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Abstract. A trust region and affine scaling interior point method (TRAM) is proposed for a general nonlinear
minimization with linear inequality constraints [8]. In the proposed approach, a Newton step is derived from
the complementarity conditions. Based on this Newton step, a trust region subproblem is formed, and the
original objective function is monotonically decreased. Explicit sufficient decrease conditions are proposed
for satisfying the first order and second order necessary conditions.

The objective of this paper is to establish global and local convergence properties of the proposed trust
region and affine scaling interior point method. It is shown that the proposed explicit decrease conditions are
sufficient for satisfy complementarity, dual feasibility and second order necessary conditions respectively. It
is also established that a trust region solution is asymptotically in the interior of the proposed trust region
subproblem and a properly damped trust region step can achieve quadratic convergence.
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1. Introduction

For many nonlinear programming problems, the number of function and derivative evalu-
ations is often regarded as the main computational cost indicator. This cost can greatly
surpass that of the linear algebra work required by the optimization procedure. Hence
it can be desirable to have an algorithm for a nonlinear programming problem which
requires as few evaluations as possible. For convex programming problems, interior
point methods have proven to be an efficient approach; see [18] for a comprehensive
bibliography on these methods. Using these methods, a small number of iterations is
typically required to solve a large problem [1,4,26]. The quest for similarly successful
interior point algorithms for nonconvex programming problems has become increasingly
important [3,7,9,10,13,15,20,27].
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Negative curvature in a nonconvex programming problem implies that there can be
many local minimizers: typically, a computational method is able to compute one of
them. Assume that an initial feasible point xg is available. An algorithm for which the
original objective function is monotonically decreased can be desirable in the nonconvex
minimization context. For example, assuming an initial feasible point is given, one would
expect an algorithm to yield a local minimizer with smaller objective function value
than that of the initial point. It is not clear how a non-monotone algorithm can achieve
this. The majority of interior point methods, e.g., a path following (see, e.g., [16]) or
a potential function reduction method (see, e.g., [24]), do not have this monotonicity
property; this does not pose a problem for convex programming problems. Despite
lack of polynomial convergence properties, an affine scaling approach, e.g., [1,4,12,
26], is the only interior point strategy which approaches a solution by monotonically
decreasing the original objective function.

For various structured problems, affine scaling Newton methods have been pro-
posed [2,5-7,10,19,20]. Using these methods, a sequence of interior points {x;},
with the objective function values monotonically decreasing, are generated to converge
quadratically to a solution. To extend this approach to a general nonlinear programming
problem, we consider the problem of minimizing a nonlinear (nonconvex) function
subject to linear inequality constraints,

min f(x)
xefn
subjectto Ax > b, (1)
where AT = [a1, -+ ,a,] € R"*™_ In this paper, F def {x : Ax > b} denotes

the feasible region. Moreover, it is assumed that the interior of the feasible region

int(F) & {x : Ax > b} is not empty, f(x) is at least continuously differentiable in
JF and twice continuously differentiable if second order convergence is considered.
Moreover, a strictly feasible initial point xg € int(F) is assumed to be given.

In [8] a trust region and affine scaling interior point method (TRAM) is proposed
for solving (1). Given the current interior point xx, an improved strictly feasible iterate
Xi+1 € int(F) with f(xx41) < f(xi) is generated by solving a trust region subproblem
with a 2-norm trust region measure. Asymptotically, solutions of the trust region sub-
problems generate approximate affine scaling Newton steps for the complementarity
conditions. Preliminary computational results are given in [8].

The main objective of this article is to analyze global and local convergence prop-
erties of the proposed method {8]. In §2, the TRAM method, and its explicit decrease
conditions are described. The global convergence properties are established in §3 and
local convergence properties in §4. Concluding remarks are given in §5.

2. The proposed TRAM

The idea behind a trust region method for unconstrained minimization is intuitive and
simple. In a neighborhood of the current point x, a quadratic function is minimized
over a region of trust to yield a sufficient decrease of the original objective function. The
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size of the trust region is updated according to the agreement of the objective function
with its approximation.

Constraints make it difficult to formulate a similar subproblem for which a global
solution can be computed by existing software. In the proposed TRAM [8], constraints
in the original minimization do not appear in the subproblem explicitly; difficulties
imposed by constraints are overcome using affine scaling to formulate an appropriate
quadratic function and trust region. A trust region mechanism with a 2-norm trust region
measure is used. We briefly motivate and describe TRAM next.

Let xx be the current strictly feasible iterate and A4 be an approximation to the
Lagrangian multipliers. Let

D(x) ¥ diag(Ax —b), and Dy & D(xp). )
Assume ¥ (d) denotes the quadratic approximationto f(x) at x, i.e.,

def 1
Yi(d) = Vld+ -idTBkd, 3)

where By is symmetric and approximates the Hessian V2f; of f(x) at x;.

The trust region subproblem proposed in [8] can be derived from the Newton step
for the first order necessary conditions of (1). Ignoring primal and dual feasibility
constraints, the first order necessary conditions of (1) can be expressed as an (m + n)-
by-(m + n) system of nonlinear equations (see, e.g., [14]),

diag(Ax —b)A=0 and Vf—ATA=0. 4)

Forany x € ®", y € ®"™, (x; y) denotes the vector in ®"+™ with the first n components
equal to x and the last m components equal to y. The Newton step (Axg; AAg) for (4)

satisfies
szk —AT Axp | _ Vi — Ale
diag(Ax)A Dy A | T Dy )

The Newton step Ax; may not be a descent direction for f(x) when far away from
a solutlon To globalize, we generate a modified Newton step by replacing dlag(kk) by

Ci dlag(lkkl) this modified Newton step is subsequently denoted by ( pk ; Ak,’:’)

with AY,, € ap + Al e,

Vi AT | _ _[Vh-ATN] s
CiA Dp || ary | = 7| D (%)

The modified Newton step can be shown to sufficiently approximate the exact Newton
step, asymptotically, to achieve fast convergence. Moreover the modlﬁed Newton step
p,’(v is a minimizer of the augmented quadratic Vf d+5 dTV2fkd + 5 dTATD 1CrAd,
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which can be considered as a quadratic convex regularization of the constrained prob-
lem (1) at x;. Using the augmented quadratic as the objective function, a trust region
subproblem consistent with the modified Newton step p,'cv is

1 1
in Vil d + ~d"V*fid + =d" AT D;!
;rengl 1i 2d frd 2 D, CyAd

1
subject to " (d; D, 2Aa’) ||2 < Ag. (6)

The decrease of the quadratic approximation of the objective function f(x) at xi, Vf, kT d+

%dT V2fid, is always less than the decrease of the objective function of (7) since Cy

is positive semidefinite. Note also that Dy depends on the primal variable x; and
N _ 1

Ci depends on the dual variable A;. Define the transformation d -4 D, 2 Ad. When

I(pY; PY¥)ll2 < A, it can be easily verified that (p}; py) is the Newton step of the
following trust region subproblem

1 |
min  Vfld+ EdTvszd + Echkd

deR” deRm
1,
subjectto Ad—D}d=0 @)
I(d; d)ll2 < Ax.

If (1) is actually a simple bound constrained problem, min;<x<, f(x), the modified
Newton step is the same as that defined in [7] with the affine scaling matrix equaling
diag(min(xx — I, u — xx)). Let Hy denote the Hessian of the objective function in (7),
i.e.,

~ def [ V2fi 0O
Hk—[ 0 Ck]'

Let (px; Px) denote a solution to (7) and the columns of Z; denote an orthonormal basis
1

for the null space of [A, —D E ]. The reduced Hessian of the subproblem(7) is Z,{ fIkZ K-
The first order necessary conditions of (7) imply that there exists a parameter v, > 0
such that

T
A . \Vj A
Hi+ vl )(pi; pi) = — [ ({"] + '[—Dé ] Moo (8)
with v (A — [|(px; Pr)ll2) = 0. Clearly, )‘II:H = AkNH = Ax+ AAkN when v, = 0. Using
the second order necessary conditions of (7), the projected Hessian Z,{ (1-7;( +wl)Zy is
positive semi-definite, i.e.,

ZI (Hi + wl)Zx = RY Ry, 9)

where Ry is an upper triangular matrix.
Stepsize choice is important for computational and theoretical convergence behav-
iors-of an affine scaling method for linear programming {21,25]. One would like to take
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as large a step as possible for optimal decrease but this may bring the iterates close to the
boundary prematurely. Nonlinearity of the problem (1) can both alleviate and exacerbate
this problem. On the one hand, the iterates may approach a boundary more slowly due to
nonlinearity of f(x). On the other hand, once close to the boundary, nonlinearity of f(x)
may make it harder to move away. Two strategies are proposed in {8] to overcome this
difficulty. Firstly, a simple reflection technique can be used which facilitates departure
from the boundary. Secondly, when the Lagrangian multiplier approximation is suffi-
ciently accurate and suggests that iterates are approaching a hyperplane ajT.Ox —bj, =0,
which should not be binding at a solution, a perturbed diagonal scaling Dy def D(xy) is
used. For example, in this situation we use

(D)) = 1 otherwise, (10)

wrmmHM#m
to facilitate iterates to move away from the constraint jo. Geometrically, Dy changes the
shape of the trust region so that it is elongated along the normal a jo of the joth constraint.
This elongation encourages a step away from the nearly binding constraint jj. Let A(x)
be a least squares approximation to the Lagrangian multipliers of (1) at x. Various
techniques for identifying jo are possible; theoretical convergence requires only that,
whenever iterates are converging to a point satisfying complementarity with some
(A(x)) jo < O, the iterates leave the hyperplane ajT-Ox — bj, = 0 eventually. For example,
we identify jg as follows,

(A1) j, = min{(A(X); : la] x — bi| < —(A(x));). (11)

Note that D depends on both x and A. If (A(x)); < O, then when the iterate Xk is

sufficiently close to the hyperplane aiTx — b; = 0, perturbation D # D. When there

is no i with Ial-Tx = bi| < —(A(x));, it is assumed that jo = 0 and D(x) = D(x). In
particular, D(x) = D(x) if A(x) > 0.

In general a perturbed scaling D only needs to be considered when the Lagrangian
multiplier approximation is sufficiently accurate, e.g., near points satisfying comple-
mentarity. For simple bound constrained minimization, Vf(x) directly provides local
information about which bound the iterates should not approach; Vf(x) converges to the
Lagrangian multipliers asymptotically. A scaled steepest descent direction with scaling
perturbation for all components whose corresponding Lagrangian multiplier approx-
imation have the wrong sign can be used to move away from all incorrect bounds
simultaneously. For the inequality constrained problem (1), perturbation D differs from
D in at most one component. This is one of the main differences between the proposed
method here for the inequality constrained problem and that of [7] for simple bound
constrained minimization.

We denote the trust region subproblem using either affine scaling Dy or Dy as,

: | U
(;Ielsl)tl}'wk(d)+§d A Sk CrAd

1
subject to | (d; s, 24d)| < A, (12)
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_1
where Sy is either Dy or Dy; typically Sy equals Dy. The diagonal scaling D, 2 in
the 2-norm trust region bound constraint serves a purpose similar to the Dikin affine
scaling {12] for a linear programming problem. The classical Dikin affine scaling uses

1

Dk—1 rather than D;Z. The scaling matrix Sy in the trust region subproblem (12) is

typically Dy while Dy is occasionally used when it is necessary to change the shape of
the trust region to encourage departure from a nearly binding constraint.

An approximate trust region solution needs to be damped in order to maintain strict
feasibility. Assume 0 < 6y < 1. Let 6 € [6p, 1) be a damping parameter. Let dy be
any descent direction for the objective function of the trust region subproblem (12). The
damped step s along dy is defined as:

def def
sk = oxdy, ax = 6ray, (13)

where «; is the minimizer of the augmented quadratic objective along di within the
feasible trust region, i.e.,

2

(04
i dy) + —dr ATS71CAd
min Y (ady) + 5 %k k CrAdg

subject to ”a(dk; S,:%Adk)“2 < A 14)
xp +ad, € F.

If dj equals a solution py to the trust region subproblem (12), then o} = min(1, i)
where B is the stepsize to the boundary of F along py.

The new iterate x44+1 = Xxi + sk, where s is defined in (13), can be computed.
The trust region size Ay is subsequently adjusted based on the agreement between the
original objective function and its approximation. This process is then repeated yielding
the proposed method TRAM which is described in Fig. 1.

The quadratic objective in the subproblem (12) is an approximation to the original
objective function augmented by a quadratic term adding positive curvature in the space
spanned by the constraint normals. This is similar to an augmented Lagrangian function
for a constrained minimization. In §3, it is shown rigorously that the presence of the
affine scaling in both the objective function and the trust region bound constraint ensures
the damped step of the trust region solution to yield a sufficient decrease for convergence
to a solution.

Explicit sufficient decrease conditions for achieving optimality are useful in com-
puting approximate trust region solutions. In unconstrained minimization, sufficient
decrease is measured against reductions of the quadratic objective along the gradient
direction and the solution to the trust region subproblem. For the constrained nonlinear
minimization problem (1), similar explicit decrease conditions can be formulated based
on the trust region subproblem (12).

A sufficient decrease condition for satisfying complementarity (4) can be derived

from the projected gradient direction g def g(xx) of the trust region subproblem (12)
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TRAM Let0 < u < n < 1and xg € int(F).

Step 1 Evaluate fj, Vf; and By = szk; compute a least squares Lagrangian multiplier
approximation A, and let Cy = diag(|A;]).
Step 2 Compute a step sy, x + 5 € int(F), based on the trust region subproblem

1
in Yi(d) + =d’ ATS71C,Ad
dfggln‘//k‘ )+ 3 r Ck
1
subject to H[d; Sk 2Ad] "2 < A

Step 3 Compute

_ SO+ s0) = foa)
¥(sk)

Stepd4 If pr > p then set xzy1 = xx + sg. Otherwise set x;4; = x;. Update Ay as
specified.

Updating trust region size Ay
Let0 < y; <1 < y, be given.

1. If py < p then set Agyg € (0, y1 Agl.
2. If pp € (1, n) thenset Agy1 € [y Ak, Agl.
3. if pp > nthenset Apyq € [Ag, 2 Arl.

Fig. 1. A trust region and affine scaling interior point method

with S = Dy, i.e.,

AT

f \Y

8k & —(Vfi — ATap), D% Ak = I: ({k] . (15)
k

Denote the damped step of gx as g; = ax gy, where oy = Okay; and a; is the stepsize
defined by (14) with dy = gi. Let Py denote the orthogonal projection onto the null
1

space of [A, —D?]. Then
v
oo [

Due to the affine scaling Dk_% , the direction g becomes increasingly tangential to any
constraint i with aiTxk — b; close to zero. In §3, we will prove that the stepsize {ay} is
sufficiently large to drive {V fkT 8k} to zero. Therefore, from (16), a sufficient decrease of
Yk (d) measured against the decrease from the damped minimizer g} leads to satisfaction
of complementarity:

2

= —(||ka — ATl + "kak"z). (16)

I
A |V — AT, =0 and kliré‘ouD'f“"fo'

Let 0 < Bes, Bs < 1 and ||s¢ll2 < BsAk. The proposed sufficient decrease condition for
achieving complementarity is:
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(AS.1) Yr(sk) < Bes(Vi(g)) + 3g;T AT D' CiAg)).

Note that (AS.1) is satisfied if sy = g;. The result stating that condition (AS.1) is
sufficient for achieving complementarity is rigorously established in §3.

In addition, in order to achieve dual feasibility, we consider the projected gradient

i corresponding to the trust region subproblem (12) with Sy = Dy: &« o g(xy) is

defined below,
T

<oy def 4T3 A = (LS| Vf(x)
g(x) = —(Vf(x) — A" A(x)), l:—i)(x)%ilk(x)_[ 0 ] 17

To see how dual feasibility can be achieved using g, we demonstrate that the first
order necessary conditions can be expressed as g(x) = 0, assuming [A, —D(x)] has
full row rank. If there exists A such that Vf(x) = ATA, D(x)A = 0 and A > 0,
clearly D(x) = D(x) and the result holds. Assume now that there exists A satisfying the
conditions

D=0 and Vf(x)— ATi =0, (18)
where D(x) is defined by (10, 11). Then )1,-0 = 0 and
Dx)A=0 and Vf(x)— ATi=0.

Since [:4, —D(x)] is assumed to have full rank, the least squares solution A to (15)
equals A. From definition (11) of the index jpand A ;, = 0,1 > 0.

- 1
Let P; denote the orthogonal projection to the null space of [A, —D Z ]. Similar to

(16),
A7)

Equation (19) suggests that a “good” decrease of the quadratic objective functionin (12)
along the projected gradient g, can lead to dual feasibility: limy_, o0 || Vi — AT Axll2 =0
1

VT g = — z = —(19fi = ATRe]} + <Hbéik“z). (19)

and limg— o || D ,f Mk l2 = 0.1In §3, we establish that, assuming the complementarity con-
ditions are satisfied asymptotically, the decrease from the damped step retains a sufficient
portion to achieve dual feasibility. Denote the damped step of gx as g; = a8k, where
oy = Ora and o, is defined in (14) with dy = gx. Assume that 0 < 845 < 1. This leads
to the proposed condition (AS.2) below which can be used to ensure dual feasibility:

(AS.2) Vi(sk) < Bar (W@ + 18T ATD ' CrAg)).

Note that (AS.2) is satisfied if s, = g;.

When S; = Dy and By = V? fx in the trust region subproblem (12), the solutions to
this subproblem become increasingly accurate approximations to the Newton steps for
the complementarity condition (4) when {x} approaches to a point satisfying the first
order optimality. Intuitively, sufficient decrease of the objective function for the second
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order convergence can be measured against the decrease generated by the solution Pk
to the trust region subproblem (7). Assume that 0 < By < 1, Sk = Dy, and By = V? fx
in the trust region subproblem (12). Let p; denote the damped step Py = oy px where
oy = Okay and oy is defined in (14) with dy = pi. The proposed condition (AS.3) below
is a reasonable sufficient decrease requirement for second order necessary conditions
and fast local convergence:

(AS.3) Yi(si) + 35{ AT D' CAsi < By (¥alp}) + 3 piT ATD; ' CrAp}), Bi = V2.

Clearly (AS.3) is satisfied with s = Py

Conditions (AS.1), (AS.2) and (AS.3) are proposed as sufficient decrease criteria
for satisfying complementarity, dual feasibility and second order necessary conditions
respectively. We establish next that, under these conditions, desirable convergence prop-
erties can indeed be achieved.

3. Global convergence

We now establish that conditions (AS.1), (AS.2) and (AS.3) are sufficient for the pro-
posed TRAM to achieve complementarity, dual feasibility, and second order necessary
conditions respectively. Equation (16) suggests that complementarity can be satisfied
if decrease of the quadratic approximation Y (sx) is comparable to the minimum of
the objective of the trust region subproblem (12) along gi. Therefore, condition (AS.1)
is sufficient if the decrease of the damped step g; retains a significant portion of the
decrease from the exact minimizer along gi. Similar remarks are applicable to gy for
dual feasibility. An important component of the global convergence analysis is therefore
to establish that, due to affine scaling, the posterior damping for feasibility defined by
(13) does not prohibit sufficient decrease of the quadratic objective function of the trust
region subproblem.

We subsequently make the typical assumption on the compactness of the level set
and full rank of the constraint matrix, i.e.,

(AS.0) Given an initial point xo € int(F), it is assumed that the level set £
is compact,l where £ def {x : x € Fand f(x) < f(x¢)}. Moreover,
[A, —D(x)2] is assumed to have full row rank for all x € L.

If each diagonal component of D(x) is positive, then the matrix [A, —D(x)% ] clearly
has full row rank. It can be easily verified that the matrix [A, —D(x)%] has full row
rank if and only if the vectors {a; : aiTx — b; = 0} are linearly independent. In addition
[A, —D(x)%] has full row rank if [A, —D(x)% ] has full row rank.

Under the assumption (AS.0), A4 and A; can be computed via the normal equations
of (15)and (17),i.e.,

AAT )\ 4 Didy = AVS, (20)
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and
AATX + Didy = AVSi. 1)

Equation (20) and (21) give the relations below which are used in the subsequent
analysis:

Agi = —Diry and AZy = —Dihy. (22)

Lemma 1. Assume that (AS.0) holds and f(x) : F — R is continuously differentiable.
Let D(x), D(x) g(x), g(x), M(x) and l(x) be definedasin(2),(10),(15),and (17). Then
(a) g(x) and ):(x) are continuous in L;
(b) g(x) and A(x) are bounded in L;

~ 1
(c) D(x)_% Ag(x)and D(x)"2Ag(x) are b,ounded inL.

Proof. From (AS.0), [A, —D(x)%] has full row rank for any x in £. Then [A, ~l~)(x)117]
has full row rank for any x in L. Therefore, (AAT + D(x)) and (AAT + D(x)) are
nonsingular for any x in £. Hence g(x), A(x), g(x) and A(x) are defined for all x in L.
From definition (15) and (17), g(x) = —(Vf(x) — ATA(x)) and g(x) = —(Vf(x) —

AT (x)), where A(x) = (AAT +D(x)) ' AVf(x) and A(x) = (AAT + D(x)) "1 AVf(x).
Since Vf(x) and D(x) are continuous in F and AAT + D(x) is nonsingular in £, g(x)
and A(x) are continuous in L. From compactness of £, g(x) and A(x) are bounded
in L. Similarly, applying continuity of Vf(x) and nonsingularity of AAT + D(x) in
the compact set £, g(x) and A(x) are bounded in L. Using (22), D(x)“f Ag(x) and
D(x)~ A g(x) are bounded in L. The proof is completed.

a

Lemma 2 below further describes the relationship between complementarity and the
projected gradient gi, and dual feasibility and g;.

Lemma 2. Assume that (AS.0) holds, {Bx} is bounded, and f(x): F — R is continu-
ously differentiable. Moreover assume that there exists i, such that Vf* = AT\, and
Dy = 0at xy € L. Then for any {xi} in L which converges to x,, {ka gk} converges
to zero. Moreover, if there exists a sequence {x} in L converging to x, with {ka 2k}
converging to zero, then Vf, = ATA,, Dy =0, and A, > 0.

Proof. From Lemma 1, g(x) is continuous in £. This implies that {kaT 8k} converges
to zero for any {x;} in £ which converges to x.

Assume now that there exists a sequence {xx} in £ converging to x, with {kaT 8k}
converging to zero. From limy_, o kaTgk = Q, there exists A, such that Vi = AT X,
and DA = 0. Then limy_, oo (Ax) j, = 0 and

k—00

lim Dydx =0 and lim (Vi — ATXy) = 0.
k—00

Since [A, —D.] is assumed to have full rank, limy_; oo ik = A«. From definition (11) of
the index jp and (A4) j, = 0, A, > 0. The proof is completed.
O
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Lemma 3 relates decrease required by (AS.1) and (AS.2) with complementarity and
dual feasibility. Its proof is similar to that of Lemma (4.8) in [22].

Lemma 3. Assume that {x;} is generated from TRAM, (AS .0) is satisfied, f(x) : F — R
is continuously differentiable, and {By} is bounded. If (AS.1) is satisfied at the kth
iteration, then there exist constants xg, x¢, xg > 0 such that
BesO3 : —(Vil & L2
> =0 (~Vflg)min{ Ay, ~(Vi'&) ),x,s llgkli3 + "D,?Ak" .
2 8 Xt Xg 2

Let the index jo be as defined in (11). If (AS.2) is satisfied and (7;) jo < 0, then there
exist Xp» X¢» Xz > 0 such that

-—wk(s>>ﬁ§—;£( kaTgfk)min{Ak, fkkg"),xﬂ\/ugknzﬂif Il}

8

Proof. Define ¢(1) :  —> R by

2
o) = Viedy) + S-df ATD Cody i di =

8k
_1 2’
itz + | Dt ag l,

and

2 ~
T N— .
¢(T)=Wk(Tdk)+7d,(TATDlekAdk if dp = 8k __
I8k + | Dy 2 4z

Hence ¢(1) = ©(Vf] di) + 1124k, where

Gk =di Bdy +df ATD'\CrAdy, if  dy = 1 =,
\/ lexl3 +{D; 2 Agi,

and

Sk = di Budi + di AT D' CrAdy, if  dy = .
\/ 23 + | D% A

From Lemma 1, {34} and {X;} are bounded. By definition of dj,

1 ;
"Dszdknzsl if di = 8k ,
1
\/Hgkllg + uDk 2Agk;||2

and
8k

~ 12 .I~—% ~.,I2.
N3kl3 + | By 2 A

U |
|5 A, <1 it di=
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In addition, {By} is also bounded. Hence there exists x; > O such that {¢;| < x;. Let
7, be the minimizer of ¢(7) on [0, min{Ay, Bx}] where S is the stepsize along dj to the
boundary of F, i.e.,

a,.Txk — b; _ aiTxk — b;

Br = min { — P -
adek alek

>03%,

T, b
with B = +oo if —f—fT‘d—” < Oforalli. If ©¥ € [0, min{Ag, Bi}), then 0 < & < x;

and 1 = —(Vfldi)/¢k. From0 < 69 < 6 < 1and 0 < & < x¢,

23
Lk 2 T2 x @3)

Assume 77 = Ay. Since §xAg < —(kaTdk) when g > 0,and ¢(6kt;) < 98Ak(kaTdk)
otherwise,

~

9&
dOkT}) = POkDY) < ——z‘lAk(Vf{ dr)- (24)

Assume T} = Br. Since &P < — (VS di) when & > 0, and ¢(6k7;) < 6Bk (VS di)
otherwise,

92
$OT}) = DOPr) < - Bi(VI ). (25)

Considering all the three cases,

62 —(Vfld
Oty < -} (VIi di) min {Ak, (+2") ﬁk} : (26)

Next we establish lower bounds on S for the two definitions of di respectively.

_1
First consider dy = gk/\/llgk”% + | D, 2 Agk

1 < j < m such that

2
o By definition, there exists some

T .

T
ajdk

Br >

From (22), boundedness of {A;} and {x}, there exists xg > 0 such that,

N .
(M) j Iz Xﬁ\ﬂ"é’k“% + 1

T .
ajxk—bj

T
ajdk

k =

1 12
D,kadz. @7
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~1 2
Consider the second case when d; = ék/\/ HékH% + " D, ZAékﬂz. By assumption
(k) jo <0, a%dk > 0 from (22). Hence there exists some j # jg such that
T
a; X — b;

Bk =
ajT-dk

From (22), (Di)ii = (Di)ii when i # jo, and the boundedness of {i), there exists
Xp > 0 such that

B = x;,\/ 23 + | D (28)

Using Lemma 1 and (22), there exist y,, Xz > 0 such that

-1 2 ~ 1 2
\/ lexl3 + | D 2 Age| = xg and \/ a3+ D au|, < @9

_1 2
Since Yi(st) < Bes(Bperl) with dy = gk/\/ gl + | D EAgkuz if (AS.1) is satisfied

~ 1 2
and Y (s¢) < Bad(Bharl) with di = 2 /\/ a2 + " b} 2A§k"2, if (AS.2) is satisfied,
the results follow immediately from (26), (27), (28), and (29).
O

Lemma 4 and 5 are auxillary results to prove the first order optimality.

Lemma 4. Assume that (AS.0) holds, f(x) : F — R is continuously differentiable,
{Bx} is bounded and {x;} is generated by TRAM. Then there cannot exist constants
X0, X1 > 0 such that, for sufficiently large k,

1 )
—Y(sg) > 5X0 min{Ag, x1}.

Proof. The lemma is proved by contradiction. Assume that there exist constants
X0, X1 > O such that, for sufficiently large %,

1 :
—VYk(sk) = 5 xomin{Ay, xi1}. (30)
We first prove that
o0
D Ak < +o0. (31)
k=1

If there are a finite number of successful iterations then Ayy; < y14A for all k
sufficiently large. Hence

00
Z Ajp < 4+00.
k=1
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If there is an infinite sequence {k;} of successful iterations, using (30), for a successful
step and sufficiently large k,

1
fOr) = k1) = —pe(sy;) > §MX0min{Ak,-, x1}. (32)
Since f(xk+1) < f(xx) for all k and { f(xx)} is bounded below,

0
Z Ay, < +00.
i=1

The trust region updating rules of TRAM specify that Ax1 < y1 Ak for an unsuccessful
iteration and A4 < Y2 Ay for a successful iteration. Hence

00 00
kX}:AkS(1+1Y2 )ZAk,’-
= i=1

Again (31) holds.
From (31) and ||xx+1 — xkll2 = lIskll2 < BsAk, {xk} converges, and {s;} converges
to zero. Since {By} is bounded, there exists xp > 0 such that ||Bill2 < xp. From
continuity of VA(x), f(xx + sk) — f(xx) = Vf(xk + &ksk)T s with 0 < & < 1. Hence
1
—Z—SZBkSk

| fa + k) — ) — V(s < + | (VA + &esi) — VO si]

1,
< EXBB;A% + Bs Akl VAGxk + Eksi) — Vil

Since Vf(x) is continuous in the compact level set -£ and {x;} converges, there exists
a sequence {€;} converging to zero such that

| fxx + s1) — fOxar) — Yr(se)| < exDi.

By assumption, for sufficiently large k, — i (sk) > % X0A. It is readily obtained that
{|px—1]} converges to zero. Hence { A} cannot converge to zero, which is a contradiction
to (31). The proof is completed.

O
Lemma 5. Assume that (AS.0) holds and f(x) : F — R is continuously differen-
tiable. Assume further that limy_; oo kaT gx = 0 and lim infi_,oo(—Vf,Z;igmi) > 0 for
a subsequence {m;}. Then ():m,.) jo < Ofor sufficiently large i.
Proof. Using the first system of equations in (22),
~ T - .
Vi = (ATM) &+ (Vi — AT?»k)Tgk
= —l{bkik + (ka - AT)»k)Tgk.
From limy— 00 V/f{ gk = 0and (16), limy—, oo (Vfi—AT Ax) = 0and limy— o0 (Ae) j(Di) j
= 0 forall j # jo. Since iminfi_,co(— V£ Zm;) > 0, (hm;) jo(Am;)jo > O for suffi-
ciently large i. From limg—, co V] gx = Oand lim inf; 00 (= V] 8m) > 0, (k) jo <0
for sufficiently large i. This implies that (im;) jo < O for sufficiently large i.
O
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Noting that aJT-O-grk = —(k) jo» Lemma 5 indicates that, assuming that the comple-
mentarity conditions are satisfied asymptotically, the iterates will leave the hyperplane
a’ x — bj, = 0 and move into the feasible region if lim infy_, oo (A¢) j, < 0.
Lemma 6. Assume that (AS.0) holds, f(x) : F — R is continuously differentiable,
and {By} is bounded. Let {x;} be generated by TRAM.

(a) If (AS.1) holds at every iteration then lim infj_, o ka gk =
(b) If (AS.2) holds for sufficiently large k and limy_, o, V fk gk =0, then
lim infy, o ka & = 0.

Proof. We prove each result by contradiction.

(a) Assume that there is € > 0 such that —kaT gk > € for all sufficiently large k. From
(16), there exists € > 0 such that, for sufficiently large k,

1 2
195 = ATxil; + |DEe] ) 2 @

Since (AS.1) is satisfied, using Lemma 3 there exist yo, x; > O such that, for
sufficiently large &,

—Vk(sk) > %Xo min{Ag, x1}.
But Lemma 4 indicates that this is not possible. Hence
lim inf Vilek=0
(b) Assume now that (AS.2) holds for sufficiently large k and limy_, o, ka gr = O but

—ka 8k > € for sufficiently large k. From (19), there exists € > 0 such that, for
sufficiently large %,

~ 1. g2
| VA — ATe|5 + ﬂngkﬂz > .
Lemma 3 and 5 apply and there exist xo, x1 > O such that, for sufficiently large k,
1 .
—Vk(sk) > s xomin{Ag, x1}.
Using Lemma 4, this is impossible. Hence
liminf V£] g =
k—o00
The proof is completed.

O

The next theorem establishes that complementarity and dual feasibility can be sat-
isfied at every limit point.
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Theorem 1. Assume that (AS.0) holds and f(x): F — R is continuously differentiable
and {By} is bounded. Let {xy} be generated by TRAM. Assume that (AS.1) holds at every
iteration. Then

(a) limg—oo V. fkT gk = 0, i.e., the complementarity conditions are satisfied at every limit
point of {xx};

(b) If, in addition, (AS.2) is satisfied for sufficiently large k, then limy_, kaT gr = 0.
Thus the first order necessary condition is satisfied at every limit point.

Proof. The proof is again by contradiction. We consider each result in turn.

(a) Let €; in (0,1) be given and assume that there is a sequence {m;} such that
Il Vf,zi gm;ll2 = €1. Lemma 6 guarantees that for any €; in (0, €;) there is a subse-
quence of {m;} (without loss of generality we assume that it is the full sequence)
and a subsequence {/;} such that

Vi e| =1, mi<k<l, 1Vf,iTg1i| < €. (33)

Using (16),

12
Hka - ATAkIE + uDEKkﬂz >e€, mi <k<l,

where Ay is defined in (15).
If the k-th iteration is successful, using Lemma 3 and noting that g = Vfi — AT A,

€1 BesO? . €
fox) = fOxegn) = “—‘Z—i‘i—ﬂmm{m, ———i— xp/€1 } ,mi<k<l. (34)
g 8

.

Since f(x) is bounded below on £ and f(xk+1) < f(xk), { f(xx)} converges and

{f(xk) — f(xk+1)} converges to zero. From ||xxyi — xkll2 < BsAg, it follows that,
for sufficiently large i,

fxi) — fxa+1) = e3llxirr — xillz, mi <k <1, (35)
2
where €3 = '“—Z'T—izf‘l. Consider a subsequence of {/;} such that {x;;} converges to x,

and {V fl,T g1;} converges to zero. Without loss of generality, the subsequence is still
denoted by {/;}. Using (35) and the triangle inequality,

fem) — f(xx;) > e3llxg, — xm;ll2, mi < k; <1I;.

Since {f(xx)} converges and {x;;} converges to x4, {x,,} converges to x,. From
{V f,lT gi;} convergingto zero, V f*T g+« = 0. Applying Lemma 2, {V f,Zi gm, } converges
to zero. Hence |V f,gi 8m;| < € for sufficiently large i. This contradicts (33) since

€, < €1. Therefore {V fkTgk} converges to zero and the complementarity conditions
are satisfied at every limit point of {x,}.
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(b) From (a), limy_, ka gk = 0. Assume now that (AS.2) is satisfied for bufﬁClently
large k. Using Lemma 6, lim infj_, oo ka 8k = 0. The proof for limy_, o, ka gk =
is very similar to the proof of (a). We include it here for completeness. Let €; in
(0, 1) be given and assume that there is a sequence {m;} such that | Vf,, T3 8mill2 = €.
Lemma 6 guarantees that for any €; in (0, €1) there is a subsequence of { m;} (without
loss of generality we assume that it is the full sequence) and a subsequence {/;} such
that

Vil 8| = &1, mi<k<li, |V 3| < e (36)
Using (19), we have
1.2
[9fc = A%l3 + | DEA] ) z 1, mi <k <1

where A is defined in (17).

If the k-th iteration is successful, using Lemma 5 and Lemma 3, and noting that
= Vfi — Ak,

neBard 0

Xz

fxe) — fxes1) = lAk, o ,Xﬁf] m; <k <l;. (37)
g

Since f(x) is bounded below on L, { f(xx)} converges and { f(xx) — f(xk+1)} con-
verges to zero. From ||xx41 — xxll2 < Bs Ak, it follows that, for sufficiently large i,

fOa) — flxk1) = esllxesr — xell2, mi <k <1, (38)

€ 62
where €3 = “—zlxg%-‘l.
8

Consider a subsequence of {/;} such that {x;;} converges to x, and {V f,iT 8i; } converges
to zero. Without loss of generality, the subsequence is still denoted by {/;}. Using
(38) and the triangle inequality,

f(xm,-) - f(xk,') = €3".in - xm;ﬂZ, m; < ki = li-

Since {f(xx)} converges and {x;;} converges to x,, {x,,} converges to x,. From
{ VflT g8;} converging to zero, applying Lemma 2, there exists A, such that Vf, =
AT )., DyA, = 0and A, > 0. From definition (10) of D, lim; s o0 Dm,km, = 0 and
hm,_)oo(me — AT \;) = 0.Since [A, —D,] has full row rank, lim;_, oo Am, = A+
and {me 8m;} converges to zero. Hence Ime 8m;| < €2 for sufficiently large i.
This contradicts (36) since €2 < €1. Therefore {V fk 8k} converges to zero. Thus the
first order necessary conditions are satisfied at every limit point.

The proof is completed.
a

The results of Theorem 1 imply that, under the stated assumptions, the first order
necessary conditions can be satisfied. Before we investigate satisfaction of the second
order necessary conditions, several technical lemmas are required. First, we quote
Lemma (4.10) in [23] below.
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Lemma 7. Let x, be an isolated limit point of a sequence {x;} in R". If {xi} does not
converge then there is a subsequence {x; ;} converging to x.,.and an € > 0 such that
”)C[j.H — Xl l2 > e.

Consequences of (AS.3) are subsequently examined.

Lemma 8. Assume that f(x) : F — R is twice continuously differentiable. Let the
1

columns of Zy form an orthonormal basis for the null space of [A, ——D,f 1 and py be

a solution to the trust region subproblem (12) with Sy = Dy and By = V2fk. Let p;

denote the damped step p; = oy py where ay = Oy and oy is defined in (14) with
dy = pk. Then

1 7 7o 63 min{1, £7} . 2

_ (V’k(P;) + Epz ATDk leAp;:) > 0—————"—(va,% + '"RkZ,{(Pk? Pk)"?_),

where By is the stepsize to the boundary of F along py, vk > 0 is defined by (8), and Ry,
is defined by (9).

Proof. Let ¢(a) = yi(api) + % pT AT D' CrApy and o € [0, min(1, fi}] where By
is the stepsize along py to the boundary of F. Let o) be the minimizer of ¢(a) in
[0, min{1, Bk}] as defined in (14). Since py solves (12), a; = min{1, Bt}. In addition,

1 A Lot .
o) = O!kaTPk + -2-012(171(; pOT Hi(pr; pr)
. - . 1 o .
= —a(pi; p)T (Hx + v (px; pr) + Eoﬂ(pk; PO Hi(p; pr) (from (8))

] 1 L2 1
= —a|RZ] (pi; PO |5 + S0 | ReZi (pis Pl - SovAg,  (from (9)).

From (x,’;2 <oy, py = kaypr,and 0 < 6y < 6 < 1,

1 ~ 62 min {1, g2 )
_ (Wk(P}:) + Ep,’;TATDk ]CkAp;:) > 0—-—2{——-"—}(vk~A£ + | ReZT (pis Pk)‘ilg).

The proof is completed.
O

The following lemma provides lower bounds for the stepsize sequence {8} along {py}.
The results in Lemma 9 hold for any subsequence generated by TRAM (consequently,
it holds for the entire sequence as well).

Lemma 9. Assume that (AS.0) holds, f(x) : F — R is twice continuously differen-
tiable. Let py be a solution to the trust region subproblem (12) with Sy = Dy and
B = V2fi, {xx} be any subsequence generated by TRAM and By be the stepsize to
the boundary of F along pi. Then there exist xo, X1, x2 > O such that, for sufficiently
large k,

Vi

(39)

Br > ,
x0(x1 + (x2 + vi)Ayg)
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where vy > 0 is defined in (8). Assume further that {x;} converges to x, at which strict
complementarity and dual feasibility are satisfied, and {(py; pr)} converges to zero.
Then lim infy_, o B > O.

Proof. By definition,

al-Txk —b; aiTxk — b;

Bk = min { — >0

T ) T
a; Pk a; Pk

_1
From py = D, ? Ap; and (8), there exists A}, .1 such that

(aiTxk - bi)()‘i,c)+l)i
Vi + [ (Ak)il

1
al pr = (al xx — b)) 2 (Pr)i = —

Hence, there exists 1 < j < m such that,
vk + (M) S W
1()‘I€+l)j| LY oo

Br = (40)

From (8),

AT : .
l: D% ] A,f+1 = [V({k] + (Hy + vid ) (pi; Di)- (41)
-y

1
Since[A, —D ,f ] has full row rank in the compact set £, {4} is bounded (using Lemma 1),
and f(x) is twice continuously differentiable, there exist xg, x1, x2 > 0 such that

111l < %001 + (2 + v AR). 42)

Substitute (42) into (40), (39) holds.

Assume now that {x;} converges to x, satisfying strict complementarity, dual feasi-
bility, and {(px; px)} converges to zero. Since (AS.0) holds, {A;} converges to A,. From
strict complementarity and dual feasibility, (A,); > O for any aiTx* — b; = 0.If there is
no binding constraint at x,, then §; = 0o for sufficiently large k and the resuit clearly
holds. Assume that there is some i such that aiTx* —b; = 0. Since { p;} convergesto zero,
the index j defining Bx in (40) satisfies aJT-x* —bj = 0and (A&); > O for sufficiently
large k.

Let the sequence {A} be partitioned into two subsequences: {k : Ay < 1} and
{k : Ay > 1}. For the subsequence {k : Ay < 1}, using (40) and (42),

k> vk + 1) 1 , for some arx* —bj=0.
xo(x1 + (x2 + i) !
Since limy_;, o0 (Ax); > O for all al.Tx* — b; =0, liminf;_,» By > O.

Consider the subsequence {k : Ay > 1}. Using Lemma 8, since {(px; px)} converges
to zero, ||(pk; pi)ll2 < Ax for sufficiently large k in the subsequence {A; > 1}. Thus
v = 0 for sufficiently large k in the subsequence {k : Ay > 1}. Using (41) and
(AS.0), limg, 0 Ax = limg—,00 A} = A,. From the first inequality in (40) and strict
complementarity assumption, lim infx_, o Bx > 0. The proof is completed.

a
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Lemma 10. Assume that [A, D] has full row rank at x,. € F and the complementarity
conditions are satisfied at (xx; hx). !,et the columns of Z. denote an orthonormal basis
for the null space of [A, D). If ZIH*Z* is positive semidefinite, then dT V2f.d > 0 for
any d satisfying ade = 0 for all i with aiTx* —b; =0.

Proof. Letd satisfy aTd = Oforalli with a! x,—b; = 0. Defined; = (af x.—b;)"2a’ d

~ ] ~ ~
if al-Tx* — b; > 0and d; = 0 otherwise. Then Ad — D2d = 0.Hence (d; d) = Z,w and
dTC.d = 0. Since ZT A, Z, is positive semidefinite, d” V2f,d = w' ZT H,Z,w > 0.
O

The next theorem establishes that the projected Hessian becomes positive semidefinite
asymptotically under the stated assumptions. Note that (AS.2) is only necessary for
satisfaction of dual feasibility.

Theorem 2. Assume (AS.0) holds and f(x) : F — R is twice continuously differ-
entiable. Let {xy} be the sequence generated by TRAM. If (AS.1) is satisfied at every
iteration and (AS.3) holds for sufficiently large k, then

(a) There is a limit point x,. such that dTV2%f.d > 0 for any d satisfying
al'd = 0 for all i with a] x. — b; = 0;

(b) If x4 is an isolated limit point, then d" V2f,d > 0 for any d satisfying
al'd = 0 for all i with a] x, — b; = 0.

Proof. Using Lemma 10, in order to prove d"V?f,d > 0 for any d satisfying ade =0

for all i with al-Tx* — b; = 0, we only need to show that the projected Hessian Z Iﬁ*-Z *
is positive semidefinite.

(a) If zero is a limit point of {v;}, the result immediately follows. Next we prove
that zero is a limit point of {v;} by contradiction. Assume that vy > € > 0 for
sufficiently large k. First we show that this implies that {x;} converges, {A;}
converges to zero and liminfy_, o0 Bk > 0.

Using (39) in Lemma 9,
Vi
Br > . (43
xo(x1 + (x2 + vi)Ax) 43)
If {Ax} is bounded by xa > O, then
VY 1
: (44)

Br = > :
x0(x1 + G2 + v ~ xo(2 + (2 +1)xa)

Since (AS.3) holds for sufficiently large k, using Lemma 8, for sufficiently
large k,

1 62
— (wk(sk) + EskTATD,;lCkAsk) > '8"20 min {1, 87 }eA.  (45)
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(b)

Hence, for sufficiently large k and a successful step,

2

fo) = flaen) = PO iy {1, B7Jen}. (46)
If there are finite number of successful steps, {xi} converges and {A;} con-
verges to zero. Moreover, using (44), lim inf;_, o0 Br > 0. Otherwise, let {k;}
be the infinite sequence of successful iterations. Inequality (46), (43) and
{ f(xx) — f(xk4+1)} convergesto zero imply that {A} is bounded. This inequal-
ity, (46), and { f(xx) — f(xx+1)} converging to zero imply that

o0

Z Ai. < -00.
1

i=1

The trust region updating rules of TRAM specify that Az < y1Ag for an
unsuccessful iteration and Ax41 < 2 A for a successful iteration. Hence

i k_(1+ )Z 7.

Hence {x;} converges and {A;} converges to zero. Since |is¢|l2 < BsAx and
[lpklla < A, both {sx} and {pi} converge to zero. Moreover, using (44),
liminfz_ o0 Brx > 0.

From (45), lim infy, o0 Bt > 0, and — i (sk) > — (Y (sk)+3sk” AT D ' CrAsy),
there exists 3 > 0 such that

—Yr(st) = x3lg > ﬁ2 > iswh3.
A standard estimate is that

| FGek + s1) — fok) — Yl < llsell3 omax, V2 fGee + &rse) — V) |-

The last two inequalities, convergence of {xx} and {sx} converging to zero
imply that {|px — 1|} converges to zero. Therefore the entire sequence {px}
converges to unity. The trust region updating rules of TRAM imply that {A}
cannot converge to zero, which is a contradiction. Hence there is a limit point
with Z I H +Z« positive semidefinite.

If {x;} converges to x,, the result follows from (a). If {x;} does not con-
verge then Lemma 7 applies. Thus, if {x;;} is the subsequence guaranteed by

Lemma 7, then A, B ie. From Lemma 8,

2 s 2
, 1 B B mm{l,ﬂlv}
—(lljlj(slj)+ESIjTATDlj]C[J-AS]j) > 5 J vlel2j_

Using Lemma 9, there exist xo, x1, x2 > 0 such that, for sufficiently large j,
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vy;

B = :
XO(XI + (X2 + Ulj)Alj)
Since (AS.3) holds for sufficiently large %,

) 2
I.

4 vle;?_.
xo(x1 + (x2 +vi))Ag) /

2
JOap) — fxa41) 2 “ﬁggo min { 1, (

From lim;_; o f(xlj) — f(x1j+1) = 0 and Ay > %e, the above inequality

implies that {v); } converges to zero. Thus Z Iﬁ*Z « 18 positive semidefinite.

We have established (a)—(b).

4. Local convergence

Let F(x, A) = 0 denote the optimality conditions (4) where

_ AT
o [ 474).

and D(x) = diag(Ax — b) as in (2). Then the Jacobian matrix J(x, 1) of F(x, 1) is

raer [V2x) AT
Jx,2)" = [diag(A)A D(x)]'

From (5), a Newton step p,’(V of the trust region subproblem (7) is a modified Newton
step for F(x,A) = 0.

To establish the quadratic convergence of the proposed TRAM, we prove that,
asymptotically, the Newton step p,ICV of the trust region subproblem (7) is a sufficiently
accurate approximation to the exact Newton step of F(x, A) = 0. Moreover, asymptot-
ically, the Newton step p,]cV is in the interior of the trust region (hence py = p,’:’) and
(AS.1), (AS.2) and (AS.3) can be satistied by a damped Newton step p;}.

First, we prove that the Jacobian matrix J(x, A) is nonsingular near a local minimizer
satisfying strict complementarity and linear independence assumptions.

Theorem 3. Assume that f(x) : F — R is twice continuously differentiable and the
second order sufficiency conditions of (1) are satisfied at (xx; Ax). Assume further that
strict complementarity holds at x, and {a; : aiTx* — b; = 0} are linearly independent.
Then

(a) The Jacobian matrix J(x«, Ay) is nonsingular;
(b) The symmetric matrix AT (diag(IA))D(x)~1) A + V2f(x) is positive definite when
x € int(F) and (x; X) is sufficiently close to (xy; Ay).
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Proof. Assume that there exists (v; w), v € R" and w € R™, such that

V?_f* _AT v -0
diag(A«)A D, w|

Without loss of generality, partition A = [Ag; A;] where the rows of A( correspond
to the indices {i : aiTx* — b; = 0} and the rows of A; correspond to the indices
{i : a,.Tx* — b; # 0}. Similarly partition w into wq and w;. Since strict complementarity
holds at (x4; A+), Agv = 0, w; = 0, and V2f,v — ATwy = 0. Hence v" V2f,v = 0.
Since the second order sufficiency conditions are satisfied at (x4; A4) and Agv = 0,
v = 0 holds. This implies that ATw = 0. Therefore Agwo = 0. Applying linear
independence assumption of the columns of AT, w = 0. Hence the Jacobian matrix
J(x4, Ax) is nonsingular.

Let the components of A denote the dual variables corresponding to the constraints
{i : aiTJa.= — b; = 0}. Since the second order sufficiency conditions are satisfied at
(x4; Ax) with strict complementarity, there exist x(, Omin, Omax > 0, such that when
(x, ) is in a neighborhood of (x.; ), for any v satisfying Agv = 0,

min(A) > x0, V' VZ(x)v > ominfiv3, and |VZ(X)l2 < Omax.  (47)

Let M = V3f(x) + AT(diag(Ml)D(x)”l)A. In order to prove that d” Md > 0 for any
d # 0, without loss of generality, assume thatd = u + v where [lu + vl = 1 u, ve R",
with Agv = 0and uTv = 0. Using [[v]|3 = 1 — [|ull3, llvll2 < 1 and {lu|z < 1,

(u+ )" V@) + v) = vT VE(x)v + 2uT V2w + u! Vi(x)u
> ominflvll3 — 20max lull2lvll2 — Omaxull3
= ominllvl3 — omaxfull2Hvll2 + llull2)
> Omin — (Omin + 30max) |lull2.

Let x € int(F) and (x, A) be in the neighborhood of (x,, A.) within which (47) holds.
From Aov = 0, (47), and the above inequality,

(u+ "M@ +v) = @+ )" V2 + v) + (u + v)T AT diag(JA)D(x) ") A + v)
> (u+ )T V2 f(u + v) + u” A] Dy diag(ro)Aou
X0

> Omin — (Omin + 30max) lull2 + m

llAouil3.

If fullz < x1 & 5=, then (u + )" M(u + v) > Lomin. Since Aq is of full
row rank and u”v = 0 with Agv = 0, if [lull2 > x1, there exists x> > 0 such that
lAoull2 = x2llull2 = x1x2. Hence

2.2
XOX1 X
(u + U)TM(M +v) > A 122 — (Omin + 30max)-

0x — bolloo

2.2
When x is sufficiently close to x, such that {| Agx —bg||co < &%ﬁ%’ (u+v)" M(u+v)

> Omin + 30max. Hence there exists a neighborhood of (x,; A,) within which the
symmetric matrix M is positive definite. The proof is completed.
O
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We have established in Theorem 1 and 2 that, assuming sufficient decrease conditions
(AS.1) and (AS.3), there exists a limit point satisfying the complementarity and second
order necessary conditions. We prove next that, assuming additionally the second order
sufficiency condition and strict complementarity at this limit, convergence occurs and
trust region size { A} is asymptotically bounded away from zero.

Theorem 4. Assume that (AS.0) holds and f(x) : F — R is twice continuously differ-
entiable. Let {x;} and {si} be the sequence generated by TRAM. Assume further that
(AS.1) and (AS.3) hold for sufficiently large k and the second order sufficiency condi-
tions and strict complementarity are satisfied at a limit x, of {xx}. Then {xy} converges
to x4, Z,{I:Ika is positive definite for sufficiently large k, all iterations are eventually
successful, and { A} is bounded away from zero.

Proof. For any w € R"™, let (d; 3) = Z,{w where d € R", d € ™ and the columns of
1.
Zy form an orthonormal basis for the null space of [A, Di]. Then Ad — D}d =0, ie.,
N _1
d = D, * Ad.Let My = AT (CyD; ')A + V2fi. Using Theorem 3 and C = diag(|Ax|),
when x;, is sufficiently close to x,
T 7T f - N N — AT .
w' Zi HiZyw = (d; d)' Hi(d; d) = d" Myd > 0, if w # 0.

Hence Z,{ I:Ika is positive definite when (xx; A) is sufficiently close to (x; Ay).

Since the second order sufficiency conditions are satisfied at x,, x4 is an isolated limit

_1
point. Let §; = D, 2 Asi. Then ZkZ,{(sk; Sk) = (sk; Sx). Since (AS.3) is satisfied for
sufficiently large k, Wi (sk) + 35¢” AT D CrAsk = VT sk + 3 (st 3107 Hie(ses 1) < 0
asymptotically. Hence

1 R ~ A -
0 < (st 510" Zu(Zk HkZi) Zi (sk3 31) < —[Vfi, O ZkZi (s 5i)
< |2} (st 301,11 28 (Vi O,

whenever Z,{]:Ika is positive definite and  is sufficiently large. But

R A - 1 NN
st 50T Zi(ZF HrZi) ZT (s 51) = = ZT (e 505
( k ) k H(ZZHka)_luzu k "2

This implies that, for sufficiently large k, whenever Z,{ H xZk is positive definite,

1 A A _
Nzl = Wzl iz LIz s ol @9)

From the result (a) in Theorem 1 and I{ZkZ,{(ka; 0)|1§_ = —kaTgk, {ZZ(ka; 0)}
converges to zero. Hence, for any subsequence {x;;} converges to x., {(s;;; §;;)} and
{(p1;; P1;)} converge to zero. Following Lemma 7, {xi} converges to x,. Therefore

{(px; pr)} and {(sk; 5x)} converge to zero. Moreover, {Z,{flkzk} is positive definite for
sufficiently large k.
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Let « be an upper bound on the condition number of Z,{ HyZy. From Z,{ (Vfi; 0) =
—(ZT HKiZOZ{ (pY'; BY) and (48),

1
S 80l < e (s B, (49)

when £ is sufficiently large.
Since {x;} converges to x, satisfying the second order sufficiency conditions with

strict complementarity and {(px; p«)} converges to zero, using Lemma 8 and 9, there
exists x3 > O such that, for sufficiently large «,

1, _ 02 x3 .2
- (wk(p,’:) + —z-kaATDk ‘ckApz) > = ReZi (pis P

Since the eigenvalues of {Z,{iszk} are positive and bounded away from zero asymp-
totically, there exists x4 > O such that, for sufficiently large k,

1 _ ] n 2
- (wk(pZ) + 5Pk ATD; ‘CkAPI) > xamin {AZ, | (pY's B3}
Using (49), |Iskll < BsAk, and (AS.3), there exists x5 > 0 such that
1 _ 1 R _
— («/fk(m + zskTATDk ’ckAsk) > x4 max {Ai, -G sk)u%} > xshiskll3. (50)

Therefore —yri(sk) > xs ||Sk-||% for sufficiently large k. But f(x) is twice continuously
differentiable on F, thus

| fGxk + k) = fOxn) — Ya(si)|
< lswllz jmax | V2£xe +&ese) — Vafono |

Since {xx} converges and {sx} converges to zero, using (50), limy_ oo px = 1. This
implies that p; > n for k sufficiently large. Therefore {Ay} is bounded away from
Z€ero.

a
Recall that ( p,’(v ;A A,’(V ) which satisfies (5), where A’,ICVH = A+ AAY denotes the Newton

step of the trust region subproblem. Lemma 11 shows that, under assumptions specified,
the stepsize along p,’cv converges to one.

Lemma 11. Assume that f(x) : F — R is twice continuously differentiable, {x;)}
converges to x«, and {A} is the least squares Lagrangian multiplier approximation (15).
Moreover, {a; : aiTx* —b; = O} arelinearly independent and the second order sufficiency
conditions and strict complementarity are satisfied at x. Let ( p,’:’ ; A,’:’ '+1) be defined
by (5). Then, {\} and {A,’cv } converge to A, { pfcv } converges to zero, and

Ik — Axllz = O(llxk — x4|l2),

2% = M “2 = O(|| (xx; lllcv) — (X )‘*)"2)’

N AN .
‘H)*k+1 - )‘kuz = O(] (v 2% ) = (s )‘*)Hz)’
o =1 = O} (xis 1Y) = Gras 2.
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where aiv = min{1, ﬂ,’f } and ﬁ,’cv is the stepsize to the boundary of the feasible region
F along p,{,v .

Proof. By definition (15) of A, (AAT + Dp)ry = AVSf;. Since {a; : aiTx* —b; =0}
1

are linearly independent, [A, —D; ] has full row rank and (AAT + D)) is nonsingular.

In addition Vf{(x) is continuous in F. Thus

-1 -1
e — Aellz = |(AAT + Di) ™ AVf(xi) — (AAT + D,)7 AVS(x)],
= O(llxk — x«ll2)-
Since the coefficient matrix of (5) is equivalent to J(x, A)T at (x,; A,), applying Theo-
rem 3, the linear system (5) is nonsingular at (x.; A«). Since {xi} converges to x.
and complementarity is satisfied at x., {DxAx} and {Vfi — AT converge to zero.
By definition (5) of (piv s k,’cv +1) and {Ax} converges to A, {AkN } converges to A, and
limg— o0 i = 0. Moreover, [|Ax — AR ll2 < 1Ak — Aall2 +IAY — Aullz = O (xas A ) —
(x+; A4)112). From (5),
Aoy = Ak, = OUIGr: M) — (xas A 12)
AN . N
= O(]| (xis &) = @i 20 |5) + O(| A% = el)
= O(] (xe: A) — Gea A0),)-

If ﬂ,’cv = 00, a,’:’ = 1. Consider the case when ﬂ,’cv < 00. Using (5) again, for 1 <i <m,

al pl = — (af xk — bi) (1),
ok |(An)il '

Since { p}cv } converges to zero and strict complementarity is satisfied at x,, for sufficiently
large £,

N [(Ak) 1

C ),

From strict complementarity, limy_; oo ( ki,v )j = (Ax)j > Oforany ajT-x* —bj; = 0. Hence

, for some (A,’(V+1)j > 0 and a]Tx* —bj=0.

[1-af | = 0(]1 = BY]) = O(| A1 = M) = O (xis AY) = (x5 2),)-

The proof is completed.
O

Theorem 5 states that, under the specified assumptions, Newton steps (p,’(" ; ﬁ,’(v ) can
lead to successful steps and quadratic convergence.

Theorem 5. Assume that 0 < pu < 1 and f(x) : F — R is twice continuously
differentiable on F. Assume that {xy} converges to xx, the second order sufficiency
conditions and strict complementarity are satisfied at (xx; Ay) and {a; : aiTx* —b; = 0}
are linearly independent. Moreover, let piv be defined by (5) and 6y be the damping
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parameter with {6k — 1| = O] (xk; Ak) — (xs; Ax)ll2). Then |1 — o | = O(Y|(xk; Ak) —
(x+; A)ll2), and

Flo+apy) = f) < nynlowpl),

where af = Okallcv , 0 <6y <6 <1, a,’:’ = min{l, ﬂ,’:’ } and ﬁ,’cv is the stepsize to
the boundary of the feasible region F along p,’cv . In addition, if xj4+1 = xx + ai pkN for
sufficiently large k, then {(xx; A;(V )} converges quadratically to (x.; Ay).

Proof. Letdy = ai p,lcv . Since f(x) is twice continuously differentiable in F, there exists
0 < & < 1 such that

1
Fx+ di) — fo) = Yu(di) + 5dﬂ(vzf(xk +&di) — V2 fi)dy.

FromLemmall,{ p,’c" } and {di} converge to zero. Therefore, there exists {€; } converging
to zero such that, for sufficiently large &,

fOa +di) — fQxx) = Y(dr) + exlldi 3.
From0 < u < 1,
SO +di) — fxr) — ui(di)
=(1-p (kaT dy + %dﬂvmdk) + exlldi i3

1 AT oA A
=d-p (Vf{dk + 5y di)" Hi(dy; dk)) + exlldill3-

1
Since the columns of Z; form an orthonormal basis for the null space of [A, —D,?],

1
and ApY —DZpY =0, (pY; BY) = ZkZI (pi; pYY). For sufficiently large , (pY; p)
satisfies (8) with vy = 0. Hence

Vi ek == BY)" Helpl's BY)
= (o ) Zu(ZL Bzi) 2 (o} BY).
Substituting dy = oy p,’cV into the equations above,
VT d = —(di; d)T Zi(Z] HiZi) Z1(dy; dy).
Hence
SO+ di) — fOxi) — i (de)

C-a)d—p) . - z d
<_ ;Olk B2 (e 30T Zi(2F B Z2) ZT (di; de) + exlldi 2.

From Theorem 3, the projected Hessian Z,{I:Ika is positive definite for sufficiently
large k. Hence there exists € > 0 such that, for £ sufficiently large,

(di; di) Zi(Z] HeZi) Z3 (di; di) > €| Z] (di; di) | .-
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But || Z] (di: di)3 = 11(di; di)3. Hence

(04 N
o £ = we)|di; a3 + exlidili3.

S+ di) — fxr) — p¥ldi) < —

Since {6} convergesto 1, o = Gkai,v and {a,{,v } converges to 1 using Lemma 11, {ax}
converges to 1. But {€;} converges to zero. Hence, for sufficiently large k,

fOxx +di) — flxr) < iy (dy).

Let wy = AY,, — AY. Similar to (5), (di; wy) satisfies

T (di; wi) = —(Vfe — ATAY; DY),

192f AT
i = a Y Je —AT 1)
) &J;CkA Dy

where

Clearly,

7 (e 1)

T
) =,
. 1], 1
<|(diag(ry) — Cx)A|, + 11 - —i 1V2fiel, + .|1 - ——l ICkAll2.
a | o
Using Lemma 11, Jaf — 1] = O(|(x; AY) — (x5 A)ll2). In addition, 16 — 1| =
Ol M) — (a5 A ll2) and 0 < (1 — G ) = (1 — 6) + 6k(1 — o). Hence
lax — 1] = O(ll(xk; AY) — (x4 A4)1l2). Moreover,

[diag(AY) = Cill, = O (xks ) = (a3 2] )-
Using (51), |1 — ax| = O(||(xs; A,’:’) — (x4 A4)|l2) and the equation above,

1 (e AT =TT, = O (s AY) = s 10| )

Applying Theorem 3.4 in [11], {(xx; k}l{\' )} converges quadratically to (x4; Ay).
d

The assumption |6y — 1| = O(||(xx; Ak) — (x«; As)|l2) requires that the damping
parameter converges to one sufficiently fast; this requirement is satisfied if 6y =
max(6p, 1 — || Dirklloo), for example. Finally Theorem 6 shows that quadratic con-
vergence can be achieved with TRAM.

Theorem 6. Assume that (AS.0) holds and f(x) : F — R is twice continuously differ-
entiable on F. Assume (AS.1) is satisfied at every iteration, and (AS.2) and (AS.3) hold
for sufficiently large k. Let {xi} be generated by TRAM in Fig. 1 and x, be a limit point.
Assume further that the second order sufficiency conditions are satisfied at (x.; A+) with
strict complementarity and |0 — 1| = O(l| (xk; Ax) — (xx; As)||2). Let o = 6 min{1, B}
where By is the stepsize along py to the boundary of F. Then, for sufficiently large k,
ay px satisfies (AS.1), (AS.2) and (AS.3). If xxk41 = xx + axpx when k is sufficiently
large and xy + oy py, yields a successful step, then {(xi; AZ )} converges quadratically to
(X5 Ax).
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Proof. From Theorem 4, {x;} converges to x, and {Ay} is bounded away from zero.
Since pkN satisfies

(2 fxzi ) ZE (pY; YY) = —Z1 (Vfi; 0),

and {V fkT gk} converges to zero, the sequence {( p,’c" ; 13,'(‘/ )} converges to zero. Hence, for
sufficiently large &, [(pY; PY)ll2 < Ax. This implies that py = pV and A7 = A¥ for
sufficiently large k. Hence oy = Hka,lcv where a,’cv = min(1, 78,’(\’ ) and ﬁ,’:’ is the stepsize
along piv to the boundary of F.

Using Theorem 5, {a;} convergesto 1. From 0 <oy <1 and (px; p)? Hi(px, pr) >0
for sufficiently large ,

2
o _
Vi (axpr) + —zikaATDk 'CrApk
a,% T2 “/% 1
= Ve pr + - PV + TkaATDk' CkApk
T a% ~ \T 1 -
= o, Vfy pr + ?(PM D))" He(pk, Dk)

1 o TP R
< ag (kaTPk + E(Pk§ poT Hi(pr, Pk))

1 _
< ag (V/k(Pk) + EPkTATDk 1CkApk) .
Since 0 < By < 1 and {ay} converges to 1, (AS.3) is satisfied with oy py for sufficiently
large k. From 0 < B¢y < 1 and ||g; |l < A, for & sufficiently large,

2
oy

_ 1 _
Y (o pr) + ngATDk 'ChApy < Bes (w(g;:) + Eg;TATDk ‘ckAgz) ,

i.e., ag px satisfies (AS.1). Since the first order necessary conditions are satisfied at
(x4; A+) With strict complementarity, gx = g for sufficiently large k. Thus o pi satisfies
(AS.2) asymptotically as well.

Following Theorem 5, a4 px yields a successful step for sufficiently large 4. From
the assumption that xx+1 = xx + ak px when xx + ay pi yields a successful step and & is
sufficiently large, xx+1 = X + ok px asymptotically. Using Theorem 5 again, {(x; kf )}
converges quadratically to (x.; Ax).

0

We have assumed strict complementarity in establishing the second order conver-
gence. In the context of simple bound constrained minimization, it is shown that, with
a proper modification on the scaling matrix, quadratic convergence can be achieved in
the absence of the strict complementarity assumption [17]. It would be interesting to
investigate whether similar results can be established here.
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5. Conclusion

In this paper, global and local convergence properties of a trust region and affine
scaling interior point method (TRAM) are established for minimizing a general nonlinear
(nonconvex) function with linear inequality constraints.

Under a compactness and full rank assumption (AS.0), it is established that, if
a computed step leads to a sufficient decrease with respect to the projected gradient
gk using affine scaling Dy, every limit point satisfies the complementarity conditions.
If, in addition, (AS.2) is satisfied asymptotically, then the Kuhn-Tucker conditions are
satisfied at every limit x,. Moreover, if (AS.3) is satisfied asymptotically, then there
exists a limit point at which both the first and second order necessary conditions are
satisfied. Finally, if the second order sufficiency conditions and strict complementarity
are satisfied at a limit point, then {(xx; Af )} converges quadratically.

In the proposed method, a 2-norm trust region subproblem can be approximately
solved. This trust region subproblem uses an affine scaling so that a damped step
of the solution of the trust region subproblem generates sufficient decrease of the
objective function. Moreover, asymptotically, the solution of the trust region subproblem
corresponds to a modified Newton step for the complementarity conditions. Preliminary
computational results in [8] suggest that the proposed method often solves a large linear-
inequality-constrained nonlinear minimization problem in a small number of iterations.

There is no theoretical difficulty in extending the proposed method for additional
linear equality constraints; however, the use of the computational reflection technique
cannot be directly applied. Using a penalty function for nonlinear constraints, we are
currently extending the proposed trust region and affine scaling interior point method
to more general nonlinear programming problems with additional equality constraints.
In addition, we are investigating the role of dual multiplier updates and possibility of
alternative multiplier updating schemes in the proposed algorithm context.
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