|
|
void | LAPACKPerm2MathPerm (size_t *MathP, const size_t *LapackP, const size_t N) |
| | Conversion of a permutation from LAPACK format to Math format.
|
| |
|
void | MathPerm2LAPACKPerm (size_t *LapackP, const size_t *MathP, const size_t N) |
| | Conversion of a permutation from Maths format to LAPACK format.
|
| |
| template<class Field> |
| void | applyP (const Field &F, const FFLAS::FFLAS_SIDE Side, const FFLAS::FFLAS_TRANSPOSE Trans, const size_t M, const size_t ibeg, const size_t iend, typename Field::Element_ptr A, const size_t lda, const size_t *P) |
| | Computes P1 x Diag (I_R, P2) where P1 is a LAPACK and P2 a LAPACK permutation and store the result in P1 as a LAPACK permutation.
|
| |
| template<class Field> |
| void | MonotonicApplyP (const Field &F, const FFLAS::FFLAS_SIDE Side, const FFLAS::FFLAS_TRANSPOSE Trans, const size_t M, const size_t ibeg, const size_t iend, typename Field::Element_ptr A, const size_t lda, const size_t *P, const size_t R) |
| | Apply a R-monotonically increasing permutation P, to the matrix A.
|
| |
| template<class Field> |
| void | fgetrs (const Field &F, const FFLAS::FFLAS_SIDE Side, const size_t M, const size_t N, const size_t R, typename Field::Element_ptr A, const size_t lda, const size_t *P, const size_t *Q, typename Field::Element_ptr B, const size_t ldb, int *info) |
| | Solve the system \(A X = B\) or \(X A = B\).
|
| |
| template<class Field> |
| Field::Element_ptr | fgetrs (const Field &F, const FFLAS::FFLAS_SIDE Side, const size_t M, const size_t N, const size_t NRHS, const size_t R, typename Field::Element_ptr A, const size_t lda, const size_t *P, const size_t *Q, typename Field::Element_ptr X, const size_t ldx, typename Field::ConstElement_ptr B, const size_t ldb, int *info) |
| | Solve the system A X = B or X A = B.
|
| |
| template<class Field> |
| size_t | fgesv (const Field &F, const FFLAS::FFLAS_SIDE Side, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb, int *info) |
| | Square system solver.
|
| |
| template<class Field> |
| size_t | fgesv (const Field &F, const FFLAS::FFLAS_SIDE Side, const size_t M, const size_t N, const size_t NRHS, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr X, const size_t ldx, typename Field::ConstElement_ptr B, const size_t ldb, int *info) |
| | Rectangular system solver.
|
| |
| template<class Field> |
| void | ftrtri (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG Diag, const size_t N, typename Field::Element_ptr A, const size_t lda, const size_t threshold=__FFLASFFPACK_FTRTRI_THRESHOLD) |
| | Compute the inverse of a triangular matrix.
|
| |
| template<class Field> |
| void | ftrtrm (const Field &F, const FFLAS::FFLAS_SIDE side, const FFLAS::FFLAS_DIAG diag, const size_t N, typename Field::Element_ptr A, const size_t lda) |
| | Compute the product of two triangular matrices of opposite shape.
|
| |
| template<class Field> |
| void | ftrstr (const Field &F, const FFLAS::FFLAS_SIDE side, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diagA, const FFLAS::FFLAS_DIAG diagB, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb, const size_t threshold=64) |
| | Solve a triangular system with a triangular right hand side of the same shape.
|
| |
| template<class Field> |
| void | ftrssyr2k (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diagA, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb, const size_t threshold=64) |
| | Solve a triangular system in a symmetric sum: find B upper/lower triangular such that A^T B + B^T A = C where C is symmetric.
|
| |
| template<class Field> |
| bool | fsytrf (const Field &F, const FFLAS::FFLAS_UPLO UpLo, const size_t N, typename Field::Element_ptr A, const size_t lda, const size_t threshold=__FFLASFFPACK_FSYTRF_THRESHOLD) |
| | Triangular factorization of symmetric matrices.
|
| |
| template<class Field> |
| bool | fsytrf_nonunit (const Field &F, const FFLAS::FFLAS_UPLO UpLo, const size_t N, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr D, const size_t incD, const size_t threshold=__FFLASFFPACK_FSYTRF_THRESHOLD) |
| | Triangular factorization of symmetric matrices.
|
| |
| template<class Field> |
| size_t | PLUQ (const Field &F, const FFLAS::FFLAS_DIAG Diag, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Q) |
| | Compute a PLUQ factorization of the given matrix; such that A=PLUQ.
|
| |
| template<class Field> |
| size_t | LUdivine (const Field &F, const FFLAS::FFLAS_DIAG Diag, const FFLAS::FFLAS_TRANSPOSE trans, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Qt, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive, const size_t cutoff=__FFLASFFPACK_LUDIVINE_THRESHOLD) |
| | Compute the CUP or PLE factorization of the given matrix.
|
| |
| template<class Field> |
| size_t | ColumnEchelonForm (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Qt, bool transform=false, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Compute the Column Echelon form of the input matrix in-place.
|
| |
| template<class Field> |
| size_t | RowEchelonForm (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Qt, const bool transform=false, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Compute the Row Echelon form of the input matrix in-place.
|
| |
| template<class Field> |
| size_t | ReducedColumnEchelonForm (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Qt, const bool transform=false, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Compute the Reduced Column Echelon form of the input matrix in-place.
|
| |
| template<class Field> |
| size_t | ReducedRowEchelonForm (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Qt, const bool transform=false, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Compute the Reduced Row Echelon form of the input matrix in-place.
|
| |
| template<class Field> |
| size_t | GaussJordan (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, const size_t colbeg, const size_t rowbeg, const size_t colsize, size_t *P, size_t *Q, const FFPACK::FFPACK_LU_TAG LuTag) |
| | Gauss-Jordan algorithm computing the Reduced Row echelon form and its transform matrix.
|
| |
| template<class Field> |
| Field::Element_ptr | Invert (const Field &F, const size_t M, typename Field::Element_ptr A, const size_t lda, int &nullity) |
| | Invert the given matrix in place or computes its nullity if it is singular.
|
| |
| template<class Field> |
| Field::Element_ptr | Invert (const Field &F, const size_t M, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr X, const size_t ldx, int &nullity) |
| | Invert the given matrix or computes its nullity if it is singular.
|
| |
| template<class Field> |
| Field::Element_ptr | Invert2 (const Field &F, const size_t M, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr X, const size_t ldx, int &nullity) |
| | Invert the given matrix or computes its nullity if it is singular.
|
| |
| template<class PolRing> |
| std::list< typename PolRing::Element > & | CharPoly (const PolRing &R, std::list< typename PolRing::Element > &charp, const size_t N, typename PolRing::Domain_t::Element_ptr A, const size_t lda, typename PolRing::Domain_t::RandIter &G, const FFPACK_CHARPOLY_TAG CharpTag=FfpackAuto, const size_t degree=__FFLASFFPACK_ARITHPROG_THRESHOLD) |
| | Compute the characteristic polynomial of the matrix A.
|
| |
| template<class PolRing> |
| PolRing::Element & | CharPoly (const PolRing &R, typename PolRing::Element &charp, const size_t N, typename PolRing::Domain_t::Element_ptr A, const size_t lda, typename PolRing::Domain_t::RandIter &G, const FFPACK_CHARPOLY_TAG CharpTag=FfpackAuto, const size_t degree=__FFLASFFPACK_ARITHPROG_THRESHOLD) |
| | Compute the characteristic polynomial of the matrix A.
|
| |
| template<class PolRing> |
| PolRing::Element & | CharPoly (const PolRing &R, typename PolRing::Element &charp, const size_t N, typename PolRing::Domain_t::Element_ptr A, const size_t lda, const FFPACK_CHARPOLY_TAG CharpTag=FfpackAuto, const size_t degree=__FFLASFFPACK_ARITHPROG_THRESHOLD) |
| | Compute the characteristic polynomial of the matrix A.
|
| |
| template<class PolRing> |
| void | RandomKrylovPrecond (const PolRing &PR, std::list< typename PolRing::Element > &completedFactors, const size_t N, typename PolRing::Domain_t::Element_ptr A, const size_t lda, size_t &Nb, typename PolRing::Domain_t::Element_ptr &B, size_t &ldb, typename PolRing::Domain_t::RandIter &g, const size_t degree=__FFLASFFPACK_ARITHPROG_THRESHOLD) |
| |
| template<class Field, class Polynomial> |
| Polynomial & | MinPoly (const Field &F, Polynomial &minP, const size_t N, typename Field::ConstElement_ptr A, const size_t lda) |
| | Compute the minimal polynomial of the matrix A.
|
| |
| template<class Field, class Polynomial, class RandIter> |
| Polynomial & | MinPoly (const Field &F, Polynomial &minP, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, RandIter &G) |
| | Compute the minimal polynomial of the matrix A.
|
| |
| template<class Field, class Polynomial> |
| Polynomial & | MatVecMinPoly (const Field &F, Polynomial &minP, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr v, const size_t incv) |
| | Compute the minimal polynomial of the matrix A and a vector v, namely the first linear dependency relation in the Krylov basis \((v,Av, ..., A^Nv)\).
|
| |
| template<class Field> |
| size_t | Rank (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda) |
| | Computes the rank of the given matrix using a PLUQ factorization.
|
| |
| template<class Field> |
| bool | IsSingular (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda) |
| | Returns true if the given matrix is singular.
|
| |
| template<class Field> |
| Field::Element & | Det (const Field &F, typename Field::Element &det, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P=NULL, size_t *Q=NULL) |
| | Returns the determinant of the given square matrix.
|
| |
| template<class Field> |
| Field::Element_ptr | Solve (const Field &F, const size_t M, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr x, const int incx, typename Field::ConstElement_ptr b, const int incb) |
| | Solves a linear system AX = b using PLUQ factorization.
|
| |
| template<class Field> |
| *void | RandomNullSpaceVector (const Field &F, const FFLAS::FFLAS_SIDE Side, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr X, const size_t incX) |
| | Solve L X = B or X L = B in place.
|
| |
| template<class Field> |
| size_t | NullSpaceBasis (const Field &F, const FFLAS::FFLAS_SIDE Side, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr &NS, size_t &ldn, size_t &NSdim) |
| | Computes a basis of the Left/Right nullspace of the matrix A.
|
| |
| template<class Field> |
| size_t | RowRankProfile (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *&rkprofile, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Computes the row rank profile of A.
|
| |
| template<class Field> |
| size_t | ColumnRankProfile (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *&rkprofile, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Computes the column rank profile of A.
|
| |
| void | RankProfileFromLU (const size_t *P, const size_t N, const size_t R, size_t *rkprofile, const FFPACK_LU_TAG LuTag) |
| | Recovers the column/row rank profile from the permutation of an LU decomposition.
|
| |
| size_t | LeadingSubmatrixRankProfiles (const size_t M, const size_t N, const size_t R, const size_t LSm, const size_t LSn, const size_t *P, const size_t *Q, size_t *RRP, size_t *CRP) |
| | Recovers the row and column rank profiles of any leading submatrix from the PLUQ decomposition.
|
| |
| template<class Field> |
| size_t | RowRankProfileSubmatrixIndices (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *&rowindices, size_t *&colindices, size_t &R) |
| | RowRankProfileSubmatrixIndices.
|
| |
| template<class Field> |
| size_t | ColRankProfileSubmatrixIndices (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *&rowindices, size_t *&colindices, size_t &R) |
| | Computes the indices of the submatrix r*r X of A whose columns correspond to the column rank profile of A.
|
| |
| template<class Field> |
| size_t | RowRankProfileSubmatrix (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr &X, size_t &R) |
| | Computes the r*r submatrix X of A, by picking the row rank profile rows of A.
|
| |
| template<class Field> |
| size_t | ColRankProfileSubmatrix (const Field &F, const size_t M, const size_t N, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr &X, size_t &R) |
| | Compute the \( r\times r\) submatrix X of A, by picking the row rank profile rows of A.
|
| |
| template<class Field> |
| void | getTriangular (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diag, const size_t M, const size_t N, const size_t R, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr T, const size_t ldt, const bool OnlyNonZeroVectors=false) |
| | Extracts a triangular matrix from a compact storage A=L\U of rank R.
|
| |
| template<class Field> |
| void | getTriangular (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diag, const size_t M, const size_t N, const size_t R, typename Field::Element_ptr A, const size_t lda) |
| | Cleans up a compact storage A=L\U to reveal a triangular matrix of rank R.
|
| |
| template<class Field> |
| void | getEchelonForm (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diag, const size_t M, const size_t N, const size_t R, const size_t *P, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr T, const size_t ldt, const bool OnlyNonZeroVectors=false, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Extracts a matrix in echelon form from a compact storage A=L\U of rank R obtained by RowEchelonForm or ColumnEchelonForm.
|
| |
| template<class Field> |
| void | getEchelonForm (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diag, const size_t M, const size_t N, const size_t R, const size_t *P, typename Field::Element_ptr A, const size_t lda, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Cleans up a compact storage A=L\U obtained by RowEchelonForm or ColumnEchelonForm to reveal an echelon form of rank R.
|
| |
| template<class Field> |
| void | getEchelonTransform (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diag, const size_t M, const size_t N, const size_t R, const size_t *P, const size_t *Q, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr T, const size_t ldt, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Extracts a transformation matrix to echelon form from a compact storage A=L\U of rank R obtained by RowEchelonForm or ColumnEchelonForm.
|
| |
| template<class Field> |
| void | getReducedEchelonForm (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const size_t M, const size_t N, const size_t R, const size_t *P, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr T, const size_t ldt, const bool OnlyNonZeroVectors=false, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Extracts a matrix in echelon form from a compact storage A=L\U of rank R obtained by ReducedRowEchelonForm or ReducedColumnEchelonForm with transform = true.
|
| |
| template<class Field> |
| void | getReducedEchelonForm (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const size_t M, const size_t N, const size_t R, const size_t *P, typename Field::Element_ptr A, const size_t lda, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Cleans up a compact storage A=L\U of rank R obtained by ReducedRowEchelonForm or ReducedColumnEchelonForm with transform = true.
|
| |
| template<class Field> |
| void | getReducedEchelonTransform (const Field &F, const FFLAS::FFLAS_UPLO Uplo, const size_t M, const size_t N, const size_t R, const size_t *P, const size_t *Q, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr T, const size_t ldt, const FFPACK_LU_TAG LuTag=FfpackSlabRecursive) |
| | Extracts a transformation matrix to echelon form from a compact storage A=L\U of rank R obtained by RowEchelonForm or ColumnEchelonForm.
|
| |
|
void | PLUQtoEchelonPermutation (const size_t N, const size_t R, const size_t *P, size_t *outPerm) |
| | Auxiliary routine: determines the permutation that changes a PLUQ decomposition into a echelon form revealing PLUQ decomposition.
|
| |
| template<class Field> |
| size_t | LTBruhatGen (const Field &Fi, const FFLAS::FFLAS_DIAG diag, const size_t N, typename Field::Element_ptr A, const size_t lda, size_t *P, size_t *Q) |
| | LTBruhatGen Suppose A is Left Triangular Matrix This procedure computes the Bruhat Representation of A and return the rank of A.
|
| |
| template<class Field> |
| void | getLTBruhatGen (const Field &Fi, const size_t N, const size_t r, const size_t *P, const size_t *Q, typename Field::Element_ptr R, const size_t ldr) |
| | GetLTBruhatGen This procedure Computes the Rank Revealing Matrix based on the Bruhta representation of a Matrix.
|
| |
| template<class Field> |
| void | getLTBruhatGen (const Field &Fi, const FFLAS::FFLAS_UPLO Uplo, const FFLAS::FFLAS_DIAG diag, const size_t N, const size_t r, const size_t *P, const size_t *Q, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr T, const size_t ldt) |
| | GetLTBruhatGen This procedure computes the matrix L or U f the Bruhat Representation Suppose that A is the bruhat representation of a matrix.
|
| |
| size_t | LTQSorder (const size_t N, const size_t r, const size_t *P, const size_t *Q) |
| | LTQSorder This procedure computes the order of quasiseparability of a matrix.
|
| |
| template<class Field> |
| size_t | CompressToBlockBiDiagonal (const Field &Fi, const FFLAS::FFLAS_UPLO Uplo, size_t N, size_t s, size_t r, const size_t *P, const size_t *Q, typename Field::Element_ptr A, size_t lda, typename Field::Element_ptr X, size_t ldx, size_t *K, size_t *M, size_t *T) |
| | CompressToBlockBiDiagonal This procedure compress a compact representation of a row echelon form or column echelon form.
|
| |
| template<class Field> |
| void | ExpandBlockBiDiagonalToBruhat (const Field &Fi, const FFLAS::FFLAS_UPLO Uplo, size_t N, size_t s, size_t r, typename Field::Element_ptr A, size_t lda, typename Field::Element_ptr X, size_t ldx, size_t NbBlocks, size_t *K, size_t *M, size_t *T) |
| | ExpandBlockBiDiagonal This procedure expand a compact representation of a row echelon form or column echelon form.
|
| |
| void | Bruhat2EchelonPermutation (size_t N, size_t R, const size_t *P, const size_t *Q, size_t *M) |
| | Bruhat2EchelonPermutation (N,R,P,Q) Compute M such that LM or MU is in echelon form where L or U are factors of the Bruhat Rpresentation.
|
| |
|
template<class Field> |
| void | productBruhatxTS (const Field &Fi, size_t N, size_t s, size_t r, const size_t *P, const size_t *Q, const typename Field::Element_ptr Xu, size_t ldu, size_t NbBlocksU, size_t *Ku, size_t *Tu, size_t *MU, const typename Field::Element_ptr Xl, size_t ldl, size_t NbBlocksL, size_t *Kl, size_t *Tl, size_t *ML, typename Field::Element_ptr B, size_t t, size_t ldb, typename Field::Element_ptr C, size_t ldc) |
| | productBruhatxTS Comput the product between the CRE compact representation of a matrix A and B a tall matrix
|
| |
| template<class Field> |
| void | productSSSxTS (const Field &Fi, size_t N, size_t s, typename Field::ConstElement_ptr P, size_t ldp, typename Field::ConstElement_ptr Q, size_t ldq, typename Field::ConstElement_ptr R, size_t ldr, typename Field::ConstElement_ptr U, size_t ldu, typename Field::ConstElement_ptr V, size_t ldv, typename Field::ConstElement_ptr W, size_t ldw, typename Field::ConstElement_ptr D, size_t ldd, size_t t, const typename Field::Element alpha, typename Field::Element_ptr B, size_t ldb, const typename Field::Element beta, typename Field::Element_ptr C, size_t ldc) |
| | Compute the product of a quasi-separable matrix A, represented by a sequentially semi-separable generator, with a dense rectangular matrix B: \( C \gets \alpha * A \times B + beta C \).
|
| |
| template<class Field> |
| void | SSSToDense (const Field &Fi, size_t N, size_t s, typename Field::ConstElement_ptr P, size_t ldp, typename Field::ConstElement_ptr Q, size_t ldq, typename Field::ConstElement_ptr R, size_t ldr, typename Field::ConstElement_ptr U, size_t ldu, typename Field::ConstElement_ptr V, size_t ldv, typename Field::ConstElement_ptr W, size_t ldw, typename Field::ConstElement_ptr D, size_t ldd, typename Field::Element_ptr A, size_t lda) |
| | Computes a quasi-separable matrix A from its SSS generators.
|
| |
| template<class Field> |
| void | DenseToSSS (const Field &Fi, size_t N, size_t s, typename Field::Element_ptr P, size_t ldp, typename Field::Element_ptr Q, size_t ldq, typename Field::Element_ptr R, size_t ldr, typename Field::Element_ptr U, size_t ldu, typename Field::Element_ptr V, size_t ldv, typename Field::Element_ptr W, size_t ldw, typename Field::Element_ptr D, size_t ldd, typename Field::ConstElement_ptr A, size_t lda) |
| | Computes SSS generators for a quasi-separable matrix A.
|
| |
| template<class Field> |
| Field::Element_ptr | LQUPtoInverseOfFullRankMinor (const Field &F, const size_t rank, typename Field::Element_ptr A_factors, const size_t lda, const size_t *QtPointer, typename Field::Element_ptr X, const size_t ldx) |
| | LQUPtoInverseOfFullRankMinor.
|
| |