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Previous Work: Fairness Through Awareness [2012]

Fairness Through Awareness (Dwork, Zemel et al.) proposed a framework that:

Individual fairness
“Similar individuals are treated similarly”

Group fairness
“Disparate Impact Parity”

Optimization problem

However......

Probabilistic mapping
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Previous Work: Fairness Through Awareness [2012]

Two obstacles:

1. A distance/similarity metric is assumed to be given

This is problematic because: a good distance metric that defines similarity between
individuals is important for ‘Individual Fairness’, but is challenging to find

2. Cannot generalize

It only works for the given data set, doesn’t know what to do with future unseen data
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This paper: Learning Fair Representations ( LFR model )

 Individual fairness
“Similar individuals are treated similarly”

Group fairness
“Disparate Impact Parity”

Optimization problem

Probabilistic mapping

Learn a (restricted form of) distance metric

Develops a learning approach that can generalize to unseen data
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The LFR model in a nutshell: One sentence

“We formulate fairness as an optimization problem of
finding an intermediate representation of the data that
best the data (i.e., preserving as much information
about the individual’s attributes as possible), while
simultaneously aspects of it, removing any
information about membership with respect to the
protected subgroup.”
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The LFR model in a nutshell: Two competing goals

I. the intermediate representation should encode the data as well as

possible ey o
Preserve utility

II.the encoded representation is sanitized in the sense that it should be
blind to whether or not the individual is from the protected group

Remove sensitive information
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the LFR model: some notations

“The main idea in our model is to map each individual, represented as a data point
in a given input space, to a probability distribution in a new representation space.”

e Original data point x € X, for some Euclidean space X

e the representation space Z is a space of discrete distributions over
finite prototypes v € X

e cach individual x is mapped to a distribution z, where z € Z C P(X)

e / is a multinomial random variable, where each of the K values represents
one of the ‘prototypes’. Associated with each prototype is a vector v;. that
lies in the same space as x
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the LFR model: some MORE notations (optional)

e X denotes the entire data set, Xy denotes the training set.

e S is the sensitive attribute, i.e. a binary random variable representing the
membership of sensitive groups. By convention S = {0, 1}.

e XT C X. XU} C Xy denote subset of individuals that are members of
sensitive group 1 (i.e. S =1). Similarly we can define X~ and X, .

e Y be the target random variable that we want to predict. For example,
f: X — Y is the desired classification function.

e ( is a distance function on &X', a common choice is the Euclidean distance:
d (X, Vi) = ||Xn — Vil
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the LFR model: probhabilistic mapping

Recall: “Each data point in the input space is mapped to a probability distribution
in a new representation space.”

How?
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the LFR model: probhabilistic mapping

Recall: “Each data point in the input space is mapped to a probability distribution
in a new representation space.”

Given the definitions of the prototypes as points in
the input space, a set of prototypes induces a natural
probabilistic mapping from X to Z via the softmax:

P(Z = k|x) = exp(—d(x, Vi) /Zexp (x,v;)) (2)

Actually, it’s called ‘soft-min’
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Prohabhilistic mapping: A clustering perspective
K-Mean custering

k-means clustering aims to partition n observations
into k clusters in which each observation belongs to
the cluster with the nearest mean, serving as a
prototype of the cluster.
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3. The centroid of each of the
k clusters becormes the new

N e mean.
1. kinitizl "means” (in this 2.k clusters are created by

case k=3) are randormiy associating every obseniation

penerated within the data with the nearest mean. The

domain (shown in color). partitions here represent the
“Woronoi diagram generated by
the means.

4 Steps 2 and 2 ar= repeated
until convergence has bean
reached.
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the LFR model: Ohjective function

The objective function consists of 3 terms:

1. Fairness term (group fairness)
2. Reconstruction term

3. Utility term
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Objective function: Fairness term

In Zemel’s paper, loss function for group fairness is defined as

K
L.=>Y |M}!— M,
k=1

where A[nk = P (Z — A|Xn,) and

M, =Eyex+ P(Z = k|x) =

n,k
nEX(T

Each cluster should contain roughly balanced “mass” from
the protected group and the unprotected group
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Objective function: Reconstruction term

The second term constrains the mapping to Z to be
a good description of X. We quantify the amount
of information lost in the new representation using a
simple squared-error measure:

N

L, = Z(Xn - in)z (8)

n=1

where Xx,, are the reconstructions of x,, from Z:

K
}A(n = ZMn,kvk (9)
k=1

The learned representation should “resemble” the

original data as good as possible B WATERLS



Ohjective function: Utility term

The final term requires that the prediction of y is as
accurate as possible:

N
Ly=>Y —ynlogfn — (1 —yn)log(l —g,)  (10)
n=1

Here 7, is the prediction for y,,, based on marginalizing
over each prototype’s prediction for Y, weighted by

their respective probabilities P(Z = k|x,,): The learned representation

should still predict target

K ° °
variable quite well
:i)n = ZMn’kwk (11)
k=1
We constrain the wy values to be between 0 and 1.
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e
Ohjective function: putting all together

Given this setup, the learning system minimizes the
following objective:

L=A,-L,+A,-L,+A,-L, (4)

where A,, A,, A, are hyper-parameters governing the
trade-off between the system desiderata.

« Learnable parameters are: prototype locations {vy} and parameters {wx} , and «; (will mention later)

« # of prototypes K is a hyper-parameter, in supplementary materials, they vary K ={10,20,30}, and observed
that bigger K will result in better accuracy while worse fairness

» The objective function is optimized using L-BFGS
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the LFR model: Learning distance metric

In order to allow different input features to have dif-
ferent levels of impact, we introduce individual weight
parameters for each feature dimension, «;, which act
as inverse precision values in the distance function:

d(Xp, Vi, Q) Zaz Toyi — vkz (12)

More tlexible than Euclidean distance
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the LFR model: what is the fairness definition?

The fairness definition used in the objective function is kind of strange,
but it is indeed a variant of Statistical Parity (aka Disparate Impact Parity)

The key property is that if the parity con-
straint is met, then the two groups are treated fairly
with respect to the classification decisions:
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eX,
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1 Sy 1 _
Yn = T Z Yn -
Xo| &= 7" Xy &=~ 7"
nEXO nEXO

This property follows from the linear classification
approach.
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Figure 2. Individual fairness: The plot shows the consis-
tency of each model’s classification decisions, based on the
yINN measure. Legend as in Figure 1.
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Figure 3. The plot shows the accuracy of predicting the
Figure 1. Results on test sets for the three datasets (Ger- sensitive variable (sAcc) for the different datasets. Raw in-

man, Adult, and Health), for two different model selec- volves predictions directly from all input dimensions except W UNI
tion criteria: minimizing discrimination and maximizing for S, while Proto involves predictions from the learned fair @ WA

the difference between accuracy and discrimination. representations.
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There are a bunch of follow-up work on learning fair representation:
« Explicitly deals with Individual Fairness [P Lahoti et al. 2018]

« Use neural networks (MLP,VAE etc.) to learn fair representation (the most
common approach right now) [E Creager et al. 2019] etc.

« Adversarially fair representation [D Madras et al. 2018] etc.
« Inherent trade-offs in learning fair representation [H Zhao et al. 2019

« And more......
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some thoughts and conclusions

The paper formulates the fairness problem in a novel way that deserves a lot of further study
Some choices of loss functions and mappings are crude, worth discussing if there are better
alternatives, e.g. why using ‘L1 norm’ to compare two probability histogram? Cross-entropy seems
to be a more suitable choice

This ‘prototype learning’ approach is quite unusual, nowadays most papers on learning fair
representation use neural networks. Neural network approach is more flexible and compatible

with the problem. The choice in this paper seems to have a historical reason.

Fair representation learning seems to be restricted to Statistical Parity only, can other definitions
of fairness apply? (may not)

How to deconstruct a classifier to determine to what extent it is fair? (Interpretability)
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