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Abstract—Rare class problems are common in real-world applications across a wide range of domains. Standard classification

algorithms are known to perform poorly in these cases, since they focus on overall classification accuracy. In addition, we have seen a

significant increase of data in recent years, resulting in many large scale rare class problems. In this paper, we focus on nonlinear

kernel based classification methods expressed as a regularized loss minimization problem. We address the challenges associated with

both rare class problems and large scale learning, by 1) optimizing area under curve of the receiver of operator characteristic in the

training process, instead of classification accuracy and 2) using a rare class kernel representation to achieve an efficient time and

space algorithm. We call the algorithm RankRC. We provide justifications for the rare class representation and experimentally illustrate

the effectiveness of RankRC in test performance, computational complexity, and model robustness.

Index Terms—Machine learning, kernel-based learning, imbalanced classification, ranking loss, large-scale algorithms
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1 INTRODUCTION

IN many classification problems samples from one class
are extremely rare (the minority class), while the number

of samples belonging to the other class are plenty (the
majority class). This situation is known as the rare class
problem. It is also referred to as an unbalanced or skewed
class distribution problem. Rare class problems naturally
arise in several application domains, for example, fraud
detection, customer churn, intrusion detection, fault detec-
tion, credit default, insurance risk and medical diagnosis.

Standard classification methods perform poorly when
dealing with unbalanced data, e.g. support vector machines
(SVM) [1], [2], [3], decision trees [1], [4], [5], [6], neural net-
works [1], Bayesian networks [7], and nearest neighbor
methods [4], [8]. Most classification algorithms are driven
by accuracy (i.e. minimizing error). Since minority examples
constitute a small proportion of the data, they have little
impact on accuracy or total error. Thus majority examples
overshadow the minority class, resulting in models that are
heavily biased in recognizing the majority class. Also, errors
from different classes are assumed to have the same costs,
which is usually not true. In most problems, incorrect classi-
fication of the rare class is more expensive, for instance,
diagnosing a malignant tumor as benign has more severe
consequences than the contrary case.

Solutions to the class imbalance problem have been pro-
posed at both the data and algorithm level. At the data level,
various resampling techniques are used to balance class dis-
tribution, including random under-sampling of majority

class instances [9], over-sampling minority class instances
with new synthetic data generation [10], and focused resam-
pling, in which samples are chosen based on additional
criteria [8]. Although sampling approaches have achieved
success in some applications, they are known to have draw-
backs, for instance under-sampling can eliminate useful
information, while over-sampling can result in overfitting.
At the algorithm level, solutions are proposed by adjusting
the algorithm itself. This usually involves adjusting the
costs of the classes to counter the class imbalance (cost-
sensitive learning) or adjusting the decision threshold.
However, true error costs are often unknown and using an
inaccurate cost model can lead to additional bias.

In recent years, we have also seen an explosion of data,
resulting in many large scale rare class problems. For exam-
ple, detecting unauthorized use of a credit card from mil-
lions of transactions. Since frequently a nonlinear decision
function is necessary to capture dependence structure, in
this paper, we focus on nonlinear kernel based classification
methods expressed as a regularized loss minimization prob-
lem. Processing large datasets can be prohibitive for many
nonlinear kernel algorithms, which scale quadratically to
cubically in the number of examples and may require qua-
dratic space as well. In addition suitable loss function,
which captures the imbalanced problem structure, needs to
be selected.

To address the challenges associated with rare class prob-
lems and large scale learning, we propose the following:

1) Instead of maximizing accuracy (minimizing error),
we optimize area under curve (AUC) of the receiver
operator characteristic. The AUC overcomes inade-
quacies of accuracy for unbalanced problems and
provides a skew independent measure. It is often
used as the evaluation metric for unbalanced prob-
lems and therefore it is appropriate to directly
optimize it in the training process. This results in a
regularized biclass ranking problem, which is a spe-
cial case of RankSVMwith two ordinal levels [11].
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2) To solve a kernel RankSVM problem in the dual, as
originally proposed in [11], requires Oðm6Þ time and

Oðm4Þ space, where m is the number of data sam-
ples. Recently, [12] proposed a primal approach to

solve RankSVM, which results in Oðm3Þ time and

Oðm2Þ space for nonlinear kernels. We propose a
modification to kernel RankSVM, that takes specific
advantage of the unbalanced nature of the problem,
using an iterative method for the matrix subproblem
and assuming an upper bound on the number of iter-
ations, to achieve OðmmþÞ time and OðmmþÞ space,
where mþ is the number of rare class examples. The
idea is to restrict the solution to a linear combination
of rare class kernel functions. We call it RankRC,
since it enforces a Rare Class representation.

The main contributions of this paper are as follows:

� We focus on nonlinear (kernel) rare class learning
based on AUC, which has not been highlighted in
previous literature. Optimizing the AUC of the
ROC curve corresponds to a binary RankSVM prob-
lem, which has been proposed in the literature pre-
viously by [11]. The proposed RankRC algorithm
can be viewed as an approximation to kernel
RankSVM. However, RankSVM has generally been
used in the context of ranking (e.g., webpage rank-
ing) with linear models. For rare class problems,
predictive performance is improved by using the
AUC as a loss function.

� We propose to use a rare class kernel representation
to achieve significant improvement in computational
complexity, while providing similar predictive per-
formance as RankSVM. A limitation of using kernel
RankSVM is computational complexity. Even with
the primal approach proposed in [12], the method
requires Oðm3Þ complexity in time and Oðm2Þ in
space. This quickly becomes computationally imp-
ractical for large-scale rare class problems, where a
balance ratio of 1:100 can result in sample sizes of
millions of observations.

� The proposed rare class kernel presentation is a reg-
ularized kernel method that minimizes ranking loss.
The rare class kernel representation idea is inspired
by [13], in which the posterior probability density is
estimated using a kernel density estimator over rare
class samples and locally adjusted by the density of
the background class. Using similar assumptions,
we show the optimal solution can be approximately
expressed as a linear combination of rare class kernel
functions. Note, [13] does not propose a kernel
method, but rather uses kernel density estimation to
estimate the posterior probability density directly.

� We present extensive computational comparisons to
demonstrate performance of the proposed RankRC
using nonlinear kernels. Specifically, we demonstrate
that, for rare class learning, RankSVM and RankRC,
with AUC as an objective, generally perform better
than error-rate based SVM methods. In addition,
RankRC, which takes advantage of the typical density
structure of the rare class problem, is computationally
muchmore efficient thanRankSVM,while not sacrific-
ing performance effectiveness relative to RankSVM.

In this paper we concentrate on developing the rare class
kernel model, the optimization algorithm, and extensive
computational comparisons between AUC-based and error-
rate based rare class nonlinear kernel learning, as well
as computational efficiency improvement of RankRC over
RankSVM. In addition to significant improvement in compu-
tational efficiency, we show that RankRC can also produce
more robust out-of-sample models than RankSVM.We illus-
trate that limiting the flexibility of the nonlinear model
to be expressed only as a combination of rare class kernel
functions in RankRC is essentially performing a dimension
reduction in the feature space. Using computational exam-
ples, we demonstrate that, for RankSVM, kernel and penalty
parameters can more easily lead to overfitting the rare class
samples. Since parameter selection (kernel and penalty) is an
important component of using support-vector methods suc-
cessfully, RankRC tends to provide more robust models as
kernel and penalty parameters are evaluated.

The presentation of the paper is organized as follows.
Sections 2 and 3 review the AUC measure and RankSVM.
Section 4 develops the RankRC problem and presents justifi-
cation for the rare class representation. Section 5 outlines the
optimization method used to solve RankRC. Section 6
empirically compares RankRC with other kernel methods
on several datasets. Finally, Section 7 concludes with sum-
mary remarks and potential extensions.

2 ROC CURVE

Evaluation metrics play an important role in learning algo-
rithms. They provide ways to assess performance as well as
guide model learning. For classification problems, error rate
is the most commonly used metric. For simplicity, we will
consider the two-class case. Let D ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ;
ðxm; ymÞg be a set ofm training examples, where xi 2 X � Rd,
yi 2 fþ1;�1g. Denote fðxÞ as the inductive hypothesis
obtained by training on example set D. Then error rate is
defined as,

Error Rate ¼ 1

m

Xm
i¼1

I½fðxiÞ 6¼ yi� ; (1)

where I½p� denotes the indicator function and is equal to 1 if
p is true, 0 if p is false. However, for highly unbalanced data-
sets, error rate is not appropriate since it can be biased
toward the majority class [14], [15], [16], [17]. In this paper,
we follow convention and set the minority class as positive
and the majority class as negative. Consider a dataset that
has 1 percent positive cases and 99 percent negative ones.
A naive solution which assigns every example to be positive
will obtain only 1 percent error rate. Indeed, classifiers that
always predict the majority class can obtain lower error
rates than those that predict both classes equally well. But
clearly these are not useful hypotheses.

Classification performance can be represented by a con-
fusion matrix as in Table 1, with mþ denoting the number
of minority examples and m� the number of majority ones.
The proportion of the two rows reflects class distribution
and any performance measure that uses values from both
rows will be sensitive to class skew.

The receiver operating characteristic (ROC) can be used to
obtain a skew independent measure [14], [18], [19]. Most
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classifiers intrinsically output a numerical score and a pre-
dicted label is obtained by thresholding the score. For exam-
ple, a threshold of zero leads to taking the sign of the
numerical output as the label. Each threshold value gener-
ates a confusion matrix with different quantities of false pos-
itives and negatives. The ROC graph is obtained by plotting
the true positive rate (number of true positives divided by
mþ) against the false positive rate (number of false positives
divided by m�) as the threshold level is varied (see Fig. 1).
It depicts the trade-off between benefits (true positive) and
costs (false positives) for different choices of the threshold.
Thus it does not depend on a priori knowledge of the costs
associated with misclassification. A ROC curve that domi-
nates another provides a better solution at any cost point.

To facilitate comparison, it is convenient to characterize
ROC curves using a single measure. The area under a ROC
curve (AUC) can be used for this purpose. It is the average
performance of the model across all threshold levels and
corresponds to the Wilcoxon rank statistic [20]. The AUC
can be obtained by forming the ROC curve and using the
trapezoid rule to compute area. Also, given the intrinsic out-
put of a hypothesis, fðxÞ, we can directly compute the AUC
by counting pairwise correct rankings [21]:

AUC ¼ 1

mþm�

X
yi¼þ1

X
yj¼�1

I fðxiÞ > fðxjÞ
� �

: (2)

We recognize that potential inadequacies, e.g., including
performance over the ROC space in which one rarely con-
sider, can arise from using AUC as the performance mea-
sure, see, e.g., [22], [23]. However, assuming no additional
problem dependent information such as error costs, AUC
evaluates model performance based on bi-class criteria,
instead of the single total error rate. Optimizing AUC often
leads to a dominant performance ROC curve, achieving bet-
ter performance with respect to both the true positive rate
and false positive rate criteria, in the absence of the addi-
tional problem dependent information.

Incorporating the AUC in the modeling process leads to a
biclass ranking problem, as discussed in the following
section.

3 RANKSVM

The modeling process can usually be expressed as an opti-
mization problem involving a loss function and a penalty
on complexity (e.g. regularization term). For most classifica-
tion problems, since the performance measure is error rate,
it is natural to consider minimizing the empirical error rate
(1) as the loss function. In practice, I½�� is often replaced with
a convex approximation such as the hinge loss, logistic loss
or exponential loss [24]. Specifically, using the hinge loss,

‘hðzÞ ¼ maxð0; 1� zÞ, with ‘2-regularization leads to the
well known support vector machine formulation [25], [26],

min
w2Rd

1

m

Xm
i¼1

‘h yiw
Txi

� �þ �

2
kwk22 ; (3)

where � 2 Rþ is a parameter that controls complexity and

the hypothesis, fðxÞ ¼ wTx, is assumed linear in the input
space X . Since SVMs try to minimize error rate, they can
lead to ineffective class boundaries when dealing with
highly skewed datasets, with resulting solutions biased
toward the majority concept [3]. The literature contains sev-
eral approaches to remedy this problem. Most prevalent are
sampling methods and cost-sensitive learning. However,
these approaches explicitly or implicitly fix the relative costs
of misclassification. When the true costs are unknown, this
can lead to suboptimal solutions.

Instead of minimizing error rate, we consider optimizing
AUC as a natural way to deal with imbalance. Indeed, if we
measure performance using AUC, it is preferable to opti-
mize this quantity directly during the training process. In
the AUC formula given in (2), we replace I½�� with the hinge
loss to obtain a convex ranking loss function. Thus we solve
the following regularized loss minimization problem:

min
w2Rd

1

mþm�

X
yi¼þ1

X
yj¼�1

‘h wTxi �wTxj
� �þ �

2
kwk22 : (4)

Problem (4) is a special case of RankSVMproposed by [11]
with two ordinal levels. Like SVM, RankSVM leads to a dual
problem which can be expressed in terms of dot-products
between input vectors. This allows us to obtain a non-linear
function through the kernel trick [25], which consists of
using a kernel function, k : X � X ! R, that corresponds to a

feature map, f : X ! F � Rd0 , such that 8u; v 2 X , kðu; vÞ ¼
fðuÞTfðvÞ. Here, k directly computes the inner product of
two vectors in a potentially high-dimensional feature space
F , without the need to explicitly form the mapping. Conse-
quently, we can replace all occurrences of the dot-product
with k in the dual andwork implicitly in spaceF .

However, since there is a Lagrangemultiplier for each con-
straint associated with the hinge loss, the dual formulation
leads to a problem in mþm� ¼ Oðm2Þ variables. Assuming

TABLE 1
Binary Classification Confusion Matrix

Predicted

fðxÞ ¼ þ1 fðxÞ ¼ �1 Total

Actual
y ¼ þ1 True Positives (TP) False Positives (FP) mþ
y ¼ �1 False Negatives (FN) True Negatives (TN) m�

Fig. 1. Example ROC curves. Curve A dominates B and curve B domi-
nates C. Curve C has an AUC of 0.5 and indicates a model with no
discriminative value.

TAYAL ET AL.: RANKRC: LARGE-SCALE NONLINEAR RARE CLASS RANKING 3349



the optimization procedure has cubic complexity in the num-
ber of variables and quadratic space requirements, the com-

plexity of the dual method is Oðm6Þ time and Oðm4Þ space,
which is unreasonable for evenmedium sized datasets.

As noted by Chapelle and Keerthi in [12], [27], one can
also solve the primal problem in the implicit feature space
due to the Representer Theorem [28], [29]. This theorem
states that the solution of any regularized loss minimization
problem in F can be expressed as a linear combination of
kernel functions evaluated at the training samples, kðxi; �Þ,
i ¼ 1; . . . ;m. Thus, the solution of (4) in F can be written as:

fðxÞ ¼
Xm
i¼1

bikðxi; xÞ ; or w ¼
Xm
i¼1

bikðxi; �Þ : (5)

Substituting (5) in (4) we can express the primal problem
in terms of bb:

min
bb2Rm

1

mþm�

X
yi¼þ1

X
yj¼�1

‘h
Xm
r¼1

brkðxr; xiÞ �
Xm
r¼1

brkðxr; xjÞ
 !

þ �

2

Xm
i;j¼1

bibjkðxi; xjÞ ;

or more simply,

min
bb2Rm

1

mþm�

X
yi¼þ1

X
yj¼�1

‘h Kibb�Kjbb
� �þ �

2
bbTKbb ; (6)

whereK 2 Rm�m is the kernel matrix,Kij ¼ kðxi; xjÞ, andKi

denotes the ith row of K. To be able to solve (6) using
unconstrained optimization methods such as gradient
descent, we require the objective to be differentiable.

We replace the hinge loss, ‘h, with an �-smoothed differ-
entiable approximation, ‘�, defined as,

‘�ðzÞ ¼
ð1� �Þ � z if z < 1� 2�
1
4� ð1� zÞ2 if 1� 2� � z < 1
0 if z 	 1;

8<
:

which transitions from linear cost to zero cost using a qua-
dratic segment (see Fig. 2) and provides similar benefits
as the hinge loss. Thus we can solve (6) using standard un-
constrained optimization techniques. Since there are m

variables, Newton’s method would for example take Oðm3Þ
operations to converge.

RankSVM is popular in the information retrieval commu-
nity, where linear models are the norm [30]. Computational
implementations for linear models have been considered,
see, e.g., [31]. For a linear model, with d-dimension input
vectors, the complexity of RankSVM can be reduced to
Oðmdþm log mÞ [12]. However, many rare class problems
require a nonlinear function to achieve optimal results.

Solving a nonlinear RankSVM requires Oðm3Þ time and

Oðm2Þ space [12], [32], which is not practical for mid-to
large-sized datasets. We believe this complexity is, in part,
the reason why nonlinear RankSVMs are not commonly
used to solve rare class problems.

In the next section we propose a modification to nonlin-
ear RankSVMs that takes specific advantage of unbalanced
datasets to achieve OðmmþÞ time and OðmmþÞ space, while
not sacrificing performance.

4 RANKRC: RANKING WITH RARE CLASS

REPRESENTATION

To make RankSVM computationally feasible for large scale
unbalanced problems, we propose to enforce a rare class
representation for the decision surface. Specifically, we pro-
pose to restrict the solution to the form

fðxÞ ¼
X
yi¼þ1

bikðxi; xÞ ; (7)

so it consists only of kernel function realizations of the
minority class. We call this RankRC to indicate a Rare Class
representation, instead of a support vector representation.

We present motivation for RankRC by assuming specific
properties of the class conditional distributions and kernel
function. Similar assumptions are made in [13]; however
likelihood ratio is directly estimated in [13] instead. In con-
trast, we are using a regularized lossminimization approach.

Recall that the optimal ranking function for a classifica-
tion problem is the posterior probability, P ðy ¼ 1jxÞ, since it
minimizes the Bayes risk for arbitrary costs. From Bayes’
Theorem, we have

P ðy ¼ 1jxÞ ¼ P ðy ¼ 1ÞP ðxjy ¼ 1Þ
P ðy ¼ 1ÞP ðxjy ¼ 1Þ þ P ðy ¼ �1ÞP ðxjy ¼ �1Þ :

(8)

Any monotonic transformation of (8) also yields equiv-
alent ranking capability. Let fðxÞ denote the likelihood
ratio, i.e.,

fðxÞ ¼ P ðxjy ¼ 1Þ
P ðxjy ¼ �1Þ : (9)

Dividing the numerator and denominator of (8) by
P ðy ¼ �1ÞP ðxjy ¼ �1Þ, we have

P ðy ¼ 1jxÞ ¼ rfðxÞ
rfðxÞ þ 1

; where r ¼ P ðxjy ¼ 1Þ
P ðxjy ¼ �1Þ > 0:

We note that P ðy ¼ 1jxÞ is a monotonic transformation of
the likelihood ratio, which is the ranking function we are
interested in obtaining. If we assume that the conditional

Fig. 2. The smoothed hinge is a differentiable approximation of the hinge
loss. Here the smoothed hinge is shown with � ¼ 0:5.
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density, P ðxjy ¼ 1Þ, is a mixture of mþ identical spherical
normals centered at the rare class examples, we can write

P ðxjy ¼ 1Þ ¼
X
yi¼þ1

aiexp
jjxi � xjj2

s2

( )
;

for some constants ai. This mixture encompasses a large
range of possible distributions from the mþ rare examples
provided. If we also assume that k denotes a Gaussian ker-
nel function with width s, then we have

P ðxjy ¼ 1Þ ¼
X
yi¼þ1

aikðxi; xÞ : (10)

In rare class problems, most examples are from the
majority class (y ¼ �1) and only a small number are from
the rare class (y ¼ 1). It is reasonable to assume the minority
class examples are concentrated in local regions with
bounded support, while the majority class acts as back-
ground noise. This assumption is valid for rare class
problems involving statistical detection. In unbalanced
problems, in which the objective is outlier detection, these
assumptions may not hold as strongly. For example, tumor
detection or patient hospitalization requires statistical detec-
tion to identify the relevant patterns in noisy data, whereas
identifying unusual credit card purchasing behavior may
be better to suited as an outlier problem. We note that [13]
make use of similar assumptions in their method to directly
estimate the likelihood ratio and apply their method suc-
cessful to a real drug discovery dataset.

Therefore, in a neighborhood around the minority class
examples, the conditional density function P ðxjy ¼ �1Þ can
be assumed to be relatively flat in comparison to P ðxjy ¼ 1Þ,
see Fig. 3 for example. Let P ðxjy ¼ �1Þ 
 ci for each minor-
ity example i in the neighborhood of xi.

1 Then together with
(10), the likelihood ratio (9) can be written as

fðxÞ 

X
yi¼þ1

aikðxi; xÞ
ci

;

which corresponds to the rare class representation (7) we
have chosen. In contrast to (5), this formulation takes spe-
cific advantage of the conditional density structure of rare
class problems.

The above analysis suggests that, for rare class ranking
problems, the restricted hypothesis function in (7) is a rea-
sonable approximation to the full data hypothesis function
fðxÞ ¼Pm

i¼1 bikðxi; xÞ. More generally, we consider solving
the regularized ranking problem under an arbitrary subset
representationR,

min
bb2RjRj

1

mþm�

X
yi¼þ1

X
yj¼�1

‘h fðxiÞ � fðxjÞ
� �þ �

2
bbTKRRbb

s.t. fðxÞ ¼
X
r2R

brkðxr; xÞ;
(11)

whereR � f1; . . . ;mg denotes the subset andKRR 2 RjRj�jRj

corresponds to the square kernel submatrix indexed by
R. When R is the full training set, (11) corresponds to
RankSVM, while RankRC corresponds to setting R ¼ fr :
yr ¼ 1g.

Recall that f : X ! F � Rd0 denote a feature map corre-
sponding to the kernel k : X � X ! R, such that 8u; v 2 X ,

kðu; vÞ ¼ fðuÞTfðvÞ. Let SR ¼ spanffðxiÞ : i 2 Rg be a linear
combination of the subset of points in feature space indexed

by R. Let fR : X ! FR � Rd0 , defined as the orthogonal
projection of f onto SR, i.e.,

fRðxÞ ¼ ProjSR fðxÞð Þ : (12)

It can be readily observed thatX
i2R

bifðxiÞTfðxÞ

¼
X
i2R

bifðxiÞ;fðxÞ
 !

¼ ProjSR
X
i2R

bifðxiÞ
 !

;ProjSR fðxÞð Þ
 !

¼
X
i2R

bifRðxiÞ;fRðxÞ
 !

:

Fig. 3. (a) An example of a rare class dataset. Red ‘�’s indicate negative (majority) examples and black ‘þ’s indicate positive (minority) examples.
(b) The class conditional distributions showing that P ðxjy ¼ �1Þ is relatively constant in local neighborhood of positive examples.

1. We do not make this more precise since we are mainly interested
in motivating an approximate form.
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In other words, using the restricted hypothesis is equiva-
lent to using the projected mapping fRð�Þ, instead of the
original feature mapping fð�Þ. If spanffðxiÞ : i 2 Rg is a
proper subspace of spanffðxiÞ : i ¼ 1; . . . ;mg, we can view
RankRC as first performing dimension reduction in the fea-
ture space based on the rare class samples, before applying
regularized risk minimization. This is likely to lead to more
robust learning; this will be further illustrated with compu-
tational examples in Section 6.

5 COMPUTATIONAL COMPLEXITY COMPARISON

BETWEEN RANKRC OVER RANKSVM

Setting R ¼ fr : yr ¼ 1g in (11) and replacing ‘h with the
smooth approximation, ‘�, we obtain the following RankRC
problem inmþ variables,

min
bb2Rmþ

1

mþm�

X
yi¼þ1

X
yj¼�1

‘� Kiþbb�Kjþbb
� �þ �

2
bbTKþþbb :

(13)

Here, Kiþ denotes ith row of K with column entries cor-
responding to only the positive class, and Kþþ 2 Rmþ�mþ is
the square submatrix of K corresponding to the positive
class entries. To solve (13) we can use several approaches,
which are discussed below.

5.1 Linearization

Since Kþþ is a positive semi-definite matrix, it has an eigen-
decomposition which can be expressed in the form, Kþþ ¼
ULUT , with U being an orthonormal matrix (i.e. UTU ¼ I)
and L a diagonal matrix containing non-negative eigenval-

ues ofKþþ. Letw ¼ L
1
2UTbb, then

bb ¼ ULy12w ; (14)

where Ly denotes the pseudoinverse of L. We can substitute
(14) in (13) to obtain the following linear (hypothesis) space
problem,

min
w2Rmþ

1

mþm�

X
yi¼þ1

X
yj¼�1

‘� KiþULy12w�KjþULy12w
� �

þ �

2
kwk22 :

(15)

That is, Problem (15) is equivalent to Problem (4) with
data points given by xi ¼ ðKiþULy12ÞT ¼ Ly12UTKT

iþ 2 Rmþ ,
i ¼ 1; . . . ;m. Therefore we can use the algorithm described
in [12] to solve the linear ranking problem in Oðmmþþ
m log mÞ ¼ OðmmþÞ time. The cost of computing xi ¼
KiþULy12; i ¼ 1; . . . ;m, is Oðmm2

þÞ. The cost of factoringKþþ
is Oðm3

þÞ. Therefore the total time is Oðmm2
þ þm3

þÞ. Once

we solve for optimal w we can use ð14Þ to obtain bb for
subsequent testing purposes. Also, since we only need
kernel entries fKij : yi ¼ 1; j ¼ 1; . . . ;mg, the method uses
OðmmþÞ space.

5.2 Unconstrained Optimization

We can also directly solve (13) using standard unconstrained
optimization methods. Gradient only methods, such as
steepest descent and nonlinear conjugate gradient do not

require estimation of the Hessian. Although this makes each
iteration much cheaper, convergence can be slow, especially
near the solution. In contrast Hessian based algorithms, such
as Newton’s method can obtain quadratic convergence near
the solution, but each iteration can be expensive. InNewton’s
method, the pth iterate is updated according to

bbðpþ1Þ ¼ bbðpÞ þ s ;

where the step, s, is obtained by minimizing the quadratic

Taylor approximation around the current iterate bbðpÞ:

min
s

sTgðpÞ þ 1

2
sTHðpÞs ; (16)

where HðpÞ and gðpÞ are the Hessian and gradient of the

objective at bbðpÞ, respectively. Problem (16) has a closed
form solution given by

s ¼ �ðHðpÞÞ�1gðpÞ :

Since HðpÞ is a mþ �mþ matrix, this involves Oðm3
þÞ cost

in each iteration. To avoid this, we can use the truncated

Newton method in which HðpÞs ¼ �gðpÞ is solved using lin-
ear conjugate gradient. Here, the Hessian is not computed
explicitly and the method iteratively approximates the solu-
tion using Hessian-vector products. Since each iteration in
the linear conjugate gradient algorithm leads to a descent
direction, we can terminate early while still improving
convergence.

A drawback of (truncated) Newton’s method is that it is
locally convergent. If the initial point is not chosen close
enough to the solution, the method can be slow to converge,
or fail altogether. Therefore we consider a subspace-
trust-region method, which combines the benefit of a trun-
cated Newton step with steepest descent. In our tests, we
found that the subspace-trust-region method converges
with significantly fewer iterations than the truncated New-
ton method.

The idea behind the trust-region method is to solve (16)
while constraining the step, s, to a neighborhood around
the current iterate, in which the approximation is trusted:

min
s

1

2
sTHðpÞsþ sTgðpÞ

s.t. jjsjj2 � DðpÞ :
(17)

The trust region radius, DðpÞ, is adjusted at each iterate
according to standard rules, for example it is decreased if
the solution obtained is worse than the current iterate.
Problem (17) can be solved accurately, see, e.g., [33], how-

ever, the solution uses the full eigen-decomposition of HðpÞ.
To avoid this computation, in the subspace-trust-region
method, Problem (17) is restricted to a two-dimensional

subspace spanned by the gradient, gðpÞ, and an approximate
Newton direction, s2, which can be obtained by solving

HðpÞs2 ¼ �gðpÞ using linear conjugate gradient [34]. The
idea behind this choice is to ensure global convergence,
while maintaining fast local convergence. Once the sub-
space has been computed, solving (17) costs Oð1Þ time,
since in the subspace the problem is only two-dimensional.
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The implementation we use is provided in Matlab’s optimi-
zation toolbox, fminunc/fmincon.

5.2.1 Computing Gradient and Hessian-Vector Product

We describe how we can compute the gradient and Hes-
sian-vector product for Problem (13) efficiently. Let K�þ ¼
½Kij�i¼1;...;m;yj¼1 2 Rm�mþ denote the rectangular submatrix

of K with columns indexed by the positive class. Consider
the expanded matrix

A ¼ ½Kiþ �Kjþ�i:yi¼1;j:yj¼�1 2 Rmþm��mþ ;

consisting of the differences of rows inK�þ corresponding to
all pairwise preferences. In our computation we do not
explicitly form matrix A, rather we note that A can be
expressed as a sparse matrix product:

A ¼ PK�þ;

where P 2 Rmþm��m is a sparse matrix that encodes a pair-
wise preference. That is, if yi > yj, then there exists a row r

in P such that Pri ¼ 1; Prj ¼ �1 and the rest of the row is
zero. Let Ar denote the rth row of A. Then the ranking loss
expression in (13) can be written as,

X
yi¼þ1

X
yj¼�1

‘� Kiþbb�Kjþbb
� �

¼
Xmþm�

r¼1

‘� Arbbð Þ

¼
Xmþm�

r¼1

I½r 2 L� 1� ��Arbbð Þ þ
Xmþm�

r¼1

I½r 2 Q� 1
4�

1�Arbbð Þ2 ;

(18)

where L ¼ fr : Arbb < 1� 2�g is the set of pairwise differ-
ences which are in the linear portion of ‘�, and Q ¼ fr : 1�
2� � Arbb < 1g is the set which fall in the quadratic part.

Denote e 2 Rmþm� as a vector of ones. Define eL 2 Rmþm�

as a binary vector where eLr ¼ 1 if r 2 L and eLr ¼ 0 if

r 62 L. Also define IQ 2 Rmþm��mþm� as a diagonal matrix,

where IQrr ¼ 1, if r 2 Q, and IQrr ¼ 0, if r 62 Q. Then (18) is
equivalent to

eL
� �T ð1� �Þe�Abbð Þ þ 1

4�
e�Abbð ÞT IQ e� Abbð Þ

¼ eL
� �T ð1� �Þe� PK�þbbð Þ þ 1

4�
e� PK�þbbð ÞT IQ e� PK�þbbð Þ:

Therefore the objective function in (13) can be expressed
as

F ðbbÞ , 1

mþm�

�
eL
� �T ð1� �Þe� PK�þbbð Þ

þ 1

4�
e� PK�þbbð ÞT IQ e� PK�þbbð Þ�þ �

2
bbTKþþbb :

(19)

We obtain the gradient by taking the derivative of (19)
with respect to bb:

g ,
@F

@bb

¼ 1

mþm�
� eL
� �T

PK�þ þ 1

2�
PK�þIQ PK�þbb� eð Þ

� 	
þ �Kþþbb

¼ 1

mþm�

h
� ððeLÞTP ÞK�þ þ 1

2�

�
P ðK�þ IQP

� �ðK�þbbÞ
�

� P K�þ IQe
� �� ��iþ �Kþþbb :

(20)

In the last expression we have used brackets to empha-
size the order of operations that leads to an efficient imple-
mentation and avoids computing A ¼ PK�þ. It can be
verified that the time required is OðmmþÞ.

We obtain the Hessian by taking the derivative of (20)
with respect to bb:

H ,
@2F

@bb@bbT
¼ 1

2�mþm�
PK�þIQPK�þ
� �þ �Kþþ :

Note the Hessian requires computing A. However, for
the linear conjugate gradient method we only require com-
puting Hs for some vector s. In this case, we can avoid com-
puting A by using the following order of operations:

Hs ¼ 1

2�mþm�
P K�þ IQP

� �
K�þsð Þ� �� �þ �Kþþs :

The time required to computeHs is also OðmmþÞ.
In the subspace-trust-region method we use a maximum

of 25 conjugate gradient iterations.2 We found the iterations
usually converge a solution of acceptable accuracy in a con-
stant bounded number of trust region iterations. Since each
iteration requires OðmmþÞ time, the total time required by
the algorithm is, practically speaking, OðmmþÞ. Total space
is also OðmmþÞ.

Finally, we note that we can slightly improve the time
required to compute the gradient and Hessian-vector prod-
uct by first sorting the values of K�þbb or K�þs. Though this
does not improve the big-O efficiency, it does reduce the
constant factor. We refer the interested reader to [12] for
details on a method which can be adapted for the nonlinear
RankRC objective (13).

6 EXPERIMENTS

In this section we empirically compare RankRC to other
methods on several unbalanced problems. The following
methods are compared:

1) KNN: k-Nearest-Neighbors algorithm. The posterior
probability is used as the ranking function:

P ðyjxÞ ¼ 1

k

X
i2K

I½yi ¼ 1� ;

where K is the set of k nearest neighbors in the train-
ing dataset.

2) SVM: This is the standard nonlinear SVM [26], in
which the primal problem,

2. We use diagonal preconditioning and warm-starts as � is varied
from high to low.
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min
w2Rd

1

m

Xm
i¼1

max 0; 1� yiðwTfðxiÞ þ bÞ� �þ �

2
kwk22 ;

is solved (in the dual) to obtain the decision function,
fðxÞ ¼ wTfðxÞ þ b ¼Pm

i¼1 bikðxi; xÞ þ b, with kðxi; xÞ ¼
fðxiÞTfðxÞ.

3) SVM-W: Weighted SVM [26], [35] in which

min
w2Rd

1

m

Xm
i¼1

vimax 0; 1� yiðwTfðxiÞ þ bÞ� �þ �

2
kwk22 ;

is solved, with different weights associated with
each class:

vi ¼
m

2mþ if yi ¼ þ1
m

2m� if yj ¼ �1 :




The idea is to penalize misclassification error of
minority examples more heavily in order to reduce
the bias towards majority examples.

4) SVM-RUS: Randomly Under Sample the majority class
examples (y ¼ �1) to match the number of minority
examples [9]. The resulting dataset, with 2mþ points,
is used to train a standard SVM.

5) SVM-SMT: Uses a Synthetic Minority Oversampling
TEchnique (SMOTE) [10] in which the rare class is
over-sampled by creating new synthetic rare class
samples according to each rare class sample and its k
nearest neighbors. Each new sample is generated in
the direction of some or all of the nearest neighbors.
We oversample to match the number of majority
examples. The resulting dataset, with 2m� points, is
used to train a standard SVM.

6) RANK-SVM: Nonlinear RankSVM problem (6).
7) RANK-RND: We solve the regularized ranking problem

constrained to mþ randomly selected set of basis
function, i.e. Problem (11) with jRj ¼ mþ and a ran-
domly chosen index setR.

8) RANK-RC: We solve the regularized ranking problem
with a Rare Class representation, i.e. Problem (13).

We use LIBSVM [36] to solve the SVM problems (2-5).
LIBSVM is a popular and efficient implementation of the
sequential minimal optimization algorithm [37]. We set
cache size to 10 GB to minimize cache misses; termination
criteria and shrinking heuristics are used in their default
settings. The rankingmethods (6-8) are solved using the sub-
space-trust-region method as outlined in Section 5. Termina-
tion tolerance is set at 1e-6. For ranking methods, the
memory available to store the kernel matrix is limited to
10 GB. Experiments are performed on a Xeon E5620@2.4 Ghz
running Linux.

All datasets are standardized to zero mean and unit vari-
ance before training. Since our focus is on nonlinear kernels,
for all SVM and ranking methods (2-8), we use a Gaussian
kernel, kðu; vÞ ¼ expð�ku� vk22=s2Þ with s2 ¼ 1

m2

Pm
i;j¼1

kxi � xjk22. The penalty parameter � is determined by cross-
validation over values log 2 � ¼ ½�20;�18; . . . ; 8; 10�. For
KNN we cross-validate over k ¼ ½1; 2; . . . ; dminð100; ffiffiffiffiffi

m
p Þe�.

6.1 Simulated Data

Simulated unbalanced datasets are generated in the follow-
ing manner. Rare class instances are sampled from six mul-
tivariate normal distributions with equal probability. Their
enters, mi, i ¼ 1; . . . ; 6, are randomly chosen within a unit

cube. The majority class is sampled from 6
2

� � ¼ 15 multivari-

ate normal distributions with equal probability. Their cen-
ters are chosen along lines connecting all combinations of
two rare class centers, i.e. tmi þ ð1� tÞmj, i > j. The param-

eter t 2 ½0; 1� is used to roughly control the degree of class

overlap. All covariances are chosen to be spherical, s2I.
Finally, the imbalance ratio, r ¼ mþ

m , is used to determine

the number of samples drawn from each of the class condi-
tional distributions. An example configuration in two-
dimensional space is shown in Fig. 4. The resulting dataset
contains multiple rare-class subconcepts that vary in dis-
criminative structure.

For our experiment we generate data in five-dimensional
space with s ¼ 0:5. We set t ¼ 0:9, 0:75, and 0:6 to produce
datasets with high, medium and low overlap, respectively.
The imbalance ratio, r, is varied from 10 to 40 percent in 10
percent increments for each t value. Thus we have a total of
12 datasets. For each dataset we generate 1,000 training
points, 1,000 validation points and 10,000 testing points.
Results are averaged over 10 trials.

Table 2 shows test AUC results using different methods.
KNN does not perform as well as SVM and ranking methods.
In general, ranking methods perform better than SVM based
methods when there is greater overlap and higher imbal-
ance (lower r). RANK-RND under performs in medium and
low overlap datasets. In comparison, RANK-RC yields statisti-
cally similar performance as RANK-SVM across all datasets.
Overall, both RANK-RC and RANK-SVM provide the best models
in terms of AUC.

Fig. 5 further compares the empirical ranking loss
function,

Fig. 4. Example configuration of simulated dataset in two-dimensions
with s ¼ 0:1 and t ¼ 0:75. The red, filled in circles show the locations of
the six normal components for the rare class distribution. The black,
empty circles show the location of the 15 normal components for the
majority class distribution, whose centers lie along the dotted lines con-
necting all two rare class normal components.
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R̂h ¼ 1

mþm�

X
yi¼þ1

X
yj¼�1

‘h fðxiÞ � fðxjÞ
� �

;

obtained by the ranking methods on four of the training and
testing sets as � is varied. Firstly we observe that the differ-
ence between RANK-SVM and the restricted basis models
(RANK-RND and RANK-RC) decreases as � is increased. Sec-
ondly, Fig. 5 shows, more noticeably in Figs. 5c and 5d, that
RANK-RND is unable to achieve the optimal test loss levels at
moderate values of �, which are achieved by both RANK-
SVM and RANK-RC. Thirdly, the test loss of RANK-RND and
RANK-RC is lower than that of RANK-SVM for small values of �.
This suggests that, for RANK-SVM, kernel and penalty
parameters can more easily lead to overfitting the rare class
samples, even with cross validation. The performance com-
parison of this example is consistent with the motivations
provided in Section 4: RANK-RC models are sufficiently
complex for rare class problems and yet they are simpler
than the full kernel models, due to the dimension reduction
in the feature space. This allows RANK-RC to achieve a sim-
ilar level of test performance as RANK-SVM but provides

additional robustness. This robustness property can be
important in practice, given the possibility of overfitting a
model through cross-validation.

6.2 Real Datasets

In this section the methods are compared on several unbal-
anced real datasets obtained from various sources. Table 3
lists the datasets along with their characteristics. For each
dataset, three-quarters of the observations are used for train-
ing and the remaining one-quarter for out-of-sample testing.
Results are averaged over 20 stratified random splits of the
data. The model parameter (� or k) is tuned by running
10-fold cross-validation on the training set for each split.

Table 4 shows the mean test AUC score with standard
error for each model. Overall, RANK-SVM and RANK-RC yield
the best performing models with statistically similar results.
RANK-RND, on the other hand, under performs on some data-
sets, indicating that a random basis set is not as effective as
the rare class basis on unbalanced problems. SVM based
methods generally do not perform as well as ranking meth-
ods, except when there appears to be more discriminative
patterns in the data.

TABLE 2
Comparison of Test AUC Results for Simulated Datasets with High (t ¼ 0:9), Medium (t ¼ 0:75), and Low (t ¼ 0:6) Overlap,

Each with r ¼ 10%, 20%, 30% and 40% Minority Samples

Overlap r KNN Classification Loss Ranking Loss True Bayes
SVM SVM-W SVM-RUS SVM-SMT RANK-SVM RANK-RND RANK-RC

High 10% 56.3 � 0.4 57.3 � 0.3 59.8 � 0.3 59.1 � 0.4 58.9 � 0.4 61.5 � 0.3 61.4 � 0.3 61.4 � 0.2 66.8
20% 55.5 � 0.4 59.2 � 0.2 61.2 � 0.1 61.0 � 0.4 60.9 � 0.4 61.6 � 0.3 61.3 � 0.4 62.3 � 0.3
30% 57.3 � 1.0 61.1 � 0.2 62.2 � 0.4 62.2 � 0.1 61.8 � 0.3 62.3 � 0.4 62.2 � 0.3 62.6 � 0.4
40% 59.0 � 0.7 62.8 � 0.2 63.2 � 0.3 63.3 � 0.2 62.8 � 0.2 62.7 � 0.3 62.5 � 0.2 62.7 � 0.3

Medium 10% 54.9 � 0.6 56.8 � 0.5 59.5 � 0.5 58.8 � 0.3 58.6 � 0.9 61.4 � 0.5 60.1 � 0.5 61.4 � 0.4 69.5
20% 54.5 � 0.3 60.1 � 0.4 62.1 � 0.2 62.1 � 0.3 62.0 � 0.5 62.8 � 0.4 61.5 � 0.4 63.4 � 0.2
30% 57.6 � 0.8 63.4 � 0.1 64.0 � 0.3 63.3 � 0.1 63.4 � 0.4 64.1 � 0.4 62.4 � 0.5 64.6 � 0.5
40% 58.0 � 0.7 65.3 � 0.2 65.5 � 0.1 65.4 � 0.1 65.3 � 0.2 64.6 � 0.3 63.0 � 0.2 64.9 � 0.3

Low 10% 55.9 � 1.0 61.1 � 0.6 64.0 � 0.4 63.5 � 0.2 63.0 � 0.8 65.3 � 0.5 62.7 � 0.6 65.5 � 0.4 74.4
20% 57.2 � 0.4 64.2 � 0.3 66.6 � 0.2 66.2 � 0.2 66.4 � 0.2 67.1 � 0.3 63.5 � 0.4 67.3 � 0.2
30% 59.9 � 0.9 69.1 � 0.4 69.4 � 0.2 68.9 � 0.1 69.2 � 0.2 69.2 � 0.4 65.8 � 0.4 69.8 � 0.4
40% 61.6 � 1.5 71.1 � 0.1 70.7 � 0.3 70.5 � 0.1 71.1 � 0.1 69.8 � 0.3 65.8 � 0.3 69.9 � 0.3

Mean AUC score with standard error over 10 trials are shown. Bolded scores indicate the result is statistically not different than the best performing model using
a two-tailed t-test with 99 percent confidence.

Fig. 5. Comparison of empirical train and test ranking loss obtained by the ranking methods on four of the simulated datasets as � is varied.
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Table 5 compares the number of support vectors used
by the SVM and ranking models. RANK-SVM uses more sup-
port vectors than SVM based models. It can use even more
support vectors than SVM-SMT, which is trained on an
enlarged dataset almost twice the size. This suggests that
training RANK-SVM using a working-set type algorithm,

which only tracks active support vectors (e.g. as proposed
in [27] for standard SVMs), would still run costly in time
and space. In comparison, RANK-RND and RANK-RC use signif-
icantly fewer support vectors, an indication of better robu-
stness. Moreover, with RANK-RC, test performance is also
not compromised.

6.3 Intrusion Detection

In this section we use the KDD Cup 1999 dataset [40] to
evaluate a large-scale unbalanced problem. The objective is
to detect network intrusion by distinguishing between legit-
imate (normal) and illegitimate (attack) connections to a
computer network. The dataset is a collection of simulated
raw TCP dump data over a period of nine weeks on a local
area network. The first seven weeks of data is used for train-
ing and the last two for test, providing a total of 4,898,431
training observations and 3,11,029 test cases. We processed
the data to remove duplicate entries (as done in [41]) result-
ing in 1,074,975 training observations and 77,286 test cases.
Each observation contains 41 features, three of which are
categorical and the rest numerical. The three categorical fea-
tures are protocol (three categories), service (70 categories)
and flag (11 categories). We represent protocol using three
binary features, where each feature is an indicator for one of
the three categories. Service and flag categories are replaced
by the frequency in the training sample (i.e. probability) cor-
responding to the event of observing an attack given the cat-
egory is present. Thus we obtain a total of 43 features.
Finally, as done for all datasets, we standardize each feature
to zero mean and unit variance.

The attack types are grouped in four categories, DOS
(Denial of Service), Probing (Surveillance, e.g. port scan-
ning), U2R (user to root), R2L (remote to local). Table 6
shows the distribution of attack types in the training and
test sets. Together, the U2R and R2L attacks constitute

TABLE 3
List of Datasets and Their Characteristics that We Use

to Evaluate Methods

Name Source Features Samples

Original d m mþ r

Abalone19 UCI 1N,7C 10 4,177 32 0.8%
Mammograph [38] 6C 6 11,183 260 2.3%
Ozone UCI 72C 72 2,536 73 2.9%
YeastME2 UCI 8C 8 1,484 51 3.4%
Wine4 UCI 11C 11 4,898 183 3.7%
Oil [39] 49C 49 937 41 4.4%
SolarM0 UCI 10N 32 1,389 68 4.9%
Coil KDD 85C 85 9,822 586 6.0%
Thyroid UCI 21N,7C 52 3,772 231 6.1%
Libras UCI 90C 90 360 24 6.7%
Scene LibSVM 294C 294 2,407 177 7.4%
YeastML8 LibSVM 103C 103 2,417 178 7.4%
Crime UCI 122C 100 1,994 150 7.5%
Vowel0 Keel 10C 10 989 90 9.1%
Euthyroid UCI 18N,7C 42 3,163 293 9.3%
Abalone7 UCI 1N,7C 10 4,177 391 9.4%
Satellite UCI 36C 36 6,435 626 9.7%
Page0 Keel 10C 10 5,472 559 10.2%
Ecoli UCI 7C 7 336 35 10.4%
Contra2 Keel 9C 9 1,473 333 22.6%

Under original features, ‘N’ is used to denote number of nominal features, ‘C’, is
used to denote number of continuous features. We derive d features by convert-
ing nominal features to an indicator representation and use continuous features
as is. Under samples, m is the total number of observations, mþ is the number
of rare class observations, and r ¼ mþ

m is the percentage of rare class examples.

TABLE 4
Comparison of Test AUC Results for Real Datasets (Listed in Table 3)

Dataset KNN Classification Loss Ranking Loss

SVM SVM-W SVM-RUS SVM-SMT RANK-SVM RANK-RND RANK-RC

Abalone19 55.7 � 2.2 54.9 � 3.1 64.3 � 1.3 74.1 � 1.5 67.4 � 1.1 81.0 � 1.2 79.1 � 1.1 81.4 � 1.1
Mammograph 80.7 � 0.4 88.4 � 0.4 90.1 � 0.7 92.8 � 0.4 91.3 � 0.4 93.7 � 0.4 93.9 � 0.4 94.4 � 0.3
Ozone 66.4 � 2.2 85.0 � 1.1 85.5 � 0.7 86.4 � 0.9 85.9 � 0.8 89.4 � 0.9 88.7 � 0.8 90.1 � 0.9
YeastME2 69.3 � 1.7 81.8 � 0.5 85.5 � 0.7 87.5 � 0.7 86.8 � 1.1 90.8 � 0.8 89.0 � 0.9 89.4 � 1.1
Wine4 61.9 � 0.5 74.9 � 0.7 71.6 � 0.9 79.1 � 0.8 78.9 � 0.8 83.5 � 0.6 79.6 � 0.6 82.7 � 0.7
Oil 71.6 � 1.7 91.1 � 0.9 88.0 � 1.4 90.6 � 0.8 90.6 � 1.0 92.5 � 0.9 89.2 � 1.0 91.7 � 0.8
SolarM0 58.9 � 1.6 55.4 � 0.7 63.1 � 1.3 71.5 � 0.8 73.1 � 0.4 78.5 � 0.5 77.2 � 0.8 77.5 � 0.8
Coil 53.9 � 0.3 59.2 � 0.8 62.9 � 0.4 68.8 � 0.4 67.5 � 0.5 70.0 � 0.4 69.8 � 0.4 72.3 � 0.2
Thyroid 73.9 � 0.6 94.8 � 0.4 93.4 � 0.5 94.8 � 0.3 94.4 � 0.4 95.7 � 0.4 91.3 � 0.5 95.7 � 0.3
Libras 87.4 � 2.1 96.8 � 0.9 96.7 � 0.9 96.4 � 0.8 96.8 � 0.9 97.6 � 0.8 95.4 � 1.0 94.8 � 1.1
Scene 59.3 � 0.8 67.3 � 0.8 75.4 � 0.9 74.8 � 0.6 74.0 � 0.9 77.1 � 0.7 76.4 � 0.8 77.5 � 0.6
YeastML8 54.5 � 0.7 57.1 � 0.8 59.6 � 0.6 57.9 � 0.5 59.7 � 0.4 61.5 � 0.5 60.2 � 0.7 62.0 � 0.5
Crime 71.8 � 1.5 87.6 � 0.7 87.3 � 0.6 90.1 � 0.3 90.8 � 0.3 92.3 � 0.3 91.2 � 0.3 91.6 � 0.3
Vowel0 100.0 � 0.0 100.0 � 0.0 100.0 � 0.0 99.8 � 0.0 100.0 � 0.0 100.0 � 0.0 98.4 � 0.1 100.0 � 0.0
Euthyroid 75.8 � 0.8 95.0 � 0.4 95.0 � 0.4 94.6 � 0.4 95.0 � 0.4 95.2 � 0.4 90.7 � 0.4 94.1 � 0.4
Abalone7 78.2 � 2.1 56.1 � 3.2 76.3 � 0.5 77.4 � 0.3 74.4 � 0.2 87.0 � 0.3 86.5 � 0.3 87.1 � 0.3
Satellite 83.8 � 0.3 94.8 � 0.1 94.6 � 0.1 94.3 � 0.1 95.1 � 0.1 95.3 � 0.1 94.3 � 0.1 95.1 � 0.1
Page0 90.4 � 0.4 98.4 � 0.1 98.1 � 0.1 98.1 � 0.1 98.2 � 0.1 98.6 � 0.1 95.6 � 0.1 98.4 � 0.1
Ecoli 75.6 � 2.0 94.6 � 0.7 93.7 � 0.7 94.1 � 0.6 93.2 � 0.6 94.1 � 0.6 93.4 � 0.9 94.5 � 0.7
Contra2 60.5 � 0.9 66.9 � 0.8 70.2 � 0.5 70.5 � 0.6 70.6 � 0.8 73.2 � 0.5 72.6 � 0.5 73.4 � 0.4

Mean AUC score with standard error over 20 trials are shown. Each trial uses one-quarter data for out-of-sample testing. Bolded scores indicate the result is
statistically not different than the best performing model using a two-tailed t-test with 99 percent confidence.
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4.0 percent of the test dataset, which is a substantial increase
compared to the training set, but still a small fraction. Poor
results have been reported in literature for identifying the
U2R and R2L attacks [42]. In this experiment, we focus on
identifying these attack types by forming a binary classifica-
tion problem with the positive class representing either a
U2R or R2L attack, and the negative class representing all
other connection types. Thus the final training set is highly
skewed with only 0.098 percent positive instances.

We train using 5, 10, 25, 50, and 75 percent of the training
data. The remaining training data is used for validation. We
are unable to train RANK-SVM, even with just 5 percent of the
data (53,749 samples), since the kernel matrix is too large to
store in memory (>10 GB). Clearly, this is an example where
a large-scale solution is necessary to solve the ranking prob-
lem. We do not train SVM-SMT due to the large number of
samples as well. We are able to train SVM-W using up to
50 percent of the data. With more samples SVM-W does not
converge, due to the large number of support vectors which
do not fit in the cache.

Fig. 6a shows test AUC results obtained by different
methods as training data is increased. We observe that SVM

and SVM-RUS perform poorly. RANK-RC, RANK-RND and SVM-W
produce better results, with RANK-RC performing the best.

Figs. 6b and 6c compare training time and number of sup-
port vectors, respectively, as training data is increased. SVM

and SVM-RUS train in reasonable time, though they do not
produce good models. On the other hand, SVM-W quickly
becomes very expensive. RANK-RC and RANK-RND scale well,
while able to produce effective models. RANK-RC and RANK-
RND also use significantly fewer support vectors than SVM-W.

7 CONCLUSION

In this paper, we use a ranking loss function to tackle the
problem of learning from unbalanced datasets. Minimizing
biclass ranking loss is equivalent to maximizing the AUC
measure, which overcomes the inadequacies of accuracy,
used by conventional classification algorithms. The result-
ing regularized loss minimization problem corresponds to a
biclass RankSVM problem. We modify RankSVM to take
advantage of the rare class situation by restricting the solu-
tion to a linear combination of rare class kernel functions
(RankRC). Assuming that both the number conjugate gradi-
ent iterations required for each trust region subproblem and
the number of trust region subproblems required for solv-
ing a regularized problem are bounded by constants (which
are often the case in practice), it allows us to solve the non-
linear ranking problem in OðmmþÞ time and OðmmþÞ space
in practice, thus enabling us to solve many problems which
are too large for kernel RankSVM.

We illustrate that, for rare class problems, the proposed
rare class representation is sufficiently complex but has bet-
ter robustness properties, since it corresponds to a dimen-
sion reduction in the feature space based on the rare class
samples. Using both synthetic and real data sets, we dem-
onstrate computationally that, for rare class problems,
RankSVM and RankRC yield better performance in AUC, in
comparison to SVM methods, KNN, and RANK-RND. Compar-
ing to RankSVM, while performing similarly in the AUC

TABLE 5
Average Number of Support Vectors Used by the SVM and Ranking Models over 20 Trials

Dataset Classification Loss Ranking Loss

SVM SVM-W SVM-RUS SVM-SMT RANK-SVM RANK-RND RANK-RC

Abalone19 117 1,555 32 2,644 2,979 24 24
Mammograph 306 2,152 119 2,987 7,252 195 193
Ozone 206 746 61 1,165 995 55 55
YeastME2 105 429 41 594 1,066 38 38
Wine4 458 2,109 179 3,166 3,550 136 136
Oil 84 311 32 340 488 31 31
SolarM0 183 845 90 1,114 1,042 51 51
Coil 1,754 5,560 704 8,178 7,284 435 435
Thyroid 332 723 137 1,020 2,739 168 172
Libras 35 93 22 124 197 18 18
Scene 603 1,171 213 1,566 1,748 132 133
YeastML8 833 1,669 257 1,562 1,804 133 133
Crime 308 631 115 867 1,326 112 112
Vowel0 35 37 25 45 730 68 67
Euthyroid 389 673 177 1,002 2,303 216 219
Abalone7 713 1,391 274 2,076 3,079 291 292
Satellite 773 1,158 301 1,526 4,734 466 469
Page0 322 570 145 924 4,012 415 416
Ecoli 47 68 18 115 248 26 26
Contra2 560 843 396 912 1,096 249 249

For ranking models, support vectors are counted as the number of non-zero coefficients associated with kernel functions.

TABLE 6
Distribution of Connection Types in Training and Test Sets

for the Intrusion Detection Problem

Training Test

Normal 812,808 75.6% 47,913 62.0%
DOS 247,266 23.0% 23,568 30.5%
Probing 13,850 1.3% 2,677 3.5%
U2R 52 0.005% 215 0.278%
R2L 999 0.093% 2,913 3.769%

Total 1,074,975 100% 77,286 100%
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measure, RankRC is shown to require less number of sup-
port vectors and be more robust with respect to parameter
cross validations. In addition, RankRC is computationally
significantly more efficient with respect to both time and
space requirements. In particular RankRC yields excellent
solutions to the network intrusion problem, while RankSVM
is unable to train even with 5 percent of the data set.

Finally we list a few extensions/variants one may con-
sider using the rare class representation:

1) Regularization: In problem (13) we can use an ‘1-

regularizer, kbbk1, instead of bbTKþþbb. This would
lead to sparser solutions [43] and could be solved
using coordinate descent methods [44].

2) Loss function: We can replace the loss function with
other variants of ranking loss. The AUC concentrates
uniformly across all threshold levels. We can use
weighted AUC [45] or the p-norm push [46] to
emphasize specific portions of the AUC curve. Also,
we can use list based ranking methods to optimize
other criteria such as F1-score or Precision/Recall
breakeven point [47]. The rare-class representation
allows us to learn a nonlinear function for unbalanced
datasets with more complex loss functions, in reason-
able time and space.

3) Stochastic learning: For very large datasets, the
m�mþ kernel submatrix may be too large to fit in
memory. In this case, we can store Kþþ 2 Rmþ�mþ

and cycle (randomly) through majority class exam-
ples updating the bb 2 Rmþ vector via gradient
descent using an adaptive learning rate [48]. Unlike
standard stochastic gradient descent, in each itera-
tion we use the full set of minority examples and a
single (or small subset) of majority samples to per-
form the update. This should lead to faster conver-
gence while using only OðmþmþÞ space.

4) Feature selection: Selecting appropriate input features
can improve model quality significantly, particularly
when rare class concepts are embedded in majority
examples. For this purpose, we can extend the

primal kernel feature selection method proposed by
[49] for RankRC. Since we restrict the hypothesis to
use rare class kernel functions, overfitting due to fea-
ture selection is also less likely.

In summary, the rare class representation offers signifi-
cant benefits to learn nonlinear models for large-scale rare
class problems.
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