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Abstract

We count tilings of the rectangular grid, cylinder, and torus with arbitrary tile de-
signs up to arbitrary symmetries of the square and rectangle, along with cyclic shifting
of rows and columns, generalizing and classifying a a tiling problem first enumerated
by M. C. Escher in May 1942. This provides a unifying framework for understanding a
family of counting problems, expanding on the work by Ethier and Lee counting tilings
of the torus by tiles of two colors.

In 1704 the Dominican priest, mathematician, and typographer Sébastien Truchet, wrote
a manuscript Mémoire sur les combinaisons [29], which illustrates designs that can be made
from many copies and rotations of the “Truchet tile” , one of which is reproduced in
Figure 1. In 1722, Douat published a book containing futher analysis and illustrations of
these tilings [9]. Truchet’s and Douat’s work resurfaced in Cyril Stanley Smith and Pauline
Boucher’s translation [27], which also introduced another tile design which is also, somewhat
ambiguously, called a Truchet tile: .
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(a) (b)

Figure 1: Subfigure (a) is a reproduction of tiling D from Truchet’s Plate 1. It is a represen-
tation of the 17 ways of tiling the 2× 2 torus with Truchet tiles up to dihedral action of the
square. Subfigure (b) is a reproduction of a pattern 1 from Douat. It is a representation of
one of the 2196 ways of tiling the 4 × 2 torus by Truchet tiles up to reflection of rows and
columns.

The earliest record of attempting to count these configurations was perhaps the artist M.
C. Escher, who in May 1942 explicitly enumerated all of the 23 configurations of what we
call the 2× 2 grid on a torus by rotationally asymmetric tiles up to 90◦ rotation, as verified
by Schattschneider [25, 26]. (An illustration of this can be found in the appendix in Figure
81.)

Given some set of arbitrary tile designs, we are interested in counting ways of tiling the
n ×m square grid, of tiling the infinite strip in a periodic way, and of tiling the Euclidean
plane in a way that is periodic both left-to-right and top-to-bottom, up to various symmetries.
Both Truchet’s and Douat’s work were, at least in part, meant to be useful as a reference for
artists, architects, and designers. In this way, the counting problems are of physical interest
as they count the essentially different ways of tiling a square table, knitting a scarf with a
repeating motif, or tiling the floor of a large room with a repeating design.

Ultimately, we will construct a framework for counting the number of ways of tiling the
grid up to various symmetries. This provides a unifying theory for a family of problems that
appear to have only been analyzed in an ad hoc manner. This will give a unifying framework
for over a dozen OEIS sequences including but not limited to A047937, A054247, A086675,
A179043, A184271, A184277, A184284, A200564, A222187, A222188, A225910, A255015,
A255016, A295223, A295229, A302484, A343095, and A343096. Applying this framework
has resulted in the addition of 49 new sequences to the On-Line Encyclopedia of Integer
Sequences (OEIS) [24].

When we consider at the grid up to symmetries of the square or rectangle, we call this
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(a) (b) (c)

Figure 2: Part (a) shows a 3 × 4 cylinder repeated three times horizontally with two 3 × 4
regions selected. Part (b) is one of the grid representations of this cylinder. Part (c) is an
equivalent grid representation if 180◦ rotation is allowed.

the n×m grid, an example of which is illustrated in Figure 1. When we additionally allow
cyclic shifting of columns, we call this the n ×m cylinder, which is illustrated in Figure 2.
When we allow cyclic shifting of the rows in addition to the above symmetries, we call this
the n×m torus, which is illustrated in Figure 3.

The number of such tilings depends on the size of the grid, the symmetries of the grid
under consideration, the symmetries of the tile designs, and the number of tile designs with
a given symmetry. We formalize each of these four notions below, and use them to give a
formula that counts the number of corresponding tile designs.

1 Background

Many mathematicians, architects, artists, and others have studied and generalized Truchet
tiles, starting with Douat [9], who illustrated examples of rosettes, which are tilings of the
grid with dihedral symmetry, and which were studied mathematically by Hall, Almeida,
and Teixeira [14]. M. C. Escher, Schattschneider [26], and [8] were perhaps the earliest
to count these tilings on a torus, and Schattschneider is perhaps the earliest to ask about
higher-dimensional analogs in the form of cubic tiles.

Many others have considered generalizations of these tiles, in terms of specific tile designs,
other polygons, and higher dimensional analogs. Lord and Ranganathan [19] also looked
at generalizations on rhombuses and on cubes. Browne considered different scales [6] and
generalizations to hexagons [6]. Krawczyk generalized to other square tile designs, including
tiling the faces of a cube [18]. Ahmed gave a catalog of square and hexagonal tile designs,
including tile designs for octagons and the truncated square tiling [1]. Borlenghi produced
perhaps the richest catalog of examples of square tile designs and also has a related US
Patent [3]. Beveridge looked at generalizations of Truchet tiles to all 2n-gons and the faces
of a cube [2]. Carlson considered putting together tiles of different scales in a compatible
manner [7]. Mitchell gave further examples of triangular, square, hexagonal, and octagonal

3



(a) (b) (c)

Figure 3: Part (a) shows a 2 × 2 torus repeated three times horizontally and three times
vertically, with three 2 × 2 regions selected. Part (b) shows three tilings of the 2 × 2 grid
that are equivalent under the toroidal action Z/2Z × Z/2Z. Part (c) shows a 2 × 2 torus
that is equivalent to the other tori under the dihedral action r3.

tile designs and corresponding Archimedean tilings of the Euclidean plane [21]. Walter,
Ligler, and Gürsoy utilized “shape rules” to generate tile designs on the equilateral triangle,
square, regular hexagon, and other convex polygons [31]. Knoll, McLellan, and Cox studied
the 2× 2 grid of Truchet tiles including some novel group actions related to flipping woven
versions along with some constructions related to de Bruijn sequences [17].

In the 1980s the following one-line Commodore 64 computer program was a popular way
to create an interesting output:

10 PRINT CHR$(205.5+RND(1));: GOTO 10

The program printed \ and / to the display as an endless loop, which created maze-like
figures that are closely related to those shown in Figure 72. This computer program is also
the title of a book by Montfort along with nine other authors which discusses the program
along with its cultural importance [22].

In addition to the connections to M. C. Escher, art, programming, and recreational
mathematics, related concepts also come up in the context of statistical mechanics (especially
with Smith’s version of the Truchet tile) with the Completely Packed Loops model or O(n)
Loop Model. See, for example, Fonseca and Zinn-Justin’s analysis of the O(τ)-loop model
on a cylider [13], Hooper’s analysis of probabilities related to closed curves [15], and Nahum,
Serna, Somoza, and Ortuño’s loop models with crossings [23].
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2 Notation and preliminaries

In this section, we will formalize the notation of a grid and its size, the symmetries of the
grid that we count up to, the symmetries of the tile designs, and the number of tile designs
with a given symmetry.

2.1 Tilings and the grid

In order to talk about tilings of the n×m grid, cylinder, and torus, it is important to first
formalize what these are. All of these ideas start with the fundamental idea of the n ×m
grid, which we define as follows.

Definition 1. The n ×m grid is the set Z/nZ × Z/mZ, and the elements of this set are
called cells.

When illustrating grids, we use the convention that the n ×m grid has n columns and
m rows, which are described using 0-indexed Cartesian coordinates, where (0, 0) is the cell
in the lower left corner and (n− 1,m− 1) is the cell in the upper right corner.

2.2 Symmetries of the grid

We will count grids up to various symmetries, some of which may be specified by subgroups
of the dihedral group of the square, R ≤ D8 = ⟨r, f | r4 = f 2 = (rf)2 = id⟩. Because this is
a group of rotations and reflections of the grid, we call this subgroup R. When considering
the n×m grid for n ̸= m, we will further specify that R ≤ D4, where D4 = ⟨r2, f | (r2)2 =
f 2 = id⟩ is the dihedral group of the rectangle.1

In all cases, we will use the convention that our symmetry groups act on the grid via
right actions, illustrated in Figure 4. We will also use the conventions that r acts on the
grid by +90◦ rotations and f acts on the grid by horizontal reflection (i.e., over the vertical
line). Because the group acts on the right, rf reflects the square grid over the line y = x
and r3f corresponds to matrix transposition.

︸ ︷︷ ︸
id

90◦

︸ ︷︷ ︸
r

180◦

︸ ︷︷ ︸
r2

90◦

︸ ︷︷ ︸
r3

︸ ︷︷ ︸
f

︸ ︷︷ ︸
rf

︸ ︷︷ ︸
r2f

︸ ︷︷ ︸
r3f

Figure 4: Illustrations of the eight group actions of the dihedral group of the squareD8, which
we call “identity”, “90◦ rotation”, “180◦ rotation”, “−90◦ rotation”, “horizontal reflection”,
“diagonal reflection”, “vertical reflection”, and “antidiagonal reflection” respectively.

Formally, we describe the action on the cell by specifying how the generators of D8 act.

1We will later see that we use D4 in the case of the n× n cylinder as well.
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Definition 2. The (right) action of an element of D4 on a cell (x, y) ∈ Z/nZ × Z/mZ is
given by

(x, y) · f = (n− 1− x, y), and

(x, y) · r2 = (n− 1− x,m− 1− y).

In the case of an n× n grid, the action of r ∈ D8 is given by

(x, y) · r = (n− 1− y, x). (1)

These actions can be extended to all of D4 and D8 via the binary operation of the group,
since the group action is specified for the generators.

2.3 Symmetries of the cylinder and torus

Now that we know how the dihedral group acts on the n× n and n×m grids, we can also
look at symmetries of the grid by cyclic shifting of rows and/or columns. When we shift
just the columns, we call this a cylindrical action, which we describe with the group Z/nZ;
when we shift the rows and columns, we call this a toroidal, which we describe with the
group Z/nZ×Z/mZ. Both of these are named in reference to the corresponding topological
identification of the square.

Definition 3. The cylindrical action of a ∈ Z/nZ on a cell (x, y) ∈ Z/nZ × Z/mZ
corresponds to a (rightward) cyclic shift of columns:

(x, y) · a = (x+ a, y).

Definition 4. The toroidal of (a, b) ∈ Z/nZ × Z/mZ on a cell (x, y) ∈ Z/nZ × Z/mZ
corresponds to a (rightward) cyclic shift of columns and an (upward) cyclic shift of rows:

(x, y) · (a, b) = (x+ a, y + b).

Definition 4 is illustrated in Figure 5.

2.4 Compatibility of grid symmetries

Notice that we can act on the grid with both the dihedral actions and the cylindrical/toroidal
actions. In order to make the group actions of the dihedral group compatible with the
cylindrical action (Z/nZ) or the toroidal action (Z/nZ × Z/mZ), we define their (outer)
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I J K L

E F G H

A B C D

· (3, 1) =

F G H E

B C D A

J K L I

Figure 5: The (3, 1) ∈ Z/4Z×Z/3Z acts on the 4× 3 grid identified as a torus by cyclically
shifting columns to the right by 3 and cyclically shifting rows by 1.

semidirect product, Z/nZ ⋊ R or (Z/nZ × Z/mZ) ⋊ R respectively. As in the examples
above, we define this as a right action, thinking of this as first cyclically shifting the rows
and columns and then rotating or reflecting according to the element R.

The outer semidirect products are defined with respect to the homomorphisms ψ : D4 →
Aut(Z/nZ) and ϕ : D8 → Aut(Z/nZ × Z/mZ) respectively. (We use D4 rather than D8 in
the case of the cylinder because a 90◦ rotation is not an isometry of the infinite strip, which
is the universal cover of the cylinder.)

Definition 5. Let ψ : D4 → Aut(Z/nZ) be given by

ψf (x) = ψr2(x) = −x and

ψid(x) = ψr2f (x) = x.

Then the product of two elements in Z/nZ ⋊D4 is given by

(a1, g1) (a2, g2) =
(
a1 + ψg1(a1), g1g2

)
.

In the case of the torus, the definition of the semidirect product (Z/nZ × Z/mZ) ⋊ R,
where R ≤ D8, is essentially similar.

Definition 6. Let ϕ : D8 → Aut(Z/nZ× Z/mZ) be defined on the generators r and f by

ϕf ((x, y)) = (−x, y) and
ϕr((x, y)) = (y,−x),

and extended to the other elements of D8. Then the binary operation of the semidirect
product of (Z/nZ× Z/mZ)⋊D8 is given by(

(a1, b1), g1
) (

(a2, b2), g2
)
=

(
(a1, a2) + ϕg1(a1, a2), g1g2

)
.

Using the facts that r and f generate D8 and ϕ is a homomorphism, together with
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function composition yields:

ϕid((x, y)) = (x, y), ϕr((x, y)) = (y,−x),
ϕr2((x, y)) = (−x,−y), ϕr3((x, y)) = (−y, x),
ϕf ((x, y)) = (−x, y), ϕrf ((x, y)) = (y, x),

ϕr2f ((x, y)) = (x,−y), ϕr3f ((x, y)) = (−y,−x).

Example 7. We check our work on an individual cell. For every choice of tile and pair of
symmetries, we should have(

(x, y) ·
(
(a1, b1), g1

))
·
(
(a2, b2), g2

)
= (x, y) ·

((
(a1, b1), g1

) (
(a2, b2), g2

))
.

In particular, we check in the case of the 4 × 4 torus with (x, y) = (1, 0),
(
(a1, b1), g1

)
=(

(1, 1), f
)
and

(
(a2, b2), g2

)
=

(
(2, 0), r

)
.

(
(1, 0) ·

(
(1, 1), f

))
·
(
(2, 0), r

)
=

(
(2, 1) · f

)
·
(
(2, 0), r

)
= (1, 1) ·

(
(2, 0), r

)
= (3, 1) · r
= (2, 3).

Now using the semidirect product,

(1, 0) ·
((

(1, 1), f
) (

(2, 0), r
))

= (1, 0) ·
(
(1, 1) + ϕf (2, 0), fr

)
= (1, 0) ·

(
(1, 1) + (−2, 0), r3f

)
= (1, 0) ·

(
(3, 1), r3f

)
= (0, 1) · r3f
= (2, 3).

This suggests that this semidirect product is the appropriate way to make the dihedral
actions compatible with the toroidal action.

2.5 Symmetries of tile designs

We are now ready to start filling in our grid with tiles. Before defining what tiles are, we
introduce the following definition for convenience.

Definition 8. If X is a set and G has a group action on X, then we call X a G-set.

Definition 9. Given R ≤ D8, a set of tile designs is simply an R-set. A tile design is
any element of such a set.
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We will always illustrate our tile designs with squares that have designs in them, but any
abstract R-set will work in place of these illustrations. When we specify one of these tile
designs together with a cell, we get a tile.

Definition 10. A tile in the n × m grid with the set of tile designs T is an element of
(Z/nZ× Z/mZ)× T .

Now we are ready to define a tiling of the grid, which is a specification of a tile design
for each cell.

Definition 11. A tiling of the n×m grid with the set of tile designs T is a map f : (Z/nZ×
Z/mZ) → T . The tiles associated with the tiling are elements of the graph of the map

{
(
(x, y), f(x, y)

)
| (x, y) ∈ Z/nZ× Z/mZ}.

We next give an example to illustrate all of these definitions.

Example 12. Suppose that R = D4 = ⟨r2, f⟩, the dihedral group of the rectangle. Then

T =

{
, , , , , , , , , , ,

}
.

is a set of tile designs, because it is an R-set. The 3× 2 tiling

consists of the six tiles{(
(0, 0),

)(
(0, 1),

)(
(1, 0),

)(
(1, 1),

)(
(2, 0),

)(
(2, 1),

)}
.

Since we have now defined tiles, we are ready to talk about how the symmetries of our
grid, cylinder, or torus act on tiles: dihedral actions can act on the tile design nontrivially, but
cylindrical/toroidal actions always act on a tile design by the identity. We extend Definitions
2, 3, and 4 to this setting in a direct way, and illustrate this in Figure 6.

Definition 13. If
(
(x, y), d

)
is a tile in an n×m grid, then g ∈ D4 acts on

(
(x, y), d

)
by(

(x, y), d
)
· id =

(
(x, y), d

)
,(

(x, y), d
)
· r2 =

(
(n− 1− x,m− 1− y), d · r2

)
,(

(x, y), d
)
· f =

(
(n− 1− x, y), d · f

)
, and(

(x, y), d
)
· r2f =

(
(x,m− 1− y), d · r2f

)
.
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Furthermore, if
(
(x, y), d

)
is a tile in an n × n grid, then g ∈ D8 acts on

(
(x, y), d

)
by the

above actions together with(
(x, y), d

)
· r =

(
(n− 1− y, x), d · r

)
,(

(x, y), d
)
· r3 =

(
(y, n− 1− x), d · r3

)
,(

(x, y), d
)
· rf =

(
(y, x), d · rf

)
, and(

(x, y), d
)
· r3f =

(
(n− 1− y, n− 1− x), d · r3f

)
.

· r2f =

(a)

(
(1, 0),

)
· r2f =

(
(1, 1),

)
(b)

Figure 6: An example of the action of r2f (a vertical reflection) on (a) a tiling of the 3× 2
grid and on (b) a specific tile.

In order to understand what makes two tiles essentially different with respect to counting
tilings, it is useful to define the notion of a stabilizer subgroup.

Definition 14. Let X be a G-set. Then the stabilizer subgroup of an element x ∈ X is
the subgroup

Gx = {g ∈ G | x · g = x} ≤ G.

Because our set of tile designs T is an R-set, the relevant difference between different tile
designs for the purpose of counting tilings is their stabilizer subgroups.

2.6 Classifying sets of tile designs

In order to describe the essential features of a set of tile designs, we partition it into orbits
with respect to R. By counting up the number of orbits and classifying each orbit by the
(conjugacy class of the) stabilizer subgroup of one of its representatives we can understand
the combinatorics of the set of tile designs completely.

Definition 15. Let R ⊆ D8 and let T be a set of tile designs (with respect to R). Then
for each (conjugacy class of) a subgroup S ≤ R, let OR

S denote the number of orbits that
contain a tile whose stabilizer subgroup is conjugate to S.
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Notice that we classify up to conjugacy class because if d is stable under S, then d · g is
stable under g−1Sg since (d · g) · g−1Sg = d · Sg = d · g.

Example 16. Suppose we are counting tilings of the grid, cylinder, or torus up to horizontal
and vertical reflection with a set of tile designs given by

T =

{
, , , , , , , , , , ,

}
.

Since the symmetry groupD4 = ⟨r2, f | (r2)2 = f 2 = id⟩ has 5 conjugacy classes of subgroups,
there are five types of orbits:

O⟨r2,f⟩
⟨r2,f⟩ = 2 via

{ }
and

{ }
O⟨r2,f⟩

⟨f⟩ = 1 via

{
,

}
O⟨r2,f⟩

⟨r2⟩ = 2 via

{
,

}
and

{
,

}
O⟨r2,f⟩

⟨r2f⟩ = 0

O⟨r2,f⟩
1

= 1 via

{
, , ,

}
.

Lemma 17. The number of tilings for a given R-tiling T only depends on the tuple⊕
S∈conj(R)

OR
S ,

where conj(R) is the set of equivalence classes of subgroups of R up to conjugacy.

Proof. Suppose that we have two sets of tile designs T and T ′ with the same number of orbits
for each stabilizer conjugacy class. There exists a bijection f : T → T ′ such that f(d) = d′

whenever d and d′ have the same stabilizer subgroup in R, that is, Rd = Rd′ . Then the
induced map of f to the tilings is also bijection of tilings.

In Appendix A.5, we explicitly enumerate all of the R-sets of tile designs that consist of
a single orbit for each subgroup R ≤ D4 or R ≤ D8.

2.7 Counting strategy

In order to count how many tilings exist up to various symmetries, we will use Burnside’s
lemma.
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Theorem 18 (Burnside’s lemma). Let X be a G-set. Then the size of X up to the action
of G is

|X/G| = 1

|G|
∑
g∈G

|Xg|,

where |Xg| is the number of elements of X that are fixed under the action of g ∈ G.

We want to understand how many tilings are fixed under various symmetries. To do this
it is necessary to categorize the symmetries of various tiles.

Definition 19. Let T be a set of tile designs, where R ≤ D8. For each g ∈ R, the set of
tiles that are fixed by g is denoted

T g = {d ∈ T | d · g = d},

and the size of this set is denoted
tg = |T g|.

Note that T id = T , so tid is the total number of tile designs.
The following theorem gives us a strategy for counting the number of tilings that are

fixed under a given symmetry, which is illustrated in Figure 7. For more thorough treatment
in the case of Truchet tiles in particular, see Hall, Almeida, and Teixeira [14].

Theorem 20. Suppose that s = g ∈ R, s = (a, g) ∈ Z/nZ ⋊ R, or s =
(
(a, b), g

)
∈

(Z/nZ× Z/mZ)⋊R.
Since the set of cells Z/nZ × Z/mZ form an ⟨s⟩-set, we partition the cells into orbits

with respect to the cyclic subgroup ⟨s⟩, which we call Θs, so that
⊔

ϑ∈Θs
ϑ = Z/nZ× Z/mZ.

Then if Xs is the set of tilings of the n×m grid that are stable under s,

|Xs| =
∏
ϑ∈Θs

tg|ϑ| .

Proof. Because Θs partitions the cells into orbits with respect to the cyclic subgroup ⟨s⟩,
the number of tilings that are fixed under s is equal to the product of the number of tilings
of each orbit of cells under ⟨s⟩.

The tiling of an orbit of cells can be specified by a single tile d, which then determines
the rest of the orbit by

(
(x, y), d

)
· sk for 0 ≤ k < |ϑ|. The only requirement for a valid tiling

of a orbit is that (
(x, y), d

)
=

(
(x, y), d

)
· s|ϑ| =

(
(x, y), d · g|ϑ|

)
,

thus d must be fixed by g|ϑ|, and so d ∈ T g|ϑ|
. Therefore there are tg|ϑ| choices for d and thus

for the orbit of cells containing (x, y).

Thus, this reduces the problem to a matter of counting the orbits of cells under each
symmetry s along with counting the sizes of each of these orbits.

We proceed with Sections 3, 4, and 5, which all implement the above strategy. Each
section consists broadly of fixed point counting theorems, which count tilings of the grid
that are fixed under the actions of D4 or D8 for arbitrary sets of tile designs.
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Figure 7: An illustration showing a tiling of the 4×4 torus that is fixed under
(
(1, 2), r

)
, and

the six orbits of its cells with respect to the subgroup generated by this symmetry. There
are three orbits of size 4 (whose tiles are stable under r4 = id), one orbit of size 2 (whose
tiles are stable under r2), and two orbits of size 1 (whose tiles are stable under r).

3 Grid

For counting tilings of the n × m rectangular grid or n × n square grid under subgroups
R ≤ D4 and R ≤ D8 respectively, we count the number of tilings that are fixed under each
element of R.

In the following two subsections, we denote the rectangular grid by RG and the square
grid SG.

3.1 The n×m grid

We begin by specifying the number of tilings that are fixed under each symmetry.

Definition 21. For a given set of tile designs T , and an element g ∈ R ≤ D4, the number
of tilings of the n×m grid by tile designs in T that are fixed by g is denoted fxptRG

g (n,m).

Theorem 22. For a given set of tile designs T and an element g ∈ R ≤ D4, the number of
tilings of the n×m grid by tile designs in T that are fixed by g is

fxptRG
id (n,m) = tnmid . (2)

fxptRG
r2 (n,m) =

{
t
nm/2
id , if nm is even;

t
(nm−1)/2
id tr2 , if nm is odd.

(3)

fxptRG
f (n,m) =

{
t
nm/2
id , if n is even;

t
(m(n−1))/2
id tmf , if n is odd.

(4)

fxptRG
r2f (n,m) =

{
t
nm/2
id , if m is even;

t
(n(m−1))/2
id tnr2f , if m is odd.

(5)
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Then the number of distinct tilings of the n×m grid up to action of R is given by

1

|R|
∑
g∈R

fxptRG
g (n,m). (6)

Proof. The proof will consist of three cases.

Equation (2). This follows from the fact that tid is the number of distinct tiles, and every
tiling is fixed under id ∈ D4.

Equation (3). This follows from the fact that the (right) action of r2 on the cell (x, y) is

(x, y) · r2 = (n− x− 1,m− y − 1).

Since r2 has order 2, each cell is in an orbit of size 1 or 2. The cell (x, y) is fixed under
the action of r2 if and only if n and m are both odd and (x, y) = (n−1

2
, m−1

2
).

Therefore when nm is even, the grid is partitioned into nm/2 orbits of size 2, so any
fixed tiling can be specified by choosing any tile design in T for each orbit. When nm
is odd, the grid is partitioned into one orbit of size 1 together with (nm− 1)/2 orbits
of size 2, so any fixed tiling can be specified by choosing a tile design in T r2 for the
fixed point and any tile design in T for each orbit.

Equations (4) and (5). These two equations are essentially the same, so without loss of
generality, we will prove the case of Equation (4). The right action of f on

(
(x, y), d

)
is (

(x, y), d
)
· f = ((n− x− 1,m), d · f).

Because f is order 2, we can conclude that (x, y) is either a fixed point or a 2-cycle
with respect to f . It follows that (x, y) is a fixed point if and only if n is odd and
x = (n− 1)/2, therefore when n is odd the tiling has m fixed cells. The fixed cells can
be specified by any tile design in T f , and the cells in orbits of size 2 can be specified
by any tile design in T .

Equation (6) Finally, this is a direct application of Burnside’s lemma.

3.2 The n× n grid

There are more symmetries and some specializations in the case of the n× n grid, which we
denote SG for “square grid”.

Definition 23. For a given set of tile designs T , and an element g ∈ R ≤ D8, the number
of tilings of the n× n grid by tile designs in T that are fixed by g is denoted fxptSGg (n).

14



Theorem 24. For a given set of tile designs T and an element g ∈ R ≤ D8, the number of
tilings of the n×m grid by tile designs in T that are fixed by g is

fxptSGid (n) = fxptRG
id (n, n) = tn

2

id (7)

fxptSGr2 (n) = fxptRG
r2 (n, n) =

 t
n2/2
id , if n is even;

t
(n2−1)/2
id tr2 , if n is odd.

(8)

fxptSGf (n) = fxptRG
f (n, n) =

 t
n2/2
id , if n is even;

t
(n2−n)/2
id tnf , if n is odd.

(9)

fxptSGr2f (n) = fxptRG
r2f (n, n) =

 t
n2/2
id , if n is even;

t
(n2−n)/2
id tnr2f , if n is odd.

(10)

fxptSGr (n) = fxptSGr3 (n) =

 t
n2/4
id , if n is even;

t
(n2−1)/4
id tr, if n is odd.

(11)

fxptSGrf (n) = t
(n2−n)/2
id tnrf . (12)

fxptSGr3f (n) = t
(n2−n)/2
id tnr3f . (13)

Then the number of distinct tilings of the n× n grid up to the dihedral action of the square
is given by

1

|R|
∑
g∈R

fxptSGg (n). (14)

Proof. This proof proceeds with four cases.

Equations (7), (8), (9), and (10). These follow directly from Theorem 22, by specifying
m = n.

Equation (11). Firstly, notice that the tilings that are fixed under r are identically those
that are fixed under r−1 = r3. The (right) action of r ∈ D8 on a cell (x, y) is

(x, y) · r = (n− y − 1, x)

therefore (a, b) is a fixed point if and only if it satisfies the system of equations

a = n− b− 1 (15)

b = a, (16)

which has an integer solution only when n is odd and when (a, b) = (n−1
2
, n−1

2
). Also,

there are no cells that occur in 2-cycles. This can be seen by noticing that cells that
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occur in 2-cycles are also fixed points under r2, and by the proof of Theorem 22, we
know that this occurs under the same conditions as the fixed points under f . Therefore
all other cells occur in 4-cycles.

Therefore when n is even, the grid is partitioned into n2/4 orbits of size 4, each of
which can be specified by any tile design in T ; when n is odd, the grid has one fixed
point, which must be tiled with a tile design in T r, and the remaining cells can be
partitioned into (n2 − 1)/4 orbits of size 4, each of which can be specified by any tile
design in T .

Equations (12) and (13). Because rf and r3f are conjugate, these are essentially similar,
so without loss of generality, we will prove Equation (12).

The (right) action of rf ∈ D8 on a cell (x, y) is

(x, y) · rf = (y, x).

Thus, (x, y) is a fixed point if and only if x = y, otherwise it is a part of a 2-cycle.
Therefore there are n fixed points, which can be specified by a tile design in T rf and
(n2 − n)/2 2-cycles, which can be specified with any tile design in T .

Equation (14). The final equation follows by a direct application of Burnside’s lemma.

4 Cylinder

Here we use the convention that the n×m cylinder is identified along its left and right sides,
as illustrated in Figure 2.

Even in the case of n × n grids, we only consider tilings of cylinders up to subgroups
of the dihedral group of the rectangle, because other symmetries of the square would result
in swapping the pair of identified sides (the right and left side) of the grid with the pair of
non-identified sides (the top and bottom).

In both the case of the cylinder and the torus, we will repeatedly use the following
observation.

Lemma 25. For fixed values of n and a, the equation

x ≡ −1− x− a (mod n) (17)

has solutions that depend on the parity of n and a.
When n is odd, there is one solution:

x ≡ n+ 1

2
(−1− a) (mod n). (18)
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When n is even and a is odd, there are two solutions:

x ≡ −1− a

2
(mod n) (19)

x ≡ n− 1− a

2
(mod n). (20)

When n and a are both even, there are no solutions.

Proof. In both cases, we write equation (17) as

2x ≡ −1− a (mod n).

Odd n. When n is odd, 2 has a multiplicative inverse of (n+1)/2, so multiplying gives the
unique solution described in equation (18).

Even n and odd a. When n is even and a is odd, −1− a is even. Dividing by 2 gives the
solution given in equation (19), and adding n and dividing by 2 gives the solution in
equation (20).

Even n and a. When both n and a are even, 2x is even and −1− a is odd, so there are no
solutions.

Similarly, we will repeatedly use the following lemma when counting fixed points for both
the cylinder and the torus.

Lemma 26 ([20]). Given some a ∈ Z/nZ, if d is a minimal solution to the equation

da ≡ 0 (mod n)

then d | n. Moreover, when d is a divisor of n, there are φ(d) choices for a that result in d
being a minimal solution, where φ is Euler’s totient function.

Proof. First, we can see that the least value of da will occur when da = lcm(a, n), and thus

d = lcm(a, n)/a = n/ gcd(a, n).

Therefore d must be a divisor of n. The φ(d) choices for a such that d is a minimal solution
to da ≡ 0 (mod n) are a ∈

{
kn/d | 1 ≤ k ≤ d and gcd(k, d) = 1

}
.
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4.1 The n×m cylinder

We denote the n×m cylinder by the superscript C.

Definition 27. For a given set of tile designs T , and an element g ∈ R ≤ D4 the sum over
all cyclic shifts of the number of tilings of the n ×m cylinder by tile designs in T that are
fixed by (a, g) ∈ Z/nZ ⋊R is denoted

fxptCg (n,m) =
∑

a∈Z/nZ

X(a,g),

where X(a,g) is the number of tilings fixed by (a, g).

Theorem 28. The sum over all cyclic shifts of the number of tilings of the n×m cylinder
by tile designs in T that are fixed by (a, id) ∈ Z/nZ ⋊R is given by

fxptCid(n,m) =
∑
d|n

φ(d)t
nm/d
id . (21)

Proof. For each element (a, id) ∈ Z/nZ ⋊ R, the size of the orbits is the least d such that
da ≡ 0 (mod n). By Lemma 26, when d | n there are φ(d) choices for a that result in orbits
of size d, and each choice partitions the n×m grid into nm/d orbits.

The next theorem concerns the action of (a, r2) ∈ Z/nZ⋊R, which is illustrated in Figure
8.

Theorem 29. The sum over all cyclic shifts of the number of tilings of the n×m cylinder
by tile designs in T that are fixed by (a, r2) ∈ Z/nZ ⋊R is given by

fxptCr2(n,m) =



nt
nm/2
id , if m is even; (22a)

n

(
1

2
t
nm/2
id +

1

2
t
(nm−2)/2
id t2r2

)
, if m is odd and n is even; (22b)

nt
(nm−1)/2
id tr2 , if m and n are odd. (22c)

Proof. The right action of (a, r2) on
(
(x, y), d

)
is(

(x, y), d
)
· (a, r2) = ((n− 1− x− a,m− 1− y), d · r2). (23)

By applying this map twice, we see that
(
(x, y), d

)2
= id, so each orbit is either size 1 or size

2. Orbits are size 1 precisely when

x ≡ −1− x− a (mod n) (24)

y = m− y − 1. (25)
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Equation (22a). When m is even, 2y ̸= m − 1, so there are no solutions to this system of
equations. Thus all orbits have size 2 totaling nm/2 orbits. We can choose any tile
design in T to start this orbit. Then we sum this over all n choices of a ∈ Z/nZ.

Equation (22b). When m is odd, the second equation has the unique solution of y =
(m − 1)/2, which represents the middle row. The solutions for the second equation
follow directly from Lemma 25, which states that when n is even, the equation has two
solutions when x is odd and none otherwise; when n is odd the second equation has a
single solution.

Therefore when m is odd and n is even, half of the choices of a ∈ Z/nZ result in no
orbits of size 1, and the other half of choices of x result in two orbits of size 1. In
the former case, the grid decomposes into nm/2 orbits of size 2, each of which can be
filled with any tile design. In the latter case, there are two orbits of size 1, which must
be filled with a tile that is fixed under r2, and the rest of the grid decomposes into
(nm− 2)/2 orbits all of size 2, which can be filled with any tile design.

Equation (22c). Lastly, when both m and n are odd, there is a single orbit of size 1 that
must be filled with a tile that is fixed under r2, the remaining nm−1 cells are partitioned
into (nm− 1)/2 orbits of size 2 that can be filled with any tile design.

A B C D E
F G H I J
K L M N O

n− a

·(a, r2) = DEABC
IJFGH
NOKLM

n− a a

Figure 8: The action of (a, r2) ∈ Z/nZ ⋊ R on a tiling is equivalent to a 180◦ rotation of
both the leftmost n− a×m sub-grid and the rightmost a×m sub-grid.

The next theorem concerns the action of (a, f) ∈ Z/nZ⋊R, which is illustrated in Figure
9.

Theorem 30. The sum over all cyclic shifts of the number of tilings of the n×m cylinder
by tile designs in T that are fixed by (a, f) ∈ Z/nZ ⋊R is given by

fxptCf (n,m) =


n

(
1

2
t
nm/2
id +

1

2
t
(nm−2m)/2
id t2mf

)
, if n is even; (26a)

nt
(nm−m)/2
id tmf , if n is odd. (26b)

19



Proof. Since (a, f)2 = id, every tile is either a fixed point or appears in a 2-cycle under (a, f).
The right action of (a, f) on

(
(x, y), d

)
is(

(x, y), d
)
· (a, f) =

(
(−x− a− 1, y), d · f

)
so the tiles that appear as fixed points are those that satisfy

x = −1− x− a (mod n).

Equation (26a). When n and a are both even, there are no fixed points. When n is even
and a is odd, there are two fixed points in each row:

x ≡ (n− a− 1)/2 (mod n) and (27)

x ≡ (2n− a− 1)/2 (mod n). (28)

Equation (26b). When n is odd, there is one fixed cell in each row, which occurs when
x ≡ (−a− 1)(n+ 1)/2 (mod n).

A B C D E
F G H I J
K L M N O

n− a

·(a, f) =

DEABC
IJFGH
NOKLM

n− a a

Figure 9: The action of (a, f) ∈ Z/nZ ⋊ R on a tiling is equivalent to a horizontal flip of
both the leftmost n− a×m sub-grid and the rightmost a×m sub-grid.

Theorem 31. The sum over all cyclic shifts of the number of tilings of the n×m cylinder
by tile designs in T that are fixed by (a, r2f) ∈ Z/nZ ⋊R is given by

fxptCr2f (n,m) =



∑
d|n

φ(d)t
nm/ lcm(d,2)
id , if m is even; (29a)

∑
d|n

φ(d)t
(nm−n)/ lcm(d,2)
id t

n/d

(r2f)d
, if m is odd. (29b)
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Proof. We can see that (a, r2f) acts on the coordinates of (x, y) separately, that is,

(x, y) · (a, r2f)k =

{
(x+ ka,m− 1− y), if k is odd;

(x+ ka, y), if k is even.

Notice that the orbits of the y-coordinates have size 2, so it is enough to determine the
size of the orbits of the x-coordinates. By Lemma 26, for each divisor d | n, there are φ(d)
choices for a such that the size of the orbits of the x-coordinate is d.

Equation (29a). When m is even, we see that y ̸= m− y − 1 has no solutions, the orbit of
every y-coordinate has size 2. For each x-orbit size d | n, each cell must be in an orbit
of size lcm(d, 2), and there must nm/ lcm(d, 2) of them. Each can be specified by any
tile design, since all tile designs are stable under (r2f)lcm(d,2) = id.

Equation (29b). When m is odd, we see that y = m− y − 1 has a solution precisely when
y = (m − 1)/2. For each x-orbit size d | n, if y = (m − 1)/2, then the orbit has size
d, otherwise it has size lcm(d, 2), as in the case above. Therefore there are n cells
that are in orbits of size d resulting in n/d orbits that can be specified by any tile
design that is stable under (r2f)lcm(d,2). The remaining n2−n cells are partitioned into
(n2 − n)/ lcm(d, 2) orbits of size lcm(d, 2) that can be specified by any tile design.

Theorem 32. For a given set of tile designs T , a symmetry group R ≤ D4, and an element
g ∈ R, the number of distinct tilings of the n×m cylinder is

1

n|R|
∑
g∈R

fxptCg (n,m). (30)

Proof. We will use the convention that when we index over g, implicitly g ∈ R; when we index
over a, implicitly a ∈ Z/nZ; and when we index over (a, g), implicitly (a, g) ∈ Z/nZ ⋊R.

Since fxptCg (n,m) =
∑
a

X(a,g), we can see that

1

n|R|
∑
g

fxptCg (n,m) =
1

n|R|
∑
g

∑
a

X(a,g)

=
1

|Z/nZ ⋊R|
∑
(a,g)

X(a,g),

which counts the number of distinct tilings by a direct application of Burnside’s lemma.
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5 Torus

This section builds on the work of Ethier [11] and Ethier and Lee [12]. By specializing to

the set of tile designs T =

{
,

}
, we recover their work. Irvine [16] generalized this

in the specific context of a set of tile designs of size n in the specific case that no rotation or
reflection is allowed (only cyclic shifting of rows and columns), which we recover in Theorem
34.

We distinguish between the rectangular torus, which we denoted by RT, and the square
torus, which we denote by ST.

5.1 The n×m torus

Definition 33. For a given set of tile designs T , and an element g ∈ R ≤ D4 the sum over
all cyclic shifts of the number of tilings of the n ×m cylinder by tile designs in T that are
fixed by

(
(a, b), g

)
∈ (Z/nZ× Z/mZ)⋊R is denoted

fxptRTg (n,m) =
∑

(a,b)∈Z/nZ×Z/mZ

X((a,b),g),

where X((a,b),g) is the number of tilings fixed by
(
(a, b), g

)
.

Theorem 34. The sum over all cyclic shifts of the number of tilings of the n×m torus by
tile designs in T that are fixed by (a, id) ∈ (Z/nZ× Z/mZ)⋊R is given by

fxptRTid (n,m) =
∑
c|m

∑
d|n

φ(c)φ(d)t
mn/ lcm(c,d)
id . (31)

Proof. The size of an orbit of a tile under
(
(a, b), g

)k
is the set of solutions to

ka ≡ 0 (mod n)

kb ≡ 0 (mod m).

For each individual equation, the minimal choice for k must be a divisor of n. For a given
divisor d | n, there are φ(d) choices for a ∈ Z/nZ so that da ≡ 0 (mod n). Namely if i is
coprime to d, then a = i

(
n/d

)
will be a minimal solution. An analogous argument holds for

the second equation.
Therefore if d | n and c | m, there are φ(d)φ(c) pairs (a, b) ∈ Z/nZ×Z/mZ where a has

order d and b has order c, and thus (a, b) has order lcm(d, c). Therefore, each orbit of cells
has size lcm(d, c), and so the number of orbits of cells is nm/ lcm(d, c).

Thus, the sum of the number of orbits over each pair (a, b) ∈ Z/nZ×Z/mZ gives equation
(31), as desired.
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The next theorem concerns the action of
(
(a, b), r2

)
∈ (Z/nZ × Z/mZ) ⋊ R, which is

illustrated in Figure 10.

Theorem 35. The sum over all cyclic shifts of the number of tilings of the n×m torus by
tile designs in T that are fixed by (a, r2) ∈ (Z/nZ× Z/mZ)⋊R is given by

fxptRTr2 (n,m) =



nm

(
3

4
t
nm/2
id +

1

4
t
nm/2−2
id t4r2

)
, if n and m are even; (32a)

nmt
(nm−1)/2
id tr2 , if n and m are odd; (32b)

nm

(
1

2
t
nm/2
id +

1

2
t
nm/2−1
id t2r2

)
, otherwise. (32c)

Proof of Theorem 35. The orbits of cells under the group generated by
(
(a, b), r2

)
have size

either 1 or 2, because of how we defined the semidirect product,
(
(a, b), r2

)
has order 2:(

(a, b), r2
)2

=
(
(a, b), r2

)(
(a, b), r2

)
=

(
(a, b) + (−a,−b), r2r2

)
=

(
(0, 0), id

)
. (33)

Therefore, it is enough to count how many cells are stable under
(
(a, b), r2

)
, which depends

on the parity of n, m, a, and b.
The element

(
(a, b), r2

)
fixes a cell (x, y) when

(x, y) ·
(
(a, b), r2

)
= (n− 1− (x+ a), n− 1− (y + b)).

This corresponds to the system of equations

x ≡ −1− x− a (mod n) (34)

y ≡ −1− y − b (mod m), (35)

whose solutions are given by Lemma 25.
Therefore we proceed by each case

Equation (32a). When n and m are even, there are fixed cells only when both a and b are
odd, by Lemma 25; in this case, there are exactly 4 fixed cells, because each equation
in the system of equations has two solutions. When this occurs, it partitions the cells
into 4 orbits of size 1, which can be filled with tile designs that are fixed under r2, and
(nm− 4)/2 orbits of size 2, which can be filled with any tile design.

When either a or b is even, there are no fixed cells, which partitions the cells into nm/2
orbits of size 2, each of which can be filled with any choice of tile design.

Since the 4 fixed cells occur for exactly one quarter of the pairs (a, b) ∈ Z/nZ×Z/mZ,
this results in the desired equation.
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Equation (32b). When n and m are both odd, Lemma 25 states that equations (34) and
(35) have one solution.

When this occurs, it partitions the cells into 1 orbit of size 1, which can be filled only
with a tile design that is fixed by r2, and (nm − 1)/2 orbits of size 2, which can be
specified with any tile design.

Equation (32c). Without loss of generality, we can assume that n is even and m is odd,
because the proof is essentially similar in the opposite case. Lemma 25 states that
equation (34) has no solutions when a is even and 2 solutions when a is odd; it also
states that (35) has one solution.

Thus for half of the pairs (a, b), there are no fixed cells, and so there are nm/2 orbits,
each of which can be specified by any tile design.

For the other half of the pairs, there are 2 fixed cells, which can be specified by any
tile design that is fixed under r2 and (nm− 2)/2 orbits of size 2 that can be specified
by any tile design.

A B C D E
F G H I J
K L M N O

n− a

(
(a, b), r2

)
= NOKLM

DEABC
IJFGH

n− a a

m− b

b

Figure 10: The action of ((a, b), r2) ∈ (Z/nZ×Z/mZ)⋊R on a tiling is equivalent to a 180◦

rotations of the lower left (n− a)× (m− b) sub-grid, the lower right a× (m− b) sub-grid,
the upper left (n− a)× b sub-grid, and the upper right a× b sub-grid.

Theorem 36. The sum over all cyclic shifts of the number of tilings of the n×m torus by
tile designs in T that are fixed by (a, f) ∈ (Z/nZ× Z/mZ)⋊R is given by

fxptRTf (n,m) =


n
∑
c|m

φ(c)

(
1

2
t
nm/ lcm(2,c)
id +

1

2
t
(n−2)m/ lcm(2,c)
id t

2m/c
fc

)
, if n is even; (36a)

n
∑
c|m

φ(c)t
(n−1)m/ lcm(2,c)
id t

m/c
fc , if n is odd. (36b)
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and

fxptRTr2f (n,m) =


m

∑
d|n

φ(d)

(
1

2
t
nm/ lcm(d,2)
id +

1

2
t
n(m−2)/ lcm(d,2)
id t

2n/d

(r2f)d

)
, if m is even;

m
∑
d|n

φ(d)t
n(m−1)/ lcm(d,2)
id t

n/d

(r2f)d
, if m is odd.

Proof. Since f and r2f are conjugate as elements of D8, these fixed point formulas have
essentially the same proof, so we will prove equations (36a) and (36b) specifically.

Since (x, y) ·
(
(a, b), f

)
= (n− 1− (x+a), y+ b), we can view

(
(a, b), f

)
as acting on each

coordinate separately. Since
(
(a, b), f

)2
= ((0, 2b), id), we can see that the orbits of the first

coordinate have either size 1 or 2. Moreover, by Lemma 25, there are no fixed cells when n
is even and a is even, there are 2 fixed cells when n is even and a is odd, and there is 1 fixed
cell when n is odd.

Since
(
(a, b), f

)
acts on the second coordinate by shifting by b, we see that Lemma 26

applies. Thus for each divisor c | m, there are φ(c) choices of b that produce orbits of the
second coordinate with size c.

Equation (36a). When n is even, then half of the values of a ∈ Z/nZ are even, and each
orbit has size lcm(2, c) and these can be specified by any tile design.

The other half of values of a are odd, which results in 2 fixed points for the first
coordinate, each of which results in an orbit of size c that can be specified by any tile
design that is fixed by f c. The remaining (n−2)m cells then are partitioned into orbits
of size lcm(2, c), which can be specified by any tile design.

Equation (36b). When n is odd, then there is one fixed point for the first coordinate,
resulting in m cells where the first coordinate is fixed under the action of

(
(a, b), f

)
.

For each divisor c | m, there is a partition of these m cells into orbits of size c. The
resulting m/c orbits can be specified by any tile design that fixes f c. The remaining
n(m−1) cells are partitioned into orbits of size lcm(2, c), resulting in n(m−1)/ lcm(2, c)
orbits which can be specified by any tile design.

Theorem 37. Then the number of distinct tilings of the n×m torus up to R ⊆ D4 is given
by

1

nm|R|
∑
g∈R

fxptRTg (n,m). (37)
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Proof. We will use the convention that when we index over g, implicitly g ∈ R; when we
index over (a, b), implicitly (a, b) ∈ Z/nZ × Z/mZ; and when we index over

(
(a, b), g

)
,

implicitly
(
(a, b), g

)
∈ (Z/nZ× Z/mZ)⋊R.

Since fxptRTg (n,m) =
∑
(a,b)

X((a,b),g), we can see that

1

nm|R|
∑
g

fxptRTg (n,m) =
1

nm|R|
∑
g

∑
(a,b)

X((a,b),g)

=
1

|(Z/nZ× Z/mZ)⋊R|
∑

((a,b),g)

X((a,b),g),

which counts the number of distinct tilings by a direct application of Burnside’s lemma.

5.2 The n× n torus

Theorem 38. The sum over all cyclic shifts of the number of tilings of the n × n square
torus (denoted ST) by tile designs in T that are fixed by

(
(a, b), g

)
∈ (Z/nZ×Z/mZ)⋊R is

given by fxptSTg (n) where

fxptSTid (n) =
∑
d1|n

∑
d2|n

φ(d1)φ(d2)t
n2/ lcm(d1,d2)
id , (38)

fxptSTr2 (n) =


n2t

(n2−1)/2
id tr2 , if n is odd;

n2

(
3

4
t
n2/2
id +

1

4
t
n2/2−2
id t4r2

)
, if n is even.

(39)

fxptSTf (n) =


n
∑
d|n

φ(d)

(
1

2
t
n2/ lcm(2,d)
id +

1

2
t
(n2−2n)/ lcm(2,d)
id t

2n/d

fd

)
, if n is even;

n
∑
d|n

φ(d)t
(n2−n)/ lcm(2,d)
id t

n/d

fd , if n is odd.
(40)

fxptSTr2f (n) =


n
∑
d|n

φ(d)

(
1

2
t
n2/ lcm(2,d)
id +

1

2
t
(n2−2n)/ lcm(2,d)
id t

2n/d

(r2f)d

)
, if n is even;

n
∑
d|n

φ(d)t
(n2−n)/ lcm(2,d)
id t

n/d

(r2f)d
if n is odd.

(41)

Proof. These equations follow directly from Theorems 34, 35 and 36 by specifyingm = n.

Theorem 39. The sum over all cyclic shifts of the number of tilings of the n × n torus by
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tile designs in T that are fixed by (a, r) ∈ (Z/nZ× Z/mZ)⋊R is given by

fxptSTr (n) = fxptSTr3 (n) =


n2t

(n2−1)/4
id tr, if n is odd; (42a)

n2

(
1

2
t
n2/4
id +

1

2
t
(n2−4)/4
id t2rtr2

)
, if n is even. (42b)

Proof. First, note that the first equality comes from the fact that tilings that are stable
under g are stable under g−1.

Next, note that
(
(a, b), r

)
is an element of order 4, which follows from observing that(

(a, b), r
)
= ((a′, b′), r2) together with equation (33). Therefore cells appear in orbits of size

1, 2, or 4 under
(
(a, b), r

)
, and we will count how many cells appear in each.

We begin by counting cells (x, y) that are fixed by
(
(a, b), r

)
, that is they satisfy the

system of equations

x ≡ −y − b− 1 (mod n) (43)

y ≡ x+ a (mod n), (44)

where we can substitute y with x+ a in the first equation to get

x ≡ −x− a− b− 1 (mod n). (45)

Next we count cells (x, y) that are fixed by
(
(a, b), r

)2
, but are not solutions to the above

system of equations. These cells satisfy the system of equations

x ≡ −1− x− a− b (mod n) (46)

y ≡ −1− y − b+ a (mod n). (47)

Equation (42a). When n is odd, we can solve equation (45) using Lemma 25. We can see
that this has one solution when n is odd, so in this case there is one fixed cell, which
can be specified by any tile design that is stable under r.

We can add equations (46) and (47) and use Lemma 25 to see that this system has a
single solution when n is odd. However, this is identically the solution that specifies
the fixed point, so this does not describe an orbit of size 2.

Thus there are n2 − 1 cells that are partitioned into (n2 − 1)/4 orbits of size 4, which
can be specified by any tile design.

Equation (42b) When n is even, we can see again by Lemma 25, that there are two fixed
cells when a+ b is odd and none when a+ b is even.

When we check the number of orbits of size 2, Lemma 25 shows that we have 4 solutions
when a+ b is odd and none when a+ b is even, 2 of which were the fixed cells, resulting
in a single orbit of size 2.
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Therefore, we can specify a fixed tiling by specifying tile designs that are fixed under
r for each of the two fixed cells, specifying a tile design that is fixed under r2 for the
orbit of size 2, and specifying any tile designs for each of the (n2−4)/4 orbits of length
4.

Theorem 40.

fxptSTrf (n) = n
∑
d|n

φ(d)t
(n2−n)/(2d)
id t

n/d
rf , if d is odd; (48a)

φ(d)t
n2/(2d)
id , if d is even. (48b)

and

fxptSTr3f (n) = n
∑
d|n

φ(d)t
(n2−n)/(2d)
id t

n/d

r3f , if d is odd;

φ(d)t
n2/(2d)
id , if d is even.

(49)

Proof. These situations are essentially the same because rf and r3f are conjugate in D8, so
we prove the case for fxptSTrf (n).

We can see that

(x, y) ·
(
(a, b), rf

)2k
= (x+ k(a+ b), y + k(a+ b))

(x, y) ·
(
(a, b), rf

)2k+1
= (y + k(a+ b) + b, x+ k(a+ b) + a)

and we can ask: what is the least k such that either

x ≡ x+ k(a+ b) (mod n) (50)

y ≡ y + k(a+ b) (mod n) (51)

or

x ≡ y + k(a+ b) + b (mod n) (52)

y ≡ x+ k(a+ b) + a (mod n). (53)

In the first case, we want to know when k(a + b) ≡ 0 (mod n), which occurs first when
k = n/ gcd(a + b, n). We call this d and note that d | n. In the second case, we can add
equations (52) and (53) to get

(2k + 1)(a+ b) = 0 (mod n), (54)

which occurs when 2k+1 = n/ gcd(a+b, n). Again, this is a divisor of n, so we say 2k+1 = d
and note that this solution occurs only when d is odd.
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Equation (48a) Thus, when d is odd, we have the system of equations

x ≡ y +
d− 1

2
(a+ b) + b (mod n)

y ≡ x+
d− 1

2
(a+ b) + a (mod n),

which has n solutions: for each choice of x, there is a unique choice of y that satisfies
both equations. Each of these solutions correspond to a cell in one of the n/d orbits
of length d, each of which can be specified by any tile design that is stabilized by
(rf)d = rf , since d is odd.

The other n2 − n cells occur in one of the (n2 − n)/(2d) orbits of length 2d that are
solutions to the first system of equations. Each of these orbits can be specified by any
tile design at all.

The φ(d) comes from the fact that for any choice of a there are precisely φ(d) choices
for b such that n/ gcd(a+ b, n) = d.

Equation (48b) When d is even, there are no choices of (x, y) that simultaneously satisfy
equations (52) and (53), so all n2 of the tiles (x, y) occur in orbits of size 2d. Each of
these n2/(2d) orbits can be specified by any tile design.

Theorem 41. The number of distinct tilings of the n× n torus up to R ≤ D8 is given by

1

n2|R|
∑
g∈R

fxptSTg (n). (55)

Proof. The proof of this theorem is essentially identical to the proof of Theorem 37, which
follows by definition together with Burnside’s lemma.

Thus for any arbitrary R ⊆ D8 and set of tile designs, we have a formula to count the
number of tilings of the n× n torus up to R. A formula for each choice of R together with
each R-set generated by a single tile design can be found in Appendix A.5; the corresponding
illustrations can be found in Appendix B.5.

6 Next steps

In this section, we propose several different settings for studying similar kinds of problems.
Many of these may be subtle research problems, many may be good undergraduate research
problems, and many may be good homework problems for a combinatorics class. Many of
them would make for interesting additions to the On-Line Encyclopedia of Integer Sequences.

29



6.1 Rectangular tori under 90◦ rotation

We have used the n ×m torus as a model for a repeating tiling of the plane. However, in
the case that n ̸= m, we have only analyzed the case where we count tilings up to D4, the
dihedral group of the rectangle. However, for a given tile set, it is possible that a tiling of a
n×m and a tiling of a m×n torus describe the same tiling of the plane; an example of this
is given in Figure 11.

Conjecture 42. If a plane tiling described by an n × m torus is fixed under
(
(a, b), r

)
,(

(a, b), r3
)
,
(
(a, b), rf

)
, or

(
(a, b), r3f

)
, then it is equivalent to the tiling of a gcd(n,m) ×

gcd(n,m) torus.

Similarly, it might be interesting to count irreducible plane tilings: tilings of the plane
corresponding to a tiling of the n×m torus that do not correspond to a smaller torus.

Figure 11: A periodic tiling of the plane arising from a 6× 4 torus tiling that is fixed under
90◦ rotation. Notice that this tiling of the plane can also come from a 2× 2 torus.

6.2 Other regions of the square grid.

We also are interested in counting the number of ways of tiling shapes like Aztec diamonds
or centered square numbers, as shown in Figure 12.

Figure 12: Order 1, 2, 3, and 4 centered square figures in the square tiling of the plane.
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6.3 The Möbius strip and Klein bottle

Since we have looked at the orientable identifications of the grid, we are also interested in
the non-orientable identifications. The Möbius strip has a universal cover that is [0, 1]× R,
and the Klein bottle has a universal cover of R × R, so we can visualize them analogously
to how we visualized the cylinder and torus respectively. An illustration of a tiling of the
Möbius strip in Figure 13. An illustration of a tiling of the Klein bottle in Figure 14.

We are also interested in counting tilings of the real projective plane, but because the
universal cover is not the Euclidean plane, it cannot be illustrated in the same manner as
the Klein bottle and the torus.

(a) (b) (c)

(d)

Figure 13: (a) A 2× 2 Möbius strip repeated four times horizontally. Parts (b), (c), and (d)
show equivalent tilings under this symmetry.

6.4 Tilings of the triangular and hexagonal grids

While this paper explored tilings of the square grid and related settings, it is equally natural
to ask about tilings of the triangular grid and hexagonal grid. In particular, it would be
interesting to explore the number of tilings of (1) triangular regions of the triangular grid,
(2) hexagonal regions of the triangular grid, (3) triangular regions of the hexagonal grid, or
(4) hexagonal regions of the hexagonal grid, all of which are illustrated in Figure 15.

Hexagonal tile designs have appeared in several tile-based edge-matching games such as
Palago, Tantrix, Psyche-Paths, and Kaliko, which Van Ness has coined as “serpentiles” [30].
Triangular, hexagonal, and other polygonal tiles have been described by authors such as
Ahmed [1], Mitchell [21], Beveridge [2], Walter [31], Bosch [4], Browne [5], and Lord and
Ranganathan [19].

In the cases of tiling hexagons and triangles in the triangular grid, each can be extended
to a tiling of the plane, as described in Figure 16.
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(a) (b) (c)

Figure 14: Part (a) shows a 2 × 2 Klein bottle repeated three times horizontally and three
times vertically, with three 2 × 2 regions selected. Part (b) shows three tilings of the 2 × 2
grid that are equivalent under the torus action Z/2Z× Z/2Z. Part (c) shows a 2× 2 Klein
that is equivalent to the other Klein bottles under 180◦ rotation.

6.5 Other tilings of the Euclidean plane

Extending this idea even further, we might be interested in ways of placing multiple shapes
of tiles on various tilings of the Euclidean plane by convex polygons, such as the truncated
trihexagonal tiling, the snub square tiling, or the triakis triangular tiling.

Figure 17 shows an example of such a setup on a region of the truncated square grid.
Ahmed [1] and Mitchell [21] gave examples of tilings on the truncated square grid and other
Archimedean tilings of the Euclidean plane. as well as

6.6 Polyhedra

We are also interested in settings related to polyhedra. For instance, one could use various
tile designs to count the number of distinct tilings of a 2 × 2 × 2 Rubik’s cube-like object,
as illustrated in Figure 18.

Similarly, one could do this analysis on other polyhedra. In 1997, Colour of Strategy
released a puzzle called “Tantrix Rock,” which featured square and hexagonal tiles placed
on the vertices of a truncated octahedron [28]. Similar counting problems could be done
on the other Platonic solids and Archimedean solids in addition to Johnson solids, prisms,
antiprisms, and polyhedra whose faces are not regular polygons, such as the rhombic dodec-
ahedron.
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Figure 15: An illustration of a triangle in a triangular grid, a hexagon in a triangular grid,
a triangle in a hexagonal grid, and a hexagon in a hexagonal grid.

(a) (b)

Figure 16: (a) A triangular tiling of the plane tiled with repeating patterns of size 1 hexagons.
(b) Three equivalent tilings of the triangular hexagon under this symmetry.

6.7 Hyperbolic plane

In addition to the settings with no curvature (the plane) and positive curvature (polyhedra)
it is also interesting to look at this in the negative curvature setting of the hyperbolic plane,
as described by Dunham [10]. An example of this is illustrated in Figure 19.

6.8 Higher dimensional objects

We are also interested in computing higher-dimensional analogs, such as where the tile
designs are space-filling polyhedra. In the context of cubes, these have been considered by
Schattschneider [26], Lord and Ranganathan [19], Browne [6]
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(a) (b)

Figure 17: (a) A 4×3 section of the truncated square tiling, and (b) the square and octagonal
tile designs.

Figure 18: Five illustrations of 2× 2× 2 cubes tiled with Truchet tiles.

6.9 Permuting tile colors

In some illustrations, one may observe that two tilings are equivalent up to swapping the
colors of the tiles, as illustrated in Figure 20. In Appendix B.5, you may notice that for each
tiling in Figures 72 and 74, swapping the colors of the tiling is equivalent to a 180◦ rotation,
a property that we would like to understand better.
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Figure 19: An illustration showing tilings of the size 2 and size 3 iterations of the order-5
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Figure 20: The following six tilings would be considered equivalent under permuting colors.

A Sequences

This section of the appendix gives examples of all of the different sequences and tables of
integers that count tilings of the n × m grid, cylinder, and torus for all valid choices of
R ≤ D8 and all sets of tile designs consisting of a single orbit.

A.1 The n×m grid

This section gives examples of every choice of symmetry of the n × m grid together with
every essentially different set of tile designs that consists of a single orbit (or two orbits, in
the case of a fully symmetric tile). Each sequence is annotated with its corresponding entry
in the On-Line Encyclopedia of Integer Sequences. A table of all such sequences is given in
Table 1.

⟨r2, f⟩ ⟨f⟩ ∼= C2 ⟨r2⟩ ∼= C2

O⟨r2,f⟩
Table 43
A225910

— —

O⟨f⟩
Table 44
A368218

Table 47
A368221

—

O⟨r2⟩
Table 45
A368219

—
Table 49
A368223

O1

Table 46
A368220

Table 48
A368222

Table 50
A368224

Table 1: An index of tables that describe the number of tilings of the n×m grid.

A-1

https://oeis.org/A225910
https://oeis.org/A368218
https://oeis.org/A368221
https://oeis.org/A368219
https://oeis.org/A368223
https://oeis.org/A368220
https://oeis.org/A368222
https://oeis.org/A368224


A.1.1 Under horizontal and vertical reflection

When counting tilings of the grid up to ⟨r2, f⟩, we have that

tid = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨f⟩ + 2O⟨r2,f⟩
⟨r2f⟩ + 2O⟨r2,f⟩

⟨r2⟩ + 4O⟨r2,f⟩
1

(56)

tf = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨f⟩ (57)

tr2f = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨r2f⟩ (58)

tr2 = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨r2⟩ (59)

Proposition 43. When O⟨r2,f⟩
⟨r2,f⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n×m grid up to horizontal/vertical reflection by tile designs that
are fixed horizontal/vertical reflection is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 6 10 20 36
3 7 24 76 288 1072
6 24 168 1120 8640 66816
10 76 1120 16576 263680 4197376
20 288 8640 263680 8407040 268517376
36 1072 66816 4197376 268517376 17180065792

This is OEIS sequence A225910.

Proposition 44. When O⟨r2,f⟩
⟨f⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n ×m grid up to horizontal and vertical reflection by tiles that
are fixed under horizontal reflection but not vertical reflection is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 10 16 36
2 7 20 76 272 1072
3 24 144 1120 8448 66816
6 76 1056 16576 262656 4197376
10 288 8320 263680 8396800 268517376
20 1072 65792 4197376 268451840 17180065792

The transpose of this table is the number of tilings by tiles fixed under vertical reflection but
not horizontal reflection.
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This has been added to the OEIS as sequence A368218.

Proposition 45. When O⟨r2,f⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n×m grid up to horizontal and vertical reflection by tiles that are
fixed under 180◦ rotation, but not horizontal or vertical reflection is given by the following
table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 6 10 20
2 7 20 76 272 1072
3 20 136 1056 8256 65792
6 76 1056 16576 262656 4197376
10 272 8256 262656 8390656 268451840
20 1072 65792 4197376 268451840 17180065792

This table is symmetric across its main diagonal.

This has been added to the OEIS as sequence A368219.

Proposition 46. When O⟨r2,f⟩
1

= 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n ×m grid up to horizontal and vertical reflection by tiles that
are fixed only under id ∈ D4 is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 6 16 72 256
6 76 1056 16576 262656
16 1056 65536 4196352 268435456
72 16576 4196352 1073790976 274878431232
256 262656 268435456 274878431232 281474976710656
1056 4197376 17180000256 70368756760576 288230376688582656

This has been added to the OEIS as sequence A368220.

A.1.2 Under horizontal (equivalently vertical) reflection

When counting tilings of the grid up to ⟨f⟩ (equivalently ⟨r2f⟩), we have that

tid = O⟨f⟩
⟨f⟩ + 2O⟨f⟩

1
(60)

tf = O⟨f⟩
⟨f⟩ (61)
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Proposition 47. When O⟨f⟩
⟨f⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n×m grid up to horizontal reflection by two tiles that are fixed
under horizontal reflection is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 6 10 20 36
4 10 40 136 544 2080
8 36 288 2080 16640 131328
16 136 2176 32896 526336 8390656
32 528 16896 524800 16793600 536887296
64 2080 133120 8390656 537001984 34359869440

This has been added to the OEIS as sequence A368221.

Proposition 48. When O⟨f⟩
1

= 1, such as when

T =

{
,

}
,

the number of tilings of the n×m grid up to horizontal reflection by tiles that are fixed only
under id ∈ ⟨f⟩ is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 4 8 16 32
3 10 36 136 528 2080
4 32 256 2048 16384 131072
10 136 2080 32896 524800 8390656
16 512 16384 524288 16777216 536870912
36 2080 131328 8390656 536887296 34359869440

This has been added to the OEIS as sequence A368222.

A.1.3 Under 180◦ rotation

When counting tilings of the grid up to 180◦ rotation (S = ⟨r2⟩),

tid = O⟨r2⟩
⟨r2⟩ + 2O⟨r2⟩

1
(62)

tr2 = O⟨r2⟩
⟨r2⟩ (63)

Proposition 49. When O⟨r2⟩
⟨r2⟩ = 2 such as when

T =

{
,

}
,
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the number of tilings of the n×m grid up to 180◦ rotation by tiles that are fixed under 180◦

rotation is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 6 10 20 36
3 10 36 136 528 2080
6 36 272 2080 16512 131328
10 136 2080 32896 524800 8390656
20 528 16512 524800 16781312 536887296
36 2080 131328 8390656 536887296 34359869440

This has been added to the OEIS as sequence A368223.

Proposition 50. When O⟨r2⟩
1

= 1, such as when

T =

{
,

}
,

the number of tilings of the n×m grid up to 180◦ rotation by tiles that are fixed only under
id ∈ ⟨r2⟩.

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 10 16 36
3 10 36 136 528 2080
4 36 256 2080 16384 131328
10 136 2080 32896 524800 8390656
16 528 16384 524800 16777216 536887296
36 2080 131328 8390656 536887296 34359869440

This has been added to the OEIS as sequence A368224.

A.2 The n× n grid

This section gives examples of every choice of symmetry of the n × n grid together with
every essentially different set of tile designs that consists of a single orbit (or two orbits, in
the case of a fully symmetric tile). Each sequence is annotated with its corresponding entry
in the On-Line Encyclopedia of Integer Sequences. A table of all such sequences is given in
Table 2.

A.2.1 Under symmetries of the square

When counting tilings of the grid up to ⟨r, f⟩, we have that

tid = O⟨r,f⟩
⟨r,f⟩ + 2O⟨r,f⟩

⟨r2,f⟩ + 2O⟨r,f⟩
⟨r2,rf⟩ + 2O⟨r,f⟩

⟨r⟩ + 4O⟨r,f⟩
⟨f⟩ + 4O⟨r,f⟩

⟨rf⟩ + 4O⟨r,f⟩
⟨r2⟩ + 8O⟨r,f⟩

1

(64)

tf = tr2f = O⟨r,f⟩
⟨r,f⟩ + 2O⟨r,f⟩

⟨r2,f⟩ + 4O⟨r,f⟩
⟨f⟩ (65)

tr2 = O⟨r,f⟩
⟨r,f⟩ + 2O⟨r,f⟩

⟨r2,f⟩ + 2O⟨r,f⟩
⟨r2,rf⟩ + 2O⟨r,f⟩

⟨r⟩ + 4O⟨r,f⟩
⟨r2⟩ . (66)
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⟨r, f⟩ ⟨r2, rf⟩ ⟨r⟩ ⟨rf⟩

O⟨r,f⟩
Sequence 51
A054247

— — —

O⟨r2,f⟩
Sequence 52
A367522

— — —

O⟨r2,rf⟩
Sequence 53
A295229

Sequence 59
A367526

— —

O⟨r⟩
Sequence 54
A367523

—
Sequence 63
A047937

—

O⟨f⟩
Sequence 55
A367524

— — —

O⟨rf⟩
Sequence 56
A302484

Sequence 60
A367527

—
Sequence 66
A200564

O⟨r2⟩
Sequence 57
A367524

Sequence 61
A367528

Sequence 64
A367531

—

O1

Sequence 58
A367525

Sequence 62
A367529

Sequence 65
A367532

Sequence 67
A103488

Table 2: An index of tables that describe the number of tilings of the n× n grid.

Proposition 51. When O⟨r,f⟩
⟨r,f⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n× n grid up to D8 action by two distinct tile designs which are
fixed under all elements of D8 is given by

2, 6, 102, 8548, 4211744, 8590557312, 70368882591744, 2305843028004192256, . . .

This is OEIS sequence A054247.

Proposition 52. When O⟨r,f⟩
⟨r2,f⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n×n grid up to D8 action by tiles that are stable under horizontal
and vertical reflections is given by

1, 4, 84, 8292, 4203520, 8590033024, 70368815480832, 2305843010824323072, . . .

This has been added to the OEIS as sequence A367522.
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Proposition 53. When O⟨r,f⟩
⟨r2,rf⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n×n grid up to D8 action by tiles that are stable under diagonal
and antidiagonal reflections is given by

1, 6, 84, 8548, 4203520, 8590557312, 70368815480832, 2305843028004192256, . . .

This is OEIS sequence A295229.

Proposition 54. When O⟨r,f⟩
⟨r⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n × n grid up to D8 action by tiles that are stable under 90◦

rotations is given by

1, 4, 70, 8292, 4195360, 8590033024, 70368748374016, 2305843010824323072, . . .

This has been added to the OEIS as sequence A367523.

Proposition 55. When O⟨r,f⟩
⟨f⟩ = 1, (resp, O⟨r,f⟩

⟨r2f⟩ = 1) such as when

T =

{
, , ,

}
,

the number of tilings of the n×n grid up to D8 action by tiles that are stable under horizontal
(resp. vertical) reflections is given by

1, 39, 32896, 536895552, 140737496743936, 590295810384475521024, . . .

This has been added to the OEIS as sequence A367524.

Proposition 56. When O⟨r,f⟩
⟨rf⟩ = 1, (resp. O⟨r,f⟩

⟨r3f⟩ = 1) such as when

T =

{
, , ,

}
,

the number of tilings of the n× n grid up to D8 action by tiles that are stable under antidi-
agonal (resp. diagonal) reflections is given by

1, 43, 32896, 536911936, 140737496743936, 590295810401655390208, . . .
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This is OEIS Sequence A302484.

Proposition 57. When O⟨r,f⟩
⟨r2⟩ = 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n × n grid up to D8 action by tiles that are stable under 180◦

rotation is given by

1, 39, 32896, 536895552, 140737496743936, 590295810384475521024, . . .

Note that the above sequence agrees with sequence in Proposition 55, which has been
added to the OEIS as sequence A367524.

Proposition 58. When O⟨r,f⟩
1

= 1, such as when

T =

{
, , , , , , ,

}
,

the number of tilings of the n × n grid up to D8 action by tiles that are stable under 180◦

rotation is given by

1, 538, 16777216, 35184378381312, 4722366482869645213696, . . .

This has been added to the OEIS as sequence A367525.

A.2.2 Under diagonal and antidiagonal reflection

When counting tilings of the grid up to ⟨r2, f⟩, we have that

tid = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨f⟩ + 2O⟨r2,f⟩
⟨r2f⟩ + 2O⟨r2,f⟩

⟨r2⟩ (67)

tf = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨f⟩ (68)

tr2f = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨r2f⟩ (69)

tr2 = O⟨r2,f⟩
⟨r2,f⟩ + 2O⟨r2,f⟩

⟨r2⟩ (70)

Proposition 59. When O⟨r2,rf⟩
⟨r2,rf⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n×n grid up to diagonal and antidiagonal flipping by two colors
of tiles that are stable under this symmetry is given by

2, 9, 168, 16960, 8407040, 17180983296, 140737630961664, 4611686053860868096, . . .
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This has been added to the OEIS as sequence A367526.

Proposition 60. When O⟨r2,rf⟩
⟨rf⟩ = 1, (resp O⟨r2,rf⟩

⟨r3f⟩ = 1) such as when

T =

{
,

}
,

the number of tilings of the n× n grid up to diagonal and antidiagonal flipping by the orbit
of a tile that is stable under antidiagonal (resp. diagonal) flipping is given by

1, 7, 144, 16704, 8396800, 17180459008, 140737555464192, 4611686036680998912, . . .

This has been added to the OEIS as sequence A367527.

Proposition 61. When O⟨r2,rf⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n× n grid up to diagonal and antidiagonal flipping by the orbit
of a tile that is stable under 180◦ rotation is given by

1, 5, 136, 16448, 8390656, 17179934720, 140737496743936, 4611686019501129728, . . .

This has been added to the OEIS as sequence A367528.

Proposition 62. When O⟨r2,rf⟩
1

= 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n× n grid up to diagonal and antidiagonal flipping by the orbit
of a tile that is not stable under any of these symmetries is given by

1, 68, 65536, 1073758208, 281474976710656, 1180591620734591172608, . . .

This has been added to the OEIS as sequence A367529.

A.2.3 Under 90◦ rotation

Proposition 63. When O⟨r⟩
⟨r⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n× n grid up to 90◦ rotation by two colors of tiles that are fixed
under this symmetry are

2, 6, 140, 16456, 8390720, 17179934976, 140737496748032, 4611686019501162496, . . .

This is in the OEIS as A047937, which is column 2 of A343095.
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Proposition 64. When O⟨r⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n × n grid up to 90◦ rotation by tiles that are fixed under 180◦

rotations is given by

1, 6, 136, 16456, 8390656, 17179934976, 140737496743936, 4611686019501162496, . . .

This has been added to the OEIS as sequence A367531.

Proposition 65. When O⟨r⟩
1

= 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n× n grid up to 90◦ rotation by an asymmetric tile

1, 70, 65536, 1073758336, 281474976710656, 1180591620734591303680, . . .

This has been added to the OEIS as sequence A367532.

A.2.4 Under diagonal (equivalently antidiagonal) reflection

Proposition 66. When O⟨rf⟩
⟨rf⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n × n grid up to flipping over the antidiagonal by tiles that are
fixed under that symmetry is given by

2, 12, 288, 33280, 16793600, 34360786944, 281475110928384, 9223372071214514176, . . .

This is OEIS sequence A200564.

Proposition 67. When O⟨rf⟩
1

= 1, such as when

T =

{
,

}
,

the number of tilings of the n × n grid up to flipping over the antidiagonal by asymmetric
tiles is given by

1, 8, 256, 32768, 16777216, 34359738368, 281474976710656, 9223372036854775808, . . .

This is OEIS sequence A103488.
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A.3 The n×m cylinder

This section gives examples of every choice of symmetry of the n×m cylinder together with
every essentially different set of tile designs that consists of a single orbit (or two orbits, in
the case of a fully symmetric tile). Each sequence is annotated with its corresponding entry
in the On-Line Encyclopedia of Integer Sequences. A table of all such sequences is given in
Table 3.

⟨r2, f⟩ ⟨f⟩ ⟨r2f⟩ ⟨r2⟩ 1

OV
Table 68
A368253

— — — —

O⟨f⟩
Table 69
A368254

Table 73
A368258

— — —

O⟨r2f⟩
Table 70
A368255

—
Table 75
A368260

— —

O⟨r2⟩
Table 71
A368256

— —
Table 77
A368262

—

O1

Table 72
A368257

Table 74
A368259

Table 76
A368261

Table 78
A368263

Table 79
A368264

Table 3: An index of tables that describe the number of tilings of the n×m cylinder.

A.3.1 Under horizontal and vertical reflection

Proposition 68. When O⟨r2,f⟩
⟨r2,f⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n ×m cylinder up to horizontal and vertical reflection by tiles
that are fixed under those actions is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 6 10 20 36 72
3 7 24 76 288 1072 4224
4 13 74 430 3100 23052 179736
6 34 378 4756 70536 1083664 17053728
8 78 1884 53764 1689608 53762472 1718629200
13 237 11912 709316 44900448 2865540112 183287416192
18 687 77022 9608050 1227536100 157077883188 20105440563816

This has been added to the OEIS as sequence A368253.
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Proposition 69. When O⟨r2,f⟩
⟨f⟩ = 1, such as when

T =

{
,

}
the number of tilings of the n ×m cylinder up to horizontal and vertical reflection by tiles
that are fixed under horizontal reflection is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 10 16 36 64
2 7 20 76 272 1072 4160
2 13 60 430 2992 23052 178880
4 34 346 4756 70024 1083664 17045536
4 78 1768 53764 1685920 53762472 1718511232
8 237 11612 709316 44881328 2865540112 183286192832
9 687 75924 9608050 1227395664 157077883188 20105422588224

This has been added to the OEIS as sequence A368254.

Proposition 70. When O⟨r2,f⟩
⟨r2f⟩ = 1, such as when

T =

{
,

}
the number of tilings of the n ×m cylinder up to horizontal and vertical reflection by tiles
that are fixed under vertical reflection is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 6 10 20 36
2 5 14 44 152 560 2144
2 9 50 366 2780 22028 175128
4 26 298 4244 66184 1050896 16787488
4 62 1692 52740 1679368 53696936 1718039376
9 205 11272 701124 44761184 2863442960 183253337472
10 623 75486 9591666 1227208420 157073688884 20105365066344

This has been added to the OEIS as sequence A368255.

Proposition 71. When O⟨r2,f⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
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the number of tilings of the n ×m cylinder up to horizontal and vertical reflection by tiles
that are fixed under 180◦ rotation is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 6 10 20 36
2 5 14 44 152 560 2144
2 9 52 366 2800 22028 175296
4 26 298 4244 66184 1050896 16787488
4 62 1704 52740 1679776 53696936 1718052480
8 205 11228 701124 44758448 2863442960 183253162688
9 623 75412 9591666 1227199056 157073688884 20105363867968

This has been added to the OEIS as sequence A368256.

Proposition 72. When O⟨r2,f⟩
1

= 1, such as when

T =

{
, , ,

}
the number of tilings of the n×m cylinder up to horizontal and vertical reflection by asym-
metric tiles is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 6 16 72 256
4 44 544 8384 131584
6 366 21856 1399512 89478656
23 4244 1050128 268472384 68719870208
52 52740 53687104 54975896016 56294995342336
194 701124 2863399264 11728132423744 48038396383286784

This has been added to the OEIS as sequence A368257.

A.3.2 Under horizontal reflection

Proposition 73. When O⟨f⟩
⟨f⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n×m cylinder up to horizontal reflection two distinct tiles that
are stable under horizontal reflection is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 4 8 16 32 64 128
3 10 36 136 528 2080 8256
4 20 120 816 5984 45760 357760
6 55 666 9316 139656 2164240 34084896
8 136 3536 106912 3371840 107505280 3437022464
13 430 23052 1415896 89751728 5730905440 366571686592
18 1300 151848 19206736 2454791328 314154568000 40210845176448
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This has been added to the OEIS as sequence A368258.

Proposition 74. When O⟨f⟩
1

= 1, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n ×m cylinder up to horizontal reflection by a tile that is not
stable under horizontal reflection is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 4 8 16 32 64
2 6 20 72 272 1056 4160
2 12 88 688 5472 43712 349568
4 39 538 8292 131464 2098704 33560608
4 104 3280 104864 3355456 107374208 3435973888
9 366 22028 1399512 89489584 5726711136 366504577728
10 1172 149800 19173968 2454267040 314146179392 40210710958720

This has been added to the OEIS as sequence A368259.

A.3.3 Under vertical reflection

Proposition 75. When O⟨r2f⟩
⟨r2f⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n×m cylinder up to vertical reflection by two distinct tiles that
are stable under vertical reflection is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 6 10 20 36 72
3 7 24 76 288 1072 4224
4 14 100 700 5560 43800 350256
6 40 564 8296 131856 2098720 33566784
8 108 3384 104968 3358736 107377488 3436078752
14 362 22288 1399176 89505984 5726689312 366505626368
20 1182 150972 19175140 2454416840 314146329192 40210730132688

This has been added to the OEIS as sequence A368260.

Proposition 76. When O⟨r2f⟩
1

= 1, such as when

T =

{
,

}
or T =

{
,

}
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the number of tilings of the n×m cylinder up to vertical reflection by a tile that is not stable
under vertical reflection is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 10 16 36 64
2 7 20 76 272 1072 4160
2 14 88 700 5472 43800 349568
4 40 532 8296 131344 2098720 33558592
4 108 3280 104968 3355456 107377488 3435973888
8 362 21944 1399176 89484128 5726689312 366504228224
10 1182 149800 19175140 2454267040 314146329192 40210710958720

This has been added to the OEIS as sequence A368261.

A.3.4 Under 180◦ rotation

Proposition 77. When O⟨r2⟩
⟨r2⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n×m cylinder up to 180◦ rotation by two distinct tiles that are
stable under 180◦ rotation is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 6 10 20 36 72
3 7 24 76 288 1072 4224
4 16 104 720 5600 43968 350592
6 43 570 8356 131976 2099728 33568800
8 120 3408 105376 3359552 107390592 3436104960
13 382 22284 1400536 89505968 5726776672 366505626304
18 1236 150824 19182160 2454398112 314147227968 40210727735936

This has been added to the OEIS as sequence A368262.

Proposition 78. When O⟨r2⟩
1

= 1, such as when

T =

{
,

}
or T =

{
,

}
the number of tilings of the n ×m cylinder up to 180◦ rotation by a tiles that is not stable
under 180◦ rotation is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 10 16 36 64
2 7 20 76 272 1072 4160
2 16 88 720 5472 43968 349568
4 43 538 8356 131464 2099728 33560608
4 120 3280 105376 3355456 107390592 3435973888
9 382 22028 1400536 89489584 5726776672 366504577728
10 1236 149800 19182160 2454267040 314147227968 40210710958720
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This has been added to the OEIS as sequence A368263.

A.3.5 Under cylindrical action only

Proposition 79. When O1

1
= 2, such as when

T =

{
,

}
the number of tilings of the n×m cylinder by two distinct tiles is given by

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 4 8 16 32 64 128
3 10 36 136 528 2080 8256
4 24 176 1376 10944 87424 699136
6 70 1044 16456 262416 4195360 67113024
8 208 6560 209728 6710912 214748416 6871947776
14 700 43800 2796976 178962784 11453291200 733008106880
20 2344 299600 38347936 4908534080 628292358784 80421421917440

This has been added to the OEIS as sequence A368264.

A.4 The n×m torus

This section gives examples of every choice of symmetry of the n ×m torus together with
every essentially different set of tile designs that consists of a single orbit (or two orbits, in
the case of a fully symmetric tile). Each sequence is annotated with its corresponding entry
in the On-Line Encyclopedia of Integer Sequences. A table of all such sequences is given in
Table 4.

⟨r2, f⟩ ⟨f⟩ ⟨r2⟩ 1

OV
Table 80
A222188

— — —

O⟨f⟩
Table 81
A368302

Table 84
A368305

— —

O⟨r2⟩
Table 82
A368303

—
Table 86
A368307

—

O1

Table 83
A368304

Table 85
A368306

Table 87
A368308

Table 88
A184271

Table 4: An index of tables that describe the number of tilings of the n×m torus.
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A.4.1 Under horizontal and vertical reflection

Proposition 80. When O⟨r2,f⟩
⟨r2,f⟩ = 2, such as when

T =

{
,

}
the number of tilings of the n×m torus up to horizontal and vertical reflection by two distinct
tiles with both horizontal and vertical reflectional symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 4 6 8 13 18
3 7 13 34 78 237 687
4 13 36 158 708 4236 26412
6 34 158 1459 14676 184854 2445918
8 78 708 14676 340880 8999762 245619576
13 237 4236 184854 8999762 478070832 26185264801
18 687 26412 2445918 245619576 26185264801 2872221202512

This is given by OEIS sequence A222188.

Proposition 81. When O⟨r2,f⟩
⟨f⟩ = 1, such as when

T =

{
,

}
the number of tilings of the n × m torus up to horizontal and vertical reflection by a tile
horizontal (but not vertical) reflectional symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 2 4 4 9 10
2 5 9 26 62 205 623
2 8 22 120 600 3936 25556
4 22 126 1267 14164 181782 2437726
4 44 592 13600 337192 8965354 245501608
8 135 3936 178366 8980642 477655760 26184041441
9 362 25314 2404372 245479140 26179947021 2872203226920

This has been added to the OEIS as sequence A368302.

Proposition 82. When O⟨r2,f⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
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the number of tilings of the n×m torus up to horizontal and vertical reflection by a tile with
180◦ rotational symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 2 4 4 8 9
2 5 8 22 44 135 362
2 8 24 120 612 3892 25482
4 22 120 1203 13600 177342 2404372
4 44 612 13600 337600 8962618 245492244
8 135 3892 177342 8962618 477371760 26179772237
9 362 25482 2404372 245492244 26179772237 2872202028544

This has been added to the OEIS as sequence A368303.

Proposition 83. When O⟨r2,f⟩
1

= 1, such as when

T =

{
, , ,

}
the number of tilings of the n×m torus up to horizontal and vertical reflection by a tile with
no symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 4 6 23 52
4 28 194 2196 26524
6 194 7296 350573 17895736
23 2196 350573 67136624 13744131446
52 26524 17895736 13744131446 11258999068672
194 351588 954495904 2932037300956 9607679419823148

This has been added to the OEIS as sequence A368304.

A.4.2 Under horizontal (equivalently vertical) reflection

Proposition 84. When O⟨f⟩
⟨f⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
,

the number of tilings of the n×m torus up to horizontal reflection by two distinct tiles with
horizontal reflectional symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 4 6 8 14 20
3 7 14 40 108 362 1182
4 13 44 218 1200 7700 51112
6 34 226 2386 27936 361244 4869276
8 78 1184 26892 674384 17920876 491003216
13 237 7700 354680 17950356 955180432 52367383810
18 687 50628 4804062 490958280 52359294854 5744406453840
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This has been added to the OEIS as sequence A368305.

Proposition 85. When O⟨f⟩
1

= 1, such as when

T =

{
,

}
,

the number of tilings of the n × m torus up to horizontal reflection by a tile that does not
have horizontal reflectional symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 2 4 4 8 10
2 5 8 24 56 190 596
2 9 32 186 1096 7356 49940
4 26 182 2130 26296 350316 4794376
4 62 1096 26380 671104 17899020 490853416
9 205 7356 350584 17897924 954481360 52357796826
10 623 49940 4795870 490853416 52357896710 5744387279872

This has been added to the OEIS as sequence A368306.

A.4.3 Under 180◦ rotation

Proposition 86. When O⟨r2⟩
⟨r2⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
,

the number of tilings of the n ×m torus up to 180◦ rotation by two distinct tiles with 180◦

rotational symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 4 6 8 13 18
3 7 13 34 78 237 687
4 13 48 224 1224 7696 50964
6 34 224 2302 27012 353384 4806078
8 78 1224 27012 675200 17920860 490984488
13 237 7696 353384 17920860 954677952 52359294790
18 687 50964 4806078 490984488 52359294790 5744404057088

This has been added to the OEIS as sequence A368307.

Proposition 87. When O⟨r2⟩
1

= 1, such as when

T =

{
,

}
or T =

{
,

}
,
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the number of tilings of the n×m torus up to 180◦ rotation by a tile without 180◦ rotational
symmetry is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 2 4 4 9 10
2 5 9 26 62 205 623
2 9 32 192 1096 7440 49940
4 26 192 2174 26500 351336 4797886
4 62 1096 26500 671104 17904476 490853416
9 205 7440 351336 17904476 954546880 52358246214
10 623 49940 4797886 490853416 52358246214 5744387279872

This has been added to the OEIS as sequence A368308.

A.4.4 Under toroidal action only

Proposition 88. When O1

1
= 2, such as when

T =

{
,

}
,

the number of tilings of the n×m grid up to cyclic shifting of rows and columns by any two
distinct tile designs is given by the following table:

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 4 6 8 14 20
3 7 14 40 108 362 1182
4 14 64 352 2192 14624 99880
6 40 352 4156 52488 699600 9587580
8 108 2192 52488 1342208 35792568 981706832
14 362 14624 699600 35792568 1908897152 104715443852
20 1182 99880 9587580 981706832 104715443852 11488774559744

This is OEIS sequence A184271.

A.5 The n× n torus

This section gives examples of every choice of symmetry of the n × n torus together with
every essentially different set of tile designs that consists of a single orbit (or two orbits, in
the case of a fully symmetric tile). Each sequence is annotated with its corresponding entry
in the On-Line Encyclopedia of Integer Sequences. A table of all such sequences is given in
Table 5.
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⟨r, f⟩ ⟨r2, rf⟩ ⟨r⟩ ⟨rf⟩

O⟨r,f⟩
Sequence 89
A255016

— — —

O⟨r2,f⟩
Sequence 90
A367533

— — —

O⟨r2,rf⟩
Sequence 91
A295223

Sequence 97
A368139

— —

O⟨r⟩
Sequence 92
A367534

—
Sequence 101
A368143

—

O⟨f⟩
Sequence 93
A367535

— — —

O⟨rf⟩
Sequence 94
A367536

Sequence 98
A368140

—
Sequence 104
A255015

O⟨r2⟩
Sequence 95
A367537

Sequence 99
A368141

Sequence 102
A368144

—

O1

Sequence 96
A367538

Sequence 100
A368142

Sequence 103
A368145

Sequence 105
A367530

Table 5: An index of tables that describe the number of tilings of the n× n torus.

A.5.1 Under the symmetries of the square

Proposition 89. When O⟨r,f⟩
⟨r,f⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n× n torus up to symmetries of the square by two distinct tiles
are fixed under all symmetries of the square is given by

2, 6, 26, 805, 172112, 239123150, 1436120190288, 36028817512382026, . . .

This is OEIS sequence A255016.

Proposition 90. When O⟨r,f⟩
⟨r2,f⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under horizontal and vertical reflections is given by

1, 4, 18, 733, 170440, 239035502, 1436110601256, 36028815364865610, . . .
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This has been added to the OEIS as sequence A367533.

Proposition 91. When O⟨r,f⟩
⟨r2,rf⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under diagonal and antidiagonal reflections is given by

1, 4, 18, 669, 170440, 238773358, 1436110601256, 36028800332480074, . . .

This is OEIS sequence A295223.

Proposition 92. When O⟨r,f⟩
⟨r⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under 90◦ rotations is given by

1, 4, 14, 613, 168832, 238686222, 1436101016320, 36028798185029194, . . .

This has been added to the OEIS as sequence A367534.

Proposition 93. When O⟨r,f⟩
⟨f⟩ = 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under horizontal (respectively vertical) reflections is given by

1, 16, 3692, 33570410, 5629501212064, 16397105856182791856, . . .

This has been added to the OEIS as sequence A367535.

Proposition 94. When O⟨r,f⟩
⟨rf⟩ = 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under antidiagonal (respectively diagonal) reflections is given by

1, 17, 3692, 33572458, 5629501212064, 16397105857614447792, . . .
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This has been added to the OEIS as sequence A367536.

Proposition 95. When O⟨r,f⟩
⟨r2⟩ = 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under 180◦ rotations is given by

1, 23, 3776, 33601130, 5629507922944, 16397105889110874288, . . .

This has been added to the OEIS as sequence A368137.

Proposition 96. When O⟨r,f⟩
1

= 1, such as when

T =

{
, , , , , , ,

}
,

the number of tilings of the n× n torus up to symmetries of the square by a tile that is fixed
under only the identity is given by

1, 154, 1864192, 2199026796168, 188894659314785812480, . . .

This has been added to the OEIS as sequence A368138. The 2 × 2 case had been
enumerated by Dan Davis [8].

A.5.2 Under diagonal and antidiagonal reflection

Proposition 97. When O⟨r2,rf⟩
⟨r2,rf⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
,

the number of tilings of the n × n torus up to diagonal and antidiagonal rotations by two
distinct tiles that are symmetric under both reflections is given by

2, 6, 36, 1282, 340880, 477513804, 2872221202512, 72057600262282324, . . .

This has been added to the OEIS as sequence A368139.

Proposition 98. When O⟨r2,rf⟩
⟨rf⟩ = 1, such as when

T =

{
,

}
the number of tilings of the n × n torus up to diagonal and antidiagonal rotations by a tile
that is symmetric only under antidiagonal reflections is given by

1, 4, 22, 1154, 337192, 477360876, 2872203226920, 72057597041056852, . . .
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This has been added to the OEIS as sequence A368140.

Proposition 99. When O⟨r2,rf⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
the number of tilings of the n × n torus up to diagonal and antidiagonal rotations by a tile
that is symmetric only under 180◦ rotations is given by

1, 4, 24, 1154, 337600, 477339020, 2872202028544, 72057595967315028, . . .

This has been added to the OEIS as sequence A368141.

Proposition 100. When O⟨r2,rf⟩
1

= 1, such as when

T =

{
, , ,

}
the number of tilings of the n × n torus up to diagonal and antidiagonal rotations by a tile
that is asymmetric is given by

1, 23, 7296, 67124308, 11258999068672, 32794211700912270688, . . .

This has been added to the OEIS as sequence A368142.

A.5.3 Under 90◦ rotation

Proposition 101. When O⟨r⟩
⟨r⟩ = 2, such as when

T =

{
,

}
or T =

{
,

}
,

the number of tilings of the n × n torus up to 90◦ rotations by two distinct tiles that are
symmetric under 90◦ rotations is given by

2, 6, 28, 1171, 337664, 477339616, 2872202032640, 72057595967392816, . . .

This has been added to the OEIS as sequence A368143.

Proposition 102. When O⟨r⟩
⟨r2⟩ = 1, such as when

T =

{
,

}
,

the number of tilings of the n×n torus up to 90◦ rotations by a tile that is symmetric under
180◦ rotations is given by

1, 4, 24, 1155, 337600, 477339104, 2872202028544, 72057595967327280, . . .

A-24

https://oeis.org/A368140
https://oeis.org/A368141
https://oeis.org/A368142
https://oeis.org/A368143


This has been added to the OEIS as sequence A368144.

Proposition 103. When O⟨r⟩
1

= 1, such as when

T =

{
, , ,

}
,

the number of tilings of the n×n torus up to 90◦ rotations by a tile asymmetric with respect
to rotations is given by

1, 23, 7296, 67124336, 11258999068672, 32794211700912314368, . . .

This has been added to the OEIS as sequence A368145, and the 2×2 case had previously
been enumerated by hand by M. C. Escher [26].

A.5.4 Under diagonal (equivalently antidiagonal) reflection

Proposition 104. When O⟨rf⟩
⟨rf⟩ = 2, such as when

T =

{
,

}
,

the number of tilings of the n×n torus up to transposition by two distinct tiles that are fixed
under is given by

2, 6, 44, 2209, 674384, 954623404, 5744406453840, 144115192471496836, . . .

This is OEIS sequence A255015.

Proposition 105. When O⟨rf⟩
1

= 1, such as when

T =

{
,

}
, or T =

{
,

}
,

the number of tilings of the n×n torus up to transposition by tiles that are asymmetric with
respect to this transposition is given by

1, 4, 32, 2081, 671104, 954448620, 5744387279872, 144115188176529540, . . .

This has been added to the OEIS as sequence A367530.
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B Illustrations

This section of the appendix gives illustrations corresponding to all of the sequences and
tables described in Appendix A, which shows an example of the tilings arising from all valid
choices of R ≤ D8 and all sets of tile designs consisting of a single orbit.

B.1 The n×m grid

B.1.1 Under horizontal and vertical reflection

Illustration 106. [This is shown in Table 43.]

Figure 21: The 24 ways of tiling the 2× 3 grid up to D4 = ⟨r2, f⟩ from a set of tile designs
that consists of two orbits both of which contain an element with stabilizer subgroup D4.

Illustration 107. [This is shown in Table 44.]

Figure 22: The 24 ways of tiling the 3× 2 grid up to D4 = ⟨r2, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨f⟩ ≤ D4.
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Illustration 108. [This is shown in Table 45.]

Figure 23: The 20 ways of tiling the 3× 2 grid up to D4 = ⟨r2, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ D4.

Illustration 109. [This is shown in Table 46.]

Figure 24: The 76 ways of tiling the 2× 2 grid up to D4 = ⟨r2, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ D4.

B.1.2 Under horizontal (equivalently vertical) reflection

Illustration 110. [This is shown in Table 47.]

Figure 25: The 40 ways of tiling the 3 × 2 grid up to ⟨f⟩ from a set of tile designs that
consists of two orbits both of which contain an element with stabilizer subgroup ⟨f⟩.
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Illustration 111. [This is shown in Table 48.]

Figure 26: The 32 ways of tiling the 3 × 2 grid up to ⟨f⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨f⟩.

B.1.3 Under 180◦ rotation

Illustration 112. [This is shown in Table 49.]

Figure 27: The 36 3× 2 grids up to ⟨r2⟩ from a set of tile designs that consists of two orbits
both of which contain an element with stabilizer subgroup ⟨r2⟩.
Illustration 113. [This is shown in Table 50.]

Figure 28: The 10 2× 2 grids up to ⟨r2⟩ from a set of tile designs that consists of one orbit
containing an element whose stabilizer subgroup is 1 ≤ ⟨r2⟩.

B.2 The n× n grid

B.2.1 Under symmetries of the square

Illustration 114. [This is shown in Sequence 51.]

Figure 29: The 6 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set of tile
designs that consists of two orbits both of which contain an element with stabilizer subgroup
D8.
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Illustration 115. [This is shown in Sequence 52.]

Figure 30: The 4 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set of
tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨r2, f⟩ ≤ D8.

Illustration 116. [This is shown in Sequence 53.]

Figure 31: The 6 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set of
tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨r2, rf⟩ ≤ D8.

Illustration 117. [This is shown in Sequence 54.]

Figure 32: The 70 distinct ways of tiling the 3 × 3 grid up to D8 = ⟨r, f⟩ from a set of
tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨r⟩ ≤ D8.
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Illustration 118. [This is shown in Sequence 55.]

Figure 33: The 39 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set of
tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨f⟩ ≤ D8.

Illustration 119. [This is shown in Sequence 56.]

Figure 34: The 43 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set of
tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨rf⟩ ≤ D8.

Illustration 120. [This is shown in Sequence 57.]

Figure 35: The 39 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set of
tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨r2⟩ ≤ D8.
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Illustration 121. [This is shown in Sequence 58.]

Figure 36: 50 of the 538 distinct ways of tiling the 2 × 2 grid up to D8 = ⟨r, f⟩ from a set
of tile designs that consists of one orbit containing an element whose stabilizer subgroup is
1 ≤ D8.

B.2.2 Under diagonal and antidiagonal reflection

Illustration 122. [This is shown in Sequence 59.]

Figure 37: The 168 tilings of the 3 × 3 grid up to ⟨r2, rf⟩ from a set of tile designs that
consists of two orbits both of which contain an element with stabilizer subgroup ⟨r2, rf⟩.
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Illustration 123. [This is shown in Sequence 60.]

Figure 38: The 144 tilings of the 3 × 3 grid up to ⟨r2, rf⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is ⟨rf⟩ ≤ ⟨r2, rf⟩.
Illustration 124. [This is shown in Sequence 61.]

Figure 39: The 5 tilings of the 2×2 grid up to ⟨r2, rf⟩ from a set of tile designs that consists
of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ ⟨r2, rf⟩.
Illustration 125. [This is shown in Sequence 62.]

Figure 40: The 68 tilings of the 2 × 2 grid up to ⟨r2, rf⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨r2, rf⟩.
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B.2.3 Under 90◦ rotation

Illustration 126. [This is shown in Sequence 63.]

Figure 41: The 140 tilings of the 3× 3 grid up to ⟨r⟩ from a set of tile designs that consists
of two orbits both of which contain an element with stabilizer subgroup ⟨r⟩.
Illustration 127. [This is shown in Sequence 64.]

Figure 42: The 136 tilings of the 3× 3 grid up to ⟨r⟩ from a set of tile designs that consists
of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ ⟨r⟩.
Illustration 128. [This is shown in Sequence 65.]

Figure 43: The 70 tilings of the 2× 2 grid up to ⟨r⟩ from a set of tile designs that consists
of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨r⟩.
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B.2.4 Under diagonal (equivalently antidiagonal) reflection

Illustration 129. [This is shown in Sequence 66.]

Figure 44: The 12 tilings of the 2× 2 grid up to ⟨rf⟩ from a set of tile designs that consists
of two orbits both of which contain an element with stabilizer subgroup ⟨rf⟩.
Illustration 130. [This is shown in Sequence 67.]

Figure 45: The 8 tilings of the 2× 2 grid up to ⟨rf⟩ from a set of tile designs that consists
of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨rf⟩.

B.3 The n×m cylinder

B.3.1 Under horizontal and vertical reflection

Illustration 131. [This is shown in Table 68.]

Figure 46: The 24 distinct ways of tiling the 2 × 3 cylinder up to D4 = ⟨r2, f⟩ from a set
of tile designs that consists of two orbits both of which contain an element with stabilizer
subgroup D4.
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Illustration 132. [This is shown in Table 69.]

Figure 47: The 20 distinct ways of tiling the 2 × 3 cylinder up to D4 = ⟨r2, f⟩ from a set
of tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨f⟩ ≤ D4.

Illustration 133. [This is shown in Table 70.]

Figure 48: The 26 distinct ways of tiling the 4 × 2 cylinder up to D4 = ⟨r2, f⟩ from a set
of tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨r2f⟩ ≤ D4.

Illustration 134. [This is shown in Table 71.]

Figure 49: The 9 distinct ways of tiling the 3 × 2 cylinder up to D4 = ⟨r2, f⟩ from a set
of tile designs that consists of one orbit containing an element whose stabilizer subgroup is
⟨r2⟩ ≤ D4.
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Illustration 135. [This is shown in Table 72.]

Figure 50: The 20 distinct ways of tiling the 2 × 2 cylinder up to D4 = ⟨r2, f⟩ from a set
of tile designs that consists of one orbit containing an element whose stabilizer subgroup is
1 ≤ D4.

B.3.2 Under horizontal reflection

Illustration 136. [This is shown in Table 73.]

Figure 51: The 20 distinct ways of tiling the 3×2 cylinder up to ⟨f⟩ from a set of tile designs
that consists of two orbits both of which contain an element with stabilizer subgroup ⟨f⟩.
Illustration 137. [This is shown in Table 74.]

Figure 52: The 20 distinct ways of tiling the 2×3 cylinder up to ⟨f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ D4.
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B.3.3 Under vertical reflection

Illustration 138. [This is shown in Table 75.]

Figure 53: The 24 distinct ways of tiling the 2 × 3 cylinder up to ⟨r2f⟩ from a set of tile
designs that consists of two orbits both of which contain an element with stabilizer subgroup
⟨r2f⟩.
Illustration 139. [This is shown in Table 76.]

Figure 54: The 20 distinct ways of tiling the 2 × 3 cylinder up to ⟨r2f⟩ from a set of tile
designs that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ D4.

Illustration 140. [This is shown in Table 77.]

Figure 55: The 16 distinct ways of tiling the 3 × 2 cylinder up to ⟨r2⟩ from a set of tile
designs that consists of two orbits both of which contain an element with stabilizer subgroup
⟨r2⟩.
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Illustration 141. [This is shown in Table 78.]

Figure 56: The 20 distinct ways of tiling the 2×3 cylinder up to ⟨r2⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨r2⟩.

B.3.4 Under cylindrical action only

Illustration 142. [This is shown in Table 79.]

Figure 57: The 10 distinct ways of tiling the 2 × 2 cylinder from a set of tile designs that
consists of two orbits, each containing a single tile design.

B.4 The n×m torus

B.4.1 Under horizontal and vertical reflection

Illustration 143. [This is shown in Table 80.]

Figure 58: The 13 distinct ways of tiling the 3×2 torus up to ⟨r2, f⟩ from a set of tile designs
that consists of two orbits both of which contain an element with stabilizer subgroup D4.
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Illustration 144. [This is shown in Table 81.]

Figure 59: The 8 distinct ways of tiling the 3×2 torus up to ⟨r2, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨f⟩ ≤ D4.

Illustration 145. [This is shown in Table 82.]

Figure 60: The 8 distinct ways of tiling the 3×2 torus up to ⟨r2, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ D4.

Illustration 146. [This is shown in Table 83.]

Figure 61: The 28 distinct ways of tiling the 2×2 torus up to ⟨r2, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ D4.
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B.4.2 Under horizontal (equivalently vertical) reflection

Illustration 147. [This is shown in Table 84.]

Figure 62: The 7 distinct ways of tiling the 2 × 2 torus up to ⟨f⟩ from a set of tile designs
that consists of two orbits both of which contain an element with stabilizer subgroup ⟨f⟩.
Illustration 148. [This is shown in Table 85.]

Figure 63: The 9 distinct ways of tiling the 3 × 2 torus up to ⟨f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨f⟩.

B.4.3 Under 180◦ rotation

Illustration 149. [This is shown in Table 86.]

Figure 64: The 13 distinct ways of tiling the 3× 2 torus up to ⟨f⟩ from a set of tile designs
that consists of two orbits both of which contain an element with stabilizer subgroup ⟨f⟩.
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Illustration 150. [This is shown in Table 87.]

Figure 65: The 9 distinct ways of tiling the 3 × 2 torus ⟨r2⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨r2⟩.

B.4.4 Under toroidal action only

Illustration 151. [This is shown in Table 88.]

Figure 66: The 14 distinct ways of tiling the 3×2 torus from a set of tile designs that consists
of two orbits, each containing a single tile design.

B.5 The n× n torus

B.5.1 Under the symmetries of the square

Illustration 152. [This is shown in Sequence 89.]

Figure 67: The 26 ways of tiling the 3× 3 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of two orbits both of which contain an element with stabilizer subgroup D8.
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Illustration 153. [This is shown in Sequence 90.]

Figure 68: The 18 ways of tiling the 3× 3 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨r2, f⟩ ≤ D8.

Illustration 154. [This is shown in Sequence 91.]

Figure 69: The 18 ways of tiling the 3× 3 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨r2, rf⟩ ≤ D8.

Illustration 155. [This is shown in Sequence 92.]

Figure 70: The 4 ways of tiling the 2 × 2 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨r⟩ ≤ D8.
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Illustration 156. [This is shown in Sequence 93.]

Figure 71: The 16 ways of tiling the 2× 2 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨f⟩ ≤ D8.

Illustration 157. [This is shown in Sequence 94.]

Figure 72: The 17 ways of tiling the 2× 2 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨rf⟩ ≤ D8.
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Illustration 158. [This is shown in Sequence 95.]

Figure 73: The 23 ways of tiling the 2× 2 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ D8.

Illustration 159. [This is shown in Sequence 96.]

Figure 74: The 154 ways of tiling the 2× 2 torus up to D8 = ⟨r, f⟩ from a set of tile designs
that consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ D8.
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B.5.2 Under diagonal and antidiagonal reflection

Illustration 160. [This is shown in Sequence 97.]

Figure 75: The 36 ways of tiling the 3× 3 torus up to ⟨r2, rf⟩ from a set of tile designs that
consists of two orbits both of which contain an element with stabilizer subgroup ⟨r2, rf⟩.
Illustration 161. [This is shown in Sequence 98.]

Figure 76: The 22 ways of tiling the 3× 3 torus up to ⟨r2, rf⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is ⟨rf⟩ ≤ ⟨r2, rf⟩.
Illustration 162. [This is shown in Sequence 99.]

Figure 77: The 24 ways of tiling the 3× 3 torus up to ⟨r2, rf⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ ⟨r2, rf⟩.
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Illustration 163. [This is shown in Sequence 100.]

Figure 78: The 23 ways of tiling the 2× 2 torus up to ⟨r2, rf⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨r2, rf⟩.

B.5.3 Under 90◦ rotation

Illustration 164. [This is shown in Sequence 101.]

Figure 79: The 28 ways of tiling the 3 × 3 torus up to ⟨r⟩ from a set of tile designs that
consists of two orbits both of which contain an element with stabilizer subgroup ⟨r⟩.
Illustration 165. [This is shown in Sequence 102.]

Figure 80: The 24 ways of tiling the 3 × 3 torus up to ⟨r⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is ⟨r2⟩ ≤ ⟨r⟩.
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Illustration 166. [This is shown in Sequence 103.]

Figure 81: The 23 ways of tiling the 2 × 2 torus up to ⟨r⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨r⟩. (This was
first enumerated by M. C. Escher in May 1942, and the tile designs illustrated here are based
on Escher’s designs [25, p. 44].)
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B.5.4 Under diagonal (equivalently antidiagonal) reflection

Illustration 167. [This is shown in Sequence 104.]

Figure 82: The 44 ways of tiling the 3 × 3 torus up to ⟨rf⟩ from a set of tile designs that
consists of two orbits both of which contain an element with stabilizer subgroup ⟨rf⟩.
Illustration 168. [This is shown in Sequence 105.]

Figure 83: The 32 ways of tiling the 3 × 3 torus up to ⟨rf⟩ from a set of tile designs that
consists of one orbit containing an element whose stabilizer subgroup is 1 ≤ ⟨rf⟩.
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