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Demographic Parity: o _ B
Basically says that your prediction should alg) = r (9(X) =115 =0)
be independent of sensitive attribute S :

Disparate Impact(DI) balanced error rate (BER) with respect to the joint distribu-
Balanced Error Rate(BER)

tion of the random vector (X, S) is defined as the average
class-conditional error

BER(g,X,S) = a(g) +1—b(g)

: 3

| | 2 )

P(g(X)=1|S=0)=PgX)=1|5=1) (1) Notice that BER(g, X, S) is the misclassification error of

g € @ for predicting S when the protected classes are

DI(g,X,S) = Plg(X)=1]5= ) (2) equally likely (P(S = 0) = P(S = 1) = 1/2). S

T P(g(X)=1[5=1)
Definition 2.1. The classifier g has disparate impact at level
T € (0, 1], with respect to (X, S), if DI(g, X, S) < 7.
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Total Variation Distance Is a good way to hound unfairness

Theorem 2.2. Givenrv's X € RY, S € {0,1}, the classi-
fier g has disparate impact at level T € |0, 1], if and only if

BER(g,X,S) < 5 — %(i — 1). Moreover

min BER(g, X, S) =

1 —dpryv (o, :
ed ( ary (,L!ﬂ #1))
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Two general ways of removing ‘unfairness

As noted in the Introduction, to get rid of the possible dis-
crimination associated to a classifier we could, in principle,
either modity the classifier or the input data. If action on the
algorithm is not possible (for instance, if we have no access
to the values Y of the learning sample) we have to focus
on the second option and change the data X to ensure that
every classifier trained from the modified data would be fair
with respect to S. This transformation aimed at breaking the
dependence on the protected attribute, is called repairing
the data. For this, (Feldman et al., 2015), (Johndrow &
Lum, 2017) or (Hacker & Wiedemann, 2017) propose to
map the conditional distributions to a common distribution
in order to achieve statistical parity. This total repair of the
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Total Repair and Wasserstein harycenter

In more detail, total repair amounts to mapping the original
variable X into a new variable X = T's(.X) such that condi-

tional distributions with respect to .S are the same, namely, _ B ‘
Given probability measures (/i;)1< ;< with finite second

L (f( S = U) =L (X | S = 1) : (4) moment and weights (w; )<< s, the Wasserstein barycenter
is a minimizer of
J
e First of all, the choice of the distribution v should be UV Z wj W3(v, 1), (5)
as similar as possible to both distributions g and i j=1

at the same time, in order to reduce the amount of
information lost with this transformation. and thus still
enabling the prediction task using the modified variable
X ~ v instead of the original X.

(Del Barrio & Loubes, 2017). In general, the Wasserstein
barycenter appears to be a meaningful feature to represent
the mean prototype of a set of distributions. Note that in the

one dimensional case, the mean of the quantile functions
e Moreover, once the target v is selected, we have to find corresponds actually to the minimizer of (5).

the optimal way of transporting y.p and p; into it.
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Total Repair and Wasserstein harycenter

tional distributions fiy and p; are going to be transformed
into the distribution of the Wasserstein barycenter g be-
tween them, with weights 7y and 7, defined as

pp € argmin, p, {mﬂ-l";(;iﬂ, v) + T Wi (1, v)} .

Let X be the transformed variable with distribution up. For
each s € {0, 1}, the deformation will be performed through
the optimal transport map (o.t.m.) 7 : R? — R? pushing
each p, towards the weighted barycenter ;1. The existence
of pup 1s guaranteed (see Theorem 2.12 in (Villani, 2003))
as soon as (4 are absolutely continuous (a.c.) with respect
to Lebesgue measure. In that case,

E (X = T(X)|” | S = 5) = Wi (s, pm)- (6)
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Computing Barycenter

Remark 3.1. Note that computing the barycenter of two
measures is equivalent to the computation of the o.t.m. be-
tween them. If 1o is a.c. on R and T : R? — R? de-
notes the o.t.m. between iy and ., that is p1 = ,u.{]jT,

then j1x = poy ((1 — A)Id + AT') is the weighted barycen-
ter between g and i, with weights 1 — A and ), respec-
tively. The map (1 — X\)Id + \T is an optimal transport

plan for all A € (0,1]. So, the complexity of computing

LB = Moy (mold + mT) is the same as computing T'.
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Bound of Utility Lost

ne(z) :=P(Y =1 | X =x,5=5)

risks are respectively denoted Rp(X) and Rp(X,S) =
inf, R(g, X,S) = R(gp, X, S), and then its difference is

E(X):=Rp(X) - Rp(X,8).

Theorem 3.3. Consider X € R% and S € {0,1}. Let T’s :
Re — R d > 1 be a random transformation such that

L(To(X) | S =0)=L(T(X)|S = 1), and consider

-

X = Ts(X). Assume that ns(X) is Lipschitz with constant
Ks >0,s=0,1. Then, if K = max{Ky, K1},

1
2
E(X) <2V2K ( > frslx{ff(m,;i-f,ﬂi';)) . ®

s=0,1
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Total vs. Partial Repair

As pointed out previously, the fotal repair process ensures
full fairness but at the expense of the accuracy of the clas-
sification. A solution for this could be found in (Feldman
et al., 2015), called geometric repair. The authors propose
not to move the conditional distributions to the barycenter
but only partly towards it along the Wasserstein’s geodesic
path between g and ;. We analyze next this procedure
and propose an alternative method for the partial repair.
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Random Repair and ItS guarantee

3.2. A new algorithm for partial repair

Let A € [0, 1] be the parameter representing the amount
of repair desired for X. Let Z be a target variable with
distribution p. Set Ry = T, ', s = 0,1, where T} is the
o.t.m. pushing each p s towards the target . Note that

R, (Z) follows the original conditional distribution . drv (foxn, fi1x) <P(BZ+ (1 —-B)Ry(Z)
Definition 3.4 (Random repair). Let B be a Bernoulli vari- #BZ+(1-B)Ri(2)) =1-P(BZ+ (1 - B)Ro(2)
able with parameter \. With the above notation, we define =BZ+(1-B)Ri(Z))<1-P(B=1)=1-A.
for s € {0,1}, and X\ € (0, 1) the repaired distributions

fisa = L(BZ+(1-B)Ri(2))

= LBT(X)+(1-B)X|[S=s). (9
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In the literature (for instance (Zafar et al., 2017)), another

partial repair procedure is used, called geometric repair. As

before, 1 1s chosen as the barycenter ;g and the partially

repaired conditional distributions are defined as drv (ko p1,n) SP(AZ + (1= A)Ro(2) (11)
#AZ + (1 =N Ri(Z)) =P(Ro(Z) # Ri(2)).

=LAT(X)+ (1 -MN)X|S=s), se{0,1}.

partially repaired distributions pg » and pq ) does not lead
to a satisfying result. This comes from the fact that the geo-
metric repair moves the original distributions according to
the Wasserstein distance, while fairness is measured through
the total variation distance, and they are of different nature.
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Computational Aspects

We detail next two different methods. The first one is similar
4. Computational aspects for Repairing to some existing in the literature and does not achieve total
Datasets in General Dimension fairness in practice, while the second one is a novelty and

does guarantee this rty for th data X.
Let {(X;,S:,Y;),i=1,..., N} be an observed sample of 0es guarantee this property Tor the hew datd

(X, S,Y), and denote by ng and n, the number of instances
in each protected class. Without loss of generality, we
assume that the observations are ordered by the value of S,

(A) As depicted in Figure 1(A), each original point in
X, X1 1s changed by a unique point given by
i
2= X;, if 8;=0,i=1,...,no, To,i = WX, + NoT1 Z’Yijml,ja 1 <12 < ny,
. : _ . j=1
-rl_.j—nn = Xj, if Sj: = 1 J ="y + l, Caes N = ng + ni. o
1, = N7 E YijTos; + m™x1, 1 <7< ng.
(B) To ensure total fairness, each point will split its mass
to be transported into several modified versions. This
generates an extended set X = X, U A}, which is
formed by the complete distribution p5 ,,. As shown
in Figure 1(B), if 7;; > 0,1 <7 < ng, 1 < j < ny,
we define two points
Zo,i,j = T1,5,i = Tox0o,: + T1T1, 5, (15)
~ T
and sets Xy := |J {0,/ ¥i; > 0,1 < j < ni},
=1

—~ mni
and Xl = U {:%l‘j,i- / ﬁﬁj > U‘,l < i < n()}. The ';:'iz UNIVE
7=1



Computational Aspects- Total Repair
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Figure 1. Example of the performance of procedures (A) and (B)
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Computational Aspects- Random Repair
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Figure 3. Example of the ran-

dom repair with A = %
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EXperiments

Table 1. Disparate impact of the logit with the original and the
repaired datasets

Repair | Error  Difference DI CI 95% —- EL (ggg::;ric
- 0.0943 - 0.5309 (0.4230,0.6389) , WIiL =Random ||| »
(A) 0.1629 0.0686 0.9588 (0.7641,1.1535) el SR P g
B) | 0.1874  0.0931 1 (0.8536,1.1464) 0o -
= 0.8-----n ool RS
0.7
0.6
0.5
0. R g P N Py ey

0/ 0110:2 0.3 04 Q.5 06 02 0.8 :0:9 1
Amount of repair A

Figure 4. CI at level 95% for DI of the logit
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Case that Random Repair heats Geometric Repair

fied conditional distributions. Moreover, 1n some situations,
(11) turns out to be an equality. Consider, for instance,

poo =U(K, K + 1) po=U(-K—-1,-K) (12)

as the distributions of X in each class. Then, the
barycenter is po1 = p1,1 = U(—1/2,1/2) and o\ =
U(-53+1-NK, -3+ (1—-NK+1), px
U(-3—(1-N(K+1),-53—(1=A)(K+1)+1).
In this case, the TV distance can be easily computed as

drv (pox, p1.x) = min(1, (1 — A\)(2K +1)).  (13)

We see from equation (13) that drv (pox, p1,2) = 1, if
A < 2K /(2K +1), which means that the protected attribute
could be perfectly predicted from the partially repaired data
set for values of A arbitrarily close to 1. Thus, the bound

0.4-

0.2

0-

Procedure
Gcomctric_______________________-______________‘__
=4 Random T L
0.8_-_--..---_---_---....---------_,-_-‘-: ........................
RS ISR SR Pk e a7 L N L i B oLl |
0. 071 i9:2 98 04 05 06 0OF 08 .09 1

Amount of repair A

Figure 6. CI at level 95% for DI of the random forest classifier
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