|
| template<class Field> |
| void | fassign (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda) |
| | fassign : \(A \gets B \).
|
| |
| template<class Field> |
| void | fzero (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | fzero : \(A \gets 0 \).
|
| |
| template<class Field> |
| void | fzero (const Field &F, const FFLAS_UPLO shape, const FFLAS_DIAG diag, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | fzero : \(A \gets 0 \) for a triangular matrix.
|
| |
| template<class Field, class RandIter> |
| void | frand (const Field &F, RandIter &G, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | frand : \(A \gets random \).
|
| |
| template<class Field> |
| bool | fequal (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb) |
| | fequal : test \(A = B \).
|
| |
| template<class Field> |
| bool | fiszero (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr A, const size_t lda) |
| | fiszero : test \(A = 0 \).
|
| |
| template<class Field> |
| void | fidentity (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda, const typename Field::Element &d) |
| | creates a diagonal matrix
|
| |
| template<class Field> |
| void | fidentity (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | creates a diagonal matrix
|
| |
| template<class Field> |
| void | freduce (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | freduce \(A \gets A mod F\).
|
| |
| template<class Field> |
| void | freduce (const Field &F, const FFLAS_UPLO uplo, const size_t N, typename Field::Element_ptr A, const size_t lda) |
| | freduce for square symmetric matrices
|
| |
| template<class Field> |
| void | freduce (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda) |
| | freduce \(A \gets B mod F\).
|
| |
| template<class Field, class OtherElement_ptr> |
| void | finit (const Field &F, const size_t m, const size_t n, const OtherElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda) |
| | finit \(A \gets B mod F\).
|
| |
| template<class Field, class OtherElement_ptr> |
| void | finit (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | finit Initializes A in F$.
|
| |
| template<class Field, class OtherElement_ptr> |
| void | fconvert (const Field &F, const size_t m, const size_t n, OtherElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb) |
| | fconvert \(A \gets B mod F\).
|
| |
| template<class Field> |
| void | fnegin (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda) |
| | fnegin \(A \gets - A\).
|
| |
| template<class Field> |
| void | fneg (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda) |
| | fneg \(A \gets - B\).
|
| |
| template<class Field> |
| void | fscalin (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::Element_ptr A, const size_t lda) |
| | fscalin \(A \gets a \cdot A\).
|
| |
| template<class Field> |
| void | fscal (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb) |
| | fscal \(B \gets a \cdot A\).
|
| |
| template<class Field> |
| void | faxpy (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::ConstElement_ptr X, const size_t ldx, typename Field::Element_ptr Y, const size_t ldy) |
| | faxpy : \(y \gets \alpha \cdot x + y\).
|
| |
| template<class Field> |
| void | faxpby (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::ConstElement_ptr X, const size_t ldx, const typename Field::Element beta, typename Field::Element_ptr Y, const size_t ldy) |
| | faxpby : \(y \gets \alpha \cdot x + \beta \cdot y\).
|
| |
| template<class Field> |
| void | fmove (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb) |
| | fmove : \(A \gets B \) and \( B \gets 0\).
|
| |
| template<class Field> |
| void | fadd (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc) |
| | fadd : matrix addition.
|
| |
| template<class Field> |
| void | fsub (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc) |
| | fsub : matrix subtraction.
|
| |
| template<class Field> |
| void | fsubin (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc) |
| | fsubin C = C - B
|
| |
| template<class Field> |
| void | fadd (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, const typename Field::Element alpha, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc) |
| | fadd : matrix addition with scaling.
|
| |
| template<class Field> |
| void | faddin (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc) |
| | faddin
|
| |
| template<class Field> |
| void | faddin (const Field &F, const FFLAS_UPLO uplo, const size_t N, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc) |
| | fadding for symmetric matrices
|
| |
| template<class Field> |
| Field::Element_ptr | fgemv (const Field &F, const FFLAS_TRANSPOSE TransA, const size_t M, const size_t N, const typename Field::Element alpha, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr X, const size_t incX, const typename Field::Element beta, typename Field::Element_ptr Y, const size_t incY) |
| | finite prime Field GEneral Matrix Vector multiplication.
|
| |
| template<class Field> |
| void | fger (const Field &F, const size_t M, const size_t N, const typename Field::Element alpha, typename Field::ConstElement_ptr x, const size_t incx, typename Field::ConstElement_ptr y, const size_t incy, typename Field::Element_ptr A, const size_t lda) |
| | fger: rank one update of a general matrix
|
| |
| template<class Field> |
| void | ftrsv (const Field &F, const FFLAS_UPLO Uplo, const FFLAS_TRANSPOSE TransA, const FFLAS_DIAG Diag, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr X, int incX) |
| | ftrsv: TRiangular System solve with Vector Computes \( X \gets \mathrm{op}(A^{-1}) X\)
|
| |
| template<class Field> |
| size_t | bitsize (const Field &F, size_t M, size_t N, const typename Field::ConstElement_ptr A, size_t lda) |
| | bitsize: Computes the largest bitsize of the matrix' coefficients.
|
| |
| template<> |
| size_t | bitsize< Givaro::ZRing< Givaro::Integer > > (const Givaro::ZRing< Givaro::Integer > &F, size_t M, size_t N, const Givaro::Integer *A, size_t lda) |
| |
| template<class Field> |
| void | ftrmv (const Field &F, const FFLAS_UPLO Uplo, const FFLAS_TRANSPOSE TransA, const FFLAS_DIAG Diag, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr X, int incX) |
| | ftrsm: TRiangular Matrix Vector prodcut Computes \( X \gets \mathrm{op}(A) X\)
|
| |