The design of automated systems capable of accomplishing complicated tasks is at the heart of computer science. Abstractly, automated systems can be viewed as taking inputs and producing outputs towards the realization of some objectives. In practice, the design of systems that produce the best possible outputs can be quite challenging when the choice of outputs is constrained, the consequences of the outputs are uncertain and/or dependent on other systems, the information provided by the inputs is incomplete and/or noisy, there are multiple (possibly competing) objectives to satisfy, the system must adapt to its environment over time, etc. This course provides an introduction to Artificial Intelligence, covering some of the core topics that underlay automated reasoning. The modeling techniques that will be covered are quite versatile and can be used to tackle a wide range of problems in many fields including natural language processing (e.g., topic modeling, document clustering), robotics (e.g., mobile robot navigation), automated diagnosis (e.g., medical diagnosis, fault detection), data mining (e.g., fraud detection, information retrieval), machine learning (e.g., speech recognition, computer vision), operations research (e.g., resource allocation, maintenance scheduling), assistive technologies, etc.
Introduction to Artificial Intelligence
Search and Problem Solving
Reasoning under uncertainty
Machine learning
Decision making
Multi-agent systems