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Boss! I'm back from )

the conference!

And I know how
we can win back
our users!

About time!
Our brand is in
shambles.

An online comic from Google Al
https://federated.withgoogle.com/

N—

Federated Learning

Don't worry. I learned all about
a new approach that can handle
our privacy concerns and improve
functionality. It's called
federated leaming...

Federated
whatnow?

It lets us do
machine learning
while keeping data
on-device.

It's resilient,
low-impact,
secure—

Whatever,
I'M SOLD!

I'll give you
a team of our
very best—




Motivation

@ Large scale networks of connected devices provide access to an
unprecedented amount of data.

@ Smartphones, wearables, smart-homes, self-driving and ... collect
data that are often private in nature.

@ Traditional machine learning methods require all data to be collected
In a central server.

@ Several challenges in practice for collecting data:

» Data privacy;
» Data security;
» Communication costs.




Background: Federated Learning

@ Federated learning provides a platform for the edge devices to train a
central model |without sharing|their local data.

@ Federated learning has some unique features that distinguish it from
the rest of distributed optimization problems:

» Massively distributed; Q\

L . . . Iop |t 9/ .‘“._;“%?égmb \\\\{z;dltes
» Non-i.i.d. distribution of data; 2 om P P
B coentgge’ @ s [
. . . . local data o s local data
» Limited communication; P et . - .
by — {Thank you for the feedback ) '
[ Unbala nced data Credit to (Li et al., 2019)

@ Application: smartphones & terminal devices, networking traffic
management, connected vehicles, and ...



Federated Learning - FedAvg
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@ Each user takes several steps of gradient descent.

1 n

@ Centralized training: expectation of each gradient update over the
data distribution is an unbiased estimate of the true gradient.

@ Federated learning: each gradient update is an unbiased estimate of
the gradient with respect to its local data.

o It is a biased estimate when it comes to the whole data (i.e., putting
the data of all the clients together).



Federated Learning - Challenges

@ Statistical heterogeneity of data over different clients

» Different users generate different types of data.

» Posing significant difficulty in formulating the goal in precise mathematical
terms (Mobhri et al., 2019).

@ Robustness against adversarial attack

» There is no mechanism to check the validity of the gradient updates.
» Data Model poisoning attack (waqv = w +m X 9).
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@ Ensuring fairness among users

@ Reducing communication costs



Problem Formulation

Conventional FL objective (e.g. FedAvg, FedProx and etc.):

m N
min f(w) = > Aifi(w) averaging
- J
where

McMahan et al. Communication-Efficient Learning of Deep
Networks from Decentralized Data. AISTATS 2017
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AFL objective

min{_ max fg(W)J worst case
W =1,....m

ensure more fairness

Mohri et al. Agnostic federated learning.
International Conference on Machine Learning, 2019.



g-FFL objective

m‘in fo(W) =

7 m )\ N
i p q+1

2 i)

=1 Y,

fairness can be tuned

g =0, FedAvg

g =00, AFL

Li et al., Fair Resource Allocation in Federated Learning. ICLR 2020

reweighting



g-FFL objective

*Special case of Kolmogorov generalized mean

As(f) = g1 (% ZS(]CZ))

1=1

mvgrn fo(W) =

Zhang et al., Proportional Fairness in Federated Learning. arxiv 2022



Inspiration

Goal: collectively optimize individual objective functions

fl:n an“'u fm




Inspiration

Goal: collectively optimize individual objective functions

(fh fo, o, fm)




Multi-objective Formulation

min £(w) = (). o). fonlw) ]j

What does this mean?



Multi-Objective Optimization (MOO)

A non-dominated solutions

Feasible
Region

Goal2 >

https://users.ece.cmu.edu/~yuejiec/MachinelLearning.html



Background: MOO

min f(w) := (f1(w), fo(W), ..., fm(W))

W

Minimum is defined wrt the partial ordering

f(w) < f(z) < Vi, fi(w) < fi(z)



Background: MOO

min f(w) := (f1(w), fo(W), ..., fm(W))

W

Minimum is defined wrt the partial ordering

f(w) < f(z) <= Vi, fi(w)< fi(z) “dominates”

possible that w and z are not comparable




Pareto Optimality

Economic Term of the Week E
o O "Pareto Efficiency”

j noun: Economics

. Pareto efficiency is when an economy has its resources and
C |_| ] goods allocated to the maximum level of efficiency, and no
change can lead to greater satisfaction for someone without

making someone worse off. Pure Pareto efficiency exists only

|:| :\ in theory, though the economy can move toward Pareto

| )ﬁ_ efficiency.

] | can!

E@A You cannot have It's a pareto

all the pizza. efficient
outcome.

£2(A) < £2(B) 2



min £(w) = (fi(w), fo(W)..... fin(W))

W

> W’ is a Pareto optimal solution if its objective value f (w™) is a
minimum element wrt the partial ordering

Equivalently, Vw, f(w) < f(w") = f(w)=1f(w")



min £(w) = (fi(w), fo(W)..... fin(W))

W

> W’ is a Pareto optimal solution if its objective value f (w™) is a
minimum element wrt the partial ordering

Equivalently, Vw, f(w) < f(w") = f(w)=1f(w")

f1 - .
o U ]
Al ¢ 0O g Pareto optimal:
T | o O “You can be better than me in some aspects,
NS . But you can’t be better than me in all aspects”
ETEA
Iilrem L
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£2(A) < £2(B) 2



min £(w) = (fi(w), fo(W)..... fin(W))

W

> W’ is a Pareto optimal solution if its objective value f (w™) is a
minimum element wrt the partial ordering

Equivalently, Vw, f(w) < f(w") = f(w)=1f(w")

not possible to improve any component objective
without compromising some other objective

!

Fairness

£2(A) < f2(B) f2



Ordering Cone

characterization of partial ordering

Cones




Ordering Cone

characterization of partial ordering

Theorem (Jahn, 2009)

1




Cone that Induces MOO

Natural ordering cone (Jahn, 2009)

For X = R" the ordering cone of the component-wise partial ordering on R™ is given by

C:={x e R"|x; > 0foralli € {1,...,n}} =RL.

nonnegative orthant

S
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Natural ordering cone (Jahn, 2009)

For X = R" the ordering cone of the component-wise partial ordering on R" is given by

C:={x e R"|x; > 0foralli € {1,...,n}} =RL.

#
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f1
]

f2(A) < f2(B) 2



Natural ordering cone (Jahn, 2009)

For X = R" the ordering cone of the component-wise partial ordering on R" is given by

C:={x e R"|x; > 0foralli € {1,...,n}} =RL.

/
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f2(A) < f2(B) 2



Pareto Stationary

@ All objective functions are continuously differentiable but not
necessarily convex (to accommodate deep models).

@ Finding a Pareto optimal solution in this setting is quite challenging.

@ Instead, we will contend with Pareto stationary solutions, namely
those that satisfy an intuitive first order necessary condition.

Definition: Pareto-stationary (Mukai, 1980)

We call z* Pareto-stationary iff there exists some convex combination of the
gradients {V f;(z*)} that equals zero.

Lemma (Mukai, 1980)

Any Pareto optimal solution is Pareto stationary. Conversely, if all functions are
convex, then any Pareto stationary solution is weakly Pareto optimal.

"Pareto stationary vs. Pareto optimal is analogous to local vs. global optimal”



Solving MOO with scalarization
Weighted sum

T
1%11 Z)\?:f?:(W) A fixed throughout
1=1

Different weights leads to different Pareto stationary solutions

Lagrangian
Epsilon constraint reformulation

min f,(W)
A"
st filw) <€, Vi # 1
€ fixed throughout



Solving MOO with minimax

Chebyshev approach
min max )\T(f(w) — T)
fixed vector
s =0 is essentially AFL
min max A ' f (W)= min max f;(w)

W A€A W =1....m



Multiple Gradient Descent Algorithm (MGDA)
d

finds the min-norm element d
in the convex hull spanned by gradients

d=) NVfiw)

, then descent along (negative) d
> AV fi(w)

1

A® = argmin y e a

Jean-Antoine Désidéri. “Multiple-gradient descent algorithm
(MGDA) for multiobjective optimization ”’ 2012



Multiple Gradient Descent Algorithm (MGDA)
d

finds the min-norm element d
in the convex hull spanned by gradients

-d is a descent direction that is common to all objectives

Jean-Antoine Désidéri. “Multiple-gradient descent algorithm
(MGDA) for multiobjective optimization ”’ 2012



Primal-Dual interpretation of MGDA

Primal

1
min max (d, Vfi(w)) + =||d||’
d =1,..m 2

reformulation

—min o + —||d||2 st. (d,Vfi(w)) <a, Vi
Dual

used in implementation

Jorg Fliege and Benar Fux Svaiter. “Steepest descent methods
for multicriteria optimization" 2000



New Insights

Recall Chebyshev approach: min max )\T(f(w) —S
W AeA

Don’t fix s?

adaptive ‘centering’

W] = argmin max Al (f(w) — f(wy))
W AEA | J

|
Apply quadratic bound

w1 = argminmax X' J (w,)(w — wy) + %Hw — w2

W ACA
l Swapping min and max

Wip1 = Wi — ﬂdt; d; = Jf(Wt))\f;

MGDA

where Af = argmin ||Je(w¢)A||%
ACA




Connections

: T
min max A (f(w) — s Chebyshev approach
tin max A (f(w) — ) yshev app

0 AFL

f(wy) MGDA



Connections

' A (f(w) —s Chebyshev approach
Hin gleai{. (f(w) ) Y PP

—

0 AFL X

fw) MGDA

~—

invariance to additive perturbation



FedMGDA+

Federated Learning Meets Multi-Objective Optimization

Incentive Fairness Robustness

Hu et al., Federated learning meets multi-objective
optimization. IEEE Transactions on Network Science and
Engineering, 2022



From MGDA to FedMGDA+

FL Adaptations Additional Designs
Balancing
Communication Client . .
: Interpolation Normalization
and Subsampling

Computation



Balancing communication and
on-device computatlon
T A 5

(poacra
Ciz

Allow multiple local updates before communicating




Client Subsampling

* Common practice in FL
* Alleviate non-iid

* Enhance throughput

MGDA provides incentive for
users to participate!



Interpolation

A= argmin ||Je(w) A2

Balancing average performance and fairness

e =0, FedAvg =) average performance

e =1, FedMGDA = fairness



Normalization

 Normalizing the (sub)gradient can sometimes ease step size tuning'
* Normalization does not change the ‘common descent’” property of MGDA

* Robustness against multiplicative inflation attack

91
11911l

i. Kurt Anstreicher et al., Two "well-known" properties of subgradient optimization.
Mathematical Programming 2009



Algorithm: FedMGDA+

Algorithm 1: FedMGDA+

1 fort=1.2,...do

2 | choose a subset I; of [pm] clients/users Subsampling

3 for i € I; do

4 g; <~ CLIENTUPDATE (7, W¢)

5 L gi == gi/llgill // normalize Normalization
A* 4 argminy e A a—ag o <e| | 225 Aigill? -

7 d: < >, \'g; =l 0”//_ common direction Interpolatlon

8 choose (global) step size n¢

9 | Wiyl & Wi — neds

10 Function CLIENTUPDATE (7, W) &

n | w'ew

12 | repeat k epochs Multiple local epochs

// split local data into r batches

13 D, —D;j1U---UD,,

14 for j € {1,...,r} do

15 | Wwew—nV[fi(w;D;;)

16 | returng := w' — w (o server




Convergence Results

Theorem 1 (simplified)

Let each user function f; be L-Lipschitz smooth and M-Lipschitz continuous,
and choose step size 1; so that Y, 1, = oo and Y, oy1; < 00, where o7 is the
variance of (the stochastic) common direction d; under random subsampling.
Then, with 7 = k =1, we have for A, = argminy ca || Je(W¢)A||:

min _||Je (W) A¢]|? = 0.
t=0,...,T




Convergence Results

Theorem 2 (simplified)

Suppose each user function f; is convex and M-Lipschitz continuous. Suppose at
each round FedMGDA includes a strongly convex user function whose weight is

bounded away from 0. Then, with the choice n; = C(%ﬂ) and »r = k = 1, we have
* 2
W —w, ||2 < 024(%3)’

and w; — w; — 0 almost surely, where w; is the nearest Pareto stationary
solution to w; and ¢ is some constant.




Experiments

* In our work, we conducted experiments on CIFAR-10, FMNIST, EMNIST,
Shakespeare and Adult datasets

* Mainly, figures on CIFAR-10 are showed here for illustration purpose




Algorithm: FedMGDA+

Algorithm 1: FedMGDA+

1 fort=1.2,...do
2 | choose a subset I; of [pm] clients/users
3 for i € I; do

4 g; < CLIENTUPDATE (1, W¢)

5 L gi = gi/llgill // normalize )

A* a’rgmin)\eA IA—=X0 || oo <€ || Zz Af»g%HQ—
7 d: < >, \'g; // common direction

Interpolation

8 choose (global) step size n¢
9 Wip1 — Wy — 1pdy

10 Function CLIENTUPDATE (7, W) &

nu | wew

12 repeat & epochs E——
// split local data into r batches

13 Di—>Di:1U"'UDiTT

14 for j € {1,....r} do

15 L W <— W — anz(W,Dzj)

0 _ w to server

16 return g ;= w
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Bias attack

| A (f(w) -
min max (f(w) —s)

—

0 AFL X

fw) MGDA

~—

invariance to additive perturbation



Robustness

c 00
o U

Test accuracy %

Uniform Non-PhD = AFL
B FedAvg

- W FedProx

< B FedMGDA+

% T B MGDA-Prox

_ B FedAvg-n
1 No attack W qg,-FedAvg
2 e | " afedns

[ | o] o] -

Bias attack on Adult datase



Algorithm: FedMGDA+

Algorithm 1: FedMGDA+

1

2
3
4
5

10
11
12

13
14
15

16

fort=1,2,...do
choose a subset I; of [pm] clients/users
for 1 € [; do

g; < CLIENTUPDATE (1, W¢)

L g = gi/llgl

A* = argming e a[ja— x| <c | | 225 Aigill?
di <= > ; A8
choose (global) step size n¢
Wi Wy — pdy

Function CLTENTUPDATE (7, W) :

w! — w

repeat & epochs

// split local data into r batches
D; — Dq’,‘_l J---UD;

for j € {1,....r} do

L W <— W — TYVfQ(W.Dzj)
» 0

— W 1O server

return g ;= w

// normalize

// common direction

Normalization (Robustness)



Test accuracy %

Robustness
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User test accuracy %
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User test accuracy %
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Improved users %

Improvement Fairness
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More Tables....

Algorithm Average (%) Sud. (%) Worst 5% (%) Best 5% (%)
Name n decay |
Check appendices of our paper FedMGDA 67.5910.65  21.03+240 22954727  90.50 + 0.87
FedMGDA+ 1.0 0 69.06 £ 1.08 1410+ 1.61  44.38 590  87.55 4 0.84
FedMGDA+ 1.0 1/10 | 69.87+0.87  14.33+0.61  4242+361  87.05+0.95
FedMGDA+ 1.5  1/10 | 71.15+£0.62 13.74+£0.49 4448+ 164  88.53 £ 0.85
FedMGDA+ 1.0 1/40 | 68.68+1.25  17.23+1.60 3440+ 623  88.07 £ 0.04
. 0 0 FedMGDA+ 1.5 1/40 | 7TL05+0.82  13.53+£0.77  46.50 £ 2.96 88.53 + 0.85
Algorithm | Average (%) (%)
gorit erage (% Std. (% — e
MGDA-Prox 1.0 0 66.98 + 1.52 1546 £3.15 3942+ 10.35 87.60 + 2.18
FedMGDA 85.73 4+ 0.05 14.79 + 0.12 MGDA-Prox 1.0  1/10 | 70.39+0.96  13.70 £ 1.08  46.43+2.17  87.50 + 0.87
MGDA-Prox 1.5  1/10 | 60.45+0.77 1498+ 161  4042+588  87.05+ 1.00
MGDA-Prox 1.0  1/40 | 69.01 £ 0.51 1624 +0.74  36.92+4.12  88.53+0.85
FedMGDA+ 87.60 = 0.20 13.68 = 0.19 MGDA-Prox 1.5  1/40 | 60.53+0.70 1590+ 179 3643 +7.42  87.53 +2.14
MGDA-Prox | 87.59 £0.19 13.75 £ 0.18 Name N decay |
FedAvg 70114127  1363+£081 45451221  88.00 4 0.00
FedAvg 84.97 4+ 0.44 15.25 +0.36 FedAvg-n 1.0 0 67.60+1.15 1697 £233 37981661  89.55 4+ 2.61
FedAvg-n 1.0 1/10 | 60.664+1.22 1511+ 1.14 40424171  88.55+0.84
_ FedAvg-n 15  1/10 | 70.62+0.82 14194049 4348 +£217  89.03 + 1.03
FedAvg n 87.57 £ 0.09 13.74 £ 0.11 FedAvg-n 1.0 1/40 | 70.31£0.29 1497 £0.96  42.48+256  88.55 1 2.15
FedAvg-n 1.5  1/40 | 7047+£0.70  13.88+0.96  44.95+4.07  88.03 + 0.04
FedProx | 84.97+045 15264035  ooon 1o U0
q-FedAvg S4.97 + 0.44 15.25 4+ 0.37 Fedbrox 0.0l 70774070 13124047 46431295  88.50 + 0.87
FedProx 0.1 7060 £ 0.58 13424043 45424214  87.55 4 1.64
FedProx 0.5 68.80 +0.83 1410+ 1.08  43.95+4.52  88.00 4 0.00
Name q L |
EMNIST q-Fedavg 0.1 0.1 | 7040+041  12.43+ 0.24 4648 £2.14  87.50 + 0.87
q-Feddvg 0.5 0.1 | 70584073  13.60+£047  46.50 £ 2.96 88.05+ 1.38
q-FedAvg 1.0 0.1 | 7027+0.61  13.31+£046 4595+ 1.38  87.55+0.90
q-FedAvg 0.1 10 | 709541083  1270+0.74  46.45+4.07  87.00 £ 1.00
q-FedAvg 0.5 10 | 7098+0.52 12964063 4595+ 145  88.00+0.00
q-Feddvg 1.0 L0 | 69.98+0.67 1315+ 1.12  4595+£249  87.53 £ 0.82

Hu et al., Federated learning meets multi-objective

Table 8: Test accuracy of users on CIFAR-10 with local batch size b = 10, fraction of users p = (.1, local learning rate
n = 0.01, total communication rounds 2000. The reported statistics are averaged across 4 runs with different random
seeds.

optimization. IEEE Transactions on Network Science and
Engineering, 2022



Thank you for your attention!
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