Journal of Integer Sequences, Vol. 26 (2023), Article 23.8.1

Counting Integers Representable as Sums of k-th Powers Modulo n


Fabián Arias
Departamento de Matemáticas
Universidad del Atlántico
Barranquilla, 081007
Colombia

Jerson Borja and Samuel Anaya
Departamento de Matemáticas y Estadística
Universidad de Córdoba
Montería, 230002
Colombia

Abstract:

Given a polynomial f(x1, x2, ..., xt) in t variables with integer coefficients and a positive integer n, we define α(n) as the number of integers 0 ≤ a < n such that the congruence f(x1, x2, ..., xt) ≡ a (mod n) is solvable. We improve some known results for computing α(pn), where p is prime and n ≥ 1, for polynomials of the form c1x1k + c2x2k + ยทยทยท + ctxtk. We apply these results to calculate α(pn) for polynomials of the form xk ± yk and to study the modular Waring problem.


Full version:  pdf,    dvi,    ps,    latex    


(Concerned with sequences A001694.)


Received April 19 2023; revised versions received April 24 2023; May 16 2023; August 24 2023. Published in Journal of Integer Sequences, August 28 2023.


Return to Journal of Integer Sequences home page