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Abstract An uncertainty set is a crucial component in robust optimization. Unfor-
tunately, it is often unclear how to specify it precisely. Thus it is important to study
sensitivity of the robust solution to variations in the uncertainty set, and to develop a
method which improves stability of the robust solution. In this paper, to address these
issues, we focus on uncertainty in the price impact parameters in an optimal portfo-
lio execution problem. We first illustrate that a small variation in the uncertainty set
may result in a large change in the robust solution. We then propose a regularized ro-
bust optimization formulation which yields a solution with a better stability property
than the classical robust solution. In this approach, the uncertainty set is regularized
through a regularization constraint, defined by a linear matrix inequality using the
Hessian of the objective function and a regularization parameter. The regularized

The authors would like to thank anonymous referees whose comments have improved the
presentation of this paper.
T.F. Coleman acknowledges funding from the Ophelia Lazaridis University Research Chair (which
he holds) and the National Sciences and Engineering Research Council of Canada. The views
expressed herein are solely from the authors.
Y. Li acknowledges funding from Credit Suisse and the National Sciences and Engineering Research
Council of Canada.

S. Moazeni (�)
Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall,
Charlton Street, Princeton, NJ 08544, USA
e-mail: somayeh@princeton.edu

T.F. Coleman
Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario N2L 3G1, Canada
e-mail: tfcoleman@uwaterloo.ca

Y. Li
David R. Cheriton School of Computer Science, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario N2L 3G1, Canada
e-mail: yuying@uwaterloo.ca

mailto:somayeh@princeton.edu
mailto:tfcoleman@uwaterloo.ca
mailto:yuying@uwaterloo.ca


S. Moazeni et al.

robust solution is then more stable with respect to variation in the uncertainty set
specification, in addition to being more robust to estimation errors in the price impact
parameters. The regularized robust optimal execution strategy can be computed by an
efficient method based on convex optimization. Improvement in the stability of the
robust solution is analyzed. We also study implications of the regularization on the
optimal execution strategy and its corresponding execution cost. Through the regu-
larization parameter, one can adjust the level of conservatism of the robust solution.

Keywords Robust optimization · Estimation errors · Portfolio optimization · Price
impact

1 Introduction

Uncertainty is inevitable in any real world decision making problem. An optimization
problem formulation often relies on model parameters which must be estimated. This
presents challenges in the precise notion of optimality and computation of an optimal
decision. Several approaches to account for data uncertainty in optimization problems
have been proposed in the literature. In particular, robust optimization has gained
much interest over the last decade, see, e.g., [5, 12]. In robust optimization, parameter
uncertainty is modeled deterministically through an uncertainty set, which includes
all or most possible parameter values. The approach then offers a solution which has
the best worst objective value when parameters belong to the uncertainty set.

The current robust optimization methodology, however, has shortcomings. Firstly,
it can be conservative in the sense that a robust solution may have poor objective
values for many realizations of the data including the nominal one, see, e.g., [13].
Shrinking the uncertainty set using a scaling factor has been a typical technique to
alleviate this issue, see, e.g., [9, 10]. An additional problem, which has not been
addressed in the current robust optimization literature, is the potential instability of
the robust solution to variation in the uncertainty set. Although a robust solution
provides protection in the worst scenario for the input parameters of the nominal
optimization problem, it does not necessarily guarantee stability of the robust solution
with respect to the uncertainty set.

In this paper, we show that a robust solution can potentially be unstable in the
sense that a small variation in the uncertainty set may considerably change the ro-
bust solution. To illustrate, we focus on the important problem of optimal portfolio
execution, with uncertain price impact parameters. Given a price impact model, this
problem yields an optimal execution strategy which minimizes the mean and variance
of the cost in executing (selling or buying) orders for blocks of assets within a fixed
number of time periods. To focus on the main issues regarding robust optimization
solutions, we restrict our attention here to a simple linear price impact model and
additive market price dynamics, which have been used in one of the most influential
literature on optimal portfolio execution [1]. This model has been the building block
in several literature on this problem, see, e.g., [37, 47], and the references therein.

Assuming a deterministic strategy, this problem is then reduced to a quadratic
programming problem. Unfortunately, estimating the price impact parameters is a
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challenging task, see, e.g., [54]. Furthermore, it has been shown in [42] that, the op-
timal execution strategy and the efficient frontier can be sensitive to these estimation
errors and may fluctuate substantially. Hence, it is necessary to take estimation errors
in the price impact parameters into account when seeking for an optimal execution
strategy. Here, we consider a robust optimization technique to handle uncertainty in
price impact.

We first use simulation to illustrate potential instability of the classical robust op-
timization method for the discussed optimal portfolio execution problem with respect
to the uncertainty set for price impact parameters. Specifically we show that, for an in-
terval uncertainty set, sensitivity of the robust solution and the robust efficient frontier
to perturbations in the boundaries of the uncertainty set can be larger than sensitivity
of the nominal solution and the nominal efficient frontier to changes in the nominal
price impact parameters. Next we show that, for a convex and compact uncertainty
set and convex set of feasible execution strategies, a robust optimal execution strat-
egy uniquely exists, when the Hessian of the objective function is positive definite for
every realization of price impact parameters in the uncertainty set. Under this assump-
tion, the unique robust solution can be computed via solving a convex programming
problem which yields a worst case realization of the price impact parameters, and
the optimal Lagrange multipliers. These values are then used to determine a robust
optimal execution strategy.

To improve stability of the robust optimization, we propose the following regu-
larized robust optimization approach for the optimal portfolio execution problem, we
consider. Given any convex compact uncertainty set, a regularization constraint is
included to construct a regularized uncertainty set. This regularized uncertainty set
is then used in the minimax formulation to yield a regularized robust solution. For
the optimal portfolio execution problem with uncertain parameters in a linear price
impact model, the regularization constraint is a lower bound constraint on the mini-
mum eigenvalue of the Hessian of the objective function. We refer to this fixed lower
bound as the regularization parameter. The regularization constraint using the eigen-
value function retains convexity of a convex uncertainty set. Varying eigenvalues of
some design matrix to enhance stability properties is fairly common in engineering
problems, see, e.g., [40].

The intuition behind the proposed regularization constraint comes from the fol-
lowing mathematical result in [42]: variation in the solution can be large, as price
impact parameters are perturbed, when the minimum eigenvalue of the Hessian of
the objective function corresponding to the pair of price impact parameters is small.
By imposing the regularization constraint, we prevent potential instability of the ro-
bust solution by excluding elements, which may result in unstable solutions, from the
uncertainty set.

We make two main contributions in this paper. Firstly, we study sensitivity of the
classical robust optimization to changes in the uncertainty set. Secondly, we propose a
regularized robust optimization approach for an optimal portfolio execution problem
with uncertain price impact parameters. The regularized robust solution is unique and
can be obtained by an efficient method based on convex optimization for a positive
regularization parameter. We illustrate that including the regularization constraint in
the uncertainty set improves stability of the robust solution. We formally show that
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the change in the regularized robust optimal execution strategy is bounded above by
the change in the worst case price impact parameters over the regularized uncertainty
set. In addition, the change in the regularized robust solution converges to zero when
the variation in the uncertainty set approaches zero. We then investigate some impli-
cations of the regularization on the regularized robust solution and its robust objective
function value.

Our presentation is organized as follows. A mathematical formulation of the opti-
mal portfolio execution problem, that we consider, is presented in Sect. 2. The clas-
sical robust optimization approach is described in Sect. 3, where we also discuss po-
tential instability of the robust solution to variation in the uncertainty set. Derivation
of the robust solution under the assumption that the Hessian of the objective function
is positive definite over the uncertainty set is presented in Sect. 4. We propose the
regularized robust optimization approach for the optimal portfolio execution problem
in Sect. 5. Stability of the approach is discussed in Sect. 6. Several implications of
regularization on the regularized robust solution and its objective function value are
addressed in Sect. 7. Concluding remarks are given in Sect. 8.

2 Optimal portfolio execution

To reduce price impact of liquidating large blocks of assets over a fixed time interval,
an execution strategy typically breaks the holdings into smaller trades and executes
them gradually over the trading horizon. Without loss of generality, assume that a
trader plans to liquidate his holdings in m assets during N periods in the time hori-

zon T , t0 = 0 < t1 < · · · < tN = T , where τ
def= tk − tk−1 = T

N
for k = 1,2, . . . ,N . The

investor’s position at time tk is denoted by the m-vector xk = (x1k, x2k, . . . , xmk)
T ,

where xik is the investor’s holding in the ith asset at period k. The investor’s initial
position is x0 = S̄, and his final position xN equals 0, which guarantees complete liq-
uidation by time T . The difference between the positions of two successive periods
k − 1 and k is denoted by an m-vector nk = xk−1 − xk for k = 1,2, . . . ,N . Negative
nik implies that the ith asset is bought between tk−1 and tk . We refer to a sequence
{xk}Nk=0 satisfying xN = 0 as an execution strategy. We build on [1] in forming an
optimal portfolio execution strategy.

Let P̃k be the execution price of one unit of assets within the time interval
(tk−1, tk], for k = 1,2, . . . ,N . Due to the price volatility, P̃k is not deterministic over
the execution horizon. Following [1], we assume in this paper that the execution price
P̃k is given by

P̃k = Pk−1 − h

(
nk

τ

)
, k = 1,2, . . . ,N, (1)

where the market price Pk at time tk evolves according to the following discrete
arithmetic random walk:

Pk = Pk−1 + τ 1/2Σξk − τg

(
nk

τ

)
. (2)
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Here ξk = (ξ1k, ξ2k, . . . , ξlk)
T represents an l-vector of independent standard normals

and Σ is an m× l volatility matrix of the asset prices. The deterministic initial market
price, before the trade begins, is denoted by P0. The functions g(·) and h(·) measure
the expected permanent price impact and temporary price impact, respectively. Tem-
porary price impact is the price depression at the moment of trading caused by a trade
order. The permanent price impact is the market price change caused by imbalances
in supply and demand; this price change persists in the future.

Following [1], we assume the following linear price impact model:

g

(
nk

τ

)
= G

nk

τ
,

h

(
nk

τ

)
= H

nk

τ
,

where the m-by-m matrices G and H are the permanent and temporary impact matri-
ces, respectively. This model is capable to explain both the permanent and temporary
price impacts of large trades, while it is simple enough for mathematical analysis.

The execution cost of the trade is defined as P T
0 S̄ − ∑N

k=1 nT
k P̃k . Therefore, an

optimal portfolio execution strategy, corresponding to the risk aversion parameter
μ ≥ 0, can be computed from the following problem:

min
n1,...,nN

E

(
P T

0 S̄ −
N∑

k=1

nT
k P̃k

)
+ μ · Var

(
P T

0 S̄ −
N∑

k=1

nT
k P̃k

)
, (3)

s.t.
N∑

k=1

nk = S̄.

Here, E(·) and Var(·) denote the expectation and the variance of a random variable,
respectively.

When the execution strategy {xk}Nk=0 is assumed to be deterministic as in [1], the
expected value and the variance in (3) equal (see, e.g., [42]):

Var

(
P T

0 S̄ −
N∑

k=1

nT
k P̃k

)
= τ

N∑
k=1

xT
k Cxk,

E

(
P T

0 S̄ −
N∑

k=1

nT
k P̃k

)
=

N∑
k=1

xT
k G(xk−1 − xk) + 1

τ

N∑
k=1

(xk − xk−1)
T H(xk − xk−1).

(4)

Here, the m × m symmetric positive semidefinite matrix C = ΣΣT is the covari-
ance matrix of asset prices. Notice that the variance of the execution cost, under the
aforementioned assumptions, does not depend on the impact matrices.

Note that the number of periods N is typically greater than one; otherwise the
strategy of liquidating everything in the first period will be the only feasible (whence
optimal) execution strategy. The variance of the execution cost corresponding to this
strategy equals zero.
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Under these assumptions, the (nominal) optimal portfolio execution problem (3)
can be formulated as the following quadratic programming problem (see, e.g., [42]):

min
z∈R

1

τ
S̄T H S̄ + 1

2
zT W(H,G,μ)z + bT (H,G)z, (5)

where z
def= (x1, x2, . . . , xN−1). The m(N − 1) × m(N − 1) symmetric tridiagonal

block Toeplitz matrix W(H,G,μ), and the m(N − 1)-vector b(H,G) are defined as
below:

W(H,G,μ)
def=

⎛
⎜⎜⎜⎜⎜⎝

L + LT −ΘT 0 . . . 0
−Θ L + LT −ΘT . . . 0

0 −Θ L + LT 0
...

...
...

...

0 0 0 . . . L + LT

⎞
⎟⎟⎟⎟⎟⎠

,

b(H,G)
def=

⎛
⎜⎜⎜⎝

−ΘS̄

0
...

0

⎞
⎟⎟⎟⎠ .

Here,

L
def= 2

τ
H − G + μτC, and Θ

def= 1

τ

(
H + HT

) − G. (6)

Subsequently, we refer to Θ as the combined impact matrix. Clearly,

L + LT = 2

τ

(
H + HT

) − (
G + GT

) + 2μτC = (
Θ + ΘT

) + 2μτC.

Lemma 2.1 of [42] states that positive (semi)definiteness of Θ is a necessary and
sufficient condition for the positive (semi)definiteness of W(H,G,0), when the
matrix G is symmetric. Furthermore, this condition is sufficient for the positive
(semi)definiteness of W(H,G,μ), for any μ ≥ 0.

In problem (5), R denotes the set of feasible execution strategies. When pur-
chasing is allowed during a sell execution and no other constraint is imposed,

R = R0
def= R

m(N−1). The set R may also include constraints on the asset positions.
For example, a liquidation plan may prohibit purchasing over the trading horizon. In
this case, the feasible set R = Rc , where

Rc
def= {

z = (x1, x2, . . . , xN−1) ∈ R
m(N−1) : S̄ ≥ x1, xk−1 ≥ xk for k = 2, . . . ,N

}
.

(7)

Optimal portfolio execution in a continuous-time framework has also been studied,
mostly to trade a single asset, see, e.g., [26, 50], and the references therein. Gökay
et al. [29] provide a survey on several discrete and continuous time models for the
optimal portfolio execution. The impact of different market price dynamics and the
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choice of static and dynamic strategies have been discussed in the literature, see, e.g.,
[2, 28, 43].

In modeling the optimal portfolio execution problem, one of the main challenges is
to estimate the price impact parameters (see, e.g., [54] or [11]). In addition, it has been
shown in [42] that estimation errors in the impact matrices may severely affect the op-
timal execution strategy and the efficient frontier, especially when λmin(W(H,G,μ))

is small. Here, λmin(·) denotes the smallest eigenvalue of a matrix. This sensitivity
may prevent practical applicability of the optimal execution strategy from the nomi-
nal optimal portfolio execution problem (5).

This estimation risk in impact matrices has often been ignored in the current liter-
ature on the optimization formulation for determining an optimal execution strategy.
Given that estimated impact matrices are inevitably inaccurate, this motivates us to
devise an optimization method next, in which this uncertainty is explicitly taken into
account.

3 Classical robust optimization

Robust optimization has been broadly used in various fields [5, 12], with portfolio
management as one of its main applications, see, e.g., [6, 13, 16, 17, 20, 23, 27, 38, 41,
51, 56] and the references therein. In this methodology, data uncertainty is described
by an uncertainty set, which hopefully includes all or most possible realizations of
the uncertain input parameters. Given a nonempty, convex, and compact uncertainty
set U , robust optimization yields a solution that optimizes the worst-case performance
when the input data belongs to U .

An uncertainty set is typically specified by a confidence interval associated with a
statistical method to estimate the parameters based on historical data, see, e.g., [30].
Its specification may depend on the desired level of robustness and assumptions about
modeling errors. The choice of the uncertainty set also contributes to tractability and
conservativeness of the approach. Intervals and ellipsoids have typically been used in
the literature on robust optimization to describe an uncertainty set.

We explore here the usefulness of the robust optimization for the optimal portfo-
lio execution problem (3) with uncertain impact matrices, henceforth denoted by H̃

and G̃. Subsequently, (H̃ , G̃) denotes a vector in R
2m2

, obtained by stacking the
columns of the matrices H̃ and G̃ on top of one another. Since covariance matrix
can be estimated relatively more accurately, in comparison to the impact matrices,
we continue to assume that the covariance matrix C is accurately given.

Let U ⊆ R
2m2

denote a compact uncertainty set for impact matrices, a robust op-
timal execution strategy can be obtained by solving the following robust counterpart
problem:

RC(U ) : inf
z∈R

max
(H̃ ,G̃)∈U

1

τ
S̄T H̃ S̄ + 1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z.

Compactness of U implies that the optimal value of the inner maximization prob-
lem is attained and the use of max rather than sup is justified. Notice that here the
uncertainty only affects the objective function.
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As the size of the uncertainty set U increases, the objective value at a robust so-
lution is likely to increase. This drawback of robust optimization has been frequently
referred in the literature as the conservativeness of the methodology. Ben-Tal and
Nemirovski [7–9], El Ghaoui and Lebret [19], and El Ghaoui et al. [21] suggest to
rectify the over-conservatism of robust solutions by specifying an interval uncertainty
set to be an ellipsoid of a smaller size. Bertsimas and Sim [10] propose the use of a
different subset of the uncertainty set to control the level of conservatism in the robust
solution.

In addition to being a conservative approach, specification of an uncertainty set is
arbitrary to a large degree, and an uncertainty set built on the historical data may not
be able to accurately explain future scenarios. Robust optimization can be viewed as
a black box which takes the uncertainty set as its input, and produces a robust solution
as an output. Thus, it is important to understand how stable the robust solution is with
respect to variation in the uncertainty set.

We say a general robust optimization scheme or a robust solution is stable with
respect to the uncertainty set, if a small variation in the uncertainty set produces a
small change in the robust optimal solution. Next we use a robust optimal portfolio
execution example to illustrate potential instability of the robust solution with respect
to change in the uncertainty set. Due to its simplicity, in our example, we use an
interval uncertainty set U = UH × UG, where

UH
def= [H,H ] = {

H̃ ∈ R
m2 : Hij ≤ H̃ij ≤ Hij

}
,

UG
def= [G,G] = {

G̃ ∈ R
m2 : Gij ≤ G̃ij ≤ Gij

}
.

(8)

For the interval uncertainty set U = UH × UG in (8), the inner maximization problem
in RC(U ) becomes1

max
H̃ ,G̃

N∑
k=1

m∑
i,j=1

G̃ij (xk)i(xk−1 − xk)j + 1

τ

N∑
k=1

m∑
i,j=1

H̃ij (xk − xk−1)i(xk − xk−1)j

+ μτ

N∑
k=1

xT
k Cxk (9)

s.t. Hij ≤ H̃ij ≤ Hij , i = 1,2, . . . ,m, j = 1,2, . . . ,m,

Gij ≤ G̃ij ≤ Gij , i = 1,2, . . . ,m, j = 1,2, . . . ,m,

which is a linear optimization problem in terms of the variables H̃ij and G̃ij with
box constraints. At the solution, each variable equals either its upper bound or lower
bound, depending on the sign of its coefficient in the objective function. Whence a
robust solution of problem RC(U ) solves the following problem:

1The second summation of the objective function in problem (9), at k = 1, yields the term 1
τ S̄T H̃ S̄.
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inf
z=(x1,...,xN−1)∈R

1

τ
S̄T H S̄ + 1

2
zT W(H,G,μ)z + bT (H,G)z

+
∑
i,j

(Gij − Gij )max

{
0,

N−1∑
k=1

(xk)i(xk − xk−1)j

}

+ 1

τ

∑
i,j

(H ij − Hij )

× max

{
0,−

N∑
k=1

(xk − xk−1)i(xk − xk−1)j

}
. (10)

This problem can be formulated as minimizing a quadratic function subject to
quadratic constraints; an optimization method is not guaranteed to yield a global so-
lution in general.

To understand sensitivity of a robust optimal execution strategy to variation in
the interval uncertainty set, we conduct a sensitivity analysis based on simulations;
this technique has been previously used for the Markowitz mean variance portfolio
optimization, see, e.g., [15]. We assume that there exists an uncertainty set U which
yields a robust strategy with the desired properties; we refer to this as the original
uncertainty set. Suppose this uncertainty set is unknown; some perturbed uncertainty
set U is instead applied by the decision maker.

The performance of a strategy is represented by a mean-variance efficient frontier.
An original efficient frontier depicts the performance of the strategy with respect to
the original data. An actual efficient frontier describes the actual performance (using
the original data) of a strategy determined using perturbed data. For given nominal
impact matrices H and G, we refer to the solution of problem (5) as the nominal
optimal execution strategy. The original nominal frontier is the curve of the original
mean and variance of the execution cost associated with nominal optimal strategy
from the original data when the risk aversion parameter μ varies in (0,∞). For the
perturbed impact matrices H + �H and G + �G, the actual nominal frontier is the
curve of the mean and variance of the execution cost computed from the original
nominal impact matrices H and G for the optimal execution strategy determined
from the perturbed impact matrices H + �H and G + �G.

Similarly we can consider a robust efficient frontier of the robust solution with
respect to an uncertainty set U ; it is the curve of the worst case mean and variance
of the execution cost of the robust solution. The notion of robust efficient frontier is
described in [38]. We also extend the notions of original and actual (mean-variance)
efficient frontier to the robust frontier. The original robust frontier corresponds to
the worst case mean and variance of the execution cost with respect to the original
uncertainty set U for the robust solution obtained from U . An actual robust frontier
for the perturbed uncertainty set U is the curve of the worst case mean and variance
with respect to the original uncertainty set U for the robust solution computed from a
perturbed uncertainty set U .

Using simulations, we consider a three asset robust optimal portfolio execution
problem with respect to an interval uncertainty set to illustrate sensitivity of the robust
solution to the uncertainty set specification; the details are described in Example 3.1.



S. Moazeni et al.

In our simulation study, we use the open-source solver Gloptipoly3 [36] to compute a
solution for problem (10). Gloptipoly3 returns a flag, indicating whether the obtained
solution is global or not. Perturbations are selected when Gloptipoly3 has indeed
obtained a global solution for the robust optimization problem. This example has
been used in [42] to illustrate sensitivity of the nominal execution strategy to the
impact matrices; we also include nominal efficient frontiers and nominal solutions
here to compare them with the robust efficient frontiers and robust solutions.

Example 3.1 Consider liquidation of three assets with the initial holding S̄i =
105, i = 1,2,3, shares in five days by trading daily, i.e., T = 5, N = 5, and τ = 1.
We assume that there is no constraint on the execution strategy, i.e., R = R0. The as-
sets are currently traded at price P0 = 50$/share. Let the daily asset price covariance
matrix be:

C =
⎛
⎝0.3246 0.0230 0.4204

0.0230 0.0499 0.0192
0.4204 0.0192 0.7641

⎞
⎠ × 1 %.

The nominal permanent and temporary impact matrices are assumed to be as below2:

H = 10−5 · C and G = 0.5 × 10−5 · C (11)

Note that λmin(W(H,G,0)) = 2.5960 × 10−9.
For simplicity we assume that the temporary impact matrix is accurately given,

i.e., H = H = H , and only the permanent impact matrix is uncertain with G = 3 · G
and G = 0.2 · G, i.e.,

UH = {H }, UG = [0.2 · G, 3 · G] (12)

Notice that λmin(W(H,G,0)) = 8.6534 × 10−10, which is smaller than λmin(W(H,

G,0)).

We now add 5 % perturbation �G(�) and �G
(�)

to the nominal permanent impact
matrix G and the upper bound of the original uncertainty set UG as follows:

�G(�) = 5 % · max
i,j

{|Gij |}φ(�), �G
(�) = 5 % · max

i,j
{|Gij |}φ(�), (13)

where φ(�) is a standard normal random sample (computed using randn in MATLAB).
A sample φ(�) is selected only if the nominal solution corresponding to the perturbed
permanent impact matrix G+�G(�) uniquely exits (the matrix W(H,G+�G(�),0)

is positive definite), the perturbed uncertainty set U G = [G, G + �G
(�)] is a valid

interval (all entries of the matrix G + �G
(�) − G are nonnegative), and Gloptipoly3

obtains a global solution for the robust optimization problem (10) with U = UH × U G.
The original robust frontier and actual robust frontiers corresponding to 50 per-

turbations U G to the original uncertainty set U = UH × UG (with μ ∈ [0,10−5]) are

2The units for H and G are $ per share2 and $ per day per share2, respectively.
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Fig. 1 Comparing sensitivity of the robust efficient frontier to 5 % perturbation in the upper bound of
the uncertainty set UG with sensitivity of the nominal efficient frontier to 5 % perturbation in the nominal
permanent impact matrix G

graphed in the left plot in Fig. 1. We observe large deviations of the actual robust
frontiers from the original robust frontier. This indicates that the robust frontier can
be unstable to perturbations in the uncertainty set. For comparison, the right plot
in Fig. 1 graphs the original nominal frontier and 50 actual nominal frontiers cor-
responding to 50 perturbed nominal impact matrices G + �G(�). This plot shows
that sensitivity of the robust frontiers to perturbations in the uncertainty set may be
larger than sensitivity of the nominal frontiers to perturbations in the nominal impact
matrices.

In addition, it can be observed from Fig. 1 that deviations of actual frontiers from
the original ones are more prominent for small risk aversion parameters. We further
examine variation in the optimal execution strategy when μ = 0. Figure 2 illustrates
sensitivity of the robust optimal execution strategy for μ = 0 to perturbations in UG

(left plots) and compares it to sensitivity of the nominal solution to perturbations in
the nominal permanent impact matrix G (right plots). Significant variation in the ro-
bust optimal execution strategy can be observed from the left plots; variation is more
severe in comparison to variation in the nominal optimal execution strategy depicted
in the right plots. Note that both the original nominal solution and the original robust
solution in this case are the naive strategy (nk = 1

N
S̄, for k = 1, . . . ,N ), since the

matrices G and G are symmetric, see Proposition 2.1 in [42].

Example 3.1 clearly illustrates that the robust optimal execution strategy can
be unstable with respect to variation in the uncertainty set. This can also be seen
when the set of feasible execution strategies is Rc . In this case, for every z =
(x1, . . . , xN−1) ∈ Rc , xk−1 ≥ xk ≥ 0. Hence, (H,G) is the solution to problem (9)
and the worst case realization of impact matrices is the same regardless which ex-
ecution strategy is adopted. Therefore, when W(H,G,0) is positive definite, the
(global) robust solution of problem RC(U ) with respect to the interval uncertainty
set U = UH × UG can be obtained simply by solving the following convex quadratic



S. Moazeni et al.

Fig. 2 Comparing sensitivity of the (classical) robust solution to 5 % perturbation in the upper bound
of the uncertainty set UG with sensitivity of the nominal solution to 5 % perturbation in the nominal
permanent impact matrix G. Risk aversion parameter is μ = 0 and R = R0
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programming problem:

min
z∈Rc

1

τ
S̄T H̄ S̄ + 1

2
zT W(H,G,μ)z + zT b(H,G). (14)

Consequently, applying the robust optimization approach to obtain a robust execu-
tion strategy, we end up with a nominal optimal portfolio execution problem with the
impact matrices replaced by the upper bounds of the uncertainty set. Hence, sensi-
tivity of the robust solution to variation in the uncertainty set U = UH × UG is the
same as sensitivity of the solution to perturbation in the impact matrices H and G.
Applying Theorem 3.1 in [42] for the optimal portfolio execution problem (14) im-
plies that the robust solution may be very sensitive to change in the uncertainty set
U if λmin(W(H,G,μ)) is sufficiently small. Indeed, this sensitivity may be larger
than the sensitivity of the nominal optimal execution strategy to the nominal impact
matrices (H,G) when λmin(W(H,G,μ)) ≤ λmin(W(H,G,μ)).

Next we show that the robust optimal execution strategy can be computed by
semidefinite programming when the Hessian W(H̃ , G̃,μ) is positive definite for ev-
ery (H̃ , G̃) ∈ U . Indeed, this method will also be used for our proposed regularized
robust optimization described in Sect. 5.

4 Robust optimal execution strategy under convexity

For simplicity, we denote the objective function of RC(U ) by Υ (z, H̃ , G̃), i.e.,

Υ (z, H̃ , G̃)
def= 1

τ
S̄T H̃ S̄ + 1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z. (15)

The function Υ (z, H̃ , G̃) is linear in (H̃ , G̃) and quadratic in z. The function
Υ (·, H̃ , G̃) is in general non-convex, as the uncertainty set U may include scenar-
ios (H̃ , G̃) where the matrix W(H̃ , G̃,μ) is not positive semidefinite. Thus robust
problem RC(U ) is NP-hard in general.3

When W(H̃ , G̃,μ) is positive semidefinite, for every (H̃ , G̃) ∈ U , Υ (·, H̃ , G̃) is a
convex quadratic function. Using Theorem 5.5 of [46], the function
max

(H̃ ,G̃)∈U Υ (z, H̃ , G̃) is convex in z. Thus, the problem (infz∈R(max
(H̃ ,G̃)∈U Υ (z,

H̃ , G̃))) is a convex optimization problem for a convex feasible set R.
The following proposition shows the existence and uniqueness of the saddle point

for the minimax problem RC(U ) under convexity assumption.

Proposition 4.1 Let R be nonempty, convex, and closed, and the uncertainty set
U be nonempty, convex, and compact. For a given risk aversion parameter μ ≥ 0,
assume that the matrix W(H̃ , G̃,μ) is positive definite, for every (H̃ , G̃) ∈ U . Then
the minimax problem RC(U ) has a saddle point (zu,Hu,Gu), i.e.,

Υ (zu, H̃ , G̃) ≤ Υ (zu,Hu,Gu) ≤ Υ (z,Hu,Gu), ∀(H̃ , G̃) ∈ U , ∀z ∈ R. (16)

3Note that the problem of minimizing a non-convex quadratic function is known to be NP-hard [45].
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Moreover, for every two saddle points (z(1),H (1),G(1)) and (z(2),H (2),G(2)), we
have z(1) = z(2), i.e., the robust optimal execution strategy from problem RC(U ) is
unique.

Proof From the convexity of R and U , compactness of U , and Υ (z, H̃ , G̃) being
strictly convex in z and linear in (H̃ , G̃), we have

inf
z∈R

max
(H̃ ,G̃)∈U

Υ (z, H̃ , G̃) = max
(H̃ ,G̃)∈U

inf
z∈R

Υ (z, H̃ , G̃), (17)

see, e.g., Theorem 3 of [48].
Let (Hu,Gu) ∈ U be an optimal point for the outer maximization problem below

max
(H̃ ,G̃)∈U

inf
z∈R

Υ (z, H̃ , G̃).

Thus,
(

inf
z∈R

Υ (z,Hu,Gu)
)

=
(

max
(H̃ ,G̃)∈U

inf
z∈R

Υ (z, H̃ , G̃)
)
. (18)

Since (Hu,Gu) ∈ U , W(Hu,Gu,μ) is positive definite. Thus Υ (z,Hu,Gu) is a
strictly convex quadratic function. Since R is closed, there exists z(Hu,Gu) ∈ R at
which infz∈R Υ (z,Hu,Gu) is uniquely attained (see, e.g., Proposition 2.5 of [18]).
Thus

Υ (z(Hu,Gu),Hu,Gu) = inf
z∈R

Υ (z,Hu,Gu) = max
(H̃ ,G̃)∈U

inf
z∈R

Υ (z, H̃ , G̃), (19)

and

Υ (z(Hu,Gu),Hu,Gu) ≤ Υ (z,Hu,Gu), ∀z ∈ R. (20)

From (19) and (17), we get

inf
z∈R

max
(H̃ ,G̃)∈U

Υ (z, H̃ , G̃) = Υ (z(Hu,Gu),Hu,Gu).

Therefore, z(Hu,Gu) is a solution of the outer infimum on the left problem of equation
(17). Thus

Υ (z(Hu,Gu),Hu,Gu) = inf
z∈R

max
(H̃ ,G̃)∈U

Υ (z, H̃ , G̃) = max
(H̃ ,G̃)∈U

Υ (z(Hu,Gu), H̃ , G̃).

Hence,

Υ (z(Hu,Gu), H̃ , G̃) ≤ Υ (z(Hu,Gu),Hu,Gu), ∀(H̃ , G̃) ∈ U . (21)

Inequalities (20) and (21) imply that (z(Hu,Gu),Hu,Gu) is a saddle point.
For the uniqueness, note that positive definiteness of W(H̃ , G̃,μ) for every

(H̃ , G̃) ∈ U yields strict convexity of Υ (·, H̃ , G̃). In particular, Υ (·,H (1),G(1)) is
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strictly convex, and the problem minz∈R Υ (z,H(1),G(1)) has a unique solution.
Hence, if z(1) �= z(2),

Υ
(
z(1),H (1),G(1)

)
< Υ

(
z(2),H (1),G(1)

) ≤ Υ
(
z(2),H (2),G(2)

)
.

This contradicts to the fact that both (z(1),H (1),G(1)) and (z(2),H (2),G(2)) are sad-
dle points and consequently Υ (z(1),H (1),G(1)) = Υ (z(2),H (2),G(2)). Therefore,
there must be z(1) = z(2). �

Proposition 4.1 indicates that the robust optimal execution strategy is unique, when
the matrix W(H̃ , G̃,μ) is positive definite for every (H̃ , G̃) ∈ U .

A typical approach to obtain a robust solution is to find a semidefinite program-
ming (SDP) representation for the robust counterpart problem RC(U ). Ben-Tal and
Nemirovski [7] show that the robust counterpart of an uncertain convex quadrati-
cally constrained quadratic programming problem, with separate ellipsoidal uncer-
tainty sets for the Hessian and linear term of the objective function can be explicitly
modeled as a linear semidefinite programming. As is explained in [34], the model
in [7] places the uncertainty description on the square root of the Hessian, whence,
every matrix in the uncertainty set is positive semidefinite. However, when one has
an uncertainty description for only the Hessian, transferring that into an uncertainty
description on the Cholesky-like factors can be difficult. Ben-Tal and Nemirovski [7]
further discuss that a more general uncertainty for the Hessian and linear term of the
quadratic objective function leads to an NP-hard robust counterpart problem.

Here, we apply semidefinite programming to solve problem RC(U ), when the ma-
trix W(H̃ , G̃,μ) is positive definite for every (H̃ , G̃) ∈ U . However, in contrast to the
typical approach, see, e.g., [5], in which the dual of the inner maximization problem
is taken, similar to Kim and Boyd [39], we first switch the order of min and max; then
we take the dual of the minimization problem and show that it is SDP representable.
We summarize our discussion in the following proposition. Below, we assume that
the set of feasible execution strategies is defined by linear inequality constraints

R = {
z ∈ R

m(N−1) : Az ≤ c
}
, (22)

where c is an r-vector and A is a r × m(N − 1) matrix. Considering R as in (22)
allows us to treat any linear inequality constraint such as nonnegativity constraints or
bound constraints on execution strategies, in a unified manner. Furthermore, since an
equality constraint can be represented using two inequality constraints, it can also be
used when linear equality constraints are imposed on an execution strategy.

Proposition 4.2 Let the uncertainty set U be nonempty, convex, and compact, and the
matrix W(H̃ , G̃,μ) be positive definite for every (H̃ , G̃) ∈ U . Furthermore, assume
the nonempty feasible set R is as in (22). Then the robust solution to RC(U ) equals

zu = −W(Hu,Gu,μ)−1(b(Hu,Gu) + AT λu

)
, (23)

where (Hu,Gu) and λu ∈ R
r+ constitute a solution of the following problem:
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P(U ): max
(H̃ ,G̃)∈U ,λ∈R+,v∈R

v (24)

s.t.

[ 2
τ
S̄T H̃ S̄ − 2cT λ − 2v (b(H̃ , G̃) + AT λ)T

b(H̃ , G̃) + AT λ W(H̃ , G̃,μ)

]
	 0.

When no constraint is imposed, i.e., R = R0, the robust solution of RC(U ) is

zu = −W(Hu,Gu,μ)−1b(Hu,Gu), (25)

where (Hu,Gu) constitutes an optimal point of the following problem:

max
(H̃ ,G̃)∈U ,v∈R

v (26)

s.t.

[ 2
τ
S̄T H̃ S̄ − 2v b(H̃ , G̃)T

b(H̃ , G̃) W(H̃ , G̃,μ)

]
	 0.

Proof The given assumptions and Proposition 4.1 imply that the infimum is attained.
Furthermore, problem RC(U ) equals:

max
(H̃ ,G̃)∈U

1

τ
S̄T H̃ S̄ + min

z∈R

(
1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z

)
. (27)

The Lagrangian function of the inner minimization problem in (27) is:

L(z,λ) = 1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z + λT (Az − c)

= 1

2
zT W(H̃ , G̃,μ)z + (

b(H̃ , G̃) + AT λ
)T

z − cT λ.

Since L(z,λ) is a strictly convex quadratic function of z, the Lagrange dual problem
is:

max
λ∈R

r+

(
min

z∈Rm(N−1)
L(z,λ)

)

= max
λ∈R

r+

(
−1

2

(
b(H̃ , G̃) + AT λ

)T
W(H̃ , G̃,μ)−1(b(H̃ , G̃) + AT λ

) − cT λ

)
. (28)

Here R
r+ denotes the nonnegative orthant. Since R is defined by linear inequalities,

Slater’s condition and consequently strong duality hold for the inner minimization
problem of (27). Thus:

min
z∈R

(
1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z

)
= max

λ∈R
r+

(
min

z∈Rm(N−1)
L(z,λ)

)
.

Thus problem (27) is reduced to:

max
(H̃ ,G̃)∈U ,λ∈R

r+

1

τ
S̄T H̃ S̄ − 1

2

(
b(H̃ , G̃) + AT λ

)T

× W−1(H̃ , G̃,μ)
(
b(H̃ , G̃) + AT λ

) − cT λ. (29)

Problem (29) can be reformulated as:
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max
(H̃ ,G̃)∈U ,λ∈R

r+,v∈R

v

s.t.
1

τ
S̄T H̃ S̄ − 1

2

(
b(H̃ , G̃) + AT λ

)T
W(H̃ , G̃,μ)−1

× (
b(H̃ , G̃) + AT λ

) − cT λ ≥ v.

Since W(H̃ , G̃,μ) is positive definite, using the Schur complement, inequality

1

τ
S̄T H̃ S̄ − 1

2

(
b(H̃ , G̃) + AT λ

)T
W(H̃ , G̃,μ)−1(b(H̃ , G̃) + AT λ

) − cT λ ≥ v, (30)

holds if and only if the linear matrix inequality
[ 2

τ
S̄T H̃ S̄ − 2cT λ − 2v (b(H̃ , G̃) + AT λ)T

b(H̃ , G̃) + AT λ W(H̃ , G̃,μ)

]
	 0,

holds, with strict positive definiteness in the last constraint if and only if strict in-
equality holds in inequality (30).

Therefore, a solution of the inner maximization problem in RC(U ) can be obtained
by solving the maximization problem P(U ). Let the pair (Hu,Gu) and λu ∈ R

r+ be a
solution of problem P(U ), then the robust optimal strategy equals (23).

When no constraint is imposed, i.e, R = R0, problem (27) is reduced to the fol-
lowing problem:

max
(H̃ ,G̃)∈U

1

τ
S̄T H̃ S̄ − 1

2
bT (H̃ , G̃)W−1(H̃ , G̃,μ)b(H̃ , G̃). (31)

A similar discussion then implies that the robust solution becomes (25) where
(Hu,Gu) is an optimal point of problem (26). �

At an optimal point of P(U ), optimal objective value v represents the execution
cost corresponding to the robust optimal execution strategy. Convexity of the objec-
tive function, U , and the linear matrix inequality constraint imply that problem P(U )

is a convex programming problem. When U is defined by linear matrix inequalities,
problem P(U ) is a linear semidefinite programming problem; this problem can be
solved using high-quality open-source solvers, e.g., SEDUMI [49] or SDPT3 [53].

An advantage of the above derivation for the robust solution is that this approach
does not depend on any specific structure (e.g., interval or ellipsoidal) of the uncer-
tainty set. We also adopt this derivation for the regularized uncertainty set introduced
in Sect. 5. It is worth mentioning that formulation P(U ) allows us to include the con-
straint G̃ = G̃T in the uncertainty set specification, when there is some evidence that
the permanent impact matrix is symmetric.

5 Regularized robust optimization

Example 3.1 illustrates that a robust execution strategy can be sensitive to the uncer-
tainty set specification. Now we propose a regularized robust optimization formula-
tion to address this issue.
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For the nominal optimal portfolio execution problem (5), sensitivity of the opti-
mal execution strategy and the efficient frontier has been studied in [42]. This analysis
shows that, when the minimum eigenvalue of the Hessian of the objective function
W(H,G,μ) is small, the optimal solution may vary significantly when the impact
matrices change slightly. This result suggests that excluding those elements, which
yield a small minimum eigenvalue of W(H̃ , G̃,0), from the uncertainty set U , may
prevent an unstable solution. This idea is also related to the well known regularization
technique in which prior information is included in the problem formulation to stabi-
lize the solution. The most common form of regularization for ill-posed least square
problems is Tikhonov regularization, see, e.g., [22, 25, 52], where a two-norm bound
constraint is included. Here we propose to use a regularized uncertainty set to obtain
more stable robust solutions.

Let U ⊆ R
2m2

be a nonempty, convex, and compact uncertainty set for the im-
pact matrices. Given U and a positive constant ρ > 0, we impose the regularization
constraint λmin(W(H̃ , G̃,0)) ≥ ρ on the uncertainty set:

V (U , ρ)
def= {

(H̃ , G̃) ∈ U |λmin
(
W(H̃ , G̃,0)

) ≥ ρ
}
. (32)

We refer to the parameter ρ and the set V (U , ρ) as the regularization param-
eter and the regularized uncertainty set, respectively. The regularization con-
straint λmin(W(H̃ , G̃,0)) ≥ ρ is equivalent to the matrix inequality constraint
W(H̃ , G̃,0) 	 ρIm(N−1) where Im(N−1) is the m(N −1)×m(N −1) identity matrix.
Figure 3 illustrates how the regularized uncertainty set V (U , ρ) compares with U for
two values of ρ in a single asset execution.

We note that convexity of U and convexity of the regularization constraint imply
convexity of V (U , ρ). Moreover, since the function λmin(·) is a continuous function,

Fig. 3 Regularized uncertainty set V (U , ρ) versus uncertainty set U . Here, m = 1, N = 5,
and the nominal impact matrices are H = 10−6 and G = 8 × 10−7. The uncertainty set is
U = {(H̃ , G̃) ∈ UH × UG : λmin(W(H̃ , G̃,0)) ≥ 0} where UH = [0.75 · H, 1.25 · H ] and
UG = [0.75 · G, 1.25 · G]. The grey area denotes the original uncertainty set and circle pattern denotes
the regularized uncertainty set V (U , ρ)
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closeness of U implies closeness of V (U , ρ). For every (H̃ , G̃) ∈ V (U , ρ) and μ ≥ 0,
the Courant-Fischer Theorem (see, e.g., Theorem 8.1.5 in [31]) yields

λmin
(
W(H̃ , G̃,μ)

) = λmin
(
W(H̃ , G̃,0) + 2μτIN ⊗ C

) ≥ ρ + 2μτλmin(C), (33)

where ⊗ denotes the Kronecker product of two matrices. Thus by imposing the reg-
ularization constraint, we ensure that the minimum eigenvalue of the Hessian of the
objective function at the worst case impact matrices is positive and not very small.

The regularization parameter value ρ affects the size of the regularized uncertainty
set V (U , ρ). If ρ increases, the size of the uncertainty set decreases, i.e., implicitly
one is demanding robustness with respect to a smaller set of parameter values. As a
result, the resulting robust strategy will be less conservative.

To ensure that the set V (U , ρ) is nonempty, the regularization parameter ρ

needs to be chosen carefully. In particular, when λmin(W(H,G,0)) > 0 for the
nominal impact matrices (H,G) ∈ U , the regularized uncertainty set V (U , ρ) is
nonempty for any ρ ≤ λmin(W(H,G,0)). Thus the regularization parameter can be
proportional to this value. If the regularization parameter ρ is strictly greater than
max

(H̃ ,G̃)∈U λmin(W(H̃ , G̃,0)), the regularized uncertainty set becomes empty.
Given an uncertainty set U and a positive regularization parameter ρ, the regular-

ized robust optimization formulation is given below:

Φμ(ρ)
def= min

z∈R
max

(H̃ ,G̃)∈V (U ,ρ)

1

τ
S̄T H̃ S̄ + 1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z. (34)

When z∗ constitutes a solution of problem (34), it is subsequently called a regular-
ized robust optimal execution strategy. Including a regularization constraint also al-
lows us to compute a regularized robust solution using the semidefinite programming
representation and (23) described in Sect. 4. This is the case even for an interval un-
certainty set U for which, computing a robust solution can be NP-hard in the absence
of a regularization constraint. For an interval uncertainty set U , problem P(V (U , ρ))

is a linear semidefinite programming problem which can be solved efficiently. Note
that Φμ(ρ) = v∗, where v∗ is the optimal value of problem P(V (U , ρ)).

Now we illustrate the effect of regularization on stability of the robust solution
with an interval uncertainty using the portfolio execution described in Example 3.1.
We use the same M = 50 perturbations �Ḡ(�) in (13), which are used in Figs. 1
and 2. Regularized robust solutions are computed in MATLAB 7.9 using (25) and (26).
Problem (26) is solved using SEDUMI [49] through CVX, a package for specifying
and solving convex programs [32] within MATLAB.

Figure 4 illustrates sensitivity of the actual robust efficient frontier corresponding
to the regularized robust execution strategy to perturbation in the uncertainty set.
The actual robust frontier for the regularized robust solutions is the worst case mean
and variance with respect to the original uncertainty set U . Comparing Fig. 4 with
Fig. 1, we observe clear improvement in stability of the regularized robust solution.
Furthermore, Fig. 4 indicates that increasing the regularization parameter ρ reduces
variation in the actual robust frontiers.

Figure 5 illustrates stability of the regularized robust optimal execution strategy
when μ = 0 for two regularization parameter values ρ. Comparing the left plots with
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Fig. 4 Sensitivity of the robust efficient frontier for the regularized robust optimal execution strategy to
5 % perturbation in the upper bound of the uncertainty set UG . Regularization is applied to the three asset
liquidation Example 3.1

the right plots in Fig. 5 indicates that the sensitivity is larger for a smaller regular-
ization parameter ρ. In addition, the comparison between Figs. 5 and 2 indicates
that the regularized robust optimal execution strategy has a more stable behavior to
perturbation in the upper bound of the interval uncertainty set UG than the classical
robust optimal execution strategy. Note that, for both regularization parameter values,
the worst case original permanent impact matrix Gu for P(V (U , ρ)) is symmetric;
thus the regularized robust optimal execution strategy is the naive strategy, which fol-
lows from Proposition 2.1 in [42]. For a perturbed uncertainty set U = UH × U G, the
worst case permanent impact matrix Gu from problem P(V (U , ρ)) is typically not
symmetric; thus the strategy can differ significantly from the naive strategy.

Next we formally analyze stability of the regularized robust solution.

6 Stability of the regularized robust optimal execution strategy

In this section we establish a bound on the change in the regularized robust optimal
execution strategy, when the uncertainty set is perturbed. This bound explicitly indi-
cates how the regularization parameter ρ affects sensitivity of the regularized robust
solution to variation in the uncertainty set. In addition, we show that the change in
the regularized robust solution converges to zero when the change in the uncertainty
set U converges to zero.

We measure perturbation in the uncertainty set by the Hausdorff distance [35],
which quantifies how far two subsets in a metric space are from each other. Given a
metric space (X , d), the Hausdorff distance between two subsets S, T ⊆ X is defined
by:

Hausd(S, T )
def= max

{
sup
s∈S

inf
t∈T

d(s, t), sup
t∈T

inf
s∈S

d(s, t)
}
,

see, e.g., Remark 4.40 of [14] for a more detailed discussion.
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Fig. 5 Sensitivity of the regularized robust optimal execution strategy (μ = 0) to perturbation in the upper
bound of the uncertainty set UG , for Example 3.1
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When both subsets S and T are bounded, Hausd(S, T ) is finite. The Hausdorff
distance, defined on a metric space (X , d), is a metric on the set of all non-empty
compact subsets of X , see, e.g., Proposition 4.1.8 of [44]. This metric has been pre-
viously used to measure perturbation to a set, see, e.g., [3]. Here, we define the Haus-
dorff metric induced by the metric d , below, on R

2m2
:

d
(
(H1,G1), (H2,G2)

) def= 2

τ
‖H1 − H2‖2 + ‖G1 − G2‖2. (35)

The norm ‖ · ‖2 here denotes the matrix 2-norm.
Measuring perturbation in the uncertainty set using Hausd , we show next that,

as Hausd(U , U ) → 0, the distance of the regularized robust optimal strategies cor-
responding to U and U also approaches zero. Our analysis mainly relies on results
in [42] and [24]. Below, λmax(·) denotes the maximum eigenvalue.

Let {Sk}k be a sequence of closed subsets of a compact set T in a metric space
(X , d). Theorem 2.1 in [24] implies that when {Sk}k approaches a compact set
S ⊆ X , i.e., Hausd(Sk, S) → 0, then any sequence of solutions of minimizing a
continuous function f over Sk contains at least one convergent subsequence, and
all cluster points are solutions of minx∈S f (x). A simplified version of this result is
summarized in Theorem 6.1. Notice that Theorem 2.1 in [24] is more general than
Theorem 6.1 presented here in the sense that it also allows a sequence of objective
functions to uniformly converges to the objective function f .

Theorem 6.1 Let X be a first-countable Hausdorff space and T is a sequentially
compact nonempty subset of X . Assume that R and Rk are closed subsets of X such
that R ∩ T is nonempty, and Rk ∩ T → R ∩ T . Let f be a real-valued function
defined on X which is continuous on an open set containing R ∩ T . Then for k large,
there exists xk ∈ Rk ∩ T such that f (xk) = minx∈Rk∩T f (x). Furthermore, any
(global) minimizing sequence {xk} of problems minx∈Rk∩T f (x) contains at least
one convergent subsequence and all cluster points are (global) minimizing points of
f (x) in R ∩ T .

In Theorem 6.1, when the feasible sets R and Rk are compact, the following
corollary can be derived:

Corollary 6.1 Let (X , d) be a metric space and f : X → R be continuous on X .
Consider the following problem:

Q(R) : max
x∈R

f (x),

where R ⊆ X is nonempty and compact. Then for any sequence of nonempty compact
subsets of X , {Rk}k , with Hausd(R, Rk) → 0, and for any maximizing sequence
{xk}k of problems Q(Rk), there exists at least one convergent subsequence and all
cluster points of {xk}k are maximizing points of problem Q(R).

Proof First note that every metric space is a first-countable Hausdorff space. Since
R is compact, it is a bounded subset of the metric space (X , d). Thus, it is contained
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in a ball of finite radius, i.e. there exists x0 ∈ X and M > 0 such that d(x0, x) < M ,
for all x ∈ R.

Since Hausd(R, Rk) → 0, there exists some K0 such that for every k ≥ K0,
Hausd(R, Rk) ≤ ε0, and consequently supx∈Rk

infy∈R d(x, y) ≤ ε0. Therefore for
every x ∈ Rk , there exists some y ∈ R such that d(x, y) ≤ ε0. Hence, d(x, x0) ≤
d(x, y) + d(y, x0) ≤ ε0 + M . Thus x is in the ball BM+ε0(x0) = {x ∈ X : d(x, x0) ≤
ε0 + M}. Consequently, Rk ⊆ BM+ε0(x0), for every k ≥ K0. Denote the closure of
BM+ε0(x0) by T . Thus T is a compact subset of X and Rk ⊆ T , for all k ≥ K0. The
result then follows from Theorem 6.1 using the defined set T . �

We precede stability analysis for the regularized robust strategy by the following
auxiliary lemma, which is used in the proof for Theorem 6.2.

Lemma 6.1 Let R = Rc and a nonempty, convex, compact uncertainty set U be
given. Assume that the regularization parameter ρ > 0 is chosen such that V (U , ρ)

is nonempty. Then problem (29), applied for the regularized uncertainty set V (U , ρ),
shares the same set of solutions with the following problem:

max
1

τ
S̄T H̃ S̄ − 1

2

(
b(H̃ , G̃) + AT λ

)T
W−1(H̃ , G̃,μ)

(
b(H̃ , G̃) + AT λ

) − cT λ

(36)

s.t. ‖λ‖2 ≤ λu

(H̃ , G̃) ∈ V (U , ρ), λ ∈ R
r+,

where the constant λu is given below:

λu = 4
√

mΛu + 2μτλmax(C)

(ρ + 2μτλmin(C)) sin( π
4N−2 )

(
1 + 4

√
mΛu + 2μτλmax(C)

2 sin2( π
4N−2 )

)
(Λu + 1)‖S̄‖2.

Here, Λu = max
(H̃ ,G̃)∈U ‖Θ̃‖2 where Θ̃ is the combined impact matrix correspond-

ing to H̃ and G̃. Furthermore, the set of feasible points of problem (36) is compact.

Proof Recall that λ in (29) corresponds to the Lagrange dual multipliers for the inner
minimization problem in (27), which is given below

min
z∈Rc

1

2
zT W(H̃ , G̃,μ)z + bT (H̃ , G̃)z. (37)

Let J be the set of indices of binding constraints in (7) defining Rc at the solution of
problem (37). Lemma 3.1 in [42] yields

λmin
(
AJ AT

J

) ≥ 4 sin2
(

π

4N − 2

)
. (38)

Furthermore, using equation (42) in [42], we have
∥∥AT

J

∥∥
2 ≤ 2. (39)
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Equation (3.15) in [33] implies that the Lagrange multiplier λ of the constraints
defining Rc satisfies

‖λ‖2 ≤ 2λmax(W(H̃ , G̃,μ))

λmin(W(H̃ , G̃,μ)) ·
√

λmin(AJ AT
J )

(
1 + λmax(W(H̃ , G̃,μ)) · ‖AT

J ‖2

λmin(AJ AT
J )

)

× (‖Θ̃S̄‖2 + ‖S̄‖2
)

≤ λmax(W(H̃ , G̃,μ))

(ρ + 2μτλmin(C)) · sin( π
4N−2 )

(
1 + λmax(W(H̃ , G̃,μ))

2 sin2( π
4N−2 )

)

× (Λu + 1)‖S̄‖2, (40)

where inequalities (38), (39), and (33) are used to derive inequality (40). Notice that
Λu is finite as U is compact.

For every (H̃ , G̃) ∈ V (U , ρ), the matrix W(H̃ , G̃,0) is symmetric. Thus
∥∥W(H̃ , G̃,0)

∥∥
2 ≤ ∥∥W(H̃ , G̃,0)

∥∥
1

≤ ‖Θ̃‖1 + ∥∥Θ̃ + Θ̃T
∥∥

1 + ∥∥Θ̃T
∥∥

1

≤ ‖Θ̃‖1 + ‖Θ̃‖1 + ∥∥Θ̃T
∥∥

1 + ∥∥Θ̃T
∥∥

1

= 2‖Θ̃‖1 + 2‖Θ̃‖∞ ≤ 4
√

mΛu. (41)

For the definition of ‖ · ‖∞ and ‖ · ‖1, the reader is referred to Sect. 2.3.2 of [31].
Therefore,

λmax
(
W(H̃ , G̃,μ)

) ≤ ‖W(H̃ , G̃,0)‖2 + 2μτλmax(C)

≤ 4
√

mΛu + 2μτλmax(C). (42)

Using inequalities (41) and (42) in inequality (40) we get,

‖λ‖2 ≤ 4
√

mΛu + 2μτλmax(C)

(ρ + 2μτλmin(C)) · sin( π
4N−2 )

×
(

1 + 4
√

mΛu + 2μτλmax(C)

2 sin2( π
4N−2 )

)
(Λu + 1)‖S̄‖2. (43)

Thus optimal points of problem (29) satisfy inequality (43). Whence problems (29)
and (36) have the same set of solutions.

The upper bound in inequality (43) depends on U and the constants ρ, N , and S̄.
Therefore, it is finite for any compact uncertainty set U ⊆ R

2m2
. Thus when U is

nonempty and compact, the set of feasible points of problem (36) is closed and
bounded, and consequently compact. �

We now estabilish the stability properties for the regularized robust optimal strat-
egy.



Regularized robust optimization: the optimal portfolio execution case

Theorem 6.2 Let the risk aversion parameter μ ≥ 0 and a nonempty convex com-
pact uncertainty set U be given. Assume that the regularization parameter ρ > 0
is chosen such that V (U , ρ) is nonempty. Denote a solution to the regularized ro-
bust problem (34) with respect to the uncertainty set U with (zu,Hu,Gu). Let U be
any nonempty convex compact uncertainty set such that V (U , ρ) is nonempty, and
(zū,Hū,Gū) be a solution to problem (34) with respect to U . Denote the combined
impact matrices corresponding to (Hu,Gu) and (Hū,Gū) with Θu and Θū, respec-
tively. Define Λu = max

(H̃ ,G̃)∈V (U ,ρ)
‖Θ̃‖2. Then the following hold:

(a) When the execution strategy is unconstrained, i.e., R = R0,

‖zu − zū‖2

‖S̄‖2
≤ 1

βρ

(
1 + 4

√
m

βρ

Λu

)
‖Θu − Θū‖2, (44)

where βρ = ρ + 2μτλmin(C).
(b) When buying is prohibited in the sell execution strategy, i.e., R = Rc , there exists

ςu,ū > 0 such that

‖zu − zū‖2

‖S̄‖2

≤ ςu,ū

(
1 + 4

√
mςu,ū

(
max{1, βu} + Λu + ‖Θu − Θū‖2

))‖Θu − Θū‖2, (45)

where βu = 4
√

mΛu + 2μτλmax(C) and

ςu,ū ≤ 1

βρ

(
1 + βu + 4

√
m‖Θu − Θū‖2

sin2( π
4N−2 )βρ

(
βu + 4

√
m‖Θu − Θū‖2

βρ

+ 3 sin

(
π

4N − 2

)))
. (46)

(c) In addition, for any uncertainty set U with Hausd(U , U ) → 0, we have
‖zu −zū‖2 → 0, when R equals either Rc or R0, and the metric d(·, ·) is defined
in (35).

Proof First we note that, since U and consequently V (U , ρ) are compact, Λu is fi-
nite. Furthermore, since (Hu,Gu) ∈ V (U , ρ) and (Hū,Gū) ∈ V (U , ρ), the matrices
W(Hu,Gu,μ) and W(Hū,Gū,μ) are both positive definite. Whence, Proposition 4.1
implies that the corresponding regularized robust solutions are unique.

For notational simplicity, denote

Wu
def= W(Hu,Gu,μ), Wū

def= W(Hū,Gū,μ).

Since (Hu,Gu) ∈ V (U , ρ) and (Hū,Gū) ∈ V (U , ρ), inequality (33) yields

min
{
λmin(Wu),λmin(Wū)

} ≥ βρ, (47)

λ̂
def= max

{
1, λmax(Wu)

} ≥ max
{
1, ρ + 2μτλmin(C)

} ≥ βρ. (48)
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Since the regularized robust solutions zu and zū solve the nominal optimal portfo-
lio execution problem (5) with the impact matrices (Hu,Gu) and (Hū,Gū), respec-
tively, Theorem 3.1 in [42] yields

‖zu − zū‖2 ≤ ‖S̄‖2

min{λmin(Wu),λmin(Wū)}
(

1 + 4
√

m

min{λmin(Wu),λmin(Wū)}‖Θu‖2

)

× ‖Θu − Θū‖2, (49)

when R = R0.
Applying inequality (47) in (49), and the fact that ‖Θu‖2 ≤ Λu, we obtain inequal-

ity (44) and the proof of part (a) is completed.
Next, let R = Rc . Theorem 3.3 in [42] implies that

‖zu − zū‖2

≤ ςu,ū‖S̄‖2
(
1 + 4ςu,ū

√
m

(
λ̂ + ‖Θu‖2 + ‖Θu − Θū‖2

))‖Θu − Θū‖2, (50)

where

ςu,ū ≤ 1

λ

(
1 + (λ̄ + λ)

2 sin2( π
4N−2 )λ̂

(
λ̄

λ̂
+ 3 sin

(
π

4N − 2

)))
, (51)

with λ̄ = max
η∈[0,1]

λmax(Wu + η(Wū − Wu)), λ = min
η∈[0,1]λmin(Wu + η(Wū − Wu)), and

λ̂ is as in (48).
The Courant-Fischer Theorem yields

λ = min
η∈[0,1]λmin

(
Wu + η(Wū − Wu)

)

≥ min
η∈[0,1]

(
ηλmin(Wū) + (1 − η)λmin(Wu)

) ≥ βρ, (52)

where the last inequality comes from inequality (33).
Since the matrix Wu − Wū is symmetric, we have ‖Wu − Wū‖1 = ‖Wu − Wū‖∞.

Hence, Corollary 2.3.2 in [31] yields

‖Wu − Wū‖2 ≤ √‖Wu − Wū‖1‖Wu − Wū‖∞ = ‖Wu − Wū‖1.

Therefore we have

‖Wu − Wū‖2 ≤ ‖Wu − Wū‖1

≤ ‖Θu − Θū‖1 + ∥∥Θu − Θū + (Θu − Θū)
T
∥∥

1 + ∥∥(Θu − Θū)
T
∥∥

1

≤ 2‖Θu − Θū‖1 + 2
∥∥(Θu − Θū)

T
∥∥

1

= 2‖Θu − Θū‖1 + 2‖Θu − Θū‖∞
≤ 4

√
m‖Θu − Θū‖2. (53)
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This result along with the Courant-Fischer Theorem imply that

λ̄ = max
η∈[0,1]

λmax
(
Wu + η(Wū − Wu)

)

≤ max
η∈[0,1]

(
λmax(Wu) + ηλmax(Wū − Wu)

)

≤ λmax(Wu) + max
η∈[0,1]

η‖Wū − Wu‖2

≤ λmax(Wu) + ‖Wū − Wu‖2

≤ λmax(Wu) + 4
√

m‖Θū − Θu‖2. (54)

Since (Hu,Gu) ∈ U , inequality (42) yields λmax(Wu) ≤ βu. Using this inequality in
inequality (54), we get

λ̄ ≤ βu + 4
√

m‖Θū − Θu‖2,

λ̄ + λ ≤ 2λ̄ ≤ 2
(
βu + 4

√
m‖Θū − Θu‖2

)
.

Applying these inequalities, along with inequalities (48) and (52), in (51) yields in-
equality (46). Furthermore, using inequalities ‖Θu‖2 ≤ Λu and ‖Wu‖2 =
λmax(Wu) ≤ βu in (50), inequality (45) is obtained. This completes the proof of
part (b).

The proof of part (c) relies on Theorem 6.1, established in [24], for problems (31)
and (36). Since the matrix W(H̃ , G̃,μ) is positive definite over V (U , ρ), the entries
of the inverse matrix W−1(H̃ , G̃,μ) are continuous functions of the entries of the
matrices H̃ and G̃ (see, e.g., [4]). Whence, the objective functions of problems (31)
and (36) are continuous with respect to elements of H̃ , G̃, and λ.

First consider the case when the set of feasible execution strategies is R0. Suppose
Hausd(Ū , U ) → 0 and ‖zu − zū‖2 �→ 0. Thus there exists some ε > 0 such that for
every k there exists some U k ⊆ R

2m2
with Hausd(U k, U ) < 1

k
and ‖zu − zūk

‖2 > ε.
Here zūk

is the regularized robust solution corresponding to the uncertainty set U k .
Let {(Hūk

,Gūk
)}k be a sequence of solutions of problem (31) with the uncertainty sets

{U k}. Corollary 6.1 yields that there exists a subsequence {(Hūki
,Gūki

)}i of the se-
quence {(Hūk

,Gūk
)}k that approaches to a solution (Hu,Gu) of problem (31) with the

uncertainty set U . Thus, for i sufficiently large, d((Hu,Gu), (Hūki
,Gūki

)) → 0. Con-
sequently, ‖Θu − Θūki

‖2 → 0, because ‖Θu − Θūki
‖2 ≤ d((Hu,Gu), (Hūki

,Gūki
)).

Using inequality (44) and the fact that the regularized robust solutions zu and zūki
are

unique, we get ‖zu − zūki
‖2 → 0, for i large enough. This result is in contradiction

to ‖zu − zūki
‖2 > ε. Whence, ‖zu − zū‖2 → 0 as Hausd(Ū , U ) → 0.

Now, let R = Rc. Recall that (Hu,Gu) solves problem (24) or equivalently prob-
lem (29). Furthermore, Lemma 6.1 indicates that (Hu,Gu) constitutes a solution of
problem (36) in which the set of feasible points is compact. Therefore, Corollary 6.1
is applicable to problem (36). A similar discussion, as in the previous case, through
Corollary 6.1 and inequalities (45) and (46) completes the proof of part (c), when
R = Rc . �
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Theorem 6.2 implies that small variations in the uncertainty set U result in small
changes in the regularized robust solution. In other words, the regularized robust
solution is asymptotically stable with respect to change in the uncertainty set.

7 Implications of regularization

In this section, we discuss additional implications of the proposed regularization on
the robust solution, the robust optimal value, and the efficient frontier.

7.1 Implications on the optimal execution strategy

Here, we analyze how the regularization parameter affects some characteristics of the
regularized robust optimal execution strategy.

For every (H̃ , G̃) ∈ V (U , ρ), inequality (33) yields

∥∥W−1(H̃ , G̃,μ)
∥∥

2 = λmax
(
W−1(H̃ , G̃,μ)

) = 1

λmin(W(H̃ , G̃,μ))

≤ 1

ρ + 2μτλmin(C)
. (55)

The following proposition shows that the regularized robust solution satisfies a
Tikhonov-type regularization constraint, when R = R0.

Proposition 7.1 Let R = R0, the risk aversion parameter μ ≥ 0, and the nonempty
convex compact uncertainty set U be given. Assume that the regularization parame-
ter ρ is chosen such that V (U , ρ) is nonempty. Then the regularized robust solution
zu ∈ R0 of problem (34) satisfies:

‖zu‖2

‖S̄‖2
≤ Λu

ρ + 2μτλmin(C)
, (56)

where Λu = max
(H̃ ,G̃)∈V (U ,ρ)

‖Θu‖2.

Proof When the set of feasible execution strategies is given by R0, the regularized
robust solution is determined by equation (23). Applying inequality (55), we get:

‖zu‖2 = ∥∥−W−1(Hu,Gu,μ)b(Hu,Gu)
∥∥

2 ≤ ∥∥W−1(Hu,Gu,μ)
∥∥

2

∥∥b(Hu,Gu)
∥∥

2

≤ ‖b(Hu,Gu)‖2

ρ + 2μτλmin(C)
.

Using ‖b(Hu,Gu)‖2 = ‖ − ΘuS̄‖2 ≤ ‖Θu‖2‖S̄‖2 ≤ Λu‖S̄‖2 in the above inequality
completes the proof of inequality (56). �

Proposition 7.1 indicates that including the regularization constraint in the un-
certainty set implicitly offers a solution that satisfies a two-norm constraint on the
execution strategy, a form of the Tikhonov regularization.
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In addition, the regularization parameter also affects the Euclidean distance be-
tween the regularized robust optimal execution strategy and the naive strategy. The
naive strategy can be used as a benchmark since it is always the solution for the
nominal optimal portfolio execution problem (5), when μ = 0, the permanent impact
matrix G is symmetric, and Θ is positive definite (see, e.g., Proposition 2.1 in [42]).
Furthermore, when the permanent impact matrix G̃ is symmetric for every element
in U , which holds in a single asset case, the robust optimal execution strategy is the
naive strategy, regardless of the choice of the uncertainty set. A bound on the distance
between the regularized robust optimal execution strategy and the naive strategy is
established in the next proposition.

Proposition 7.2 Let R = R0, the risk aversion parameter μ ≥ 0, and the nonempty
convex compact uncertainty set U be given. Assume the regularization parameter ρ is
chosen such that V (U , ρ) is nonempty. Then, the regularized robust optimal execution
strategy zu of problem (34) satisfies:

‖zu − zn‖2

‖S̄‖2
≤ Λu

4 sin2( π
2N

)ρ

(
1 + 4

√
mΛu + 2μτλmax(C)

βρ

)
, (57)

where βρ = ρ + 2μτλmin(C) and zn represents the naive strategy xk = (N−k
N

)S̄ for
k = 1,2, . . . ,N .

Proof Let (Hu,Gu) ∈ V (U , ρ) be a solution of problem (26) with the uncertainty
set V (U , ρ). The unique regularized robust solution from problem (34) is then zu =
−W(Hu,Gu,μ)−1b(Hu,Gu). For simplicity, denote

Wu
def= W(Hu,Gu,μ), bu

def= b(Hu,Gu).

Notice that ‖bu‖2 ≤ ‖Θu‖2‖S̄‖2 ≤ Λu‖S̄‖2. Whence

∥∥b
(
HT

u ,GT
u

)∥∥
2 = ∥∥ΘT

u S̄
∥∥

2 ≤ ∥∥ΘT
u

∥∥
2‖S̄‖2 = ‖Θu‖2‖S̄‖2 ≤ Λu‖S̄‖2. (58)

Since the naive strategy minimizes the expected execution cost for any symmetric
permanent impact matrix where the combined impact matrix is positive definite (see,
e.g., Proposition 2.1 in [42]), it is the unique optimal execution strategy correspond-
ing to the impact matrices Hu + HT

u and Gu + GT
u , i.e., zn = −W−1

n bn, where

Wn
def= W

(
Hu + HT

u ,Gu + GT
u ,0

)
, bn

def= b
(
Hu + HT

u ,Gu + GT
u

)
.

Therefore

Wn(zu − zn) = Wn

(−W−1
u bu − (−W−1

n bn

)) = −WnW
−1
u bu + bn

= (Wu − Wn)W
−1
u bu − bu + bn.

Using bn − bu = b(HT
u ,GT

u ) and Wu − Wn = W(−HT
u ,−GT

u ,μ), we have:
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‖zu − zn‖2

= ∥∥W−1
n

(
(Wu − Wn)W

−1
u bu − bu + bn

)∥∥
2

≤ ∥∥W−1
n

∥∥
2

(‖Wu − Wn‖2
∥∥W−1

u

∥∥
2‖bu‖2 + ‖−bu + bn‖2

)
= ∥∥W−1

n

∥∥
2

(∥∥W
(−HT

u ,−GT
u ,μ

)∥∥
2‖W−1

u ‖2‖bu‖2 + ∥∥b
(
HT

u ,GT
u

)∥∥
2

)

= 1

λmin(Wn)

(∥∥W
(−HT

u ,−GT
u ,μ

)∥∥
2

‖bu‖2

λmin(Wu)
+ ∥∥b

(
HT

u ,GT
u

)∥∥
2

)

≤ 1

λmin(Wn)

(∥∥W
(−HT

u ,−GT
u ,μ

)∥∥
2

Λu‖S̄‖2

ρ + 2μτλmin(C)
+ Λu‖S̄‖2

)
(59)

≤ 1

λmin(Wn)

((∥∥W
(−HT

u ,−GT
u ,0

)∥∥
2 + 2μτλmax(C)

)Λu‖S̄‖2

βρ

+ Λu‖S̄‖2

)
.

(60)

where inequality (59) comes from (33) and (58). Inequality (60) comes from the
Courant-Fischer theorem.

Corollary 2.1. in [42] applied to Wn implies that

λmin(Wn) = 4 sin2
(

π

2N

)
λmin

(
Θu + ΘT

u

)
.

Since (Hu,Gu) ∈ V (U , ρ), we have λmin(W(Hu,Gu,0)) ≥ ρ. This yields λmin(Θu +
ΘT

u ) ≥ ρ, as the matrix Θu + ΘT
u is a leading principle submatrix of λmin(W(Hu,

Gu,0)). Thus we get

λmin(Wn) ≥ 4 sin2
(

π

2N

)
ρ. (61)

Furthermore, a vector (aT
1 , aT

2 , . . . , aT
N−1)

T is an eigenvector of W(Hu,Gu,0) as-
sociated with the eigenvalue λ if and only if the vector (−aT

N−1,−aT
N−2, . . . ,−aT

1 )T

is an eigenvector of W(−HT
u ,−GT

u ,0) for the same eigenvalue. Thus,
∥∥W

(−HT
u ,−GT

u ,0
)∥∥

2 = ∥∥W(Hu,Gu,0)
∥∥

2 ≤ 4
√

mΛu, (62)

where the inequality comes from (41). Using inequalities (61) and (62) in (60) com-
pletes the proof of (57). �

Table 1 computationally illustrates this property for liquidating the three assets in
Example 3.1. In this example, the Euclidean distance between the naive strategy and
the regularized robust solution decreases as the regularization parameter increases.
Figure 6 further illustrates the impact of the regularization parameter ρ on the regu-
larized robust optimal execution strategy. We observe that, as the regularization pa-
rameter increases, trading for the first and second assets becomes more even while
trading for the third asset becomes slightly more uneven. Plots in Fig. 6 further de-
pict the difference between the regularized robust optimal execution strategies (for
ρ0 = 0.8,1,1.3) and the (classical) robust solution.
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Table 1 Difference between
the regularized robust solution
and the naive strategy, for
liquidating the three assets in
Example 3.1. Here the
regularization parameter equals
ρ = ρ0 · λmin(W(H,G,0))

ρ0 ‖zu − zn‖2/‖S̄‖2

μ = 0.5 × 10−6 μ = 0.5 × 10−7

0.1 0.587858 0.084620

0.8 0.501393 0.070671

1 0.492655 0.070255

1.3 0.488592 0.070077

Proposition 7.2 indicates that if ρ increases, the upper bound on the difference
between the regularized robust optimal execution strategy and the naive strategy de-
creases. This property demonstrates a difference between the regularization parame-
ter ρ and the risk aversion parameter μ. When a large risk aversion parameter μ is
chosen, the optimal execution strategy becomes close to the strategy of liquidating
the entire holding in the first period. We note that Proposition 7.2 can be extended for
more general feasible sets R.

7.2 Implications on the efficient frontier

A mean-variance efficient frontier clearly depicts the performance of a strategy in
terms of the cost and risk. Here, we study impact of regularization on the efficient
frontier. Under the assumed model, following (4), variance of the execution cost does
not depend on the impact matrices. Whence, robust optimization problem RC(U )

minimizes the weighted sum of the worst case mean of the execution cost and the
variance of the execution cost.

Firstly we compare the nominal mean-variance performance of the nominal opti-
mal execution strategy with that of the regularized robust optimal execution strategy.
Every robust solution is a feasible point for the nominal optimal portfolio execution
problem with nominal impact matrices. Thus, the nominal efficient frontier of nom-
inal solutions is always below the nominal efficient frontier of the robust solution
with respect to any uncertainty set U . The nominal frontier of the robust solution
is the curve of the nominal mean and variance points corresponding to the robust
optimal execution strategy.

We consider here a single asset execution example to illustrate. Left plot in Fig. 7
compares the nominal frontier of the nominal solution with the nominal frontier of
the regularized robust solution. At the left end of the frontiers (corresponding to
μ → 10−3), all of the nominal frontiers converge to a single point, which corre-
sponds to the optimal execution strategy of minimizing the variance of the execution
cost, n∗

1 = S̄ and n∗
i = 0 for i = 2, . . . ,N . As μ increases, more weight is given to

minimizing the expected cost and the difference among the frontiers becomes more
prominent. The difference increases as the regularization parameter increases. Since
here the nominal permanent impact matrices and worst-case permanent impact ma-
trix are symmetric, the naive strategy is optimal for the nominal and robust problems,
when μ = 0. Hence, the frontiers also converge to a single point at the right end. An
interesting observation from the left plot in Fig. 7, is that the nominal frontier of the
regularized robust solution does not intersect with the nominal frontier of the nomi-
nal solution, except at its ends (comparing it with Fig. 1 in [56]). This suggests that
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Fig. 6 Execution strategies for liquidating three assets in Example 3.1 with the uncertainty set as in (12)
and ρ = ρ0 ·λmin(W(H,G,0)). The feasible set is R = R0. The thick solid line depicts the naive strategy.
The thin solid line represents the classical (unregularized) robust solution
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Fig. 7 A single asset trading with C = 0.003, H = 10−5 · C, G = 0.5 × 10−5 · C. The uncertainty
set is U = UH × UG , where UH = [0.5 · H, 1.5 · H ] and UG = [0.5 · G, 4 · G]. Frontiers are for
μ ∈ [0,10−3] and the feasible set of execution strategies is R0. The regularization parameter equals
ρ = ρ0 · λmin(W(H,G,0)). Right plot illustrates robust frontier (with respect to U ) of nominal solutions
(depicted by solid line), and robust frontiers (with respect to V (U , ρ)) of regularized solutions for several
choices of ρ. Left plot illustrates the nominal efficient frontier of nominal solution (depicted by solid line)
and nominal frontier of regularized robust solutions

a regularized robust solution cannot be obtained simply by adjusting μ in the nom-
inal optimization framework. Hence, in general (for general uncertainty sets) there
is no correspondence between the risk aversion parameter μ and the regularization
parameter ρ.

Next we assess robust performance by examining the robust frontier. The robust
frontier (with respect to an uncertainty set U ) of the nominal solution is the worst case
mean and variance of the nominal solution. Since the solution of the nominal optimal
portfolio execution problem is feasible for problem RC(U ), the variance and worst
case mean of its corresponding execution cost are no smaller than those of the robust
solution. Therefore, the robust frontier of the nominal optimal execution strategy is
always above the robust efficient frontier of the robust optimal execution strategy.
This has also been computationally observed in [55] for a single period traditional
portfolio optimization, when only mean return is subject to uncertainty.

Conservativeness of the regularized robust optimal execution strategy can be ad-
justed through the regularization parameter. As the regularization parameter ρ in-
creases, the size of the regularized uncertainty set decreases. Hence, Φμ(ρ1) ≥
Φμ(ρ2), when ρ1 ≤ ρ2. Here, Φμ(·) is the robust optimal value defined in (34).
Hence, the regularized robust solution becomes less conservative. In particular,
Φμ(ρ) ≤ Φμ(0), for every ρ ≥ 0.

Let the feasible region R be closed and convex, and the uncertainty set U be
nonempty, convex, and compact. Assume ρ1 and ρ2 are two regularization param-
eters where 0 ≤ ρ1 ≤ ρ2, and the sets V (U , ρ1) and V (U , ρ2) are nonempty. Then
the (mean-variance) robust frontier with respect to V (U , ρ2) of the regularized ro-
bust solutions corresponding to ρ2 is always below the mean-variance robust frontier
with respect to V (U , ρ1) of the regularized robust solution corresponding to ρ1. The
property is depicted in the right plot in Fig. 7.
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In regularized robust optimization, when the regularization parameter ρ increases,
the robust frontier with respect to the regularized uncertainty set of the regularized
robust solution is pushed down. The following discussion illustrates this result.

Let the regularized robust optimal execution strategy, corresponding to the risk
aversion parameter μ and the regularized uncertainty set V (U , ρ1), be zρ1 . Denote
the variance and robust mean of the execution cost corresponding to zρ1 with V1 and
E1, respectively:

V1
def= τzT

ρ1
(I ⊗ C)zρ1 ,

E1
def= max

(H̃ ,G̃)∈V (U ,ρ1)

1

τ
S̄T H̃ S̄ + 1

2
zT
ρ1

W(H̃ , G̃,0)zρ1 + bT (H̃ , G̃)zρ1 .

Let zρ2 be the regularized robust optimal execution strategy obtained from the
regularized uncertainty set V (U , ρ2) and the risk aversion parameter μ̂ such that
τzT

ρ2
(I ⊗ C)zρ2 = V1. Denote the robust expected execution cost corresponding to

zρ2 with E2, i.e.,

E2
def= max

(H̃ ,G̃)∈V (U ,ρ2)

1

τ
S̄T H̃ S̄ + 1

2
zT
ρ2

W(H̃ , G̃,0)zρ2 + bT (H̃ , G̃)zρ2 .

Using Sion’s convex-concave minimax theorem (see, e.g., Theorem 3 in [48]) and
the fact that both V (U , ρ2) and R are convex, and the uncertainty set V (U , ρ2) is
compact, we have:

E2 +μ̂V1 = Φμ̂(ρ2)

= max
(H̃ ,G̃)∈V (U ,ρ2)

min
z∈R

1

τ
S̄T H̃ S̄ + 1

2
zT W(H̃ , G̃, μ̂)z + bT (H̃ , G̃)z (63)

≤ max
(H̃ ,G̃)∈V (U ,ρ2)

1

τ
S̄T H̃ S̄ + 1

2
zT
ρ1

W(H̃ , G̃, μ̂)zρ1 + bT (H̃ , G̃)zρ1

≤ max
(H̃ ,G̃)∈V (U ,ρ1)

1

τ
S̄T H̃ S̄ + 1

2
zT
ρ1

W(H̃ , G̃, μ̂)zρ1 + bT (H̃ , G̃)zρ1 (64)

= E1 +μ̂V1,

where inequality (64) comes from the assumption ρ1 ≤ ρ2, which yields V (U , ρ2) ⊆
V (U , ρ1).

Thus we obtained E2 +μ̂V1 ≤ E1 +μ̂V1 and consequently E2 ≤ E1. In other
words, the point (V1,E2) on the robust frontier corresponding to V (U , ρ2) is below
the point (V1,E1). Hence the robust frontier of V (U , ρ2) is below the robust frontier
of V (U , ρ1).

The main property, used in the above argument, is the fact that the variance of
the execution cost does not depend on the impact matrices and uncertainty sets. This
property does not hold in the traditional portfolio optimization with an uncertain co-
variance matrix whose uncertainty set is non-separable from the mean uncertainty
set. In such cases, equalities (63) and (64) fail.
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8 Concluding remarks

Optimal portfolio execution is currently an important problem for the financial insti-
tutions. Amongst its many modeling and computational challenges, estimating tem-
porary and permanent impact matrices (or more generally price impact functions)
remains to be one of the most difficult tasks.

To address estimation risk in impact matrices, we consider the robust optimiza-
tion for an optimal portfolio execution problem. The minimax robust optimization
can provide an optimal worst case performance guarantee. Effectiveness of the ro-
bust optimization, however, depends on specification of the uncertainty set, which is
often imprecise. An uncertainty set with a large size can yield an overly conservative
solution.

In addition, we illustrate that the robust execution strategy can be sensitive to the
specification of the uncertainty set. Specifically, sensitivity of the robust execution
strategy to the upper bound of an interval uncertainty set for the permanent impact
matrix can be more severe than the sensitivity of the nominal execution strategy to
the nominal impact matrices.

Motivated by the sensitivity analysis for the optimal execution strategy of a nomi-
nal optimal execution problem in [42], we propose a regularized robust optimization
framework for the considered optimal portfolio execution problem. By imposing a
regularization constraint to bound the minimum eigenvalue of the Hessian of the ob-
jective function in the problem, we show both mathematically and computationally
that sensitivity of the regularized robust execution strategy is significantly improved.

We propose an efficient method based on convex optimization for the regularized
robust execution problem. While a robust execution strategy cannot be easily com-
puted for some uncertainty set (e.g., interval uncertainty set), the regularized robust
execution strategy can be efficiently derived using convex programming. Finally we
analyze mathematically and computationally several implications of regularization
on the execution strategy and its corresponding cost.
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