Journal of Integer Sequences, Vol. 27 (2024), Article 24.6.1

Counting Tilings of the n × m Grid, Cylinder, and Torus


Peter Kagey
Department of Mathematics
Harvey Mudd College
Claremont, CA 91711
USA

William Keehn
Prison Mathematics Project
Phoenix, AZ 85028
USA

Abstract:

We count tilings of the rectangular grid, cylinder, and torus with arbitrary tile designs up to arbitrary symmetries of the square and rectangle, along with cyclic shifting of rows and columns, generalizing and classifying a a tiling problem first enumerated by M. C. Escher in May 1942. This provides a unifying framework for understanding a family of counting problems, expanding on the work by Ethier and Lee counting tilings of the torus by tiles of two colors.


Full version:  pdf,    dvi,    ps,    latex    


(Concerned with sequences A047937 A054247 A086675 A103488 A179043 A184271 A184277 A184284 A200564 A222187 A222188 A225910 A255015 A255016 A295223 A295229 A302484 A343095 A343096 A367522 A367523 A367524 A367525 A367526 A367527 A367528 A367529 A367530 A367531 A367532 A367533 A367534 A367535 A367536 A367537 A367538 A368137 A368138 A368139 A368140 A368141 A368142 A368143 A368144 A368145 A368218 A368219 A368220 A368221 A368222 A368223 A368224 A368253 A368254 A368255 A368256 A368257 A368258 A368259 A368260 A368261 A368262 A368263 A368264 A368302 A368303 A368304 A368305 A368306 A368307 A368308.)


Received January 2 2024; revised versions received January 3 2024; May 15 2024; May 21 2024; June 5 2024; June 6 2024; June 8 2024; June 12 2024. Published in Journal of Integer Sequences, June 13 2024.


Return to Journal of Integer Sequences home page