation of the numerator E [|δ(St)|] and the expectation
of the denominator E [d|St|]. The idea of choosing a random t is similar to randomized rounding
in approximation algorithms, and Trevisan's approach of computing the expectations separately
simpli�es the analysis of the ratio.

Lemma 3.5 (Threshold Rounding). Let G = (V = [n], E) be an undirected graph. Let y ∈ Rn+
be a non-zero vector with non-negative entries. There exists t > 0 such that the threshold set
St := {i ∈ [n] | y(i) ≥ t} is nonempty and satis�es

φ(St) ≤
∑

ij∈E |y(i)− y(j)|∑
i∈V deg(i) · y(i)

.

Proof. We scale y so that maxi y(i) = 1. Let t ∈ (0, 1] be chosen uniformly at random. Note
that the threshold set St := {i ∈ V | y(i) ≥ t} is nonempty by construction. In the following, we
compute separately the expected value of the numerator and of the denominator for St.

For an edge ij ∈ E, note that the probability that ij ∈ δ(St) is |y(i) − y(j)|, when the random
threshold t falls between y(i) and y(j). By linearity of expectation,

Et
[
|δ(St)|

]
=
∑
ij∈E

Pr
t

(ij ∈ δ(St)) =
∑
ij∈E

∣∣y(i)− y(j)
∣∣.

For a vertex i ∈ V , note that the probability that i ∈ St is y(i), when the random threshold t is at
most y(i). By linearity of expectation,

Et
[

vol(St)
]

=
∑
i∈V

deg(i) · Pr
t

(i ∈ St) =
∑
i∈V

deg(i) · y(i).

It follows from Lemma 3.6 below that

min
t
φ(St) = min

t

|δ(St)|
vol(St)

≤
Et
[
|δ(St)|

]
Et
[

vol(St)
] ≤ ∑ij∈E |y(i)− y(j)|∑

i∈V deg(i) · y(i)
.

Lemma 3.6 (Spielman's Favorite Inequality). Let a1, . . . , an and b1, . . . , bn be positive numbers,
and p1, . . . , pn be a probability distribution. Then

min
i

ai
bi
≤
∑n

i=1 piai∑n
i=1 pibi

≤ max
i

ai
bi
.

The proof of this inequality is left as an exercise to the reader.
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Embedding from `2
2 to `1

In the embedding step, we construct an `1-solution y in (3.2) from an `22 solution x in (3.1). The
most obvious mapping is y(i) := x(i)2 so as to match the denominators, and it works.

Lemma 3.7 (Embedding Step). Given an undirected graph G = (V,E) and a vector x ∈ Rn+, there
is a vector y ∈ Rn+ with supp(y) = supp(x) such that

∑
ij∈E |y(i)− y(j)|∑
i∈V deg(i) · y(i)

≤

√√√√
2 ·
∑

ij∈E
(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

.

Proof. Set y(i) = x(i)2 for all i ∈ V . By construction, the supports of x and y are the same. The
main idea is to use the Cauchy-Schwarz inequality to bound the LHS by the RHS such that∑

ij∈E
|y(i)− y(j)| =

∑
ij∈E
|x(i)− x(j)| · |x(i) + x(j)| ≤

√∑
ij∈E

(x(i)− x(j))2

√∑
ij∈E

(x(i) + x(j))2.

Observe that ∑
ij∈E

(x(i) + x(j))2 ≤
∑
ij∈E

2
(
x(i)2 + x(j)2

)
= 2

∑
i∈V

deg(i) · x(i)2.

Combining these inequalities, we conclude that∑
ij∈E |y(i)− y(j)|∑
i∈V deg(i) · y(i)

≤

√∑
ij∈E(x(i)− x(j))2

√
2
∑

i∈V deg(i) · x(i)2∑
i∈V deg(i) · x(i)2

=

√√√√2
∑

ij∈E
(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

.

Truncation Step

Given an optimal solution x to λ2, we �rst shift x to obtain x̄ with at most the same objective value
and the additional property that both the positive part of x̄ and the negative part of x̄ have volume
at most |E|. The proof crucially relies on the assumption that

∑
i∈V deg(i) · x(i) = 0.

Lemma 3.8 (Shifting). Let x ∈ Rn be an optimal solution to λ2 in Lemma 3.3. There exists a
vector x̄ ∈ Rn such that vol({i | x̄(i) < 0}) ≤ |E| and vol({i | x̄(i) > 0}) ≤ |E| and∑

ij∈E
(
x̄(i)− x̄(j)

)2∑
i∈V deg(i) · x̄(i)2

≤
∑

ij∈E
(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

.

Proof. Let c ∈ R be a median value such that vol({i | x(i) < c}) ≤ |E| and vol({i | x(i) > c}) ≤ |E|.
Set x̄ := x− c~1. By construction, vol({i | x̄(i) < 0}) ≤ |E| and vol({i | x̄(i) > 0}) ≤ |E|.
For the ratio, observe that the numerator does not change by shifting, and the denominator cannot
decrease because∑
i∈V

deg(i) · x̄(i)2 =
∑
i∈V

deg(i) · (x(i)− c)2 =
∑
i∈V

deg(i) · x(i)2 + c2
∑
i∈V

deg(i) ≥
∑
i∈V

deg(i) · x(i)2,

where the last equality holds due to the assumption that
∑

i∈V deg(i) · x(i) = 0. This completes
the proof. (Note that x̄ may not satisfy the constraint

∑
i∈V deg(i) · x̄(i) = 0, so it may not be a

feasible solution to λ2 in Lemma 3.3.)
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Next, we show that either the positive part of x̄ or the negative part of x̄ satis�es the requirements
in (3.1).

Lemma 3.9 (Truncation). Let x̄ ∈ Rn be a vector that satis�es the properties in Lemma 3.8. There
exists a vector x̄+ ∈ Rn+ with vol(supp(x̄)) ≤ |E| and∑

ij∈E
(
x̄+(i)− x̄+(j)

)2∑
i∈V deg(i) · x̄+(i)2

≤
∑

ij∈E
(
x̄(i)− x̄(j)

)2∑
i∈V deg(i) · x̄(i)2

Proof. Let x̄+ ∈ Rn be the vector with x̄+(i) := max{x̄(i), 0} for 1 ≤ i ≤ n, and x̄− ∈ Rn be the
vector with x̄−(i) := min{x̄(i), 0} for 1 ≤ i ≤ n. We argue that either x̄+ or −x̄− would satisfy the
requirements. By construction, both x̄+ and −x̄− satisfy that the volume of the support is at most
|E|. For the ratio, note that∑

ij∈E(x̄+(i)− x̄+(j))2)2 +
∑

ij∈E(x̄−(i)− x̄−(j))2∑
i∈V deg(i) · x̄+(i)2 +

∑
i∈V deg(i) · x̄−(i)2

≤
∑

ij∈E
(
x̄(i)− x̄(j)

)2∑
i∈V deg(i) · x̄(i)2

,

where the denominators are equal, and the numerator on the LHS can only be smaller than that of
the RHS by a simple case analysis. The conclusion then follows from Lemma 3.6.

Proof of the Hard Direction

We summarize the proof of the hard direction. Let v2 ∈ Rn be an eigenvector of L(G) with

eigenvalue λ2. First, we apply the transformation u := D−
1
2 v2 to obtain a vector u that satis�es

the requirements in Lemma 3.3. Next, we apply the shifting and truncation steps in Lemma 3.8
and Lemma 3.9 on u to obtain a vector x that satis�es the requirements in (3.1). Then, we apply
the embedding step in Lemma 3.7 on x to obtain a vector y that satis�es the requirements in (3.2).
Finally, we apply the threshold rounding step in Lemma 3.5 on y to obtain a threshold set St with
φ(St) ≤

√
2λ2 and vol(St) ≤ |E|. This completes the proof of the hard direction of Cheeger's

inequality.

3.4 The Spectral Partitioning Algorithm

Finding a set of small conductance, also called a sparse cut, is an important algorithmic problem with
numerous applications. It is useful in designing divide-and-conquer algorithms and has applications
in image segmentation, data clustering, community detection, VLSI design, and more.

The problem of �nding a sparsest cut is NP-hard. A popular heuristic for �nding an approximate
sparsest cut in practice is the following spectral partitioning algorithm.

Algorithm 1 The Spectral Partitioning Algorithm

Require: An undirected graph G = (V,E) with V = [n] and m = |E|.
1: Compute the second smallest eigenvalue λ2 of L(G) and a corresponding eigenvector x ∈ Rn.
2: Compute the vector y := D−

1
2x and sort the vertices so that y(1) ≥ y(2) ≥ . . . ≥ y(n).

3: For 1 ≤ i ≤ n− 1, let Si = [i] if volG
(
[i]
)
≤ m, and let Si = [n] \ [i] if volG

(
[i]
)
> m.

4: return mini:1≤i≤n−1{φ(Si)}.
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This algorithm is remarkably simple, with only a few lines of code when implemented in mathemat-
ical software such as MATLAB. This simplicity is one reason why this heuristic is popular.

There is a near-linear time randomized algorithm to compute an approximate eigenvector of the
second eigenvalue, using the power method and a fast Laplacian solver. This makes the spectral
partitioning algorithm both practically and theoretically e�cient, which is another reason for its
popularity.

The primary reason that it is popular is its excellent empirical performance in various applications,
especially in image segmentation and clustering. The introduction of the concept of a normalized
cut (closely related to a sparse cut) and the spectral partitioning algorithm by Shi and Malik [SM00]
in the context of image segmentation were considered a breakthrough.

The proof of Cheeger's inequality provides a nontrivial performance guarantee of the spectral par-
titioning algorithm, that it will always output a set S with conductance φ(S) ≤

√
2λ2 ≤ 2

√
φ(G).

This follows because the shifting, truncation, and embedding steps in the proof of the hard direction
are only used for the analysis and do not change the ordering of the vertices. Therefore, the cuts
considered in the threshold rounding step are also considered by the spectral partitioning algorithm.

The spectral partitioning algorithm is a constant factor approximation algorithm when φ(G) is a
constant, providing an e�cient way to certify that a graph is an expander as discussed earlier.
However, its approximation ratio could be arbitrarily bad when φ(G) is small. For example, the
approximation ratio is Θ(

√
n) when φ(G) ≤ 1/n. Providing a theoretical explanation of the em-

pirical success of the spectral partitioning algorithm remains an open problem. We will revisit this
question when we study the improved Cheeger's inequality.

In the following, we discuss the theoretical performance of the spectral partitioning algorithm in
more detail. We present examples where the easy direction is tight, where the hard direction is
tight, and where the spectral partitioning algorithm is fooled.

Tight Example for the Hard Direction

Consider the cycle of 4n vertices. One can compute the second eigenvector of the cycle exactly (see
Problem 2.19), but we do not need it here. Recall that λ2 = minx⊥~1 x

TLx/xTx, so to give an upper
bound, we only need to demonstrate a solution with small objective value. Consider

x =
(

1, 1− 1

n
, 1− 2

n
, . . . ,

1

n
, 0,− 1

n
, . . . ,−1 +

1

n
,−1,−1 +

1

n
, . . . ,− 1

n
, 0,

1

n
, . . . , 1− 1

n

)
.

Then x ⊥ ~1, and so

λ2 ≤
∑

ij∈E
(
x(i)− x(j)

)2
2
∑

i∈V x(i)2
= Θ

(
n
(

1
n

)2
n

)
= Θ

( 1

n2

)
.

On the other hand, it is easy to verify that the conductance of the cycle of 4n vertices is Θ( 1
n). This

is an example where the hard direction φ(G) ≤
√

2λ2 is tight up to a constant factor.

In this example, λ2 is not a good estimate of φ(G), but the spectral partitioning algorithm works
perfectly to output a set S with φ(S) ≈ φ(G), as it outputs a set S with φ(S) ≈

√
λ2 ≈ φ(G). It

is actually a general phenomenon that rounding algorithms work perfectly for the worst integrality
gap examples.
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Tight Example for the Easy Direction

To �nd an example where the spectral partitioning algorithm performs poorly, we need to examine
cases where the easy direction is tight, but the algorithm outputs a set S with φ(S) ≈

√
λ2 ≈

√
φ(G).

For the easy direction, one can check that it is tight for the hypercubes; see Problem 2.20. Inter-
estingly, for hypercubes, there are vectors in the second eigenspace where the spectral partitioning
algorithm performs perfectly and performs poorly; see Problem 3.13. Since we do not have control
over which eigenvector in the second eigenspace is returned, this provides an example where the
spectral partitioning algorithm could perform poorly.

An Example Fooling the Spectral Partitioning Algorithm

The cycles and the hypercubes are the standard examples showing that both sides of Cheeger's
inequality are tight. In the hypercube example, the spectral partitioning algorithm could only
output a set S with φ(S) ≈

√
φ(G). However, this example may not be fully satisfying, as the

algorithm could still work perfectly. More importantly, we do not clearly see or gain intuition about
how the spectral partitioning algorithm is fooled.

We construct such an example by tweaking the cycle example. Let G be the weighted graph with
vertices {v1, . . . , vn, vn+1, . . . , v2n}, and two cycles (v1, v2, . . . , vn) and (vn+1, vn+2, . . . , v2n) where
every edge in these cycles is of weight one, and a �hidden� matching {v1vn+1, v2vn+2, . . . , vnv2n}
where every edge in the matching has weight 100/n2. It is easy to see that the set of smallest

conductance is the set S := {v1, . . . , vn} with φ(S) = O(1/n2). However, the edges in the hidden
matching are just barely heavy enough that the spectral partitioning algorithm does not �feel�
them, and still considers the smooth embedding of the cycle as the best way to map the vertices
onto the real line. Indeed, one can verify that the second eigenvector x in this example is still
the same as that in the cycle of n vertices, with x(vi) = x(vn+i) for 1 ≤ i ≤ n. See Figure 3.1
for an illustration. Therefore, λ2 is still O(1/n2) which is close to φ(G), but the cut of smallest
conductance is completely lost in x and every threshold set has conductance Ω(1/n). This example
provides a more insightful view into how the spectral partitioning algorithm is fooled. Althout this
example is a weighted graph, one can modify it slightly to keep the same structure while making
the graph unweighted.

3.5 Variants of Cheeger's Inequality

We discuss two variants of Cheeger's inequality, based on di�erent de�nitions of the isoperimetric
constant of a graph.
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Matching edge weight 1/500 Matching edge weight 1/1000

Figure 3.1: The plots of the second eigenvector are generated for the graph with 200 vertices.
Vertices 0 to 99 belong to the �rst cycle, and vertices 100 to 199 belong to the second cycle. A
matching edge connects vertex i and vertex i + 100 for 0 ≤ i ≤ 99. When the edge weight in the
hidden matching is slightly heavier, the second eigenvector is the same as that of the cycle, with
matched vertices having the same value. When the edge weight in the hidden matching is slightly
lighter, the second eigenvalue becomes a binary vector, indicating the sparsest cut.

Edge Expansion

Cheeger's inequality is often stated using edge expansion rather than edge conductance.

De�nition 3.10 (Edge Expansion). Let G = (V,E) be an undirected graph. The edge expansion of
a subset S ⊆ V and the edge expansion of the graph G are de�ned as

Φ(S) :=
|δ(S)|
|S|

and Φ(G) := min
S:|S|≤|V |/2

Φ(S).

Both edge expansion and edge conductance aim to identify the �bottleneck� in the graph. For d-
regular graphs, the two de�nitions are essentially equivalent, with Φ(G) = d ·φ(G). For non-regular
graphs, the relationship between the edge conductance and the second smallest eigenvalue of the
normalized Laplacian matrix is more elegant, without any dependency on the maximum degree of
the graph.

Vertex Expansion

Another natural de�nition of an isopermetric constant of graphs is based on measuring the �volume�
using the vertices of the graph.

De�nition 3.11 (Vertex Expansion). Let G = (V,E) be an undirected graph. The vertex expansion
of a subset S ⊆ V and the vertex expansion of the graph G are de�ned as

ψ(S) :=
|∂(S)|

min{|S|, |V − S|}
and ψ(G) := min

S⊆V
ψ(S),

where ∂(S) := {v /∈ S | ∃u ∈ S with uv ∈ E} denotes the vertex boundary of S.

There is a Cheeger-type inequality relating vertex expansion and the second smallest eigenvalue of
the Laplacian matrix.
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Theorem 3.12 (Cheeger's Inequality for Vertex Expansion). Let G = (V,E) be an undirected graph
with maximum degree d, and let λ′2 be the second smallest eigenvalue of its Laplacian matrix L(G),
as de�ned in De�nition 2.11. Then

ψ(G) ≥ 2λ′2(G)

d+ 2λ′2(G)
and λ′2(G) ≥ ψ(G)2

4 + 2ψ(G)2
,

The �rst inequality is the easy direction proved by Tanner [Tan84] and Alon and Milman [AM85].
The second inequality is the hard direction proved by Alon [Alo86]. Note that these imply that
λ′2(G) can be used to provide an O(

√
d · ψ(G))-approximation algorithm to ψ(G).

Comparing to Cheeger's inequality for edge conductance, there is an extra factor d loss between the
upper and lower bounds. In Chapter ??, we will introduce a new Cheeger's inequality for vertex
expansion using a concept called reweighted eigenvalues, which improves the dependency on the
maximum degree from d to log d.

3.6 Problems

Problem 3.13 (Spectral Partitioning for Hypercubes). Let G be the hypercube of dimension d with
2d vertices and L(G) be its normalized Laplacian matrix.

(a) Show that there is an eigenvector x ∈ R2d of L(G) with eigenvalue λ2 so that the spectral
partitioning algorithm applied on x outputs a set S with φ(S) = RL(x) = 1

2λ2.

(b) Show that there is an eigenvector y ∈ R2d of L(G) with eigenvalue λ2 so that the spectral
partitioning algorithm applied on y outputs a set S with φ(S) ≈

√
RL(y) =

√
λ2.

(Hint: Consider a convex combination of the good vectors in the previous part.)

Problem 3.14 (Houdré-Tetali Isoperimetric Constant). Consider an isoperimetric constant of
graphs introduced by Houdré and Tetali [HT04]. Assume the graph G = (V = [n], E) is d-regular
for simplicity. For a vertex i and a subset S ⊂ V , denote d(i, S) := |{ij ∈ E | j ∈ V −S}|. For any
p ∈ [0, 1], the isoperimetric constant ϕp of a subset S ⊂ V and of the graph are de�ned as

ϕp(S) :=
1

|S|
∑
i∈S

(d(i, S)

d

)p
and ϕp(G) := min

S:|S|≤n/2
ϕp(S).

(a) Verify that ϕ1(G) is equal to the edge conductance φ(G).

(b) Check that ϕ0(G) is equal to the inner vertex expansion ψin(G) if we use the convention
that 00 = 0. Let ∂in(S) := |{i ∈ S | d(i, S) > 0}| be the inner vertex boundary. De�ne
ψin(S) := |∂in(S)|/|S| and ψin(G) := minS:|S|≤n/2 ψin(S).

(c) Show that ϕ 1
2
(G)2 ≤ ϕ1(G) · ϕ0(G).

(d) Prove that ϕ 1
2
(G)2 . λ2 · log d, where λ2 is the second eigenvalue of the normalized Laplacian.

(e) Prove that ϕp(G)2 . 1
2p−1 · λ2 for any p ∈ (1

2 , 1].

(Hint: A similar randomized rounding proof as in the hard direction of Cheeger's inequality would
work to prove (d) and (e). See [LT24].)
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Cheeger-Type Inequality for λn and Bipartiteness Ratio

Through his exposition of Cheeger's inequality using the intermediate `1-problem presented in this
chapter, Trevisan [Tre09] discovered an analog of Cheeger's inequality for λn.

In this subsection, we follow his thought process to derive the result, which starts with a spectral
characterization relating λn to the bipartiteness of the graph.

Exercise 3.15 (Spectral Characterization of Bipartiteness). Let G = (V,E) be an undirected graph
and λn be the largest eigenvalue of its normalized Laplacian matrix L(G). Then λn = 2 if and only
if G has a bipartite component, i.e., a connected component that is a bipartite graph.

Trevisan [Tre09] proved a robust generalization that λn is close to 2 if and only if G is close to
having a bipartite component, in the same style as in Cheeger's inequality in Theorem 3.2. To state
his result, we write the optimization formulation for 2 − λn and then motivate the corresponding
combinatorial property.

Exercise 3.16 (Optimization Formulation for 2− λn). Let G = (V,E) be an undirected graph and
λn be the largest eigenvalue of L(G). Then

2− λn = min
x∈Rn

∑
ij∈E

(
x(i) + x(j)

)2∑
i∈V deg(i) · x(i)2

.

Trevisan de�ned the combinatorial property to measure the bipartiteness ratio of a subset of vertices
using the `1-version of the optimization problem in Exercise 3.16.

De�nition 3.17 (Bipartiteness Ratio). Let G = (V = [n], E) be an undirected graph. The bipar-
titeness ratio of a vector x ∈ {−1, 0, 1}n is de�ned as

β(x) :=

∑
ij∈E

∣∣x(i) + x(j)
∣∣∑

i∈V deg(i) · |x(i)|
.

The bipartiteness ratio of a graph G is de�ned as

β(G) := min
x∈{−1,0,1}n

β(x).

Given a subset S and a bipartition of S into (L,R), the corresponding vector x ∈ {−1, 0, 1} is such
that

x(i) =


+1 if i ∈ L
−1 if i ∈ R
0 otherwise

.

Trevisan proved the following analog of Cheeger's inequality for 2− λn and β(G).

Problem 3.18 (Cheeger's Inequality for λn [Tre09]). Let G = (V,E) be an undirected graph and
λn be the largest eigenvalue of L(G). Then

1

2
(2− λn) ≤ β(G) ≤

√
2(2− λn).
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An interesting application of this inequality is the design of an approximation algorithm for the
maximum cut problem using spectral techniques. An observation is that if λn is bounded away
from 2, then the graph does not have a very large max-cut.

Problem 3.19. Use the easy direction of Problem 3.18 to show that the trivial approximation
algorithm of cutting 50% of edges is a 1/λn-approximation algorithm for the maximum cut problem.

On the other hand, if λn is close to 2, the hard direction of Problem 3.18 can be used to �nd a
subset S = (L,R) with small bipartiteness ratio. This ensures that more than 50% of the edges
with an endpoint in S will be cut. We can then apply the same idea recursively on V −S to obtain
a better than 50% approximation algorithm for the maximum cut problem. See [Tre09] for details
and [Sot15] for an improved analysis.
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Chapter 4

Random Walks on Graphs

Given an undirected graph G = (V,E), a random walk is a simple stochastic process where it starts
from a vertex, and in each step the walk moves to a uniformly random neighbor of the current
vertex. We are interested in understanding the long-term behavior of the random walk. Is there a
limiting distribution on the vertices as the number of steps tends to in�nity? If so, how many steps
are needed to converge to the limiting distribution?

There are two main approaches to addressing these questions. One is probabilistic, based on the
concept of �coupling� two random processes. The other is spectral, using the eigenvalues of the
transition matrix. We study the spectral approach and refer the reader to [Häg02, LPW06] for
expositions on the probabilistic approach.

In this chapter, we begin with the more general setting of a �nite Markov chain and state the
fundamental theorem. Next, we specialize the fundamental theorem to the case of random walks
on undirected graphs and use spectral analysis to prove it. The spectral analysis builds naturally
on the results in Chapter 2 and Chapter 3 and provides a useful upper bound on the mixing time.
Finally, we discuss some interesting applications of random walks and mention some known results
for random walks on directed graphs.

4.1 Markov Chains

A �nite Markov chain is de�ned by a �nite state space and a transition matrix.

De�nition 4.1 (Transition Matrix). Let [n] be the state space. A matrix P ∈ Rn×n is a probability
transition matrix if P is non-negative and

∑
j∈[n] Pi,j = 1 for each i ∈ [n]. For 1 ≤ i, j ≤ n, the

entry Pij is the transition probability from state i to state j.

De�nition 4.2 (Markov Chain). A sequence of random variables (X0, X1, . . .) is a Markov chain
with state space [n] and transition matrix P ∈ Rn×n if, for all i, j ∈ [n] and t ≥ 1,

Pr
[
Xt+1 = j | Xt = i ∩Xt−1 = it−1 ∩ . . . ∩X0 = i0

]
= Pr

[
Xt+1 = j | Xt = i

]
= Pi,j .

This property, known as the Markov property, states that the transition probability from i to j
depends only on the current states Xt, regardless of the states X0, . . . , Xt−1 that precedes it.

Let ~p0 ∈ Rn be an initial probability distribution over the states. Then, ~pt := ~p0P
t is the probability

distribution on the states after t steps of random walks.
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A Markov chain can be viewed as a random walk on a weighted directed graph G = ([n], w), where
the transition probability from state i to state j is proportional to the edge weight w(i, j) such that
Pi,j = w(i, j)/

∑
j∈[n]w(i, j).

Irreducibility and Aperiodicity

Two key properties ensures the existence of a unique limiting distribution.

De�nition 4.3 (Irreducibility). A Markov chain de�ned by transition matrix P ∈ Rn×n is called
irreducible if, for any two states i, j, there exists an integer t such that Pr[Xt = j | X0 = i] > 0.

Equivalently, the underlying directed graph G = ([n], E), where E(G) := {ij | Pi,j > 0} of P , is
strongly connected.

This property is called irreducibility because, if it is not satis�ed, then the Markov chain can be
reduced to a smaller one for studying the limiting distribution. Speci�cally, the limiting distribution,
if exists, will only have support on a strongly connected component of the underlying directed graph.

De�nition 4.4 (Aperiodicity). The period of a state i is de�ned as gcd
{
t | Pr[Xt = i | X0 = i] > 0

}
,

the greatest common divisor of the set of times when it is possible to return to the starting state i. A
state i is aperiodic if its period is equal to 1. A Markov chain is aperiodic if all states are aperiodic;
otherwise it is periodic.

For example, random walks on an undirected bipartite graph are periodic, as every state has period
2. Similarly, random walks on a directed cycle of length k > 1 are periodic, with every state having
a period of k. In general, a Markov chain does not have a limiting distribution if it is periodic.

Irreducibility and aperiodicity together imply the following property.

Proposition 4.5 (Reachability). For any �nite, irreducible, and aperiodic Markov chain, there
exists an integer τ <∞ such that Pr[Xt = j | X0 = i] > 0 for all i, j and all t ≥ τ .

The proof of reachability uses aperiodicity and a simple number-theoretic argument to establish
the statement for all i = j, and then uses irreducibility to extend the statement for all i 6= j. We
do not need this result for the spectral analysis in this chapter. Interested readers are referred
to [Häg02, LPW06] for a detailed proof.

Stationary Distribution and Convergence

Informally, when a limiting distribution exists, it is a stationary distribution, de�ned as follows.

De�nition 4.6 (Stationary Distribution). For a Markov chain de�ned by a transition matrix P ∈
Rn×n, a probability distribution ~π ∈ Rn is a stationary distribution if ~πP = ~π, where ~π is represented
as a row vector.

A stationary distribution ~π satis�es ~πP t = ~π for any t ≥ 1. From a linear algebraic perspective, a
stationary distribution is simply an eigenvector of P> corresponding to the eigenvalue 1.

To de�ne convergence, we need a measure of how close two probability distributions are. One
commonly used measure is the total variation distance.
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De�nition 4.7 (Total Variation Distance). Given two probability distributions ~p, ~q ∈ Rn, the total
variation distance of ~p and ~q is de�ned as

dTV(~p, ~q) :=
1

2

n∑
i=1

|p(i)− q(i)| = 1

2
‖~p− ~q‖1.

We say that ~pt converges to a probability distribution ~q as t→∞ if limt→∞ dTV(~pt, ~q) = 0.

Fundamental Theorem of Markov Chains

The fundamental theorem states that any �nite, irreducible and aperiodic Markov chain has a unique
limiting distribution. Moreover, this limiting distribution is independent of the initial distribution.

Theorem 4.8 (Fundamental Theorem of Markov Chains). Consider the Markov chain de�ned by
a transition matrix P ∈ Rn×n. Let ~p0 ∈ Rn be an initial probability distribution on the states. Let
~pt ∈ Rn be the probability distribution after t steps, i.e., ~pt := ~p0P

t after t steps. If the Markov
chain is �nite, irreducible, and aperiodic, then the distribution ~pt converges to a unique stationary
distribution ~π, regardless of the initial distribution ~p0.

The intuition behind the probabilistic proof of the fundamental theorem is as follows: For any �nite,
irreducible, and aperiodic Markov chain de�ned by P , running the chain for a su�ciently long time
ensures that it is possible to reach any state from any other state (Proposition 4.5). If two instances
of the Markov chains, (X1, X2, . . .) and (Y1, Y2, . . .), meet at the same state at some time t (i.e.,
Xt = Yt), then their future behavior becomes indistinguishable because Markov chains �forget� their
history. By Proposition 4.5, any two instances of the Markov chains will eventually meet, and thus
all distributions converge to the same limiting distribution as t→∞.

In the following sections, we specialize the fundamental theorem to the case of random walks on
undirected graphs and use a spectral approach to prove it. The spectral analysis has the advantage
that it also provides a useful upper bound on the mixing time.

For the general result, we refer the reader to [Häg02] for a probabilistic proof using coupling,
[LPW06] for a probabilistic and algebraic proof, and [HJ13] for a purely algebraic proof related to
the Perron-Frobenius Theorem A.18.

4.2 Random Walks on Undirected Graphs

We consider random walks on an unweighted undirected graph G = (V,E), where in each step
the walk moves to a uniformly random neighbor of the current vertex. The fundamental theorem
becomes easier in this special case, as there are simple characterizations of irreducibility, aperiodicity,
and the limiting distribution. We also consider lazy random walks at the end of this section.

Matrix Formulation: The transition probability Pij from a vertex i to a vertex j is simply
1/deg(i), and so the transition matrix is P = D−1A where D is the diagonal degree matrix in
De�nition 2.10 and A is the adjacency matrix in De�nition 2.1. Let ~p0 : V → R be an initial
probability distribution, and ~pt be the probability distribution after t steps of random walks. Then
~pt+1 = ~ptP

> = ~ptD
−1A, and by induction ~pt = ~p0(D−1A)t.
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Stationary Distribution: Recall that a probability distribution ~π : V → R is a stationary
distribution of P if ~πP = ~π. It is equivalent to saying that ~π is a an eigenvector of P> with
eigenvalue 1. Given that P = D−1A for random walks on undirected graphs, it is not di�cult to
identify one such eigenvector with probabilities proportional to the degrees.

Lemma 4.9 (Stationary Distribution of Undirected Graphs). Let G = (V,E) be an undirected
graph and P = D−1A be its transition matrix. The distribution ~π : V → R with

~π(i) =
deg(i)∑
j∈V deg(j)

=
deg(i)

2|E|

for all i ∈ V is a stationary distribution of P .

Irreducibility: Is ~π in Lemma 4.9 the unique stationary distribution? Not necessarily. For exam-
ple, if the graph is disconnected, the distribution after many steps depends on the initial distribution
(e.g., which component does the starting vertex belongs to). This corresponds to the irreducibil-
ity condition in the fundamental theorem. For undirected graphs, the irreducibility condition is
equivalent to the graph being connected.

Aperiodicity: Even if the graph is connected, a limiting distribution may not exist. For example,
in a connected bipartite graph, if the initial distribution ~p0 is on a single vertex, then the distribution
~pt depends on the parity of t, as the support of ~pt oscillates between the two sides of the bipartite
graph. This corresponds to the aperiodicity condition in the fundamental theorem. For connected
undirected graphs, observe that the aperiodicity condition is equivalent to the condition that the
graph is non-bipartite.

Fundamental Theorem: Given the simple characterizations of the conditions in the fundamental
theorem, it reduces to the following statement for undirected graphs.

Theorem 4.10 (Fundamental Theorem for Undirected Graphs). Let G be a connected, non-bipartite
undirected graph. Let P = D−1A be the transition matrix of random walks on G. The distribution
~π in Lemma 4.9 is the unique stationary distribution. Furthermore, ~pt := ~p0P

t converges to ~π as
t→∞ regardless of the initial distribution ~p0.

Lazy Random Walks

The non-bipartiteness condition ensures that the Markov chain is aperiodic. There is a simple
modi�cation of the random walks so that this assumption can be removed by adding self-loops in
the graph.

De�nition 4.11 (Lazy Random Walks). Let G be an undirected graph. The transition matrix W
of the lazy random walks is de�ned as W = 1

2I + 1
2D
−1A. In other words, the lazy random walks

stay at the current vertex with probability 1
2 and moves to a uniform random neighbor of the current

vertex with probability 1
2 .

By performing lazy random walks, we make the graph non-bipartite and obtain the following corol-
lary of Theorem 4.10.
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Corollary 4.12 (Fundamental Theorem for Lazy Undirected Graphs). Let G be a connected undi-
rected graph. Let W = 1

2I + 1
2D
−1A be the transition matrix of lazy random walks on G. The

distribution ~π in Lemma 4.9 is the unique stationary distribution. Furthermore, ~pt := ~p0W
t con-

verges to ~π as t→∞ regardless of the initial distribution ~p0.

It will be clear from the spectral analysis in the next section why the constant 1/2 is used.

4.3 Spectral Analysis of Mixing Time for Undirected Graphs

In this section, we will prove the fundamental theorem for undirected graphs in Theorem 4.10 using
spectral analysis. Besides being elegant and insightful, spectral analysis can be used to analyze the
mixing time, which is the rate of convergence to the unique stationary distribution.

We �rst assume that the undirected graph is d-regular. We then explain the modi�cations needed
for non-regular undirected graphs.

Spectrum of the Transition Matrix for Regular Graphs

For a d-regular graph, the transition matrix P for random walks and the transition matrix W for
lazy random walks are

P = D−1A =
1

d
A = A and W =

1

2
I +

1

2
A,

where A is the normalized adjacency matrix in De�nition 2.17.

This is the main simpli�cation from the d-regular assumption, as the matrices P and W are still
real symmetric. Another simpli�cation is that the stationary distribution ~π in Lemma 4.9 is simply
the uniform distribution ~1/n for a d-regular graph.

Our goal is to prove that

lim
t→∞

P t~p0 =
~1

n
and lim

t→∞
W t~p0 =

~1

n
,

regardless of the initial distribution ~p0, as long as the graph is connected and non-bipartite for
random walks, and connected for lazy random walks.

For the spectral analysis, we write ~p0 and ~pt as column vectors. To compute P t~p0 and W t~p0, a
repeated application of the same operator, it is helpful to know the spectrum of the matrices P and
W , as discussed in Appendix A.

Let α1 ≥ α2 ≥ . . . ≥ αn be the eigenvalues of A and v1, . . . , vn be the corresponding orthonormal
eigenvectors. Recall that

1. α1 = 1 and v1 = ~1/
√
n from Lemma 2.7,

2. α2 < 1 if and only if G is connected from Proposition 2.15,

3. αn > −1 if and only if G is non-bipartite from Problem 2.21.

For the lazy random walk matrix W , the spectrum is 1
2(1 + α1) ≥ 1

2(1 + α2) ≥ . . . ≥ 1
2(1 + αn),

which implies that the smallest eigenvalue is always at least 0. This is why the non-bipartitness
assumption can be removed when we consider lazy random walks.
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Limiting Distribution

After translating the combinatorial conditions in the fundamental theorem into spectral conditions,
we can restate the fundamental theroem for d-regular undirected graphs in Theorem 4.10 as follows,
and the proof becomes transparent.

Proposition 4.13 (Limiting Distribution for Regular Graphs). Let G = (V = [n], E) be a d-regular
undirected graph. Let P = A be the transition matrix of random walks on G and 1 = α1 ≥ α2 ≥
. . . ≥ αn ≥ −1 be its eigenvalues. If α2 < 1 and αn > −1, then

lim
t→∞

P t~p0 =
~1

n
.

Proof. Let v1, v2, . . . , vn be the orthonormal eigenvectors. For any initial distribution ~p0, we write
~p0 = c1v1 + . . .+ cnvn where ci = 〈p0, vi〉 for 1 ≤ i ≤ n. Then,

P t~p0 = At
( n∑
i=1

civi

)
=

n∑
i=1

ciA
tvi =

n∑
i=1

ciα
t
ivi.

The assumptions α2 < 1 and αn > −1 imply that |αi| < 1 for 2 ≤ i ≤ n. Hence,

lim
t→∞

P t~p0 = lim
t→∞

n∑
i=1

ciα
t
ivi = c1v1,

as all but the �rst term go to zero as t → ∞. In the d-regular case, v1 = ~1/
√
n and thus c1 =

〈~p0,~1/
√
n〉 = 1/

√
n as ~p0 is a probability distribution. Therefore,

lim
t→∞

P t~p0 = c1v1 =
1√
n
·
~1√
n

=
~1

n
.

The proof shows that under |αi| < 1 for 2 ≤ i ≤ n, the distribution P t~p0 converges to the �rst
eigenvector, which is proportional to the all-one vector. Check that the same proof works for lazy
random walks (Corollary 4.12) on d-regular graphs.

Mixing Time

The mixing time quanti�es how fast ~pt := P t~p0 converges to the limiting distribution. The following
de�nition applies to general Markov chains.

De�nition 4.14 (Mixing Time). Consider the Markov chain de�ned by a transition matrix P ∈
Rn×n. Let ~p0 ∈ Rn be an initial probability distribution on the states, and let ~pt ∈ Rn be the
probability distribution ~pt := (P>)t~p0 after t steps.

Suppose the limiting distribution ~π = limt→∞ ~pt exists. For any 0 < ε ≤ 1, the ε-mixing time τε(P )
of P is de�ned as the smallest t such that dTV(~pt, ~π) ≤ ε for any initial distribution ~p0, where dTV

is the total variation distance in De�nition 4.7.

When ε is not speci�ed, it is assumed to be a small constant such as 1/4, and we simply say τ1/4(P )
the mixing time of the Markov chain P .
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To bound the mixing time, we use the same approach as in Proposition 4.13, but assume that α2

and |αn| are bounded away from one, ensuring αti converges to zero quickly for 2 ≤ i ≤ n.

Theorem 4.15 (Bounding Mixing Time by Spectral Gap). Let G = (V,E) be a d-regular undirected
graph with V = [n]. Let P = A be the transition matrix of random walks on G and 1 = α1 ≥ α2 ≥
. . . ≥ αn ≥ −1 be its eigenvalues. Let g := min{1−α2, 1−|αn|} be the two-sided spectral gap. Then
the ε-mixing time of P satis�es

τε(P ) .
1

g
ln
(n
ε

)
.

Proof. Continuing from Proposition 4.13,

P t~p0 =
~1

n
+

n∑
i=2

ciα
t
ivi,

where v1, . . . , vn are the orthonormal eigenvectors, ci = 〈~p0, vi〉 for 2 ≤ i ≤ n, and ~π = ~1/n is the
limiting distribution. Then,

dTV(~pt, ~π) = dTV(P t~p0, ~π) =
1

2

∥∥∥∥P t~p0 −
~1

n

∥∥∥∥
1

=
1

2

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
1

.
√
n

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
2

,

where the last inequality follows from ‖v‖1 ≤
√
n‖v‖2 for v ∈ Rn (which can be derived from

Cauchy-Schwarz). Since v1, . . . , vn are orthonormal,∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥2

2

=
n∑
i=2

c2
iα

2t
i ≤ (1− g)2t

n∑
i=2

c2
i .

Note that
∑n

i=2 c
2
i ≤

∑n
i=1 c

2
i = ‖~p0‖22 ≤ ‖~p0‖21 = 1. Therefore,

dTV(~pt, ~π) .
√
n

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
2

≤

√√√√n(1− g)2t

n∑
i=2

c2
i ≤
√
n(1− g)t ≤

√
ne−gt.

Setting t & 1
g ln(nε ) ensures dTV(pt, ~π) ≤ ε for any initial distribution p0.

For the lazy random walk matrixW , the smallest eigenvalue is at least 0, so the spectral gap forW is
simply g = 1

2(1−α2) = 1
2λ2, where λ2 is the second smallest eigenvalue of the normalized Laplacian

matrix. Cheeger's inequality in Theorem 3.2 then implies the following important consequence.

Theorem 4.16 (Bounding Mixing Time by Edge Conductance). Let G = (V,E) be a d-regular
undirected graph with V = [n]. Let W = 1

2I + 1
2A be the transition matrix of lazy random walks on

G. Then,

τε(W ) .
1

φ(G)2
ln
(n
ε

)
.

This result provides a combinatorial condition for fast mixing. For an expander graph with φ(G) =
Ω(1), the mixing time of lazy random walks is O(lnn). Establishing a polylogarithmic mixing time
is crucial for many applications, as we will discuss with examples.

Theorem 4.16 is useful in designing random sampling algorithms. For the purpose of uniform random
sampling, the analysis for regular graphs is usually su�cient, as we can set up the Markov chain
(e.g., by adding self-loops) so that the underlying graph is regular.
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Spectrum of the Transition Matrix for General Graphs

The random walk matrix for general graphs is P = D−1A, and the lazy random walk matrix is
W = 1

2I + 1
2P . The main di�erence from the d-regular case is that these matrices are in general

not symmetric, and so the spectral theorem in Theorem A.5 cannot be directly applied to reason
about their eigenvalues and eigenvectors.

A simple but important observation is that P and W are similar to a real symmetric matrix (see
De�nition A.3), and so the eignevalues of P and W are still all real numbers.

Lemma 4.17 (Spectrum of Random Walk Matrices). Let G = (V,E) be a connected undirected
graph with V = [n], and A be its normalized adjacency matrix. Let the eigenvalues of A be α1 >
α2 ≥ . . . ≥ αn and let v1, v2, . . . , vn be a corresponding orthonormal basis of eigenvectors.

Then the eigenvalues of the random walk matrix P = D−1A are also α1 > α2 ≥ . . . ≥ αn, and the
corresponding eigenvectors of P> = AD−1 are D

1
2 v1, D

1
2 v2, . . . , D

1
2 vn.

The eigenvalues of the lazy random walk matrix W = 1
2I + 1

2P are 1
2(1 + α1) > 1

2(1 + α2) ≥ . . . ≥
1
2(1 + αn), and the corresponding eigenvectors of W> are D

1
2 v1, D

1
2 v2, . . . , D

1
2 vn.

Proof. Note that P = D−1A = D−
1
2 (D−

1
2AD−

1
2 )D

1
2 = D−

1
2AD

1
2 , and so P is similar to A as D

is non-singular when the graph is connected. By the same argument, W is similar to 1
2I + 1

2A. By
Fact A.4, P and A have the same spectrum, and W and 1

2I + 1
2A have the same spectrum.

Note that D
1
2 vi is an eigenvector of P> with eigenvalue αi, as

P>
(
D

1
2 vi
)

=
(
D

1
2AD−

1
2
)(
D

1
2 vi
)

= D
1
2Avi = αi

(
D

1
2 vi
)
.

Similarly, D
1
2 vi is an eigenvector of W> with eigenvalue 1

2(1 + αi).

The vectors D
1
2 v1, . . . , D

1
2 vn are linearly independent because D is non-singular for a connected

graph. Note that these vectors are in general not orthonormal with respect to the standard inner
product, but they are orthonormal if we use the following weighted inner product:

〈u, v〉D−1 := u>D−1v and ‖v‖D−1 :=
√
v>D−1v.

Spectral Analysis for General Undirected Graphs

Using this weighted inner product, we can generalize the spectral analysis in Proposition 4.13 and
Theorem 4.15 to non-regular graphs. We describe the main modi�cations and leave the veri�cation
of the details to the reader.

To compute the limiting distribution P>~p0 = (D
1
2AD−

1
2 )t~p0 = D

1
2AtD−

1
2 ~p0, we write the initial

distribution ~p0 as
∑n

i=1 ciD
1
2 vi to take advantage of the orthonormality of v1, . . . , vn, where ci =

〈~p0, D
1
2 vi〉D−1 for 1 ≤ i ≤ n. We can then adapt the proof in Proposition 4.13 to prove the following

equivalent form of the fundamental theorem for undirected graphs in Theorem 4.10.

Exercise 4.18 (Limiting Distribution for Undirected Graphs). Let G = (V,E) be an undirected
graph with V = [n]. Let P = D−1A be the transition matrix of random walks on G, and let
1 = α1 ≥ α2 ≥ . . . ≥ αn ≥ −1 be its eigenvalues. If α2 < 1 and αn > −1, then

lim
t→∞

(
P>
)t
~p0 =

~d

2|E|
,
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where ~d is the degree vector with ~d(i) = deg(i) for 1 ≤ i ≤ n.

To bound the mixing time, we adapt the proof in Theorem 4.15. The key steps are

‖~pt − ~π‖1 ≤ ‖~1‖D · ‖~pt − ~π‖D−1 �
√
|E| · ‖~pt − ~π‖D−1 ≤ (1− g)t

√
|E| · ‖~p0‖D−1

where the �rst inequality is by Cauchy-Schwarz and the second inequality is by an orthonormality
argument as in Theorem 4.15. Then the same theorem as in the d-regular case can be proved.

Theorem 4.19 (Bounding Mixing Time by Spectral Gap and Edge Conductance). Let G = (V,E)
be an undirected graph with V = [n]. Let P = D−1A be the transition matrix of random walks on
G and 1 = α1 ≥ α2 ≥ . . . ≥ αn ≥ −1 be its eigenvalues. Let g := min{1 − α2, 1 − |αn|} be the
two-sided spectral gap. Then the ε-mixing time of P satis�es

τε(P ) .
1

g
ln
(n
ε

)
.

Let W = 1
2I + 1

2D
−1A be the transition matrix of lazy random walks on G. Then

τε(W ) .
1

φ(G)2
ln
(n
ε

)
.

For weighted undirected graphs, the same arguments can be used to prove that

τε(P ) .
1

g
ln
( 1

ε · πmin

)
and τε(W ) .

1

φ(G)2
ln
( 1

ε · πmin

)
, (4.1)

where πmin := mini ~π(i) is the minimum stationary probability of a vertex. We leave the veri�cation
of these bound to Problem 4.22.

Remark 4.20. This spectral approach can be further extended to prove the fundamental theorem
for directed graphs, but it is considerably more involved and requires the Perron-Frobenius theorem
and the Jordan normal form (see [HJ13] for proofs).

4.4 Applications of Random Walks

We brie�y discuss two applications of random walks that will be studied in later chapters. In both
cases, random walks are used to solve the problem while exploring only a small portion of the graph.

Random Sampling

An important application of random walks is in random sampling. As an example, consider the
following algorithm for generating a random spanning tree of an undirected graph.

To analyze this algorithm, we interpret it as performing random walks on a large �spanning tree
exchange graph� H. In H, each vertex represents a spanning tree of the original graph, and two
vertices are connected if their corresponding spanning trees T and T ′ can be obtained through one
step of the algorithm (i.e. T ′ = T + e− f for some edges e, f in the input graph).

Note that the exchange graph H could have as many as Ω(nn−2) vertices when the original graph
has n vertices. Therefore, to show that τ . poly(n) is su�cient to return an almost uniform random
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Algorithm 2 Random Exchange Algorithm for Sampling Random Spanning Trees

Require: An undirected graph G = (V,E).
1: Compute an arbitrary spanning tree T0 of the graph.
2: for 1 ≤ t ≤ τ do
3: Add a uniform random edge e ∈ E − Tt−1 to Tt−1.
4: Remove a uniform random edge f in the unique cycle formed in Tt−1 + e.
5: Set Tt := Tt−1 + e− f .
6: end for

7: return Tτ .

spanning tree, we must prove that the random walks on H mix in polylogarithmic time relative to
its size. From a combinatorial perspective, this requires proving that the spanning tree exchange
graph H is an expander graph, a task that is generally quite challenging.

There are di�erent approaches to proving fast mixing of Markov chains. One is the coupling method,
the most common and versatile probabilistic technique in bounding mixing time (see [LPW06]). An-
other is the canonical path method, which uses multicommodity �ow to lower bound the graph con-
ductance, so that Theorem 4.16 can be used to upper bound the mixing time. A famous application
of the canonical path method is in approximating the permanent of a non-negative matrix [JSV04],
which is equivalent to counting the number of perfect matchings in a bipartite graph.

These methods are beyond the scope of this course. Instead, we will analyze the random exchange
algorithm for sampling random spanning trees using the new techniques derived from high dimen-
sional expanders in Chapter ??.

Local Graph Partitioning

Another useful application of random walks is in graph partitioning. This idea, originally proposed
by Spielman and Teng [ST13], is to use the random walk distribution W tχi from some starting
vertex i to identify a small sparse cut of the graph. They proved that the performance of the
random walk algorithm for graph partitioning is comparable to that of the spectral partitioning
algorithm in Chapter 3. Furthermore, the random walk algorithm has the signi�cant advantage
that it can be implemented locally, such that the running time depends only on output size but not
on the original graph size. This provides a sublinear time algorithm for graph partitioning in some
situations. Local graph partitioning is an active research topic on its own, and there are several
other algorithms such as using PageRank vector [ACL06] and evolving sets [AOPT16]. We will
discuss these results in Chapter ??.

4.5 Random Walks on Directed Graphs

For directed graphs, there are currently no direct relationships between the eigenvalues of their
transition matrix and the mixing time of random walks.

In this section, we discuss some known results about the mixing time of random walks on directed
graphs, using the second eigenvalue of symmetric matrices associated with directed graphs.
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Stationary Flow Graph

Given a directed graph G = (V,E) with an edge weight function w : E → R+, let P be the
transition matrix of the random walk, where Pi,j = w(ij)/

∑
j:ij∈E w(ij). Assume P is irreducible

and aperiodic. Let ~π be the unique stationary distribution of P , and de�ne Π := diag(~π).

To study the mixing time of the weighted directed graph G = (V,E,w), it is helpful to consider the
stationary �ow graph Gf = (V,E, f), where f(i, j) = ~π(i) · Pij is the probability �ow on edge ij in
the stationary distribution ~π. Verify that the weighted directed graph Gf = (V,E, f) is Eulerian,
satisfying

∑
j:ji∈E f(j, i) =

∑
k:ik∈E f(i, k) for all i ∈ V .

The adjacency matrix of Gf is denoted by F := ΠP . The Eulerian property implies that the i-th
row sum of F is equal to the i-th column sum of F for all i.

Symmetric Matrices for Directed Graphs

Fill [Fil91] de�ned the sum matrix as

A :=
1

2
(P + Π−1P>Π).

Chung [Chu05] de�ned the directed Laplacian matrix of G as

L = I −Π−
1
2

(
F + F>

2

)
Π−

1
2 . (4.2)

Observe that L is the normalized Laplacian matrix of the symmetrized �ow graph where the weight
of edge ij is 1

2(f(i, j) + f(j, i)), as the diagonal degree matrix of the symmetrized �ow graph is still
Π because of the Eulerian property.

Note that the spectra of A and L are essentially the same, as A and I − L are similar matrices.

Bounding Mixing Time by Spectral Gap of Symmetric Matrix

A main result from [Fil91, Chu05] uses the spectral gap of A or L to bound the mixing time of
random walks on G.

Theorem 4.21 (Bounding Mixing Time by Second Eigenvalue of Directed Graphs [Fil91, Chu05]).
Let G be a strongly connected directed graph G = (V,E) with a weight function w : E → R+, and
P be the transition matrix of the random walks on G with P (i, j) = w(ij)/

∑
i∈V w(ij) for ij ∈ E.

The ε-mixing time of the lazy random walks on G (with transition matrix 1
2(I+P )) to the stationary

distribution ~π satis�es

τε

(I + P

2

)
.

1

λ2(L)
· log

( 1

πmin · ε

)
where λ2(L) is the second smallest eigenvalue of L in (4.2), and πmin = mini∈V ~π(i).

Cheeger Constant of Directed Graphs

The Cheeger constant of a set and of a directed graph [Fil91, Chu05, LPW06] are de�ned as

h(S) :=

∑
i∈S,j /∈S π(i)P (i, j)

π(S)
=

∑
i∈S,j /∈S F (i, j)

π(S)
and h(G) := min

S:π(S)≤ 1
2

h(S). (4.3)
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This is also known as the conductance or the bottleneck ratio in the literature [LPW06].

Since the �ow graph F is Eulerian, the Cheeger constant of the �ow graph is the same as that of
the symmetrized �ow graph 1

2(F + F>). So the following Cheeger's inequality by Chung [Chu05]
for directed graphs is a direct consequence of the Cheeger's inequality for undirected graphs in
Theorem 3.2:

1

2
λ2(L) ≤ h(G) ≤

√
2λ2(L).

A consequence of Theorem 4.21 is that

τε

(I + P

2

)
.

1

h(G)2
· log

( 1

πmin · ε

)
.

In Chapter ??, we will study a combinatorial method to directly prove this consequence.

4.6 Problems

Problem 4.22 (Weighted Undirected Graphs). Extend the proof of Theorem 4.19 to establish (4.1).
Fill in the proof details for Exercise 4.18 and Theorem 4.19.

Problem 4.23 (Upper Bound on Mixing Time and Initial Distribution). Suppose the initial dis-
tribution ~p satis�es ~p(i) ≤ 2π(i) for all i where π is the unique stationary distribution. Prove
that

τε(P ) .
1

g
ln
(1

ε

)
and τε(W ) .

1

φ(G)2
ln
(1

ε

)
.

In other words, the factor log(n) in Theorem 4.19 is only needed to get away from distributions
concentrated on a small set.

Problem 4.24 (Lower Bound on Mixing Time). Let G = (V,E) be an undirected graph with
V = [n]. Let W = 1

2I + 1
2D
−1A be the transition matrix of lazy random walks on G. Prove that the

ε-mixing time of W is

τε(W ) &
1

1− α2
ln
(1

ε

)
,

where α2 is the second largest eigenvalue of the normalized adjacency matrix A(G). A simpler
problem is to prove that

τε(W ) &
1

φ(G)
ln
(1

ε

)
,

where φ(G) is the edge conductance of G. You may also consider the special case when G is d-regular.

Problem 4.25 (Page Ranking). Suppose someone searches a keyword (e.g., �car�), and we want to
identify the webpages that are the most relevant for this keyword and those that are the most reliable
sources (a page is considered reliable if it points to many highly relevant pages).

First, we identify the pages with this keyword and ignore all others. Then we run the following
ranking algorithm on the remaining pages. Each vertex corresponds to a remaining page, and there
is a directed edge from page i to page j if there is a link from page i to page j. Call this directed
graph G = (V,E).

For each vertex i, we have two values, s(i) and r(i), where r(i) represents the relevance of the page
and s(i) represents its reliability as a source (larger values are better). We start with arbitrary initial
values, such as s(i) = 1/|V | for all i, as we have no prior information.

At each step, we update s and r (where s and r are vectors of s(i) and r(i) values) as follows:
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1. Update r(i) =
∑

j:ji∈E s(j) for all i, as a page is more relevant if it is linked by many reliable
sources.

2. Update s(i) =
∑

j:ij∈E r(j) for all i (using the just updated values r(j)), as a page is a more
reliable source if it points to many relevant pages.

To keep the values bounded, let R =
∑|V |

i=1 r(i) and S =
∑|V |

i=1 s(i), and normalize by dividing each
s(i) by S and divide each r(i) by R. We repeat these steps multiple times to re�ne the values.

Let s, r ∈ R|V | be the vectors of the s and r values. Provide a matrix formulation for computing s
and r.

Suppose G is weakly connected (the underlying undirected graph is connected when ignoring edge
directions) and has a self-loop at each vertex. Prove that there is a unique limiting s and a unique
limiting r for any initial s, provided s ≥ 0 and s 6= 0. You may use the Perror-Frobenius Theo-
rem A.18 to solve this problem.
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Chapter 5

Expander Graphs: Properties

There are several possible ways to de�ne expander graphs:

1. Algebraically, expander graphs are graphs with a large spectral gap.

2. Combinatorically, expander graphs are graphs with very good connectivity properties.

3. Probabilistically, expander graphs are graphs in which random walks mix rapidly.

From what we have learnt in Chapter 3 and Chapter 4, these three perspectives are closely related:

� Cheeger's inequality in Theorem 3.2 states that φ(G) = Ω(1) if and only if λ2 = Ω(1).

� The spectral analysis in Theorem 4.16 and Problem 4.24 show that the mixing time τ of the
lazy random walks on G = (V,E) satis�es

1

λ2
. τ .

1

λ2
log |V |.

Complete graphs are the best expander graphs under all three de�nitions, but we are interested in
sparse expander graphs with a linear number of edges. In constructions of expander graphs, the
spectral de�nition is the most convenient. We use the following stronger spectral de�nition that
also bounds the last eigenvalue.

De�nition 5.1 (Two-Sided Spectral Expanders). Let G be a d-regular graph and let the spectrum
of its adjacency matrix be

d = α1 ≥ α2 ≥ . . . ≥ αn ≥ −d.

We say that G is an (n, d, α)-graph if G has n vertices, G is d-regular, and max{α2, |αn|} ≤ α.

In this chapter, we �rst prove the expander mixing lemma and its converse, providing a combinatorial
characterization of two-sided spectral expanders. Then we discuss the extremal question of how
small can α be. Finally, we investigate the stronger combinatorial and probabilistic properties that
an (n, d, α)-graph has when α = o(d), including small-set vertex expansion and constant mixing
time.
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5.1 Expander Mixing Lemma

A well-known and useful property of two-sided spectral expanders is that they behaves as random
d-regular graphs. Consider the number of edges between two subsets S, T of vertices.

De�nition 5.2 (Induced Edges). Given an undirected graph G = (V,E) and S, T ⊆ V , de�ne
~E(S, T ) := {(u, v) | u ∈ S, v ∈ T, uv ∈ E} as the set of ordered pairs where u ∈ S and v ∈ T . Note
that an edge with u ∈ S ∩T and v ∈ S ∩T is counted twice, as both (u, v) and (v, u) are in ~E(S, T ).

In a random graph where every pair of vertices has an edge with probability d/n, the expected value
of | ~E(S, T )| is d|S||T |/n. The expander mixing lemma by Alon and Chung [AC88] says that in a
two-sided spectral expander, | ~E(S, T )| is close to this expected value for all S, T ⊆ V . This can be
interpreted as a pseudorandom or discrepancy property of a two-sided spectral expander.

Theorem 5.3 (Expander Mixing Lemma [AC88]). Let G = (V,E) be an (n, d, α)-graph. Then, for
every S ⊆ V and T ⊆ V , ∣∣∣∣∣∣ ~E(S, T )

∣∣− d|S||T |
n

∣∣∣∣ ≤ α√|S||T |.
Proof. First, we write | ~E(S, T )| as an algebraic expression. Let χS and χT be the characteristic
vectors of S and T . Notice that | ~E(S, T )| = χ>SAχT , where A is the adjacency matrix of G.

Next, we use eigen-decompositions of χS and χT to relate | ~E(S, T )| to the eigenvalues of A. Let
v1, . . . , vn be an orthonormal basis of eigenvectors of A. Write χS =

∑n
i=1 aivi and χT =

∑n
j=1 bjvj ,

where ai = 〈χS , vi〉 and bj = 〈χT , vj〉. Recall that α1 = d and v1 = ~1/
√
n, so a1 = |S|/

√
n and

b1 = |T |/
√
n. Then, by orthonormality of v1, . . . , vn,∣∣ ~E(S, T )

∣∣ = χ>SAχT =
( n∑
i=1

aivi

)>
A
( n∑
j=1

bjvj

)
=

n∑
i=1

αiaibi =
d|S||T |
n

+
n∑
i=2

αiaibi.

Therefore, by the de�nition of α and the Cauchy-Schwarz inequality,∣∣∣∣∣∣ ~E(S, T )
∣∣− d|S||T |

n

∣∣∣∣ =

∣∣∣∣ n∑
i=2

αiaibi

∣∣∣∣ ≤ α n∑
i=2

|ai||bi| ≤ α‖~a‖2‖~b‖2 = α‖χS‖2‖χT ‖2 = α
√
|S||T |,

where ~a = (a1, . . . , an) and ~b = (b1, . . . , bn) with ‖~a‖2 = ‖χS‖2 and ‖~b‖2 = ‖χT ‖2.

See Problem 5.16 for a slightly better upper bound for the expander mixing lemma. The same proof
can be extended to non-regular graphs using the normalized adjacency matrix.

Exercise 5.4 (Expander Mixing Lemma for Non-Regular Graphs). Let G = (V,E) be an undirected
graph with |V | = n. Let A be its normalized adjacency matrix with eigenvalues 1 = α1 ≥ α2 ≥ · · · ≥
αn ≥ −1 and let α := max{α2, |αn|}. Prove that, for every S ⊆ V and T ⊆ V ,∣∣∣∣∣∣ ~E(S, T )

∣∣− vol(S) · vol(T )

vol(V )

∣∣∣∣ ≤ α√vol(S) · vol(T ).

The following is an application of the expander mixing lemma.

Exercise 5.5 (Maximum Independent Set and Chromatic Number of Two-Sided Spectral Ex-
panders). Let G = (V,E) be an (n, d, α) graph. Show that the size of a maximum independent
set is at most αn/d. Conclude that an (n, d, ε)-graph has chromatic number at least d/α.
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5.2 Converse of Expander Mixing Lemma

Interestingly, Bilu and Linial [BL06] proved a converse of the expander mixing lemma, showing that
it comes close to providing a combinatorial characterization of two-sided spectral expanders.

Theorem 5.6 (Converse of Expander Mixing Lemma [BL06]). Let G = (V = [n], E) be a d-regular
graph. Suppose that∣∣∣∣∣∣ ~E(S, T )

∣∣− d|S||T |
n

∣∣∣∣ ≤ α√|S||T | for all S, T ⊆ V with S ∩ T = ∅. (5.1)

Then all but the largest eigenvalue of A(G) are bounded in absolute value by O
(
α(1 + log d

α)
)
.

Compared to Cheeger's inequality in Theorem 3.2, this provides a tighter relationship between the
spectral quantity and the combinatorial property, without a square root loss.

The proof of Theorem 5.6 is based on the following linear algebraic lemma, where the spectral radius
of a matrix is de�ned as the maximum of the absolute values of its eigenvalues.

Lemma 5.7 (Bounding Spectral Radius [BL06]). Let B be an n × n real symmetric matrix such
that the `1-norm of each row of B is at most d, and all diagonal entries of B have absolute value
O
(
α(1 + log d

α)
)
for some 1 ≤ α ≤ d. Suppose that∣∣χ>SBχT ∣∣ ≤ α√|S||T | for all S, T ⊆ [n] with S ∩ T = ∅. (5.2)

Then the spectral radius of B is O
(
α(1 + log d

α)
)
.

We �rst explain how the lemma implies the converse of the expander mixing lemma.

Proof of Theorem 5.6 Assuming Lemma 5.7. The idea is to apply Lemma 5.7 to the error matrix
B := A(G) − d · v1v

>
1 , where v1 = ~1/

√
n is the �rst eigenvector of A(G). Let the eigenvalues of

A be (d, α2, . . . , αn). Then, the eigenvalues of B are (0, α2, . . . , αn), as A and B have the same
eigenvectors. Therefore, bounding max2≤i≤n |αi| is equivalent to bounding the spectral radius of B.

Note that the `1-norm of each row of B is at most 2d, the diagonal entries have absolute value at
most 1, and that the assumption in (5.1) and the assumption in (5.2) are equivalent. Therefore, we
can apply Lemma 5.7 to obtain that the spectral radius of B is O

(
α(1 + log d

α)
)
, and this implies

that max2≤i≤n |αi| . α(1 + log d
α).

The proof of Lemma 5.7 in [BL06] is by combining the constraints in (5.2) to establish that

|x>Bx|
x>x

. α
(

1 + log
d

α

)
for all x ∈ Rn. (5.3)

The combination of the constraints is guided by linear programming duality, and as a result the
proof is not quite intuitive and it is not clear how the numbers were chosen.

We provide a di�erent presentation of their proof following Trevisan's style. We prove the contra-
positive that if (5.3) is violated then there must be a violating constraint in (5.2). To do so, we use
a simple randomized rounding argument as in the proof of the hard direction of Cheeger's inequality
in Section 3.3. We hope that this argument clari�es how the numbers in the proof are chosen.
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Proof of a Weaker Version

To highlight the main idea, we �rst prove a weaker version of Lemma 5.7. We then explain the
modi�cations needed to match Lemma 5.7 in the next subsection.

Contrapositive: In this subsection, our goal is to prove the weaker statement that

∃x ∈ Rn with
|x>Bx|
‖x‖22

> 2(log2 n+ 1)α =⇒ ∃y, z ∈ {−1, 0, 1}n with
|y>Bz|
‖y‖2‖z‖2

> α.

Assumption: We assume that ‖x‖2 = 1 and each entry of x is a negative power of two. This is a
natural �rst step to discretize x, and we will justify this assumption in the next subsection.

Notations: Let Sk := {i ∈ [n] | |x(i)| = 2−k} be the set of indices with absolute value 2−k, and
let sk := |Sk|. Let χk be the signed pattern of x restricted to Sk, such that χk(i) = 1 if x(i) = 2−k,
χk(i) = −1 if x(i) = −2k, and χk(i) = 0 otherwise. Note that x =

∑
k 2−kχk.

Probability Distribution: We sample y and z independently from the same distribution, where

y, z := χk with probability 2−k/c if Sk 6= ∅,

and c :=
∑

k:Sk 6=∅ 2−k is the normalizing constant to make this a probability distribution.

Probabilistic Arugment: As in the proof of Cheeger's inequality, we argue by Lemma 3.6 that
there exist y, z ∈ {−1, 0, 1}n with ∣∣y>Bz∣∣

‖y‖2 · ‖z‖2
≥

E
[∣∣y>Bz∣∣]

E [‖y‖2 · ‖z‖2]
,

and so it remains to compute the expected values separately.

Expected Numerator: By the triangle inequality,

c2 · E
[∣∣y>Bz∣∣] =

∑
k

∑
l

2−k · 2−l · |χ>k Bχl| ≥
∣∣∣∣(∑

k

2−kχk

)>
B

(∑
l

2−lχl

)∣∣∣∣ =
∣∣x>Bx∣∣. (5.4)

This is the main motivation for de�ning the probability distribution in this way, so that the expected
numerator can be easily compared to the numerator |x>Bx|.

Expected Denominator: By independence,

c2 · E [‖y‖2 · ‖z‖2] = c2 · E [‖y‖2]2 =
(∑

k

2−k‖χk‖2
)2

=
∑
k

∑
l

2−k · 2−l ·
√
sksl. (5.5)

We would like to compare this to the denominator

x>x =
(∑

k

2−kχk

)>(∑
l

2−lχl

)
=
∑
k

2−2ksk. (5.6)

To do so, we divide the right hand side of (5.5) into three terms:∑
k

2−2ksk +
∑
k

∑
l:k<l≤k+logn

2−k−l+1√sksl +
∑
k

∑
l:l>k+logn

2−k−l+1√sksl.
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Using the AM-GM inequality, the second term is bounded by∑
k

∑
l:k<l≤k+logn

2−k−l+1√sksl ≤
∑
k

∑
l:k<l≤k+logn

(2−2ksk + 2−2lsl) ≤ 2 log n ·
∑
k

2−2ksk. (5.7)

The third term is bounded by∑
k

∑
l:l>k+logn

2−2k−logn√sksl =
1

n

∑
k

2−2k√sk
∑
l

√
sl ≤

∑
k

2−2k√sk ≤
∑
k

2−2ksk,

where the second last inequality uses
∑

l

√
sl ≤

√
n
√∑

l sl = n by Cauchy-Schwarz and
∑

l sl ≤ n.
Combining these inequalities,

c2 · E [‖y‖2 · ‖z‖2] ≤ 2(log n+ 1)
∑
k

2−2ksk = 2(log n+ 1) · x>x.

Conclusion: Therefore, there exist y, z ∈ {−1, 0, 1}n such that∣∣y>Bz∣∣
‖y‖2‖z‖2

≥
E
[∣∣y>Bz∣∣]

E [‖y‖2 · ‖z‖2]
≥ |x>Bx|

2(log n+ 1) · ‖x‖22
> α.

We would like to reduce the log n factor to α log(d/α). Observe that we did not use the assump-
tion about the `1-norm of the rows in this proof. To exploit this assumption, we will modify the
probability distribution to sample y and z.

Proof of Lemma 5.7

The proof has a similar structure to that in the previous subsection. We explain the modi�cations
and the missing details here.

Zero Diagonal Entries: We assume that the diagonal entries of B are zero. See Exercise 5.17.

Contrapositive: To prove Lemma 5.7, we prove the contrapositive that

∃x ∈ Rn with
|x>Bx|
‖x‖22

> α
(

log
d

α
+ 1
)

=⇒ ∃y, z ∈ {0, 1}n, 〈y, z〉 = 0 with
|y>Bz|
‖y‖2‖z‖2

& α.

Negative Powers of Two: We rescale x to satisfy ‖x‖2 = 1. Then, using a simple rounding
argument in Problem 5.18, we construct a vector x̃ ∈ Rn such that each entry of x̃ is a negative
power of two and

|x̃>Bx̃|
‖x̃‖22

≥ 1

4
· |x
>Bx|
‖x‖22

.

We let x := x̃ in the following. We use the same notations Sk ⊆ [n] and χk ∈ {−1, 0, 1}n as before.

Probability Distribution: We sample y, z ∈ {−1, 0, 1}n jointly (not independently) where

(y, z) = (χk, χl) with probability 2−k−l/c if Sk 6= ∅, Sl 6= ∅, and |k − l| ≤ γ,

where c is the normalization constant that makes this a probability distribution, and γ is a parameter
that we will choose to be log(d/α).

This is the main modi�cation, where pairs (χk, χl) with |k− l| > γ are not sampled. The motivation
is to avoid the log n loss in the denominator in the previous analysis. However, this will make the
numerator smaller, and the choice of γ is to balance the denominator and the numerator.
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Expected Numerator:

c · E
[∣∣y>Bz∣∣] =

∑
k,l:|k−l|≤γ

2−k−l · |χ>k Bχl| ≥ |x>Bx| −
∑

k,l:|k−l|>γ

2−k−l|χ>k Bχl|,

where the inequality is from the previous analysis (5.4) that
∑

k,l 2
−k−l|χ>k Bχl| ≥ |x>Bx|.

The key observation is that the second term can be bounded using the `1-norm assumption:∑
k,l:|k−l|>γ

2−k−l|χ>k Bχl| =
∑

k,l:l>k+γ

2−k−l+1|χ>k Bχl| ≤ 2−γ
∑
k

2−2k
∑
l>k+γ

|χ>k Bχl| ≤ 2−γd
∑
k

2−2ksk,

where the last inequality holds as
∑

l |χ>k Bχl| ≤ d · sk which follows from the `1-norm assumption.
Therefore, by (5.6),

c · E
[∣∣y>Bz∣∣] ≥ |x>Bx| − 2−γd

∑
k

2−2ksk = |x>Bx| − 2−γd · x>x.

Expected Denominator: Recall that ‖χk‖2 =
√
sk, so

c · E [‖y‖2 · ‖z‖2] =
∑

k,l:|k−l|≤γ

2−k−l
√
sksl =

∑
k

2−2ksk +
∑
k

∑
l:k<l≤k+γ

2−k−l+1√sksl.

Using the same calculation in (5.7), we obtain that

c · E [‖y‖2 · ‖z‖2] ≤
∑
k

2−2ksk + 2γ
∑
k

2−2ksk = (2γ + 1)x>x.

Good {−1, 0, 1}n Vectors: By Lemma 3.6, there exist y, z ∈ {−1, 0, 1}n such that∣∣y>Bz∣∣
‖y‖2‖z‖2

≥
E
[∣∣y>Bz∣∣]

E [‖y‖2 · ‖z‖2]
≥ |x

>Bx| − 2−γd · x>x
(2γ + 1)x>x

=
|x>Bx|

(2γ + 1)x>x︸ ︷︷ ︸
(∗)

− 2−γd

2γ + 1︸ ︷︷ ︸
(∗∗)

& α,

where the last inequality holds by choosing γ = log(d/α) and the assumption in the contrapositive.

To see how to choose γ and set the assumption in the contrapositive, the idea is to ensure the (∗)
is Ω(α) and (∗∗) is o(α). Setting γ = log2(d/α) ensures that the second term is o(α), and setting
|x>Bx|/x>x & γ · α in the assumption of the contrapositive ensures that the �rst term is Ω(α).

Good {0, 1}n Vectors: Write y = y+ − y− and z = z+ − z−, where y+, y−, z+, z− ∈ {0, 1}n. Let
(ȳ, z̄) be one of the four options of (y±, z±) that maximizes the absolute value of the quadratic form.
Check that ∣∣ȳ>Bz̄∣∣

‖ȳ‖2‖z̄‖2
≥ 1

4
·
∣∣y>Bz∣∣
‖y‖2‖z‖2

.

Disjoint Supports: If supp(ȳ) ∩ supp(z̄) = ∅, we are done. Otherwise, by our construction,
supp(ȳ) = supp(z̄). Let Y := {i ∈ [n] | ȳ(i) = 1}. Consider a random partition (S, T ) of Y where
each i ∈ Y is put in S with probability 1/2 and in T with probability 1/2 independently. Use the
assumption that the diagonal entries of B are zero to argue that there exists a partition S ∪ T = Y
with ∣∣χ>SBχT ∣∣

‖χS‖2‖χT ‖2
≥ 1

2
·
∣∣ȳ>Bȳ∣∣
‖ȳ‖22

.
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Conclusion: The proof of Lemma 5.7 follows by chaining together the inequalities:∣∣χ>SBχT ∣∣
‖χS‖2‖χT ‖2

&

∣∣ȳ>Bȳ∣∣
‖ȳ‖22

&

∣∣y>Bz∣∣
‖y‖2‖z‖2

≥ |x̃
>Bx̃| − 2−γd · x̃>x̃

(2γ + 1)x̃>x̃
& α,

where the last inequality is by |x̃>Bx̃|/‖x̃‖22 & |x>Bx|/‖x‖22 > α(log(d/α) + 1).

Tightness: Bilu and Linial [BL06] proved that Theorem 5.6 is tight that there are graphs satisfying
the conditions but have spectral radius Ω(α(log(d/α) + 1).

5.3 Graphs with Large Spectral Gap

How large can the spectral gap be? Or, equivalently, how small can α be in an (n, d, α)-graph?

In this section, we present matching lower and upper bounds to this question, and discuss some
strong properties of graphs with large spectral gap.

Lower Bounds

We begin with a simple proof that α &
√
d using a trace argument.

Claim 5.8 (Easy Lower Bound for α). Let G be an (n, d, α)-graph. Then

α ≥
√
d ·
√
n− d
n− 1

.

Proof. Let A be the adjacency matrix of G with eigenvalues α1 ≥ . . . ≥ αn. By Fact A.35,

Tr(A2) =

n∑
i=1

α2
i ≤ d2 + (n− 1)α2.

On the other hand, Tr(A2) ≥ nd, as each edge uv contributes a length-two walk from u to u and a
length-two walk from v to v. Combining the two inequalities establishes the claim.

A higher-order trace argument can be used to prove a lower bound close to 2
√
d− 1.

Theorem 5.9 (Trace Lower Bound for α). Let G be an (n, d, α)-graph. Then

α ≥ 2
√
d− 1− on(1).

Proof. Let A be the adjacency matrix of G with eigenvalues α1 ≥ . . . ≥ αn. For any k ∈ N,

Tr(A2k) =

n∑
i=1

α2k
i ≤ d2k + (n− 1)α2k.

On the other hand, recall from Lemma 2.5 that Tr(A2k) is equal to the number of length-2k walks
in G. For each vertex v, the number of length-2k walks from v to v is at least the number of such
walks in an in�nite d-regular tree. In an in�nite d-regular tree, the number of such walks is at least
Ck · (d− 1)k, where Ck is the k-th Catalan number. This is because each such walk has k forward
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steps and k backward steps, where every pre�x of a walk has at least as many forward steps as
backward steps, and there are at least d− 1 options for each forward step. Thus,

Tr(A2k) ≥ n · Ck · (d− 1)k =
n

k + 1

(
2k

k

)
(d− 1)k.

Combining the inequalities and using an estimate of Catalan numbers,

α2k ≥ 1

k + 1

(
2k

k

)
(d− 1)k − d2k

n
≥ 4k(d− 1)k

2(k + 1)3/2
− d2k

n
.

Therefore, by choosing k � log n/ log d so that d2k/n� 1, but letting k goes to in�nity as n grows,

α ≥ 2
√
d− 1

(
1− O(log k)

k

)
− on(1) ≥ 2

√
d− 1− on(1).

The following well-known result by Alon and Boppana provides a tight lower bound on the second
eigenvalue of the adjacency matrix of a d-regular graph.

Theorem 5.10 (Alon-Boppana Bound [Nil91]). Let G = (V,E) be a d-regular graph and α2 be the
second largest eigenvalue of its adjacency matrix. Then

α2 ≥ 2
√
d− 1− 2

√
d− 1− 1

bdiag(G)/2c
,

where diag(G) denotes the diameter of the graph G.

The theorem implies that if we have an in�nite family of d-regular graphs each has second eigenvalue
at most α2, then α2 ≥ 2

√
d− 1 as the diameter grows to in�nity with the graph size.

The proof is by constructing a vector x ⊥ ~1 with Rayleigh quotient x>Ax/x>x ≈ 2
√
d− 1. The

vector x is similar to the �rst eigenvector of a d-regular tree (see Problem 2.22). We will not prove
Theorem 5.10 and refer readers to [HLW06, Section 5.2] or Trevisan's exposition [Tre08].

Upper Bounds

A major discovery is that graphs with α ≤ 2
√
d− 1 exist.

Theorem 5.11 (Lubotzky, Phillip, Sarnak [LPS88], Margulis [Mar88]). For every prime p and every
positive integer k, there exist in�nitely many (n, d, α)-graphs with α ≤ 2

√
d− 1 and d = pk + 1.

The graphs constructed in [LPS88] are the Cayley graph of certain groups. The proof relies on some
deep results in number theory, speci�cally on proven cases of conjectures by Ramanujan, which is
well beyond the scope of this course. That is the reason why they called graphs with α ≤ 2

√
d− 1

�Ramanujan graphs�.

This naturally leads to the question of whether there are combinatorial or probabilistic constructions
of Ramanujan graphs. The simplest probabilistic construction is to generate a random d-regular
graph. A famous result by Friedman shows that most d-regular graphs are nearly-Ramanujan.
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Theorem 5.12 (Friedman [Fri08]). Let G be a random d-regular graph on n vertices and let α :=
max{α2, |αn|} where α2 and αn are the second and last eigenvalues of the adjacency matrix of G.
Then, for every ε > 0,

Pr
(
α ≤ 2

√
d− 1 + ε

)
= 1− on(1).

It has been a long standing open question whether most d-regular graphs are Ramanujan. Recent
progress has signi�cantly advanced our understanding of this problem, including simpler proofs, new
approaches, and sharper bounds. A remarkable new paper by Huang, McKenzie and Yau [HMY24]
proves that a random d-regular graph is Ramanujan with a probability of approximately 69%. The
proofs of these results are also well beyond the scope of this course.

It is still an open problem to design deterministic combinatorial constructions of Ramanujan graphs,
although there are breakthroughs in such constructions for bipartite Ramanujan graphs [MSS15,
MSS18] using the method of interlacing polynomials.

Properties

What additional properties do Ramanujan graphs possess that typical expander graphs do not?
Typical d-regular expander graphs G = ([n], E) satisfy the following properties:

1. Algebraic: λ2(L(G)) = Ω(1) where L is the normalized Laplacian matrix;

2. Combinatorial: φ(G) = Ω(1) where φ(G) is the edge conductance of G;

3. Probabilistic: τ(G) = O(log n) where τ(G) is the mixing time of lazy random walks on G.

Note that the mixing time bound is optimal when d is a constant as the graph has diameter Ω(log n),
but it does not improve even if we assume d is large.

De�nition 5.13 (Graphs with Large Spectral Gap). We say a (n, d, α)-graph G has a large spectral
gap if α = O(d1−c) for some constant 0 < c ≤ 1/2, and say G is near-Ramanujan if c = 1/2.

For near-Ramanujan graphs, the lower bound on edge conductance is 1
2(1 − O( 1√

d
)). This is only

slightly stronger than that of typical expander graphs, and does not quantify the additional expan-
sion properties that near-Ramanujan graph possess. The right combinatorial parameter to measure
the additional expansion properties of near-Ramanujan graphs is the small-set vertex expansion.

A d-regular graph G = ([n], E) with a large spectral gap satis�es the following properties:

1. Algebraic: λ2(L(G)) = 1− d−c where L is the normalized Laplacian matrix;

2. Combinatorial: ψ(S) & d2c if |S| . n/d2c, where ψ(S) is the vertex expansion of a set S;

3. Probabilistic: τ(G) . log n/ log dc, where τ(G) is the mixing time of random walks on G.

These are signi�cant upgrades of the combinatorial and probabilistic properties over that of typical
expander graphs: The second property implies that a near-Ramanujan graph has near-perfect small-
set vertex expansion. The third property implies that a graph with a large spectral gap has constant
mixing time when d = nε for some constant ε > 0. We will explore these in the next sections.
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5.4 Small-Set Vertex Expansion

For an (n, d, α)-graph, Tanner's theorem shows that sets of size up to α2n/d2 have vertex expansion
d2/α2. Note that the bound becomes interesting when α � d. In the extreme case of a near-
Ramanujan graph, sets of size up to Ω(n/d) have near-perfect vertex expansion of Ω(d).

Theorem 5.14 (Tanner's Theorem). Let G = (V,E) be an (n, d, α)-graph. For any 0 < δ ≤ 1/2
and any subset S ⊆ V with |S| = δn,

ψ(S) ≥
(
δ
(

1− α2

d2

)
+
α2

d2

)−1

− 1.

Proof. The idea is to consider the quantity ‖AχS‖22, where A is the adjacency matrix and χS is the
characteristic vector of S ⊆ V . This quantity is bounded in two ways. One way is to show that if
the closed vertex boundary |∂[S]| is small, then ‖AχS‖22 is large, where ∂[S] := ∂(S)∪S. The other
way is to upper bound ‖AχS‖22 using the spectral property, as ‖Ax‖22 ≤ α2‖x‖22 for x ⊥ ~1.

For a vertex v ∈ V , let degS(v) := |{u ∈ S | uv ∈ E}| be the number of neighbors of v in S. Then,

‖AχS‖22 =
∑
v∈V

degS(v)2 =
∑
v∈∂[S]

degS(v)2 ≥
(∑

v∈∂[S] degS(v)
)2∣∣∂[S]

∣∣ =

(
d|S|

)2∣∣∂[S]
∣∣ ,

where the inequality follows from Cauchy-Schwarz. This proves the lower bound.

For the upper bound, we write χS =
∑n

i=1 civi as a linear combination of the orthonormal eigen-
vectors of A, with v1 = ~1/

√
n and c1 = 〈χS , v1〉 = |S|/

√
n. Then

‖AχS‖22 =
∥∥∥ n∑
i=1

ciαivi

∥∥∥2

2
=

n∑
i=1

c2
iα

2
i ≤

d2|S|2

n
+ α2

(
‖χS‖2 − c2

1

)
= d2δ|S|+ α2|S| − α2δ|S|,

Combining the inequalities yields

ψ(S) + 1 =
|∂[S]|
|S|

≥ d2

δ(d2 − α2) + α2
=

(
δ
(

1− α2

d2

)
+
α2

d2

)−1

.

For Ramanujan graphs, Tanner's theorem show that sets of size up to n/(Cd) for a large constant
C have vertex expansion close to d/4.

Kahale [Kah95] improved Tanner's theorem and showed that small linear-sized subsets in Ramanu-
jan graphs have vertex expansion close to d/2. The same paper provided an example where
α ≤ 2

√
d− 1 + o(1), but the graph has a small set with vertex expansion at most d/2, proving

that the d/2 bound is tight.

For some applications in constructing error correcting codes, graphs with small-set vertex expansion
strictly greater than d/2 are required. We will revisit this question in the following chapters.
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5.5 Random Walks on Expander Graphs

Mixing Time

We usually consider random walks on (n, d, α)-graphs when d = Θ(1). In this regime, as shown
in Theorem 4.15, random walks converge to the uniform distribution in O(log n) steps as long as
α ≤ (1−ε)d for some constant ε > 0. This bound is optimal because a d-regular graph with d = Θ(1)
has diameter Ω(log n), so even if the graph is Ramanujan the mixing time remains Ω(log n).

Now, consider the regime when d = nε for some constant ε > 0, so that the diameter of the
graph could be a constant. For typical expander graphs with α = Θ(d), there still exist (n, d, α)-
graphs that have mixing times of Ω(log n). In contrast, for graphs with a large spectral gap, where
α = O(d1−c) for some constant c > 0, every (n, d, α)-graph has constant mixing time.

The veri�cation of these claims is left as an exercise in Problem 5.20. This demonstrates that graphs
with large spectral gaps, as de�ned in De�nition 5.13, exhibit signi�cantly stronger randomness
properties compared to typical expander graphs.

Concentration Property

Interestingly, random walks on expander graphs not only provide strong randomness properties for
the �nal vertex in the walk, but also for the sequence of vertices traversed during the walk. In some
applications, the sequence of vertices in a walk can e�ectively replace a sequence of independent
uniform random variables.

The following result is not presented in its most general form, but will su�ce for the application of
probability ampli�cation that we will see in Chapter ??. For more general statements, the reader
is referred to [HLW06, Vad12]. To develop intuition, it is useful to compare the probability bound
stated below with the corresponding bound when eachXi is an independent uniform random sample.

Theorem 5.15 (Concentration Property of Random Walks on Two-Sided Spectral Expanders).
Let G = (V,E) be a (n, d, α)-graph with α ≤ d/10. Let B ⊆ V with |B| ≤ 1

100 |V |. Let X0 be a
uniform random vertex, and let X1, . . . , Xt be the vertices produced by t steps of a random walk. Let
S = {i | Xi ∈ B} be the set of times when the random walk is in B. Then,

Pr

(
|S| > t

2

)
≤
(

2√
5

)t+1

.

Proof. We �rst set up the matrix formulation of the problem. The initial distribution of X0 is
~p0 = ~1/n. Let IB be the diagonal matrix with a 1 in the i-th diagonal entry if i ∈ B and zero
otherwise, and similarly de�ne IB for B = V − B. For a probability vector ~p, IB · ~p restricts ~p to
B. The probability that the random walk is in B precisely at the times in S is

pS := ~1>(IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)~p0,

where Zi = B if i ∈ S and Zi = B otherwise, and A is the normalized adjacency matrix (the
transition matrix of the random walk).

We will prove that pS ≤ (1
5)|S|. The theorem will then follow by a union bound as

Pr

(
|S| > t

2

)
≤

∑
S:|S|>t/2

pS ≤
∑

S:|S|>t/2

(
1

5

)|S|
≤

∑
S:|S|>t/2

(
1

5

) t+1
2

≤ 2t+1

(
1

5

) t+1
2

=

(
2√
5

)t+1

.
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To prove pS ≤ (1
5)|S|, we use the operator norm ‖·‖op (see De�nition A.19). Note that ‖IB‖op =

‖IB‖op = ‖A‖op = 1. We will prove ‖IBA‖op ≤ 1
5 , which implies pS ≤ (1

5)|S| as follows:

pS = ~1>(IZtA) . . . (IZ1A)~p0

≤ ‖~1‖2 ·
∥∥(IZtA) . . . (IZ1A)~p0

∥∥
2

(Cauchy-Schwarz)

≤ ‖~1‖2 ·
( t∏
i=1

‖IZiA‖op

)
· ‖~p0‖2 (operator norm properties in Fact A.21)

≤ ‖~1‖2 ·
(1

5

)|S|
· ‖~p0‖2 (from ‖IBA‖op ≤

1

5
and ‖IBA‖op ≤ 1)

=
(1

5

)|S|
. (since ‖~1‖2 =

√
n and ‖~p0‖2 =

1√
n
)

It remains to prove that ‖IBA‖op ≤ 1
5 , which is equivalent to proving that ‖IBAx‖22 ≤ ‖x‖22/25

for any nonzero vector x. Write x = c1v1 + . . . + cnvn, where v1, . . . , vn are the orthonormal
eigenvectors of A with eigenvalues 1 = α1 ≥ . . . ≥ αn ≥ −1. Since G is an (n, d, α)-graph, we have
max2≤i≤n{|αi|} ≤ α/d. It is then natural to decompose ‖IBAx‖22 into two terms:

‖IBAx‖22 = ‖IBA(c1v1 + . . .+ cnvn)‖22 =

∥∥∥∥IB n∑
i=1

ciαivi

∥∥∥∥2

2

≤ 2‖IBc1α1v1‖22 + 2

∥∥∥∥IB n∑
i=2

ciαivi

∥∥∥∥2

2

.

Using c1 = 〈x, v1〉 = 〈x, ~1√
n
〉 = 1√

n
·
∑n

i=1 x(i) and |B| ≤ n
100 , the �rst term is

2
∥∥IBc1α1v1

∥∥2

2
= 2

∥∥∥∥ 1

n

( n∑
i=1

x(i)
)
IB~1

∥∥∥∥2

2

= 2|B|
(∑n

i=1 x(i)

n

)2

≤ 2|B| · ‖x‖
2
2

n
≤ 1

50
‖x‖22,

where the �rst inequality is by Cauchy-Schwarz. Using α/d ≤ 1/10, the second term is

2

∥∥∥∥IB n∑
i=2

ciαivi

∥∥∥∥2

2

≤ 2‖IB‖2op ·
∥∥∥∥ n∑
i=2

ciαivi

∥∥∥∥2

2

= 2
n∑
i=2

c2
iα

2
i ≤ 2

(α
d

)2
n∑
i=2

c2
i ≤ 2

(α
d

)2
‖x‖22 ≤

1

50
‖x‖22,

Adding the two terms �nishes the proof.

5.6 Problems

Problem 5.16 (Tighter Expander Mixing Lemma). Let G = (V,E) be an (n, d, α)-graph. Prove
that, for every S ⊆ V and T ⊆ V ,∣∣∣∣∣∣E(S, T )

∣∣− d|S||T |
n

∣∣∣∣ ≤ α
√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
.

Obtain the corresponding improvement in the non-regular case.

Exercise 5.17 (Zero Diagonal Entries). Argue that if Lemma 5.7 is true for matrices with zero
diagonal entries, then Lemma 5.7 is true.
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Problem 5.18 (Powers of Two). Show that given any x ∈ Rn with ‖x‖2 = 1, there is a vector
x̃ ∈ Rn such that each entry of x̃ is a negative power of two and

|x̃>Bx̃|
‖x̃‖22

≥ 1

4
· |x
>Bx|
‖x‖22

.

Hint: Design a rounding such that E [x̃(i)] = x(i), and use the assumption that the diagonal entries
of B are zero to argue that E

[
x̃>Bx̃

]
= x>Bx.

Problem 5.19 (Small-Set Vertex Expansion from Expander Mixing Lemma). Use the expander
mixing lemma in Theorem 5.3 to prove that an (n, d, α)-graph with a large spectral gap (as de�ned
in De�nition 5.13) has good small-set vertex expansion. Compare your bound to Tanner's bound in
Theorem 5.14.

Problem 5.20 (Mixing Time of Graphs with Large Spectral Gap). Let G be an (n, d, α)-graph with
d = nε for some constant ε > 0.

(a) Give an example with α = c · d for some constant 0 < c < 1 and mixing time Ω(log n).

(b) Show that the mixing time is O(1) when α = d1−c for a constant 0 < c ≤ 1/2.
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Chapter 6

Expander Graphs: Constructions

In this chapter, we explore various constructions of expander graphs. We begin with a discussion
of probabilistic and algebraic constructions, followed by an analysis of a combinatorial construction
known as the zig-zag product, along with an overview of other combinatorial constructions. The
content of this chapter is mostly based on [HLW06].

6.1 Probabilistic Constructions

Constructing expander graphs is generally considered a challenging task. Ironically, almost all
graphs are expander graphs and even near-Ramanujan graphs!

For combinatorial properties, the probabilistic method can be used to prove that a random d-regular
graph has constant edge conductance with probability tending to 1 as the graph size goes to in�nity.
Furthermore, it can be proved the vertex expansion of linear-sized subsets is close to d− 2 [HLW06,
Section 4.6], which goes beyond the d/2 bound achieved by Ramanujan graphs.

For spectral properties, as discussed in Section 5.3, Friedman [Fri08] proved that almost all d-regular
graphs are near-Ramanujan. Moreover, the recent work by Huang, McKenzie, and Yau [HMY24]
proved that a random d-regular graph is Ramanujan with a probability of approximately 69%.

For applications such as using expander graphs for designing randomized algorithms, these random-
ized constructions can be applied directly.

Generating Random d-Regular Graphs

A technical question is how to generate a random d-regular graph.

The con�guration model is a commonly used method for constructing random graphs with a speci�ed
degree sequence. It works by creating �half-edges� for each vertex according to its degree and then
randomly pairing these half-edges to form edges. The resulting graph may contain self-loops or
multi-edges, but if we condition on simple graphs, the distribution becomes uniform.

In the permutation model, a 2d-regular graph on n vertices is generated by independently choosing
d random permutations π1, . . . , πd on [n] and adding an edge (v, πi(v)) for each v ∈ [n] and i ∈ [d].
This does not yield the uniform distribution on 2d-regular graphs, but it is known that a family of
events has probability 1− o(1) in the distribution induced by the permutation model if and only if
it has probability 1− o(1) in the uniform distribution [HLW06, JLR11].
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For fast algorithms for generating random regular graphs, we refer the reader to [GW17].

6.2 Algebraic Constructions

For applications such as derandomization, the probabilistic constructions cannot be used. Moreover,
for some applications, we cannot a�ord to generate the whole graph and need to explore the graph
locally. Algebraic constructions are deterministic and are explicit, allowing e�cient computation of
neighbors for any vertex.

The �rst construction of expanders is due to Margulis, a family of 8-regular graphs Gm for every
integer m. The vertex set is Vm = Zm × Zm. The neighbors of the vertex (x, y) are (x+ y, y), (x−
y, y), (x, y+x), (x, y−x), (x+y+1, y), (x−y+1, y), (x, y+x+1), (x, y−x+1), where all operations
are modulo m. We recommend the proof by Lee and Trevisan [Tre17, Chapter 19].

Another interesting construction is a family of 3-regular p-vertex graphs for every prime p. The
vertex set is Zp, and a vertex x is connected to x + 1, x − 1 and to its multiplicative inverse x−1

modulo p. The proof relies on a deep result in number theory.

The constructions of Ramanujan graphs by Lubotzky, Phillip, Sarnak [LPS88] and Margulis [Mar88]
are Cayley graphs of speci�c groups. We refer the reader to [HLW06] for the construction and an
exposition of Cayley expander graphs.

6.3 Combinatorial Constructions

Developing more elementary constructions and analysis of expander graphs remains an area of great
interest. The general approach in combinatorial constructions is to build larger expander graphs
from smaller ones. It turns out that this approach has signi�cant applications in algorithms and
complexity, as we will see in the next chapter.

Replacement Products

The replacement product is perhaps the most natural product to begin with. The base case could
simply be a constant size complete graph. Let G be an (n, k, ε1k)-graph and H be an (k, d, ε2d)-
graph. A replacement product of G and H is to replace each vertex v in G with a copy of H, so
that each edge incident on v connects to a di�erent vertex of H.

De�nition 6.1 (Replacement Product). Let G be a k-regular graph on n vertices and H be a d-
regular graph on k vertices. The replacement product G r H is a graph where the vertex set is the
Cartesian product [n]× [k] of the vertex set of G and H. Two vertices (u, i) and (v, j) have an edge
if and only if:

1. u = v and ij ∈ E(H), or
2. vu ∈ E(G), v is the i-th neighbor of u in G, and u is the j-th neighbor of v in G.

Intuitively, G r H is a combinatorial expander if G and H are combinatorial expanders. Consider
a set S ⊆ V (G r H). If S has either a large of small intersection with each �cloud� (copy of H),
then S should have large expansion due to the large expansion of G, as S essentially corresponds to
a subset of vertices in G. If S has medium intersections with many clouds, then S should have large
expansion because H has large expansion, and there are many crossing edges within each cloud.

62



Chapter 6

However, it is unclear how to formalize this intuition, as there seems to be no clean way to decompose
a subset's contribution into those from G and H. The spectral approach, which we will see shortly,
can be thought of as a linear algebraic method to make this idea rigorous in a more general setting.

Zig-Zag Product

The actual construction by Reingold, Vadhan and Wigderson [RVW02] that we will analyze is
slightly more complex.

De�nition 6.2 (Zig-Zag Product). Let G be a k-regular graph on n vertices and H be a d-regular
graph on k vertices. The zig-zag product G z H is a graph with the same vertex set [n]× [k] as the
replacement product. Two vertices (u, i) and (v, j) are connected by an edge if and only if u 6= v
and there exists a ∈ [k] such that (u, i)�(u, a), (u, a)�(v, b), and (v, b)�(v, j) are all edges in the
replacement product G r H, where (u, a)�(v, b) is the unique edge incident on (u, a) with v 6= u
(i.e., the unique edge incident on (u, a) that leaves the cloud of u in the replacement product).

In words, each edge in the zig-zag product G z H corresponds to a length three walk in the re-
placement product G r H, where the �rst step is within a cloud, the second step is the unique way
to leave a cloud, and the third step is within the other cloud.

The intuition that the zig-zag product is a spectral expander comes from random walks. Edge edge
in G z H corresponds to a random step in H, a deterministic step in G, and another random step
in H. We should think of the �rst two steps as going to a random neighboring cloud, and the
third step corresponds to moving to a random neighbor within that cloud. Since both G and H are
spectral expanders with fast mixing properties, after a few steps, the walk loses information about
both the cloud and the location within the cloud. Thus, G z H inherits the fast mixing property
and is a spectral expander.

Theorem 6.3 (Zig-Zag Theorem [RVW02]). Let G be an (n, k, ε1k)-graph and H be an (k, d, ε2d)-
graph. Then G z H is an (nk, d2, (ε1 + ε2 + ε22)d2)-graph.

We will prove the theorem in the next subsection. First, let us see how the zig-zag product can be
used to construct larger and larger constant degree expander graphs. The idea is to combine with
the following standard operation that increases the spectral gap.

De�nition 6.4 (Graph Power). Let G be a graph with adjacency matrix A. The k-th power Gk is
the graph with the same vertex set as G and adjacency matrix Ak.

In words, the number of parallel edges between u and v in Gk is equal to the number of length
k walks between u and v in G. Note that while the spectral gap of Gk improves signi�cantly, its
degree also increases signi�cantly.

Exercise 6.5 (Spectral Gap of Power). Gk is an (n, dk, εkdk)-graph if G is an (n, d, εd)-graph.

The idea of the combinatorial construction is to use graph power to increase the spectral gap, and
then use the zig-zag product to reducing the degree without signi�cantly reducing the spectral gap.

Theorem 6.6 (Expanders from Zig-Zag Product). For every su�ciently large constant d, there
exists an in�nite family of (n, d2, d2/4)-graphs.
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Proof. Let H be a (d4, d, d/16)-graph. Its existence can be shown using a probabilistic argument
when d is su�ciently, and it can be found via exhaustive search in constant time.

Using H as the building block, we de�ne Gi inductively by G1 = H2 and Gi+1 = G2
i z H. We claim

that Gi is a (d4i, d2, d2/4)-graph for all i ≥ 1. The base case follows from Exercise 6.5. Assuming
Gi is a (d4i, d2, d2/4)-graph, then G2

i is a (d4i, d4, d4/16)-graph by Exercise 6.5, and G2
i z H is a

(d4(i+1), d2, d2/4)-graph by Theorem 6.3.

Proof of the Zig-Zag Theorem

Check that G z H has nk vertices and is d2-regular. We bound the spectral gap of G z H.

Matrix Formulation: The �rst step is to write down the walk matrix Z of the zig-zag product
G z H. Let W (H) be the k × k walk matrix of H, which is simply 1

dA(H) where A(H) is the
adjacency matrix of H. Let W be the nk × nk matrix with n copies of WH on the diagonal. This
represents the transition matrix for one step of the random walk within the clouds in G z H. The
steps between clouds are deterministic: the walk moves from a vertex (u, i) to a unique vertex (v, j)
with v 6= u. The transition matrix for this deterministic step is thus a permutation matrix P where
P(u,i),(v,j) = 1 for each inter-cloud edge and zero otherwise. It follows from the de�nition of the
zig-zag product that

Z = WPW.

Thus, the random walk matrix of G z H has a very clean form, which should be the reason for the
de�nition of the zig-zag product in De�nition 6.2.

The graph G z H is regular, so ~1nk is an eigenvector of Z with eigenvalue 1. To prove the zig-zag
product theorem, we will prove that for all f ⊥ ~1nk, the Rayleigh quotient satis�es

RZ(f) =
|fTZf |
‖f ‖22

≤ ε1 + ε2 + ε22.

This implies that all but the largest eigenvalue of Z have absolute value at most ε1 + ε2 + ε22, and
hence all but the largest eigenvalue of A(G z H) have absolute value at most (ε1 + ε2 + ε22)d2.

Vector Decomposition: For any f ⊥ ~1nk, we decompose f into two vectors to apply the results
in G and H. This step demonstrates the power of linear algebra, as in the larger domain Rnk,
there is a natural way to decompose a vector. In contrast, in the combinatorial setting, it is unclear
how to decompose a set of vertices in G z H into subsets of G and H to utilize their expansion
properties as previously discussed.

De�ne fG as the average of f on clouds, such that fG(u, i) = 1
k

∑k
j=1 f(u, j) for all (u, i) ∈

V (G z H), so that two vertices in the same cloud have the same value in fG. De�ne fH = f − fG.
Note that fH sums to zero in each cloud, such that

∑k
j=1 fH(u, j) = 0 for each u ∈ G. Using the

triangle inequality,

|f>Zf | = |f>WPWf | = |(fG+fH)>WPW (fG+fH)| ≤ |f>GWPWfG|+2|f>GWPWfH |+|f>HWPWfH |.

Since W (H) ·~1k = ~1k as H is regular, it follows that WfG = fG, as vertices in the same cloud have
the same value in fG. Thus,

|f>Zf | ≤ |f>GPfG|+ 2|f>GPWfH |+ |f>HWPWfH |.

We will use the spectral properties of G and H to establish:
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� |f>GPfG| ≤ ε1‖fG‖22 (Claim 6.9),

� |f>HWPWfH | ≤ ε22‖fH ‖22 (Claim 6.7),

� 2|f>GPWfH | ≤ 2ε2‖fG‖2‖fH ‖2 (Claim 6.8).

Assuming these claims and using ‖f ‖22 = ‖fG‖22 + ‖fH ‖22 we conclude that

|f>Zf | ≤ ε1‖fG‖22 + 2ε2‖fG‖2‖fH ‖2 + ε22‖fH ‖22
≤ ε1‖fG‖22 + ε2

(
‖fG‖22 + ‖fH ‖22

)
+ ε22‖fH ‖22

≤ (ε1 + ε2 + ε22)‖f ‖22.

This completes the proof of Theorem 6.3, leaving the three claims to be proven.

Spectral Bounds: The following claim uses the spectral property of H and the fact that fH sums
to zero in each cloud.

Claim 6.7 (Quadratic Term of H). |f>HWPWfH | ≤ ε22‖fH ‖22.

Proof. First, we claim that ‖W (H) · x‖2 ≤ ε2‖x‖2 for any x ⊥ ~1k. To see this, let x =
∑k

i=1 civi,
where v1, . . . , vn is an orthonormal basis of eigenvectors of W (H) with eigenvalues α1, . . . , αk. Note
that c1 = 0, as v1 = ~1/

√
k and x ⊥ ~1. Since H is an (k, d, ε2d)-graph, α2

i ≤ ε22 for 2 ≤ i ≤ d. Thus,

‖W (H) · x‖22 =

∥∥∥∥W (H) ·
( k∑
i=2

civi

)∥∥∥∥2

2

=

∥∥∥∥ k∑
i=2

ciαivi

∥∥∥∥2

2

=
k∑
i=2

c2
iα

2
i ≤ ε22

k∑
i=2

c2
i ≤ ε22‖x‖22.

This implies that ‖WfH ‖2 ≤ ε2‖fH ‖, as the sum of the entries in each cloud is zero in fH . Therefore,

|f>HWPWfH | ≤ ‖WfH ‖2 · ‖PWfH ‖2 = ‖WfH ‖22 ≤ ε22‖fH ‖22,

where the inequality is by Cauchy-Schwarz and the equality holds as P is a permutation matrix.

The second claim is straightforward.

Claim 6.8 (Cross Term). |f>GPWfH | ≤ ε2‖fG‖2‖fH ‖2.

Proof. By Cauchy-Schwarz and ‖WfH ‖2 ≤ ε2‖fH ‖2 established in Claim 6.7,

|f>GPWfH | ≤ ‖fG‖2 · ‖PWfH ‖2 = ‖fG‖2 · ‖WfH ‖2 ≤ ε2‖fG‖2‖fH ‖2.

The �nal claim uses the spectral property of G and the fact that f ⊥ ~1nk.

Claim 6.9 (Quadratic Term of G). |f>GPfG| ≤ ε1‖fG‖22.
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Proof. The main point is that f>GPfG is equal to a corresponding quadratic form of the walk
matrix of G. To see this, we �contract� each cloud to a single vertex. De�ne g : V (G) → R
as g(v) =

√
k · fG(v, 1), so that ‖g‖22 = ‖fG‖22. We claim that f>GPfG = g>W (G)g, where

W (G) is the random walk matrix of G. This is because each edge (u, i)-(v, j) in G z H contributes
fG(u, i) ·fG(v, j) to f>GPfG, while the corresponding edge uv ∈ G contributes g(u) ·W (G)u,v ·g(v) =(√
kfG(u, 1)

)(
1
k

)(√
kfG(v, 1)

)
= fG(u, i) · fG(v, j) to g>W (G)g.

Since f ⊥ ~1, it follows that fG ⊥ ~1 and thus g ⊥ ~1. Therefore,

f>GPfG
‖fG‖22

=
g>W (G)g

‖g‖2
≤ ε1,

where the inequality is because G is an (n, k, ε1k)-graph,

This concludes the proof of Theorem 6.3. The idea of decomposing a vector into di�erent components
is useful in many proofs. We will use it again when we study high dimensional expanders.

Lifts of Graphs

Another combinatorial approach to constructing expanders, �rst proposed by Friedman, is to �lift�
a smaller Ramanujan graph into a larger one. A k-lift of an (n, d, α)-graph G is an (nk, d, α′)-graph,
where each vertex u of G is replaced by k vertices u1, . . . , uk in H, and each edge uv ∈ G is replaced
by a perfect matching between u1, . . . , uk and v1, . . . , vk in H.

There are several results on random k-lifts. The best known result is by Puder [Pud15] who proved
that a random k-lift of a Ramanujan graph satis�es α′ ≤ 2

√
d− 1 + 1 with probability tending to

1 as k →∞.

Bilu and Linial [BL06] studied 2-lifts. They used the converse of expander mixing lemma in Theo-

rem 5.6 and a derandomized probabilistic method to construct an in�nite family of
(
n, d,O(

√
d log3 d)

)
-

graphs.

Marcus, Spielman, and Srivastava [MSS15] developed an original approach using interlacing poly-
nomials to prove that every bipartite Ramanujan graph has a 2-lift which is bipartite Ramanujan
(i.e., with max2≤i≤n−1 |αi| ≤ 2

√
d− 1).

Lossless Expanders

A graph is called a lossless expander if every small linear-sized subsets has vertex expansion close
to d. These graphs have applications in constructing error correcting codes, as we will see in the
next chapter.

As discussed previously, a random d-regular graph has small-set vertex expansion close to d − 2,
while there are Ramanujan graphs with small-set vertex expansion at most d/2. It remains a major
open problem to design deterministic constructions of lossless expanders.

Capalbo, Reingold, Vadhan, and Wigerson [CRVW02] constructed one-sided bipartite lossless ex-
panders using an intricate zig-zag product on �conductors� (a randomness-enchancing object); see
also [HLW06, Chapter 10].
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Recently, Golowich [Gol24] presented a simple and improved constructions of one-sided bipartite
lossless expanders, by composing a small lossless expander with a large two-sided bipartite spec-
tral expander. A new paper [HLM+24] demonstrated an explicit construction of two-sided vertex
expanders beyond the spectral barrier d/2.
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Chapter 7

Expander Graphs: Applications

This chapter highlights some key applications of expander graphs. More details are given on ex-
pander codes, which form the basis of recent breakthroughs in designing asymptotically good and
locally testable codes [DEL+22, PK22]. The content of this chapter is mostly based on [HLW06].

7.1 Pseudorandomness

Expander graphs are pseudorandom objects, as suggested by the expander mixing lemma in Theo-
rem 5.3. This pseudorandom property makes them useful for reducing or even eliminating random-
ness in certain settings.

Reducing Randomness in Probability Ampli�cation

Suppose we have a randomized algorithm with error probability 1/100 that requires n random
bits. To decrease the failure probability, the standard approach is to run the randomized algorithm
independently k times and take the majority answer as the output. By a standard Cherno� bound
argument, this decreases the failure probability to δk for some small constant δ. However, this
approach uses kn random bits.

We show how to achieve exponentially small error probability while using only n + O(k) bits. To
do so, let us reinterpret the above analysis from a random walk perspective.

Let V denote the set of all n-bit strings. The condition that the randomized algorithm has an error
probability of at most 1/100 is equivalent to saying that, among the 2n n-bit strings, at most 2n/100
of them are �bad� strings. Let B ⊆ V denote this set of bad strings. The majority-vote algorithm
fails if more than k/2 strings sampled randomly are from B. Sampling k independent n-bit strings
can be interpreted as performing a random walk of length k on the complete graph over V and use
the corresponding bit strings of the vertices on this walk.

The key idea is to replace the random walk on the complete graph with a random walk on a constant
degree expander graph over V . Let G be an (2n, d, d/10)-graph, where d is a constant. Such graphs
exist, for example, by taking a su�ciently large constant power of a Margulis expander as described
in Section 6.2. In the �rst step of the random walk, we use an n-bit random string. In subsequent
steps, instead of using n random bits to select the next n-bit string, we choose a random neighbor
of the current string in G and use the corresponding string of this random neighbor. Since G is a
d-regular graph, each subsequent step requires only log2 d random bits to select a random neighbor.
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Thus, the total number of bits used is n+(k−1) · log2 d = n+O(k). Importantly, the neighbors of a
Margulis expander can be computed e�ciently, allowing the corresponding strings to be computed
quickly without constructing the entire graph G. This is where the explicitness of an algebraic
construction becomes useful.

What about the error probability of this expander-walk algorithm? This is precisely what Theo-
rem 5.15 is formulated for. It shows that the failure probability of taking the majority answer from
a random walk of length k on a two-sided spectral expander with α ≤ d/100 is at most (2/

√
5)k.

Expander Random Walks

This is just one example of using expander graphs in derandomization; see [Vad12] for more. See
[Gil98] for a well-known Cherno� bound for random walks on two-sided spectral expanders and
[GLSS18] for a recent generalization to the matrix setting.

The above results can be interpreted as showing that the majority functions are fooled by expander
random walks, meaning they cannot distinguish independent random samples from those produced
by expander random walks. See [CPT21] for a recent paper demonstrating that many functions are
similarly fooled by expander random walks.

7.2 Constructing E�cient Networks and Algorithms

A d-regular expander graph can be viewed as highly e�cient, having only a linear number of edges
while achieving very high connectivity. From this perspective, it is natural that expander graphs
are used in constructing e�cient networks.

E�cient Networks

One interesting example is the construction of superconcentrators, which are directed graphs with
n input nodes and n output nodes (and possibly other notes) that satisfy the strong connectivity
property: for any k ≤ n, there exist k vertex disjoint paths between any k input nodes and any k
output nodes. For example, the complete bipartite graph Kn,n satis�es this property but requires
Θ(n2) edges. Valiant initially conjectured that no superconcentrator with O(n) edges exists as
part of an attempt to prove circuit lower bounds. Later, he developed a recursive construction of
superconcentrator with O(n) edges using expander graphs as building blocks; see [HLW06].

Another classical application of expander graphs is the construction of optimal sorting networks
with O(n log n) edges and O(log n) depth [AKS83].

E�cient Algorithms

Superconcentrators and expander graphs can also be used to design e�cient algorithms. A simple
example is the design of fast algorithms for computing matrix rank [CKL13]. In this application,
an expander graph or superconcentrator is used to �compress� a rectangular matrix A ∈ Fm×n with
n � m into a square matrix B ∈ Fm×m in linear time, such that rank(A) = rank(B) with high
probability. This leads to faster randomized algorithm for computing the rank of a rectangular
matrix and �nding linearly independent columns. For this application, probabilistic constructions
of bipartite expander graphs are su�cient.
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Figure 7.1: A bipartite expander graph G = (X,Y ;E) is used to compress the input matrix A
into a smaller matrix B. Each column of B is a random linear combination of the columns of its
neighbors; for example, B3 is a random linear combination of A2, A3 and A8.

Another example is to use superconcentrators to design a faster algorithm for computing edge
connectivities in a directed acyclic graph [CLL13].

7.3 Complexity Theory

The construction of expanders using zig-zag products has inspired remarkable developments in
complexity theory. In an interesting parallel, the construction of expanders using cut-matching
games has been applied widely to designing e�cient algorithms, as we will see later in this course.
These results demonstrate the value of combinatorial constructions of expander graphs.

Graph Connectivity in Log-Space

A striking application of the zig-zag product in De�nition 6.2 is solving the s-t connectivity problem
in an undirected graph using logarithmic space.

If randomized algorithms are allowed, solving s-t connectivity in log-space is simple: just perform a
random walk for O(n3) steps. This works because the expected cover time for any undirected graph
is at most O(n3).

For deterministic algorithms, Savitch's algorithm solves the more general problem of s-t connectivity
in directed graphs using O(log2 n) space, by recursively guessing the midpoint of a directed s-t path.
It remains an important open problem whether s-t connectivity in directed graphs can be solved
in O(log n) space. Such an algorithm would imply NL = L, meaning the non-deterministic and
deterministic log-space complexity classes are equal.

Reingold [Rei08] discovered a deterministic O(log n) space algorithm for s-t connectivity in undi-
rected graphs using zig-zag products. If the input graph G is a d-regular expander graph with
constant d, then G has a diameter of O(log n). Paths of length O(log n) in such a graph can be enu-
merated in O(log n) space, since each neighbor requires only log2 d bits to describe. Thus, solving
s-t connectivity in constant-degree expander graphs in O(log n) space is straightforward.
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Reingold's approach is to transform any graph G into a regular expander graph Gk such that s, t are
connected in G if and only if they are connected in Gk. First, G is converted into a D-regular graph
G1 with constant D = d16 by replacing high degree vertices with constant-degree expander graphs
and adding self-loops to low degree vertices, similar to the replacement product in De�nition 6.1.
The resulting G1 is an (n, d16, ε1d

16)-graph where ε1 ≤ 1 − 1/n2 since any connected undirected
graph has a spectral gap of at least 1/n2.

To improve expansion, the idea is to construct Gi+1 := (Gi z H)8, where H is a (d16, d, d/2)-
graph. Using a variant of the zig-zag theorem in Theorem 6.3, it can be shown that the spectral
gap doubles with each iteration. More precisely, if Gi is an (nd16i, d16, εid

16)-graph, then Gi+1

is an (nd16(i+1), d16, εi+1d
16)-graph where εi+1 ≤ ε2i . Therefore, repeating this construction for

k = O(log n) times yields Gk, an (nd16k, d16, 3/4)-graph with constant spectral gap. Note that the
size of Gk is at most a polynomial factor larger than G for k = O(log n), and s and t are connected
in G if and only if they are connected in Gk.

A technical challenge in this approach is computing a neighbor of a vertex in Gk in log-space. The
intuition is that there are only O(log n) recursion levels in the zig-zag construction, and each level
requires only constant space since there are just three steps and the degree is constant. Reingold
proved that this can indeed be achieved using a clever data structure; see [Rei08, Vad12] for details.

Hardness Ampli�cation

Random walks on expander graphs can also be used for hardness ampli�cations, transforming in-
stances that are hard to approximate into instances that are even harder to approximate. See
[HLW06, Section 3.3] or [AB06, Chapter 22] for a simple application of expander random walks in
proving hardness of approximating maximum independent sets.

Dinur [Din07] provided an elegant proof of the important PCP theorem using expander random
walks. Her proof, inspired by Reingold's result, involves multiple iterations of �powering� and
�degree reduction�, which makes the underlying constraint satisfaction problem increasingly harder
to approximate. See [AB06, Chapter 22] for a good exposition of the PCP theorem.

7.4 Error Correcting Codes

A major motivation behind the early development of expander graphs comes from coding theory,
where small-set vertex expansion is the key combinatorial quantity.

A code C ⊆ {0, 1}n of length n is a subset of n-bit strings, where each string in C is called a
codeword. To design a good error correcting code, we aim to choose codewords that are far from
each other so as to correct more errors, while also maximizing the number of codewords so as
to achieve a high information rate. This can be viewed as a sphere packing problem, where the
objective is to �t in as many disjoint spheres of a certain radius as possible within Fn2 .

De�nition 7.1 (Distance of Code). Given C ⊆ {0, 1}n, the distance of C is de�ned as dist(C) :=
minx 6=y∈C dH(x, y), where dH(x, y) is the Hamming distance between two codewords x and y. The
relative distance of C is de�ned as dist(C)/n.

De�nition 7.2 (Rate of Code). Given C ⊆ {0, 1}n, the rate of C is de�ned as log(|C|)/n, where
log |C| can be thought of as the number of bits of information sent.
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De�nition 7.3 (Asymptotically Good Code). A family Cn ∈ {0, 1}n of codes is asymptotically good
if there are constants r > 0 and δ > 0 such that for all n, the relative distance of Cn is at least δ,
and the rate of Cn is at least r.

The existence of an asymptotically good code can be proved using a standard probabilistic method.
However, for the codes to be practical, encoding and decoding should also be achievable in polyno-
mial time in n (ideally linear time in n). This requirement makes designing good codes much more
challenging.

A common class of codes is the class of linear codes, where C is a linear subspace of Fn2 . Linear
codes have the advantage that they can be described by a basis and so encoding can be done in
O(n2) time. Additionally, a simple but useful property of linear codes is that the minimum distance
of the code is equal to the minimum `1-norm of a non-zero codeword, because dH(x, y) = ‖x− y‖1
and x−y is a codeword. The natural decoding strategy is to �nd the nearest codeword of a received
word, but this is an NP-complete problem even for linear codes.

Low Density Parity Check Codes

The idea of constructing codes from graphs was �rst suggested by Gallager, who uses sparse bipartite
graphs to design low-density parity check codes (LDPC codes).

Let A be a parity check matrix for code C, such that C = {x | Ax = 0} where A ∈ {0, 1}m×n with
m < n. Each row i of A is a parity-check constraint, requiring

∑n
j=1Aij · x(j) = 0 (mod 2). Note

that the rate of this code is 1−m/n. Thus, one objective is to minimize the number of constraints
to ensure a lower bound on the rate.

The matrix A can be viewed as a bipartite graph G = (L,R;E), where L = [n] represents variables,
R = [m] represents constraints, and there is an edge between variable i ∈ L and constraint j ∈ R if
Aij = 1. The small-set vertex expansion of G is the key property in analyzing LPDC codes.

De�nition 7.4 (One-Sided Small-Set Vertex Expansion). Let G = (L,R;E) be a bipartite graph
with |L| = n and |R| = m and m < n. For any 0 < δ < 1, de�ne the left δ-small-set vertex
expansion of G as

ψLδ (G) := min
S⊆L:|S|≤δn

|∂(S)|
|S|

,

where ∂(S) is the vertex boundary as in De�nition 3.11.

The following theorem relates the one-sided small-set vertex expansion of the graph to the minimum
distance of the code. The proof uses the unique neighbor property guaranteed by strong enough
one-sided small-set vertex expansion.

Theorem 7.5 (Distance of Expander Code [SS96]). Let G = (L,R;E) be a left d-regular bipartite
graph with ψLδ (G) > d/2. Then the parity check code C(G) de�ned by G has relative distance greater
than δ.

Proof. Let S ⊆ L be a subset of left vertices with |S| ≤ δn. By the left small-set vertex expansion
assumption of G, |∂(S)| > d|S|/2. A simple counting argument shows that there exists a vertex
v ∈ ∂(S) ⊆ R with only one neighbor in S. Let us call such a vertex a unique neighbor of S.

To lower bound the minimum distance, recall that it is equivalent to lower bounding the `1-
norm/support-size of a codeword x ∈ {0, 1}n. Let S be the support of x. If |S| ≤ δn, by the
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above argument, there exists a unique neighbor v ∈ R of S. This implies that the parity constraint
on v is not satis�ed by x, so x is not a codeword of the parity check code de�ned by G. There-
fore, any codeword of this parity check code must have support size greater than δn, and thus the
minimum distance of this code is greater than δn.

For e�cient decoding, a stronger requirement ψLδ (G) ≥ 3d/4 is needed. As discussed in Section 6.3,
this strong condition is satis�ed with high probability in random d-left-regular bipartite graphs. For
deterministic constructions, Capalbo, Reingold, Vadhan, Wigderson [CRVW02] used an intricate
variant of the zig-zag product to construct one-sided small-set vertex expanders with ψLδ (G) ≥ 0.99d
for some δ > 0, while m/n < 0.99 so that the rate of the code is at least 0.01.

Fast Decoding Algorithm

A key feature of LPDC codes de�ned by expander graphs is that there exists a surprisingly simple
and e�cient decoding algorithm.

Algorithm 3 Flip Algorithm for Expander Code

Require: A parity check matrix A ∈ {0, 1}m×n and a bit string x ∈ {0, 1}n.
1: Let x(0) := x and t = 0.
2: while there is an unsatis�ed parity check constraint do
3: Find a bit i such that �ipping it decreases the number of unsatis�ed parity constraints. That

is, an i ∈ [n] such that
∥∥A(x(t) + χi

)∥∥
1
<
∥∥Ax(t)

∥∥
1
, where χi is the characteristic vector of i

and the addition is mod 2. Set x(t+1) := x(t) + χi and t← t+ 1.
4: end while

5: return x(t).

The analysis of the �ip algorithm relies on a stronger assumption about the left small-set vertex
expansion than that in Theorem 7.5.

Theorem 7.6 (E�cient Decoding of Expander Code [SS96]). Let G = (L,R;E) be a left d-regular
bipartite graph with L = [n] and R = [m] and ψLδ (G) > 3d/4. Let x be an n-bit string whose distance
from a codeword y is at most δn/2. Then Algorithm 3 will return y in at most m iterations.

Proof. The plan is to argue that:

1. There exists a bit i such that �ipping it decreases the number of unsatis�ed constraints, as
long as distH

(
x(t), y

)
≤ δn;

2. distH
(
x(t), y

)
≤ δn for all t if distH

(
x(0), y

)
≤ δn/2.

These imply that the number of unsatis�ed constrained decreases with each iteration, so the al-
gorithm must stop after at most τ ≤ m iterations. At that point, x(τ) is a codeword because
all constraints are satis�ed. Moreover, x(τ) must be equal to y, as distH(x(τ), y) ≤ δn, while the
distance between y and other codewords is strictly bigger than δn by Theorem 7.5.

Let ∆ := {i ∈ [n] | x(t)(i) 6= y(i)} be the set of errors at the t-th iteration. Assume 0 < |∆| ≤ δn,
we argue that a bit i exists such that �ipping it decreases the number of unsatis�ed constraints.
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Partition ∂(∆) into satis�ed neighbors ∂+(∆) and unsatis�ed neighbors ∂−(∆). Since |∆| ≤ δn, by
the left small-set vertex expansion assumption,

|∂+(∆)|+ |∂−(∆)| = |∂(∆)| > 3d|∆|/4.

Consider the d|∆| number of edges between ∆ and ∂(∆). Each vertex in ∂+(∆) contributes at least
two such edges while each vertex in ∂−(∆) contributes at least one such edge, and so

2|∂+(∆)|+ |∂−(∆)| ≤ d|∆|.

Combining these two inequalities shows |∂−(∆)| > d|∆|/2. Thus, there must exist a vertex i ∈ ∆
with strictly more than d/2 unsatis�ed neighbors, so �ipping i decreases the number of unsatis�ed
constraints.

To complete the proof, we argue that |∆| ≤ δn in any iteration. Suppose this is not true. Since |∆|
changes by one in each iteration, there must be an (earliest) iteration such that |∆| = δn. At this
point, using the argument in the previous paragraph, there are strictly more than d|∆|/2 = dδn/2
unsatis�ed constraints. However, since the initial error is at most δn/2, the number of unsatis�ed
constraints in the beginning is at most dδn/2. This contradicts with the previous paragraph that
the number of unsatis�ed constraints is decreasing when |∆| ≤ δn.

Spielman [Spi96] further designed �superconcentrator codes� to construct asymptotically good codes
that are linear-time encodable and decodable.

Tanner Codes

Tanner codes generalize LDPC codes by allowing the �base code� to be more general than a simple
parity check. Let C0 ⊆ {0, 1}d be the base code, and let G = (V,E) be a d-regular graph with
V = [n] and E = [m]. The Tanner code is de�ned as

C(G) := {y ∈ {0, 1}m | y|δ(i) ∈ C0 ∀i ∈ [n]},

where y|δ(i) is the vector y restricted to the d edges in δ(i) for a vertex i ∈ V . Each bit y(j) of
a codeword corresponds to an edge j ∈ E of G, and a binary string y is a codeword if y|δ(i) is a
codeword of the base code C0 for every vertex i ∈ V of G.

The advantage of Tanner codes is that we could use a stronger base code with larger minimum
distance, instead of a parity check code with minimum distance two. For a base code C0 with
minimum distance d0, the vertex expansion requirement for G can be relaxed to d/d0 to achieve the
same distance as the corresponding LDPC code. In particular, by Tanner's theorem in Theorem 5.14,
a spectral expander can be used as G to design asymptotically good codes that are linear time
encodable and decodable, without requiring lossless expanders.

The decoding algorithm for Tanner codes is still an iterative ��xing� algorithm, where invalid code-
words on a vertex are replaced by their nearest valid codewords in the base code. The analysis is
similar to LDPC codes: if the decoding algorithm fails, one can argue that there must be a �denser�
subgraph exists than what is allowed by the expander mixing lemma.

Recent breakthroughs [DEL+22, PK22] in designing asymptotically good codes that are also lo-
cally testable generalize Tanner codes to 2-dimensional expanders (where graphs are considered
1-dimensional expanders).
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Chapter 8

Higher-Order Cheeger Inequality

Cheeger's inequality in Chapter 3 is a robust generalization of the basic fact that λ2(G) = 0 if
and only if G is disconnected. The higher-order Cheeger inequality in this chapter is a robust
generalization of the basic fact that λk(G) = 0 if and only if G has k connected components.

Arora, Barak and Steurer [ABS10] were the �rst to establish such a generalization. Informally, they
proved that if λk is small then there exists a set S with small edge conductance and |S| . |V |/k,
generalizing the fact that if λk = 0 then there exists a set S with edge conductance 0 and |S| ≤ |V |/k.
This result was used in [ABS10] to design a subexponential-time algorithm for Unique Games.
This work has inspired many subsequent studies that use higher eigenvalues to design and analyze
approximation algorithms. We will present their result later in Chapter ?? when we study random-
walk based techniques for graph partitioning.

The higher-order Cheeger inequality provides a conceptually stronger generalization, asserting that
λk is small if and only ifG has at least k disjoint subsets S1, . . . , Sk each with small edge conductance.

De�nition 8.1 (k-Way Edge Conductance). Let G = (V,E) be a graph. The k-way edge conduc-
tance is de�ned as

φk(G) = min
S1,S2,...,Sk⊆V

max
1≤i≤k

φ(Si),

where the minimization is over pairwise disjoint subsets S1, . . . , Sk of V .

The following results were obtained independently by two research groups.

Theorem 8.2 (Higher-Order Cheeger Inequalities [LOT14, LRTV12]). Let G = (V,E) be a graph
and let λk denote the k-th smallest eigenvalue of its normalized Laplacian matrix. Then

λk . φk(G) . k2 ·
√
λk.

Moreover, for fewer disjoint subsets, there is an improved dependency on k:

φk/2(G) .
√

log k · λk.

The direction λk . φk(G) is called the easy direction, while the direction φk(G) . k2
√
λk is called

the hard direction. As in Cheeger's inequality, the easy direction shows that λk is a relaxation of
the k-way edge-conductance problem, while the hard direction is proved using a rounding algorithm
for this relaxation. We will prove the hard direction and leave the easy direction in Problem 8.3.
We assume the graph is d-regular throughout this chapter.

Problem 8.3. Prove the easy direction. Hint: Use the Courant-Fischer theorem in Theorem A.14.
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8.1 Cheeger Rounding and Spectral Embedding

We �rst revisit the Cheeger rounding algorithm from Chapter 3 and then motivate the use of the
spectral embedding for the k-way edge-conductance problem.

Cheeger Rounding

The following rounding algorithm is a consequence of the threshold rounding step in Lemma 3.5
and the embedding step in Lemma 3.7. Note that it applies to all vectors, not just eigenvectors.

Lemma 8.4 (Cheeger Rounding). Given graph G = (V = [n], E) and a vector x ∈ Rn, there exists
an e�cient algorithm to �nd a subset S ⊆ supp(x) such that

φ(S) ≤
√

2R(x) where R(x) =
x>Lx

x>x

is the Rayleigh quotient of x, and supp(x) := {i ∈ [n] | x(i) 6= 0} is the support of vector x.

When λk is small, there are k orthogonal eigenvectors v1, . . . , vk, each with a small Rayleigh quotient.
Applying Lemma 8.4 to each vi produces subsets S1, . . . , Sk, each with small edge conductance.
Since the eigenvectors v1, . . . , vk are orthogonal, it is natural to expect that the sets S1, . . . , Sk
di�er signi�cantly. However, dealing with each vector separately does not provide a clear way to
combine the resulting subsets S1, . . . , Sk into k disjoint subsets with small edge conductance.

This motivates a more global view that considers all the k vectors simultaneously.

Spectral Embedding

An interesting idea in [LOT14, LRTV12] is to use the spectral embedding de�ned by the �rst k
eigenvectors to �nd k disjoint subsets of small edge conductance (a set of small edge conductance
is also called a sparse cut).

De�nition 8.5 (Spectral Embedding). Let G = (V = [n], E) be a graph. Let λ1 ≤ . . . ≤ λk be the
k smallest eigenvalues of L(G), and v1, . . . , vk ∈ Rn be the corresponding orthonormal eigenvectors.
Let U ∈ Rn×k be the n× k matrix where the j-th column is vj. The spectral embedding ui ∈ Rk of
a vertex i is de�ned as the i-th row of U .

In the spectral embedding, each vertex i is mapped to a k-dimensional point ui ∈ Rk. This
embedding is commonly used in practice to �nd disjoint sparse cuts. Heuristics often apply geometric
clustering algorithms, such as the k-means algorithm, to partition the points into k clusters, which
are then used to partition the graph.

These heuristics are reported to work well in applications such as image segmentation and data
clustering, but no theoretical guarantees were known. The proof of the higher-order Cheeger in-
equality provides a rigorous analysis of certain variants of these methods [NJW01], justifying the use
of spectral embedding for graph partitioning. Analyzing the k-means heuristic rigorously remains
an open problem.
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8.2 Isotropy Condition and Clustering by Directions

For the spectral embedding to provide useful information for �nding k disjoint sparse cuts, it is
necessary that the points are reasonably �well spread out�. For example, if all vertices are mapped
to only two points in Rk, then there is no well-de�ned way to partition the points into k clusters.

As expected, such bad cases do not occur because the k eigenvectors are orthogonal. The question
is how to use the orthogonality to derive conditions that facilitate clustering.

Isotropy Condition

As v1, . . . , vk are orthonormal vectors, the matrix U in De�nition 8.5 satis�es U>U = Ik, which can
be rewritten as

∑n
i=1 uiu

>
i = Ik. This implies that the spectral embedding satis�es the following

isotropy condition.

Lemma 8.6 (Isotropy Condition). Let u1, . . . , un ∈ Rk be the spectral embedding of the vertices in
De�nition 8.5. For any x ∈ Rk with ‖x‖2 = 1,

n∑
i=1

〈x, ui〉2 = 1.

Proof. The condition U>U = Ik implies that x>U>Ux = x>x = 1 for any x ∈ Rk with ‖x‖2 = 1.
Writing U>U =

∑n
i=1 uiu

>
i shows that

1 = x>
( n∑
i=1

uiu
>
i

)
x =

n∑
i=1

x>uiu
>
i x =

n∑
i=1

〈x, ui〉2.

This lemma says that for any direction x ∈ Rk, the sum of the square of the projection of ui on
x is equal to 1. To develop some intuition, suppose u1 = u2 = · · · = ul = y ∈ Rk (that the �rst l
vertices all mapped to the same point y), then the lemma implies that

1 =

n∑
i=1

〈 y

‖y‖2
, ui

〉2
≥

l∑
i=1

〈 ui
‖ui‖2

, ui

〉2
=

l∑
i=1

‖ui‖2.

On the other hand, as each eigenvector satis�es ‖vi‖2 = 1,

n∑
i=1

‖ui‖22 = ‖U ‖2F =
k∑
i=1

‖vi‖22 = k. (8.1)

Therefore, if we consider the �mass� of a point i as ‖ui‖22, then the above calculation shows that
at most 1/k fraction of the total mass can be mapped to the same point. This ensures that the
spectral embedding maps to at least k distinct points, ruling out the bad cases mentioned earlier.
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Clustering by Directions

The same reasoning shows that points with similar directions carry at most ≈ 1/k fraction of the
total mass. This motivates clustering points by their directions, ensuring they are reasonably well
spread out. The following distance measure and spreading property formalize this idea.

De�nition 8.7 (Radial Projection Distance). Let u1, . . . , un ∈ Rk be the spectral embedding of the
vertices in De�nition 8.5. The radial projection distance between two vertices i and j is de�ned as

d(i, j) =

∥∥∥∥ ui
‖ui‖2

− uj
‖uj‖2

∥∥∥∥
2

if ‖ui‖ > 0 and ‖uj‖ > 0. Otherwise, if ui = uj = 0 then d(i, j) := 0, else d(i, j) :=∞.

Lemma 8.8 (Spreading Property). Let G = (V = [n], E) be a graph. Let u1, . . . , un ∈ Rk be the
spectral embedding of the vertices in De�nition 8.5. If S ⊆ V satis�es d(i, j) ≤ ∆ for all i, j ∈ S,
then ∑

i∈S
‖ui‖2 ≤

1

1−∆2
.

Proof. Choose an arbitrary vertex j ∈ S and consider the unit vector uj/‖uj‖2. By the isotropy
condition in Lemma 8.6,

1 =
n∑
i=1

〈 uj
‖uj‖2

, ui

〉2
≥
∑
i∈S
‖ui‖22 ·

〈 uj
‖uj‖2

,
ui
‖ui‖2

〉2
=
∑
i∈S
‖ui‖22 ·

(
1− d2(i, j)

2

)2

,

where the last equality holds because 〈u, v〉 = 1− ‖u− v‖22/2 for any two unit vectors u, v. Using
the assumption d(i, j) ≤ ∆, it follows that

1 ≥
∑
i∈S
‖ui‖22 ·

(
1− ∆2

2

)2

≥
∑
i∈S
‖ui‖22 ·

(
1−∆2).

Rearranging gives the lemma.

To ensure mass balance, we will choose ∆ such that 1
1−∆2 ≤ 1 + 1

2k (e.g., ∆ = 1
2
√
k
). By forming

subsets with diameter ∆, the lemma ensures that each subset has mass at most 1 + 1
2k . Thus, after

selecting k − 1 subsets, the remaining mass is still at least 1/2. This ensures that k groups, each
containing Ω(1/k) fraction of the total mass, can be formed by clustering based on directions.

8.3 Ideal Case: Far Apart Clusters

The previous section rules out the bad cases for clustering based on directions. In this section, we
analyze the ideal scenario when the spectral embedding provides exactly what we want: k clusters
that are far apart from each other.

Suppose there exist k disjoint subsets S1, S2, . . . , Sk such that:

� Each subset Si has mass 1, i.e.,
∑

j∈Si
‖uj‖22 = 1;

� The clusters are well-separated, i.e., d(Si, Sj) ≥ δ for all i 6= j where d(Si, Sj) := min{d(a, b) |
a ∈ Si, b ∈ Sj}.

Can we conclude that these k subsets correspond to k disjoint sparse cuts in the graph?
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Rayleigh Quotient of the Spectral Embedding and Cheeger Rounding

To analyze the spectral embedding, we extend the Rayleigh quotient de�nition and the Cheeger
rounding result in Lemma 8.4 to work with k-dimensional embeddings.

Recall that the Rayleigh quotient of a vector x : V → R is de�ned as

R(x) =
x>Lx

x>x
=
x>Lx

dx>x
=

∑
ij∈E(x(i)− x(j))2

d
∑

i∈V x(i)2
.

For k-dimensional embeddings, the Rayleigh quotient is de�ned as follows.

De�nition 8.9 (Rayleigh Quotient of a k-Dimensional Embedding). Let ψ1, . . . , ψn ∈ Rk and
Ψ = (ψ1, . . . , ψn) be a k-dimensional embedding of the vertices. The Rayleigh quotient of Ψ is
de�ned as

R(Ψ) :=

∑
ij∈E‖ψi − ψj‖22
d
∑

i∈V ‖ψi‖22
.

From a k-dimensional embedding with a small Rayleigh quotient, we can apply Cheeger rounding
to obtain a sparse cut within its support.

Lemma 8.10 (Cheeger Rounding for k-Dimensional Embedding). Given graph G = (V = [n], E)
and a k-dimensional embedding Ψ = (ψ1, . . . , ψn) of the vertices, there exists an e�cient algorithm
to �nd a subset S ⊆ supp(Ψ) such that

φ(S) ≤
√

2R(Ψ),

where supp(Ψ) := {i ∈ [n] | ψi 6= ~0} is the support of Ψ.

Proof. Expanding the k-dimensional embedding coordinate-wise and applying Lemma 3.6,

R(Ψ) =

∑
ij∈E

∑k
l=1(ψi(l)− ψj(l))2

d
∑

i∈V
∑k

l=1 ψi(l)
2

=

∑k
l=1

∑
ij∈E(ψi(l)− ψj(l))2

d
∑k

l=1

∑
i∈V ψi(l)

2
≥ min

l

∑
ij∈E(ψi(l)− ψj(l))2

d
∑

i∈V ψi(l)
2

.

Let xl(i) := ψi(l) for i ∈ [n] and 1 ≤ l ≤ k. The above implies that there is a coordinate l such that
R(xl) ≤ R(Ψ). Applying Cheeger rounding in Lemma 8.4 on xl gives the lemma.

The spectral embedding provides an initial k-dimensional embedding with a small Rayleigh quotient.

Lemma 8.11 (Rayleigh Quotient of the Spectral Embedding). Let u1, . . . , un ∈ Rk be the spectral
embedding of the vertices in De�nition 8.5. The Rayleigh quotient of the spectral embedding is

R(U) :=

∑
ij∈E‖ui − uj‖22
d
∑

i∈V ‖ui‖22
=

1

k

k∑
l=1

λl ≤ λk.

Proof. Since ui(l) = vl(i) where vl is the l-th eigenvector of L,

R(U) =

∑
ij∈E

∑k
l=1(ui(l)− uj(l))2

d
∑

i∈V
∑k

l=1 ui(l)
2

=

∑k
l=1

∑
ij∈E(vl(i)− vl(j))2

d
∑k

l=1

∑
i∈V vl(i)

2
=

∑k
l=1 λld

dk
=

1

k

k∑
l=1

λl,

where we used
∑

i∈V vl(i)
2 = ‖vl‖22 = 1 and

∑
ij∈E(vl(i)

2−vl(j)2) = d·R(vl)·
∑

i∈V vl(i)
2 = d·λl.
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The Basic Idea

We are now ready to analyze the ideal scenario. Starting from the spectral embedding U with a
Rayleigh quotient at most λk, the plan is to construct k embeddings Ψ1, . . . ,Ψk such that supp(Ψl) ⊆
Sl. If this can be done in a way that the Rayleigh quotient of Ψl is small for all 1 ≤ l ≤ k, then
Cheeger rounding in Lemma 8.10 can be applied to each Ψl to obtain a sparse cut supported on Sl.

The question is how to construct Ψl and upper bound its Rayleigh quotient. The most natural way
to de�ne Ψl is to zero out everything outside Sl:

Ψl = (ψl,1, . . . , ψl,n) where ψl,i =

{
ui if i ∈ Sl
0 otherwise.

The Rayleigh quotient of Ψl is

R(Ψl) =

∑
ij∈E‖ψl,i − ψl,j‖22
d
∑

i∈V ‖ψl,i‖22
=

∑
ij∈E,i∈Sl,j∈Sl

‖ui − uj‖2 +
∑

ij∈E,i∈Sl,j /∈Sl
‖ui‖2

d
∑

i∈Sl
‖ui‖22

To bound R(Ψl), we compare its numerator and denominator with R(U) term-by-term.

For the denominator,
∑

i∈Sl
‖ui‖2 = 1 by the assumption of the ideal scenario, and

∑
i∈V ‖ui‖2 = k

by (8.1). Thus, the denominator of R(Ψl) is 1/k times of that of R(U).

For the numerator, edges ij ∈ E with i ∈ Sl and j ∈ Sl contribute equally to R(Ψl) and R(U). For
edges with i ∈ S and j /∈ S, the contribution to R(Ψl) is ‖ui‖2, while the contribution to R(U) is
‖ui − uj‖2. By Claim 8.12, ‖ui‖2 ≤ 2‖ui − uj‖2/d(i, j) ≤ 2‖ui − uj‖2/δ.

Combining these bounds,

R(Ψl) =

∑
ij∈E,i∈Sl,j∈Sl

‖ui − uj‖22 +
∑

ij∈E,i∈Sl,j /∈Sl
‖ui‖22

d
∑

i∈Sl
‖ui‖22

.
k

δ2
·
∑

ij∈E‖ui − uj‖22
d
∑

i∈V ‖ui‖22
=

k

δ2
·R(U).

Applying Cheeger rounding in Lemma 8.10 on each Ψl gives a set S′l ⊆ Sl with φ(S′l) .
√
kλk/δ.

Assuming δ is a constant, the sets S′1, . . . , S
′
l are disjoint sparse cuts with edge conductanceO(

√
kλk).

This is the basic idea behind the hard direction of Theorem 8.2.

Claim 8.12. For two vectors ui, uj, ‖ui‖2 ≤ 2‖ui−uj‖2/d(i, j) where d(i, j) is the radial projection
distance in De�nition 8.7.

Proof. By the triangle inequality,

d(i, j) =
∥∥∥ ui
‖ui‖

− uj
‖uj‖

∥∥∥ ≤ ∥∥∥ ui
‖ui‖

− uj
‖ui‖

∥∥∥+
∥∥∥ uj
‖ui‖

− uj
‖uj‖

∥∥∥.
For the second term, again by the triangle inequality,

∥∥∥ uj
‖ui‖

− uj
‖uj‖

∥∥∥ =

∣∣‖uj‖ − ‖ui‖∣∣
‖ui‖

≤ ‖ui − uj‖
‖ui‖

.

Therefore, d(i, j) ≤ 2‖ui − uj‖/‖ui‖. Rearranging gives the claim.
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Improved Dependency on k for Fewer Disjoint Sparse Cuts: If we focus on �nding only
k/2 disjoint sparse cuts, we can achieve a better dependency on k. Sort the sets S1, . . . , Sk so that∑

ij∈E,i∈S1

‖ui − uj‖22 ≤ · · · ≤
∑

ij∈E,i∈Sk

‖ui − uj‖22.

Since each edge can contribute to at most two groups, an averaging argument implies that∑
ij∈E,i∈Sk/2

‖ui − uj‖22 .
1

k

∑
ij∈E
‖ui − uj‖22.

This reduces the numerator by a factor of k and gives R(Ψk/2) . R(U)/δ2. Assuming δ is a
constant, the sets S′1, . . . , S

′
k/2 are disjoint sparse cuts with edge conductance O(

√
λk).

8.4 General Case: Space Partitioning and Smooth Localization

We follow a similar strategy in the general case. We aim to �nd k disjoint subsets S1, . . . , Sk ⊆ V
such that:

� Each subset Si has mass Ω(1), or equivalently
∑

j∈Si
‖uj‖22 & 1

k

∑n
i=1‖ui‖22;

� The clusters are well-separated, i.e., d(Si, Sj) ≥ 2δ for all i 6= j.

We describe below how to partition the space to construct these disjoint subsets, and then how to
use smooth localization to obtain disjoint sparse cuts from these subsets.

Space Partitioning

The di�cult case is when the points are evenly distributed across the space, in which it is not clear
how to identify the disjoint subsets S1, . . . , Sk with the required properties.

A simple approach, presented in [Lee13], is to partition the directions in Sk−1 (the k-dimensional
sphere) into cubes with side length L = 1

2k . All points ui ∈ Rk with directions ui/‖ui‖2 in the same

cube Q are grouped into a block B. The diameter of each cube Q is L
√
k = 1

2
√
k
. By the spreading

property in Lemma 8.8, the points in each block B has mass at most 1 + 1
2k .

To ensure that points in di�erent cubes are su�ciently far apart, we de�ne Q̃ ⊆ Q as the set of
points on Sk−1 that are at least L

4k2
away (in Euclidean distance) from every side of Q. Similarly,

B̃ ⊆ B denotes the points ui ∈ Rk with directions ui/‖ui‖2 in Q̃. By this construction,

vol(Q̃) =
(

1− 1

4k2

)k
· vol(Q) ≥

(
1− 1

4k

)
· vol(Q).

Thus, if we choose a uniformly random axis-parallel translation of the cube partition, the expected
total mass of points in the shrunk blocks is at least k − 1

4 .

To construct disjoint S1, . . . , Sk ⊆ V where each Si has mass at least 1
4 , we sort the shrunk blocks

by non-increasing mass and greedily form S1, . . . , Sk so that each Si has mass at least 1
4 . This is

always possible since no block has mass greater than 1 + 1
2k (in the worst case, the last subset Sk

has mass (k − 1
4)− (k − 1)(1 + 1

2k ) ≥ 1
4).

To summarize, the result achieved in this subsection is as follows.
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Lemma 8.13 (Disjoint Subsets). There are disjoint subsets S1, . . . , Sk such that

� Each subset Si has mass at least 1
4 , i.e.,

∑
j∈Si
‖uj‖22 ≥ 1

4 ;

� The clusters are well-separated such that for all i 6= j,

d(Si, Sj) ≥
L

2k2
=

1

4k3
.

Smooth Localization

Given disjoint subsets S1, . . . , Sk in Lemma 8.13, the goal is to construct k embeddings Ψ1, . . . ,Ψk :
V → Rk with small Rayleigh quotients and supp(Ψi) ⊆ Si, as in the ideal scenario.

The di�erence from the ideal scenario is that there are points not in S1 ∪ · · · ∪Sk. Suppose there is
a point j /∈ S1 · · · ∪ Sk but very close to some point i ∈ Sl. In this case, if Ψl is de�ned by zeroing
out all points outside Sl, the length of the edge ij in Ψl would be ‖ui‖2, which could be much larger
than ‖ui − uj‖2. The ratio could be unbounded, and the term-by-term analysis would fail.

To handle this issue, we use the condition d(Si, Sj) ≥ 2δ to provide some room to �smoothly�
decrease the length of the points close to Sl to zero.

De�nition 8.14 (Smooth Localization). Let δ be a parameter and S1, . . . , Sk be disjoint subsets.
For each 1 ≤ l ≤ k and each point j, let d(j, Sl) = mini∈Sl

d(i, j) and de�ne

cj := max
{

1− d(j, Sl)

δ
, 0
}

and ψl,j := cjuj ,

where Ψl = (ψl,1, . . . , ψl,k) is the k-dimensional embedding that we construct and U = (u1, . . . , un)
is the spectral embedding in De�nition 8.5.

Note that if d(j, Sl) ≥ δ, then ψl,j = 0, so the embeddings Ψ1, . . . ,Ψk are disjointly supported if
d(Si, Sj) ≥ 2δ for all i 6= j.

On the other hand, if d(j, Sl) ≤ δ then cj decreases linearly with distance, with a slope of 1/δ. This
smooth localization is designed to ensure that the term-by-term analysis works.

Lemma 8.15 (Distortion from Smooth Localization). Using the same notations in De�nition 8.14,
for all ij ∈ E,

‖ψl,i − ψl,j‖2 ≤
(

1 +
2

δ

)
· ‖ui − uj‖2.

Proof. Following the de�nitions in De�nition 8.14,

‖ψl,i − ψl,j‖ = ‖ciui − cjuj‖ = ‖ciui − cjui + cjui − cjuj‖ ≤ |ci − cj | · ‖ui‖+ |cj | · ‖ui − uj‖.

Note that |ci − cj | ≤ d(i, j)/δ, as d(j, S) − d(i, S) ≤ d(i, j) by the triangle inequality. Combining
this with Claim 8.12, the �rst term is

|ci − cj | · ‖ui‖ ≤
d(i, j)

δ
· 2‖ui − uj‖

d(i, j)
=

2

δ
‖ui − uj‖.

Since the second term is at most ‖ui − uj‖, the proof is complete.
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Putting Together

We put the pieces together to prove a weaker version of the hard direction of Theorem 8.2.

First, compute the spectral embedding U = (u1, . . . , un) as in De�nition 8.5.

Next, apply the space partitioning scheme in Lemma 8.13 to obtain the disjoint subsets S1, . . . , Sk,
each with mass at least 1/4, and pairwise well-separated such that d(Si, Sj) ≥ 1/4k3. Note that
this step relies on the spreading property in Lemma 8.8.

Then, apply smooth localization from De�nition 8.14 with δ := 1/8k3 to obtain k-dimensional
embeddings Ψ1, . . . ,Ψk. By the choice of δ, the embeddings Ψ1, . . . ,Ψk are disjointly supported.
By construction, for each 1 ≤ l ≤ k, ψl,i = ui for all i ∈ Sl, and so∑

i∈V
‖ψl,i‖22 ≥

∑
i∈Sl

‖ui‖22 ≥
1

4
=⇒

∑
i∈V
‖ψl,i‖22 &

1

k

∑
i∈V
‖ui‖22.

Combining with Lemma 8.15 and Lemma 8.11, for each 1 ≤ l ≤ k,

R(Ψl) =

∑
ij∈E‖ψl,i − ψl,j‖22
d
∑

i∈V ‖ψl,i‖22
.

k

δ2
·
∑

ij∈E‖ui − uj‖22
d
∑

i∈V ‖ui‖22
≤ k

δ2
· λk � k7λk.

Finally, applying Cheeger rounding from Lemma 8.10 to each Ψl yields disjoint subsets S
′
1, . . . , S

′
l,

each with conductance at most O(
√
k7λk). This completes the proof.

Discussions

The tighter bound O(k2
√
λk) is obtained using a more sophisticated random partitioning technique

developed in metric embedding, namely the padded decomposition.

The bound φk/2(G) . polylog(k) ·
√
λk is achieved by applying a dimension reduction technique to

reduce the spectral embedding from k-dimensional space to O(log k)-dimensional space.

The noisy hypercube provides an example where φk(G) &
√

log k · λk. It remains an open question
whether the poly(k) factor in Theorem 8.2 can be replaced by a polylog(k) factor.

Question 8.16. Is it true that φk(G) . polylog(k) ·
√
λk?

Although Theorem 8.2 provides a conceptually stronger generalization, its quantitative bounds are
weaker than that in [ABS10]. Finding a common generalization of these two results is an interesting
open problem for future research.

8.5 Alternative Randomized Rounding Algorithms

The algorithm in [LRTV12] is elegant and simple to describe.

It is proved in [LRTV12] that this algorithm will return Ω(k) subsets with constant probability.
The proof is by computing the expectation and the variance of the numerator and the denominator,
using properties of Gaussian random variables.

See also [MMSV24] for a recent generalization of the higher-order Cheeger inequality, obtained using
the orthogonal separator technique.
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Algorithm 4 Randomized Rounding on Spectral Embedding [LRTV12]

Require: An undirected graph G = (V,E) with V = [n] and m = |E|, and a parameter k.
1: Compute the spectral embedding u1, . . . , un ∈ Rk in De�nition 8.5.
2: Pick k independent Gaussian vectors g1, . . . , gk ∈ N(0, 1)n. Construct disjointly supported

vectors h1, . . . , hk ∈ Rn as follows:

hi(j) =

{
〈uj , gi〉 if i = argmaxi∈[k]{〈uj , gi〉}
0 otherwise.

3: Apply Cheeger rounding from Lemma 3.5 to each hi to obtain a set Si ⊆ supp(hi) and φ(Si) ≤√
2RL(hi).

4: return all Si with φ(Si) .
√

log k · λk.
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Chapter A

Linear Algebra

A.1 Eigenvalues and Eigenvectors

De�nition A.1 (Eigenvalues and Eigenvectors). Let A be an n× n matrix. A nonzero vector v is
called an eigenvector of A if Av = λv for some scalar λ. A scalar λ is called an eigenvalue of A if
there exists an eigenvector v with Av = λv.

The multi-set of eigenvalues of A is given by the roots of the characteristic polynomial. While this
viewpoint is not often used in this course, it plays a central role in recent breakthroughs in spectral
graph theory using interlacing polynomials (see [Spi19]).

De�nition A.2 (Characteristic Polynomial). Let A be an n × n matrix. The characteristic poly-
nomial of A is de�ned as pA(x) := det(xI −A).

Two matrices are said to be similar if one is obtained from another by a change of basis.

De�nition A.3 (Similar Matrices). A matrix X is similar to another matrix Y if there exists a
non-singular matrix B so that X = BY B−1.

It is well known that similar matrices have the same spectrum.

Fact A.4 (Spectrum of Similar Matrices). If X is similar to Y , then the multiset of eigenvalues of
X and that of Y are the same.

Proof. One way to see this is that they have the same characteristic polynomial:

pX(x) = det(xI −X) = det(xI −BY B−1) = det(B(xI − Y )B−1) = det(xI − Y ) = pY (x),

where the second-to-last equality follows from Fact A.27.

Real Symmetric Matrices

In this course, we mostly work with real symmetric matrices, which have real eigenvalues and an
orthonormal basis of eigenvectors.
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Theorem A.5 (Spectral Theorem for Real Symmetric Matrices). Let A ∈ Rn×n be a symmetric
matrix. Then all eigenvalues of A are real numbers, and there exists an orthonormal basis of Rn
consisting of eigenvectors of A.

A proof of this fundamental theorem can be found in most linear algebra textbooks. We recommend
the proofs in [GR, Tre17].

Remark A.6 (Undirected and Directed Graphs). The spectral theorem applies to the adjacency and
Laplacian matrices of undirected graphs, but not to those of directed graphs. This is why the spectral
theory for undirected graphs is much more devleoped. Developing a comparable spectral theory for
directed graphs remains an open direction.

Diagonalization: Using the spectral theorem, real symmetric matrices can be written in the
following form. Let A ∈ Rn×n be a symmetric matrix. Let v1, . . . , vn ∈ Rn be an orthonormal basis
of eigenvectors guaranteed by Theorem A.5 with corresponding eigenvalues λ1, . . . , λn. Let V be
the n × n matrix whose i-th column is vi. Let D be the n × n diagonal matrix with Di,i = λi.
Then the conditions Avi = λivi for 1 ≤ i ≤ n can be compactly written as AV = V D. Since the
columns of V form an orthonormal basis, it follows that V >V = I and thus V −1 = V >. Hence, we
can rewrite AV = V D as

A = V DV −1 = V DV >.

Power of Matrices: For a symmetric matrix A ∈ Rn×n, the diagonalized form A = V DV >

simpli�es computations. To compute Ak, note that

Ak = (V DV >)k = V DkV >,

where Dk is computed by raising the diagonal entries of D to the k-th power.

This is particularly useful in analyzing random walks. For instance, P t, the transition matrix of a
random walk after t steps, can be expressed in terms of the eigenvalues of P to bound the mixing
time.

Eigen-Decomposition and Pseudoinverse: If v1, . . . , vn form an orthonormal basis, then any
x ∈ Rn can be written as a linear combination c1v1 + . . . + cnvn. By orthonormality, for any
1 ≤ i ≤ n,

〈x, vi〉 = 〈c1v1 + . . .+ cnvn, vi〉 = 〈civi, vi〉 = ci.

Therefore, for any x ∈ Rn,

x = 〈x, v1〉v1 + . . .+ 〈x, vn〉vn = v1v
>
1 x+ . . . vnv

>
n x =

(
v1v
>
1 + . . .+ vnv

>
n

)
x.

Since this is true for all x ∈ Rn, it follows that

v1v
>
1 + . . .+ vnv

>
n = In.

Now, if v1, . . . , vn are also eigenvectors of a matrix A ∈ Rn×n, then for any x ∈ Rn,

Ax = A(v1v
>
1 + . . .+ vnv

>
n )x =

(
λ1v1v

>
1 + . . .+ λnvnv

>
n

)
x.
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This implies that
A = λ1v1v

>
1 + . . .+ λnvnv

>
n .

Verify that we can also write the inverse using the eigen-decomposition as

A−1 =
1

λ1
v1v
>
1 + . . .+

1

λn
vnv
>
n .

This form will also be used to de�ne the �pseudo-inverse� of a matrix A when A is not of full rank.

De�nition A.7 (Moore-Penrose Pseudoinverse). Let A ∈ Rn×n be a real symmetric matrix with
eigen-decomposition A =

∑n
i=1 λiviv

>
i . The pseudoinverse of A, denoted by A†, is de�ned as

A† :=
∑
i:λi 6=0

1

λi
viv
>
i .

Check the following properties of pseudoinverse.

Fact A.8 (Properties). Let A be a real symmetric matrix and A† be its pseudoinverse. Then

AA†A = A and A†AA† = A† and
(
A†
)†

= A.

Positive Semide�nite Matrices

An important class of real symmetric matrices is the class of positive semide�nite matrices. A
real symmetric matrix is called positive semide�nite if all of its eigenvalues are nonnegative. This
can be seen as a matrix analog of a non-negative number. The following are some equivalent
characterizations of a positive semide�nite matrix.

Fact A.9 (Positive Semide�nite Matrix). Let A ∈ Rn×n be a real symmetric matrix. The following
statements are equivalent.

1. A is positive semide�nite, i.e., all eigenvalues of A are non-negative.

2. For any x ∈ Rn, it holds that x>Ax ≥ 0, i.e., all quadratic forms are non-negative.

3. A = B>B for some matrix B ∈ Rm×n for some positive integer m.

The notation A < 0 is used to denote that A is a positive semide�nite matrix.

It is a good exercise to prove this fact. A matrix is called positive de�nite if all eigenvalues of A
are positive. It is left as an exercise to �nd the equivalent characterizations for positive de�nite
matrices as in Fact A.9.

Check that the set of positive semide�nite matrices forms a convex set. Optimizing a linear function
over the set of positive semide�nite matrices with linear constraints is called semide�nite program-
ming. This is an important class of convex optimization problems that can be solved in polynomial
time and is a powerful tool in designing approximation algorithms. More background are provided
in the relevant chapters.

Exercise A.10. Prove that for any two positive semide�nite matrices A,B ∈ Rn×n,

〈A,B〉 :=

n∑
i=1

n∑
j=1

AijBij ≥ 0.
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Optimization Formulation for Eigenvalues

The main reason why eigenvalues are related to optimization problems is through the following
formulation, which is the quadratic form normalized by the vector length.

De�nition A.11 (Rayleigh Quotient). The Rayleigh quotient of a vector x ∈ Rn with respect to a
matrix A ∈ Rn×n is de�ned to be

RA(x) :=
x>Ax

x>x
=

∑n
i=1

∑n
j=1Aijxixj∑n
i=1 x

2
i

.

The largest eigenvalue is the maximum value of the Rayleigh quotient, with the corresponding
eigenvectors being an optimal solution.

Lemma A.12 (Optimization Formulation for α1). Suppose A ∈ Rn×n is a real symmetric matrix
with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Then

α1 = max
x∈Rn

x>Ax

x>x
.

Proof. Let v1, v2, . . . , vn be the corresponding orthonormal basis of eigenvectors guaranteed by The-
orem A.5. As v1, . . . , vn forms a basis of Rn, any vector x ∈ Rn can be written as a linear combination
x = c1v1 + · · ·+ cnvn. Then, the numerator can be written as

x>Ax = (c1v1+· · ·+cnvn)>A(c1v1+· · ·+cnvn) = (c1v1+· · ·+cnvn)>(c1α1v1+· · ·+cnαnvn) =
n∑
i=1

c2
iαi,

where the second equality follows since v1, · · · , vn are eigenvectors and the last equality is because
v1, · · · , vn are orthonormal. Similarly, the denominator can be written as

x>x = (c1v1 + · · ·+ cnvn)>(c1v1 + · · ·+ cnvn) =

n∑
i=1

c2
i .

Thus, the Rayleigh quotient of x is

x>Ax

x>x
=

∑n
i=1 c

2
iαi∑n

i=1 c
2
i

≤
α1
∑n

i=1 c
2
i∑n

i=1 c
2
i

= α1.

On the other hand, note that v1 attains the maximum, and the lemma follows.

This result can be extended to characterize other eigenvalues. The following lemma is useful for
characterizing the second largest eigenvalue of a matrix when the �rst eigenvector is known.

Lemma A.13 (Optimization Formulation for αk). Suppose A ∈ Rn×n is a real symmetric matrix
with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn and corresponding orthonormal eigenvectors v1, . . . , vn. Let
Tk be the set of vectors that are orthogonal to v1, v2, . . . , vk−1. Then

αk = max
x∈Tk

x>Ax

x>x
.
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Proof. Let x ∈ Tk. Write x = c1v1+· · ·+cnvn. Recall that ci = 〈x, vi〉 from the eigen-decomposition
part. Since x ∈ Tk, it follows that c1 = c2 = · · · = ck−1 = 0. Using the same calculation as in
Lemma A.12,

x>Ax

x>x
=

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤
αk
∑n

i=k c
2
i∑n

i=k c
2
i

= αk.

On the other hand, vk ∈ Tk and v>k Avk/v
>
k vk = αk, so the lemma follows.

The above result gives a characterization of αk, but it requires knowledge of the previous eigenvec-
tors. The Courant-Fischer theorem provides a characterization without requiring prior knowledge
of the eigenvectors, and this is useful for proving upper and lower bounds on eigenvalues. In words,
the Courant-Fischer theorem says that to prove a lower bound on αk, one needs to exhibit a k-
dimensional subspace in which every vector has large Rayleigh quotient, and the best k-dimensional
subspace gives the tight lower bound. Similarly, to prove an upper bound on αk, one needs to
exhibit an (n− k+ 1)-dimensional subspace in which every vector has small Rayleigh quotient, and
the best (n− k + 1)-dimensional subspace gives the tight upper bound.

Theorem A.14 (Courant-Fischer Theorem). Suppose A ∈ Rn×n is a real symmetric matrix with
eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Then

αk = max
S⊆Rn:dim(S)=k

min
x∈S

x>Ax

x>x
= min

S⊆Rn:dim(S)=n−k+1
max
x∈S

x>Ax

x>x
.

Proof. We prove the max-min equality. The min-max equality is similar and is left as an exercise.

Let Sk be the k-dimensional subspace spanned by the �rst k orthonormal eigenvectors v1, . . . , vk,
i.e. Sk = {x | x = c1v1 + · · ·+ ckvk for some c1, . . . , ck ∈ R}. For any x ∈ Sk,

x>Ax

x>x
=

(c1v1 + · · ·+ ckvk)
>A(c1v1 + · · ·+ ckvk)

(c1v1 + · · ·+ ckvk)>(c1v1 + · · ·+ ckvk)
=

∑k
i=1 c

2
iαi∑k

i=1 c
2
i

≥
αk
∑k

i=1 c
2
i∑k

i=1 c
2
i

= αk.

Therefore,

max
S⊆Rn:dim(S)=k

min
x∈S

x>Ax

x>x
≥ min

x∈Sk

x>Ax

x>x
≥ αk.

To prove that the maximum cannot exceed αk, observe that any k-dimensional subspace must
intersect the (n− k + 1)-dimensional subspace Tk spanned by {vk, vk+1, . . . , vn}. For any x ∈ Tk,

x>Ax

x>x
=

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤ αk.

Therefore,

max
S⊆Rn:dim(S)=k

min
x∈S

x>Ax

x>x
≤ min

x∈S∩Tk

x>Ax

x>x
≤ αk.

One consequence of the Courant-Fischer theorem is the eigenvalue interlacing theorem.
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Theorem A.15 (Cauchy's Interlacing Theorem). Let A ∈ Rn×n be a real symmetric matrix, and
B be a (n− 1)× (n− 1) principal submatrix of A. Then

α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . ≥ αn−1 ≥ βn−1 ≥ αn,

where α1 ≥ α2 ≥ . . . ≥ αn and β1 ≥ β2 ≥ . . . ≥ βn−1 are the eigenvalues of A and B, respectively.

Proof. Assume without loss of generality that B is in the top left corner of A, i.e., the �rst n − 1
coordinates. It should be clear that αk ≥ βk because the search space for αk is larger than that for
βk. More formally,

αk = max
S⊆Rn:dim(S)=k

min
x∈S

x>Ax

x>x
≥ max

S⊆Rn−1:dim(S)=k
min
x∈S

x>Ax

x>x
= max

S⊆Rn−1:dim(S)=k
min
x∈S

x>Bx

x>x
= βk.

Next, we show βk ≥ αk+1. For any S ⊆ Rn with dim(S) = k + 1, its restriction to the �rst n − 1
coordinates (i.e., S ∩ Rn−1) has dimension at least k. Thus, if there is a good (k + 1)-dimensional
subspace for A, then there is a good k-dimensional subspace for B, so βk can do as well as αk+1.
More formally, let Sk+1 be the (k + 1)-dimensional subspace that attains maximum for αk+1,

αk+1 = min
x∈Sk+1

x>Ax

x>x
≤ min

x∈Sk+1∩Rn−1

x>Ax

x>x
≤ max

S⊆Rn−1:dim(S)=k
min
x∈S

x>Ax

x>x
= βk.

Perron-Frobenius Theorem

The Perron-Frobenius theorem is an important result about the largest eigenvalue and its corre-
sponding eigenvectors of non-negative matrices. To state it, we need the de�nitions of an irreducible
matrix and the spectral radius of a matrix.

De�nition A.16 (Irreducible Matrix). A matrix A ∈ Rn×n is irreducible if its underlying directed
graph G = (V,E) is strongly connected, where the vertex set of G is V = [n] and the edge set of G
is E = {ij | Aij 6= 0}.

The spectral radius of a real symmetric matrix is simply the eigenvalue with largest absolute value.
The following is the more general de�nition for matrices with complex eigenvalues.

De�nition A.17 (Spectral Radius). The spectral radius ρ(A) of a matrix A is the maximum of the
moduli of its eigenvalues.

The Perron-Frobenius theorem is particularly useful in the study of random walks. See Chapter 8.8
in [GR] and Chapter 8.4 in [HJ13] for more details and proofs.

Theorem A.18 (Perron-Frobenius Theorem). Let A ∈ Rn×n be a non-negative irreducible matrix.

1. The spectral radius ρ(A) is an eigenvalue of A with multiplicity one. In particular, if A is also
a real symmetric matrix, then the largest eigenvalue is of multiplicity one, and its absolute
value is the largest.

2. If v is an eigenvector with eigenvalue ρ(A), then all the entries of v are nonzero and have the
same sign.
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Matrix Norms

De�nition A.19 (Operator Norm). Let A be an m× n matrix. The operator norm ‖A‖op of A is
de�ned as

‖A‖op := sup
x∈Rn,x 6=0

‖Ax‖2
‖x‖2

.

This norm is also denoted as ‖A‖2 to indicate that it relates to the 2-norm of vectors. However,
this can sometimes be confused with the Schatten 2-norm of A, also denoted as ‖A‖2, so we use
the notation ‖A‖op which is also commonly used.

Exercise A.20 (Operator Norm of a Real Symmetric Matrix). Show that ‖A‖op is equal to the
largest eigenvalue of A when A is a real symmetric matrix.

The following are some simple properties that will be useful.

Fact A.21 (Properties of Operator Norm). Let A ∈ Rm×n.

1. ‖A‖op ≥ 0 and ‖A‖op = 0 if and only if A = 0.

2. ‖cA‖op = |c|‖A‖op for every scalar c.

3. ‖A+B‖op ≤ ‖A‖op + ‖B‖op.

4. ‖Ax‖2 ≤ ‖A‖op‖x‖2 for every x ∈ Rn.

5. ‖BA‖op ≤ ‖B‖op‖A‖op

A.2 Formulas and Inequalities

In this section, we record some useful formulas and inequalities in this section. A general reference
is the book by Horn and Johnson [HJ13].

Inverse

The following formulas are for updating the inverse of a matrix. Proofs can be found online, such
as the Wikipedia.

Fact A.22 (Sherman-Morrison Formula). Suppose A ∈ Rn×n is an invertible square matrix and
u, v ∈ Rn are column vectors. Then A+ uv> is invertible if and only if 1 + v>A−1u 6= 0, and

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u

Fact A.23 (Woodbury Formula). Let A be a square invertible n × n matrix, U an n × k matrix,
and V a k × n matrix. Assuming (Ik + V A−1U) is invertible, then

(A+ UV )−1 = A−1 −A−1U
(
Ik + V A−1U

)−1
V A−1.

The following formula is for inverting a block matrix, where the Schur complement is a useful
de�nition.
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Fact A.24 (Block Matrix Inversion). Let A and D be square matrices and

M =

(
A B
C D

)
.

If A and the Schur complement D − CA−1B are invertible, then

M−1 =

(
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

)
.

Determinant

Fact A.25 (Laplace Co-Factor Expansion). Let A be a n× n matrix. For every 1 ≤ i ≤ n,

det(A) =
n∑
j=1

(−1)i+jAi,j det
(
A[n]\i,[n]\j

)
,

where AS,T is the submatrix with rows in S ⊆ [n] and columns in T ⊆ [n].

Applying Laplace expansion recursively gives the Leibniz formula.

Fact A.26 (Leibniz Formula). Let A be a n× n matrix. Then

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Aσ(i),i,

where Sn is the set of permutations of the set [n] = {1, . . . , n} and sgn(σ) is the sign function of
permutation σ, which returns +1 for even permutations and −1 for odd permutations.

The following is a simple fact.

Fact A.27 (Product Rule for Determinants).

det(AB) = det(A) det(B).

The following result, sometimes known as Sylvester's determinant identity, can be used to deduce
that the nonzero eigenvalues of AB and BA are the same (with multiplicity).

Fact A.28 (Weinstein-Aronszajn Identity).

det(I +AB) = det(I +BA).

The matrix determinant formula tracks how the determinant changes after a rank-one update.

Fact A.29 (Matrix Determinant Formula).

det
(
M − uvT

)
= det(M) ·

(
1− vTM−1u

)
.

The Cauchy-Binet formula is a useful tool with applications such as computing the number of
spanning trees of a graph.
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Fact A.30 (Cauchy-Binet Formula). Let A be an m× n matrix and B be an n×m matrix. Then

det(AB) =
∑

S∈([n]
m)

det
(
A[m],S

)
det
(
BS,[m]

)

The following formula provides the coe�cients of the characteristic polynomials.

Fact A.31 (Characteristic Polynomial). Let A be an n× n matrix.

det(λIn −A) =

n∑
k=0

λn−k(−1)k
∑

S∈([n]
k )

det(AS,S).

Using Fact A.31 and Cauchy-Binet formula in Fact A.30, we obtain the following identity for the
characteristic polynomial of a sum of outer products.

Fact A.32 (Characteristic Polynomial of Sum of Outer Products). Let u1, . . . , um ∈ Rn.

det
(
xI −

m∑
i=1

uiu
>
i

)
=

n∑
k=0

λn−k(−1)k
∑

S∈([m]
k )

det
k

(∑
i∈S

uiu
>
i

)
,

where detk(A) =
∑

S∈([n]
k ) det(AS,S).

Trace

De�nition A.33 (Trace). The trace of a matrix A ∈ Rn×n, denoted by Tr(A), is the sum of the
diagonal entries of A.

Fact A.34 (Cyclic Property of Trace). For two matrices A ∈ Rm×n and B ∈ Rn×m,

Tr(AB) = Tr(BA).

By examining the coe�cient of xn−1 in the characteristic polynomial det(xI − A) of A ∈ Rn×n in
two ways, one can derive the following result.

Fact A.35 (Trace is the Sum of Eigenvalues). Let λ1, . . . , λn be the eigenvalues of A ∈ Rn×n. Then

Tr(A) =
n∑
i=1

λi.

The following are two advanced results about traces; see [Bha97].

Fact A.36 (Golden-Thompson Inequality).

Tr(eA+B) ≤ Tr(eA) · Tr(eB)

Fact A.37 (Lieb-Thirring Inequality). Let A and B be positive de�nite matrices and q ≥ 1. Then

Tr
(
(BAB)q

)
≤ Tr(BqAqBq).
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Matrix Calculus

The formula for di�erenting the inverse is derived by di�erentiating the identity AA−1 = I.

Fact A.38 (Inverse).
d(A−1) = −A−1(dA)A−1.

Jacobi's formula is obtained by di�erentiating the cofactor expansion in Fact A.25.

Fact A.39 (Jacobi's Formula).

d

dt
detA(t) = Tr

(
adj(A(t)) · dA(t)

dt

)
=
(

detA(t)
)
· Tr

(
A(t)−1 · dA(t)

dt

)
.
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Notations

[n]: the set of integers {1, . . . , n}.
R+: the set of non-negative real number.
a . b: denotes a = O(b).
a & b: denotes a = Ω(b).
a � b: denotes a = Θ(b).

v ∈ Rn: an n-dimensional column vector v.
v(i): the i-th entry of a vector v.
~1: the all-ones vector.
χS : the characteristic vector of a subset S with χS(i) = 1 if i ∈ S and χS(i) = 0 otherwise.
‖v‖1: the `1-norm of v de�ned as

∑
i |v(i)|.

‖v‖2: the `2-norm of v de�ned as
√∑

i v(i)2.

Ai,j : the (i, j)-th entry of a matrix A.
A(i, j): the (i, j)-th entry of a matrix A.
I: the identity matrix.
J : the all-ones matrix.
M>: the transpose of the matrix M .
Tr(M): the trace of the matrix M in De�nition A.33.
‖M ‖op: the operator norm of M .
‖M ‖F : the Frobenius norm of M .

A(G): the adjacency matrix of graph G in De�nition 2.1.
A(G): the normalized adjacency matrix of G in De�nition 2.17.
αi: the i-th largest eigenvalue of the adjacency matrix or the normalized adjacency matrix.
L(G): the Laplacian matrix of a graph G in De�nition 2.11.
A(G): the normalized Laplacian matrix of G in De�nition 2.17.
λi: the i-th smallest eigenvalue of the Laplacian matrix or the normalized Laplacian matrix.

deg(v): the degree of vertex v.
δ(S): the set of edges with one endpoint in S and the other endpoint not in S.
φ(S): the edge conductance of a subset S in De�nition 3.1.
φ(G): the edge conductance of a graph G in De�nition 3.1.
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vol(S): the volume of a subset S in De�nition 3.1.
Φ(S): the edge expansion of a subset S in De�nition 3.10.
Φ(G): the edge expansion of a graph G in De�nition 3.10.
ψ(S): the vertex expansion of a subset S in De�nition 3.11.
ψ(G): the vertex expansion of a graph G in De�nition 3.11.
∂(S): the vertex boundary of a subset S in De�nition 3.11.
E(S, T ): the set of edges with one endpoint in S and the other endpoint in T .

dTV (~p, ~q): the total variation distance of two distributions ~p and ~q in De�nition 4.7.
τε(P ): the ε-mixing time of a Markov chain P in De�nition 4.14.
τ(P ): the mixing time of a Markov chain P in De�nition 4.14.
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