#include <smith-form-adaptive.h>
|
| template<class Matrix> |
| static void | compute_local_long (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A, int64_t p, int64_t e) |
| |
| template<class Matrix> |
| static void | compute_local_big (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A, int64_t p, int64_t e) |
| |
| template<class Matrix> |
| static void | compute_local (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A, int64_t p, int64_t e) |
| |
| template<class Matrix> |
| static void | smithFormSmooth (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A, long r, const std::vector< int64_t > &sev) |
| |
| template<class Matrix> |
| static void | smithFormRough (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A, integer m) |
| |
| template<class Matrix> |
| static void | smithFormVal (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A, long r, const std::vector< int64_t > &sev) |
| |
| template<class Matrix> |
| static void | smithForm (BlasVector< Givaro::ZRing< Integer > > &s, const Matrix &A) |
| | Smith form of a dense matrix by adaptive algorithm.
|
| |
| template<class IRing, class _Rep> |
| static void | smithForm (BlasVector< Givaro::ZRing< Integer > > &s, const BlasMatrix< IRing, _Rep > &A) |
| | Specialization for dense case.
|
| |
|
| static const int64_t | prime [] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} |
| |
| static const int | NPrime = 25 |
| |
◆ compute_local_long()
◆ compute_local_big()
◆ compute_local()
◆ smithFormSmooth()
| void smithFormSmooth |
( |
BlasVector< Givaro::ZRing< Integer > > & | s, |
|
|
const Matrix & | A, |
|
|
long | r, |
|
|
const std::vector< int64_t > & | sev ) |
|
static |
◆ smithFormRough()
◆ smithFormVal()
| void smithFormVal |
( |
BlasVector< Givaro::ZRing< Integer > > & | s, |
|
|
const Matrix & | A, |
|
|
long | r, |
|
|
const std::vector< int64_t > & | sev ) |
|
static |
◆ smithForm() [1/2]
Smith form of a dense matrix by adaptive algorithm.
Compute the largest invariant factor, then, based on that, compute the rough and smooth part, separately. Should work with SparseMatrix and BlasMatrix
◆ smithForm() [2/2]
template<class IRing, class _Rep>
Specialization for dense case.
◆ prime
| const int64_t prime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} |
|
static |
◆ NPrime
The documentation for this class was generated from the following files: