Sunday, July 29th
Registration for tutorials and tutorial fee information is available on the registration page
Tutorials with fewer than 20 registrants may be cancelled.
Loewy Decomposition of Linear Differential Equations
Fritz Schwarz
Fraunhofer Gesellschaft
Institut SCAI
53754 Sankt Augustin, Germany
Outline
- Loewys
Results for Linear ODE's.
- Basic
Concepts of Differential Algebra.
- Equations
with Finite-Dimensional Solution Space.
- Decomposing
Second- and Third-Order Equations.
- Summary
and Outlook.
- Loewy
Decomposition with ALLTYPES.
References
- A.
Loewy, "Ueber vollstaendig reduzible lineare homogene
Differentialgleichungen", Mathematische Annalen, 56, page
89-117 (1906).
- Z.
Li, F. Schwarz, S. Tsarev, "Factoring Zero-dimensional Ideals
of Linear Partial Differential Operators", Proceedings of the
ISSAC'02, ACM Press. T. Mora, Ed., 168-175, 2002.
- D.
Grigoriev, F. Schwarz, "Factoring and Solving Linear Partial
Differential Equations", Computing 73, page 179-197 (2004).
Gröbner Bases: A Sampler of Recent Development
David A. Cox
Department of Mathematics and Computer Science
Amherst College
Amherst, MA 01002-5000, USA
This list
of topics is tentative—the tutorial may cover slightly
different topics.
Outline
- Review of Basic Material about Gröbner Bases
- The Geometry of Elimination via Gröbner Bases
- Some Recent Developments in the Theory and Applications
of Gröbner Bases
References
- B.
Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit
eines algebraischen Gleichungssystems, Aeq. Math. 3 (1970), 374–383.
(English Translation pp. 535–545).
- B.
Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des
Restklasse-ringes nach einem nulldimensionalen Polynomideal, Ph.D.
thesis, W. Gröbner, advisor, Innsbruck, 1965.
- B.
Buchberger, Gröbner bases: an algorithmic method in polynomial
ideal theory, in Multidimensional Systems Theory – Progress,
Directions and Open Problems in Multidimensional Systems (N. K.
Bose, editior), Reidel Publishing Company, Dordrecht, 1985, 184–232.
(Second edition: Multidimensional Systems Theory and Applications
(N. K. Bose, editor) Kluwer, Dordrecht, 2003, 89–128.)
- B.
Buchberger and F. Winkler (editors), Gröbner Bases and
Applications, Cambridge U. Press, Cambridge, 1998.
- A.
Craw, D. Maclagan and R. Thomas, Moduli of McKay quiver
representations II: Gröbner Basis techniques,
arXiv:math.Ag/0611840.
- D.
Cox, J. Little and D. O’Shea, Ideals, Varieties and
Algorithms, Third edition, Springer, New York, 2007.
- D.
Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Second
edition, Springer, New York, 2005.
- J.-C.
Faugère, A new efficient algorithm for computing Gröbner
bases (F4), J. Pure Appl. Algebra 139 (1999), 61–88.
- J.-C.
Faugère, A new efficient algorithm for computing Gröbner
bases without reduction to zeros (F5), in Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation, ACM,
New York, 2002, 75–83.
- J.-C.
Faugère, M. Hering and J. Phan, The membrane inclusions
curvature equations, Adv. in Appl. Math. 31 (2003), 643–658.
- C.
Hillar and T. Windfeldt, Algebraic characterization of uniquely
vertex colorable graphs, arXiv:math.CO/0606565
- K.
Fukada, N. Jensen, N. Lauritzen and R. Thomas, The generic Gröbner
walk, J. Symbolic Comput. 42 (2007), 298–312.
- M.
Manubens and A. Montes, Minimal canonical comprehensive Gröbner
system, arXiv:math.AG/0611948.
- A.
Montes and T. Recio, Automatic discovery of geometry theorems using
minimal canonical comprehensive Gröbner systems,
arXiv:math.AG/0703483.
- P.
Schauenberg, A Gröbner-based treatment of elimination theory
for affine varieties, J. Symbolic Comput., to appear.
- RICAM,
Special Semester on Gröbner Bases 2006. Information available
at the web site http://www.ricam.oeaw.ac.at/specsem/srs/groeb