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Abstract

In [6], an entropy minimization formulation has been proposed to calibrate an uncer-
tain volatility option pricing model (UVM) from market bid and ask prices. To avoid
potential infeasibility due to numerical error, a quadratic penalty function approach is
applied. In this paper, we show that the solution to the quadratic penalty problem can
be obtained by minimizing an objective function which can be evaluated via solving a
Hamilton-Jacobian-Bellman (HJB) equation. We prove that the implicit finite difference
solution of this HJB equation converges to its viscosity solution. In addition, we provide
computational examples illustrating accuracy of calibration.
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1 Introduction

In the classical Black-Scholes model for option pricing, the underlying price is modeled as a
geometric Brownian motion,

d
i =(r—q)dt+ odZ;
St

where the interest rate r > 0, the dividend rate ¢ > 0, and the volatility ¢ > 0 are constants,
and Z; is a standard Brownian motion. Under this assumption, a European option price can
be computed easily using an analytic formula. Unfortunately, the market option prices suggest
that the Black-Scholes model is often inadequate. Volatility imputed from the market price
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and Black-Scholes formula varies with different options on the same underlying asset. In fact,
volatility is uncertain in practice.

An uncertain volatility model (UVM) is introduced in [3, 4]. In this model, the volatility
itself is uncertain and lies within an interval. Consider a set of stochastic processes,

d
i =(r—q)dt+ UtdZtQ,

t
where o <o, <0. (1)

where Q is a risk neutral probability measure, ZtQ is a standard Brownian motion under Q, r
and ¢ are interest rate and dividend yield respectively. Two volatility bounds, ¢ and @, can be
pre-determined functions of the underlying price and time; a special case is when both bounds
are constants.

Under a UVM model, an option has a lower price and an upper price which can naturally
be linked to market bid and ask prices. These two value bounds of an option are described by
the nonlinear Black-Scholes-Barenblatt (BSB) partial differential equation.

In finance, an option pricing model is typically calibrated to liquid option prices and the
resulting model is then used to price more illiquid options and manage option risks. The
calibration is accomplished by solving an inverse problem to determine model parameters so
that model prices match market prices.

In [6], a constrained entropy minimization formulation is proposed to calibrate an uncertain
volatility model (1) from market bid and ask prices. It is illustrated that the calibrated uncertain
volatility model yields more realistic price spreads than spreads resulting from an uncertain
volatility model from typical constant volatility bounds. To overcome potential infeasibility
due to numerical error arising from solving partial differential equations, a quadratic penalty
formulation is applied. We refer an interested reader to [6] for more detailed discussion of
financial meaning and examples of this calibration method for an uncertain volatility model.

The main objective of this paper is to analyze theoretical properties of the formulations
and numerical schemes proposed in [6]. We show in §2 that quadratic penalty minimization
can be solved by minimizing a convex function which satisfies a Hamilton-Jacobian-Bellman
(HJB) partial differential equation. An implicit finite difference method is applied to the HJB
equation to approximate the objective function value while the gradient of the objective function
is determined by solving the corresponding Black-Scholes partial differential equation. We
prove in §3 that the implicit finite difference scheme is unconditionally stable, consistent and
monotone, which are important properties for convergence to a viscosity solution of the HJB
equation. Finally we provide in §4 some computational results illustrating the accuracy of the
calibration.

2 Mathematical Formulation

Consider a set of probability spaces {(Q, F,Q), Q € O(c,7)}, where O(c,7) denotes the set of
all probability measures Q corresponding to the processes below
dS;

< = (r — q)dt + gtdZQ7 where oy, < oy < owp (2)
t



Consider a European option with a payoff function G(S) at the expiry T. Under the as-
sumed uncertain volatility model (1), there are a pair of option values V=~ and V* , V- < V+
associated with this option. Specifically, the pair of option values satisfies the following equa-

tions:
“(Sut) = inf EL[erT0
VISt = int EFle TGS g
and
VH(Sit)= sup E7[eTIG(Sy)] (4)
Qe6(a,7)

Based on stochastic control theory, e.g., see [9], these extreme values can be computed by solving
a Hamilton-Jacobi-Bellman (HJB) equation. For example V'~ satisfies the HJB equation:

oV oV 1 ,,0°VY\
_a+rv+g_?{i}§);<—(r—q)5%—§0‘5 652>_0

The HIB equations lead to the Black-Scholes-Barenblatt equation (5),

oV v 1/ 19*V1\? 0%V
W+(T_Q)S%+§<U[052D S g V=0 (5)
See e.g., [3].
The final condition is given by
V(5,T) = G(5)
where V'~ is obtained with o [ ] =0 [ . ],
[0V 7 aet [ @ if@%go,
7 [652]_{g if 21 >, ©)
and V7 is obtained with o [ ] =07 [ . ],
PVyaer [ 6 if 2% >0
+ lef 952 =
7 [052] { o if 2V <. (7)

In [6], volatility bounds in a UVM are determined via solving two constrained entropy

minimization problems respectively.
Let £(Qq, Qo) denote the relative entropy between Q; and Qy, i.e.,

d
(@@ = [ 1n(G2) a0,

where dQ; /dQy is the Radon-Nikondym derivative.



To calibrate a UVM which is least biased towards missing information, an entropy mini-
mization formulation is proposed in [6]. Specifically, to determine the lower volatility o,

inf  ¢(Q, Qo) (8)

Qed(oppoyp)
subject to EC (e_TTiGi(ST,»)) =V, 1=1,2

9 Ly ooy

M.

where {V;}, are given bid prices of liquid call and put options, {G;}}, are associated piecewise
linear payoft functions, Qp corresponds to some constant minimum volatility. For calibration
of the lower volatility o, the constant volatility prior is also used as oy,, and oy, is determined
based on the option mid-prices. The upper volatility @ can be similarly determined with the
market prices {V;} corresponding to option ask prices. In addition, the constant volatility prior
corresponds to some maximum volatility, the corresponding oy, is set to this constant volatility,
and oy, is determined based on the mid-prices.

The constrained entropy problem can be solved, see e.g., [2], based on a Lagrangian approach,

le.,

M
mf sup (—5(@1, Qo) + Z A (E@ (e_rTiGi(STi)> _ V;)) ‘ (9)
A Qed (oo i—1

Unfortunately, in the context of calibrating a volatility bound, the numerical approximation
of the objective function in the Lagrange formulation (9) is often unbounded from below. This is
due to the fact the equality constraints in (8) may be numerically infeasible. For more detailed
discussion and computational examples, we refer an interested reader to [6].

An alternative approach considered in [6] is the quadratic penalty function method. Given

a weight vector, {w;}M | we consider the quadratic penalty formulation below

; 1 e Ty, —_1)?
ceolf (e ( (Q,Q0) + ; ij Gi(S1) = Vi) ) (10)
where the dynamics of S; is described by (2). In contrast to the Lagrangian formulation (9),
the objective function of (10) is convex and bounded from below, thus avoiding the potential
difficulty of unboundedness. Of course, at a solution to (10), the equality constraints in (8) are
only approximately satisfied.

Problem (10) is a stochastic control problem. Unfortunately stochastic control theory cannot
be directly applied to it since the second term in the objective function is not linear. Fortunately,
an equivalent linear problem can be formulated. We now provide the derivation.

Denote the objective function of the quadratic penalty formulation (10) by Hé@ and consider

inf {Hé@ oo (5(@, Q) + %Z o (B2 (70 Gi(5m)) — W)2> } (11)

Qed(apoyp P

Similar to [1], we can consider the min-max formulation to eliminate the nonlinear term involving

E©,

M M
sup inf : {Hi@)‘ def (5(@, Qo) — ; )\,'(EQ (e_TT"G,') - Vi) - %; A?w,) } ) (12)

A QeB(ooy,
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We demonstrate next why (11) can be solved via the min-max formulation (12) based on
the continuous problem formulations. We show that, if there exists Q* such that Hé@* =
inf@eg(glbﬂub) Hé@, then

inf Hé@ = sup inf Hi@)‘.

QeB(o1poyp) A QeO(oypoyp)
First, by the Cauchy inequality, for any w = (wy, ws, -+ ,war) > 0, we have
1 1
sAwi+ o (BX(e 1 Gi(Sr,)) = Vi)* 2 =M(EX (e NG (S)} = Vi), VAL (13)
w;

Thus, for any {\ Y,

M

%i wi (B (e T1Gi(Sr)) = Vi)" 2 =D N (B (771G = V) — %i Nuw.  (14)

Hence, by the definition of Hé@ and Hi@)‘, we have

Hy > HP VL.
Thus

inf  Hy >sup  inf  HPN
QEO oy, yp) x Qed(ooyp)

Therefore we only need to show

inf  Hy <sup inf  H
QEO oy, yp) x Qed(ooyp)

We consider the necessary condition for the minimiziers infg Hé@ and infg Hi@’)‘.
We start with the definition of the first variation, see e.g., [8]. Let us denote G as a set of
probability density functions on 2. Let £ be a smooth function

L:R— R.

Given a density function ¢(x) € G, let us define functional y(q),

def
i)™ [ Llala))de.
Q
Suppose y(¢) achieves minimum in G at ¢, i.e.,

y(q") = ;gg y(q).

Then, for a real number €, and an admissible function h(x) such that ¢* 4 eh(x) € G when ||
is small enough, we consider a real valued function

I{€) = y(q" + €h).



Since I(-) has a minimum at € = 0, we have

1.e.

/Q,C’(q*(x))h(x)dx =0. (15)

Equation (15) is the necessary condition of the optimal solution of y. The left hand side of (15)
represents the first variation of y. For notational simplicity, the first variation is represented as
Sya™h,

For simplicity, assume that the densities for the joint distribution of the underlying prices
at relevant and distinct maturity dates of {7} under measures Q and Qq exist. Let ¢(x) and
go(x) denote these density functions respectively. Then, the first variations of Hé@ and Hi@ are

SHIS = / (1 + In(q(z)) — In(qo(x)))Sq(x)dz +

zl: [w%(E@(e—rTiGi) — V) /Q e—rTiGi(Sq(x)dl'], (16)

SHEM = / (1 + In(q(x)) — In(go(2)))dg(x)dz
Z)\i/ e G idq(x)de. (17)

Q

Assume that Hé@ obtains an infimium at Q* with ¢* the density of the joint distribution of the
underlying prices at relevant and distinet maturity dates of {T;}. Its first variation is zero at
q, 1.e.,

SHY " =0
for all admissible d¢, see e.g., [10, 12]. Let us define

N = - (B (TG - 1)) (15)

w;

Then, the first variation of Hi@*’)‘*’éq and Hé@*’éq are both zero for all admissible dq, i.e.,

5Hi@*7)‘*75q — 5Hé@*75q — 0

Recall that the relative entropy, ¢(Q, Qp), is a convex functional, see e.g., [7]. By definition,
Hi@’)‘ 1s a convex functional with respect to Q. Thus

HYY = wf  HPY.
Qed(ojpyoyb)

By (11), (12), and (18), we have



sup inf  HPY'>  f HPN =HPV =HY = if  HY.
A Q€O o) Qeo(opoun) Qeo(oppoun)

The proceeding discussion suggests that the quadratic penalty problem (10) can, alterna-
tively, be solved via (12) in which the associated term E¥ appears linearly.

To provide a meaningful prior, the relative entropy can be represented in an alternative
form. The relative entropy can be approximated by an expectation on the integral of a function
of volatilities. The approximate integrand is not unique, see e.g., [2]. Therefore an optimization
problem is derived from a general class of pseudo-entropy (PE) functions. The choice of a PE
function does not in general qualitatively affect the result in calibrating volatility function [2].
In [2], a simple PE function is suggested:

2 def 1 5 22
W (5,0) % Lo(S,0) — o), (19)
where g, op, < g9 < oy, 1s the prior volatility, and the unknown volatility is assumed to be a
function of the underlying, S, and time, .
Following [2], the pseudo relative entropy below is used:

£(0,00) = EC { /0 ' n(UZ(s,t))dt] . (20)

Hence, the entropy minimization problem (8) can be approximated by the optimal control
problem

M M
inf  sup (—e(a, o0) + Y M(EY (e7G) = Vi) + % > A?w) : (21)
=1

A QEG(Ulbv Uub) =1

where Q is the measure defined by (2) describing the dynamics of Sy, o is the volatility associated
to Q.

Notice that the terms associated with the expectation E? (-) in problem (21) are now lin-
ear. Thus we can apply stochastic control theory to derive a Hamilton-Jacobi-Bellman (HJB)
equation.

Given S,t, A, consider the following function W (S, ¢, \)

W(S,t,\)
T
= sup E(t@ [—e”/ n(af)ds} + Z E(t@ [)\,' (e_T(T"_t)G,' — "V + %e”Amg)] . (22)
¢

Qeo t<T;<T

where A = (Aq, A, ..., Apr). Assume that currently ¢ = 0 and the underlying Sy and the option
bid and ask prices are given. Then the optimization problem (21) becomes an unconstrained
convex minimization problem

inf W (S0,0,A). (23)

AerRM
It can be shown that W (S,¢,\) satisfies the following HJB equation, [2] and [6]:



ri
W, + e”(I><€2 52W55> +(r—q)SWs —rW = (24)
1
— Z )\,(S(t — T,) (G,(S) — erTi‘/;' + §€TTi)\,'w,'> 5 s > 0, t S T
t<T;<T
where
%;XZ—FO'ISX; 03 %fo-lzb_028<)g<0121b_0-87
P(X) = OpX — 5(011) —o5)’, X <oy, —og, (25)
oaX = 3loh, — 09)?, i X > 03, —og,
and .
X = 62 S Wys. (26)

with the final condition W(S,T 4 0, X) = 0; here §(-) is a Dirac function.
Let the derivative of W with respect to A; be denoted as

ow

WilS,t,0) = S

Similar to [2], W;(S,t,A) can be determined by taking derivative with respect to A; in equation
(24), i.e.,

1 —rt
(1) + 50 (58, ) 8 (W0, (= S (W), = 13 =
—(S(t — T,) (G,(S) — erTi‘/;' + erT")\,'w,') . (27)
where
X +o2, ifof —02 <X <o? —od,
P'(X)=< of, if X <of —ad, (28)

2 : 2 2
ol it X > ol —of.

From the definition of W (S, ¢, A), it can be easily shown that the function W(S,t, A) is convex
with respect to the last argument, A.

3 Convergence Analysis for the HJB Equation

Computationally, we solve an unconstrained convex minimization problem (23) to calibrate each
volatility bound. This requires evaluating function and gradient for W(Sy,0,A). The function
value W (Sg, 0, A) is computed by solving the Hamilton-Jacobian equation (24) and the gradient
is computed by solving a Black-Scholes equation (27), given W (S, ¢, A).

We now present a numerical scheme to solve equation (24). Equation (24) is a nonlinear
HJB equation. In [2, 3], a trinomial method is used. A trinomial method is an explicit finite
difference method. Unfortunately, to guarantee convergence to the correct (viscosity) solution, a
trinomial method may need very small time step sizes and can be computationally inefficient in
general. Moreover, the trinomial method only provides volatility information over a triangular

8



region in space (S, ). We propose a monotone, unconditionally stable, convergent implicit finite
difference scheme.
Equation (24) can be written as

1
W, + §,O[W55]52W55 + (T — q)SWS —rW =

— Z )\,(S(t — T,)(G,(S) — erTi‘/;' + %erTiAiwi), S > 0, t < T (29)

t<T;<T
where

®(X)

P[WSS] = X (30)

and, as in (26),
-
2

Equation (29) is a nonlinear parabolic partial differential equation. Thus there is a question

rt
X = S*Wgs.

of the existence and uniqueness of the solution.

A viscosity solution, which is a weak solution to a nonlinear parabolic PDE, has been studied
in [9]. It has been shown that the viscosity solution for a nonlinear parabolic PDE is the correct
solution for financial applications, see e.g., [5, 9]. For any given A, the solution W (S,¢,\) to
the optimal control problem (22) satisfies the dynamic programming property ([9], pp. 176).
Therefore the solution W is the viscosity solution of the HIJB equation (29), see e.g., Corollary
3.1, pp. 209, in [9]. Moreover, there is at most one viscosity solution W(S,¢,A) for a given A,
see e.g., Corollary 8.1, pp. 221, in [9].

In [5], it is shown that a stable, consistent and monotonic discretization of nonlinear parabolic
PDE problems must converge to the desired viscosity solution. We now discuss whether the
solution of algebraic equations arising from finite difference converges to the viscosity solution
of the nonlinear PDE (29).

In [11], the implicit finite difference method and the Crank-Nicolson method are used to
solve the Black-Scholes-Barenblatt (BSB) equation (5). They propose a monotone fixed-point
iterative method to solve the algebraic equation at each time step. Moreover, they prove that
the solution of the algebraic equation converges to the viscosity solution of the BSB equation
(5).

Comparing the nonlinear HJB equation (29) to the BSB equation (5), the coefficient of the
gamma term Wgg involves ®(-) and this coeflicient becomes much more complicated. Because
of this, the fixed-point method proposed in [11] is not monotone when applied to the HJB
equation (29). Given that the algebraic solution at time #j is often a good starting point for the
solution at t_;, we apply an iterative Newton method, which converges locally quadratically
to the solution to the implicit finite difference equation.

Given that the nonlinear HJB equation (29) is more complicated than the BSB equation (5)
in the coefficient of the gamma term Wsg, we need to verify that solutions to the implicit finite
difference equations converge to the weak solution of HJB equation (24), which is the viscosity
solution [9]. Although the convergence analysis is similar to that in [11], the proof is more



complicated because the coefficient ®(-) in the HJB equation (24) becomes piecewise quadratic
rather than piecewise linear.

Denote the grid points along S as {Sy,---, 9.} where §; = 0. Consider a uniform spacing
in time with a step size /At. The standard fully implicit finite difference method for the equation
(24) gives

WETh = Wi+ At @(XG) + At(aiWiyy + BWL + W) —r WAt =0
i=2 0 m—1, (31)

where supscript n indicates the discretization at n/At, subscript 7 indicates the discretization at
S, and X}, is the following finite difference approximation at X":

def

X = X (Wi, W)
wr. —Wnr wr, —Wwr
— —rtsz |: 11 2 _I_ 1—1 2 ) 32
C S =SS = S0 T (Sep = Se)(8i — Siy) (32)

To ensure that discretization leads to monotonicity and stability of the fully implicit scheme
(see following Lemma 3.2 and Lemma 3.3), we choose «;, 3;,7; as follows

_ _ _ : Si 2
{ O = O central » 61 - 6i,centralv Vi = Yi,central lfSi—Sl'i_l b Z (T - q) (33)
Q5 = Q4 forward, 61 = 6i,forward7 Vi = Vi, forward otherwise.
where, : "
r—4q)
Ojcentral = & & 6i,central = — O centrals  Vicentral = 0.
Sit1 — Si-1

corresponding to a central difference scheme and

(r —q)S

O forward = ﬁa 6i,forward = 07 Vi, forward = —O, forward-
+1 — M4

k3

corresponding to the forward difference scheme.

When each G;(S) is either a call or a put payoff, the right hand side of (24) is piecewise
linear in S and the solution of (24) is asymptotically linear as S — +oc. Thus we incorporate
the linear boundary conditions below

W, —rW =0 at S =0 (34)
W(S,t)~ A(t)S+ B(t) as S — o0 (35)

If we substitute (35) into the equation (24), A(t) and B(t) can be determined. Thus W} and
W can be determined from the boundary condition at S = 0 and the asymptotic boundary
condition (35).

Finite difference equation (31) can be written as F(W”) = 0 where W" denotes the vector
of unknowns [WJ',--- ,W" _ ] and F : R™"™? — R™% denote the left hand side of (31).

m—1

The Jacobian VF of F is

10



Ho2 12
K3 U3 V3

VFE = (36)

Rm—2 ,um—Z Vm—2

Rm—1 ,um—l

where the subscript ¢ denotes the descritization associated with ith grid and

S2
KR; = ,’At—l-(I)/ an At ! 5
b ( & ) (SH—I — Sz—1)(5i — 5¢-1)

o= 1t (3 - r)Af - ¥(XT)STA

1 1
((Sz+1 TS )i — 5 T i — S5 = SH)) :

S2
vy = Oé,'At—I- (I)/ an At ! 5
( & ) (SH—I — 5¢-1)(5z+1 — Sz)

Let us apply a Newton method at each time step as follows,
L (W™ = wntt

2. For k=0,1,2,---
Solve dwy, = —(VE) " - F(WnH (Wn)k)
(W)L = (W™)k 4 §wy.
Endfor

It can be easily verified that V F' is Lipschitz continuous. Thus the Newton iterations converge
locally quadratically. Assuming convergence to the implicit finite difference equation can be
achieved, questions remain on convergence to the viscosity solution. It has been shown in [5]
that a stable, consistent and monotone discretization of option pricing problems must converge
to the desired viscosity solution.

We now verify monotone property and stability of the fully implicit scheme for the HJB
equation (24). Let Fy(W/*' W/, W/, W) = 0 correspond to the FD equation (31). Similar
to [11], for discretization equation F;(W/ ', Wr, , W W) = 0, we define the monotonicity
property as follows.

Definition 3.1. (Monotone Discretizations) A discretization of the form
Fi(mn+17 I/I/Vir-ll—lv Wi, szn—l) =0
s monotone if either

Fi(m/z’nH + P?-Hv I/Vzr-l|-1 + P?+17 Wi Wit + P?—1) > Fi(VVinHv mj—l? W, Vvin—1)
VP, = 0, pf*t > 0,pi_y 20

k3

Fi(vvin-l—lv VV@Z—I? szn + 10?7 szn—l) S Fi(vvin-l—lv M/ir-ll—lv Vvinv szn—l)
Vpi >0

11



or

F(Wn+1 + Pn+1 Wi+ i W WL+ i) < F'(W'n—l—l Wi, Wi, Wity
Vol > 0,pi > 0,p7, > 0
Fy(WrH Wi W+ pf, WiLy) = (WP W W W)
Vp; > 0
We first extablish the following auxiliary lemmas.
Lemma 3.1. Denote
= Xpni(Wip1 + ¢, W, Wi_1),
= Xpi(Wipr, Wi, Wiy +€),
= Xpi(Wipr, Wi, W,_y)
where Xy, is defined by (32) Then, for any € > 0,

by e b

B(X) - B(X) = of (X -
H(X) - B(X) = of (X

ks,

) (37)
where © is defined by (25).

Proof: Following definition (32) for X}, it can be easily verified that X > Xfore> 0,. There
are six possibilities for ®(X) — (I>(X).

~ o~

1 IfFX < 0% — o2 and X < o, — 02, then ®(X) — @()?) = ol (X — X).

2. If)?<afb—agandalzb—03§)~(§a — 02, then

1 s 1 =
P(XN) - P(X) = §X2 +0lX — ol X + §(afb 0l)? > 02X — ol X.

Because oy, < 0¢ < oup,

B(X) — B(X) > ot (X - X).

3. If)?<012b—agandf(>aﬁb—ag

~ ~ 1 ~ 1
PX)-P(X) = opX — 5(01211) — o)t — o, X + 5(01213 —og)?

N 1 ~
> oo X + (o, — o)X — 5(01211) o5)? —of, X
> O'SX — Ulzb)?
> Ulzb(X )A()

4. If both X and X are between o} — 03,02, — a?],

(X)) - B(X) = %(XZ—XZ)JFUS(X X)
> oj(X - X)
> Ulzb(X_)?)



<7 ]. ]_/\ A~ o~
= (h— o)X — S(oh, — o)~ SR 4 (X~ )
]. ]_/\ A~
> 5(01211) —o0g)" - §X2 +o(X — X)
> of(X - X)
> Ulzb(X_X)

6. f X > 0% — o2 ®(X)— 3(X) =02 (X — X) > 0} (X — X).

Similarly we can prove that

Lemma 3.2. The fully implicit discretization (31) is monotone.

Proof: Ve > 0, let X, )v(, and X be the same to those defined in Lemma 3.1. Let us first
consider positive perturbation on Wi ,. By Lemma 3.1, we have

Fy(WiH Wi 4 e, W W)

= F(W/ W W W) + agedt + e AH(D(X) — B(X))
> F(WH W W W) + asest 4 eof AH(X — X)
— E(WrHL W W W A+ 02 S2AL ¢
(M/l 7M/l+17 M/z 7I/I/;—1) —I_ Q€ —I_ O-IbSl (Si-|-1 _ Si—l)(SH-l _ S@)
Z F (Wn—l—l M/lr_zl_h Wn Wn )

Similarly, let us consider positive perturbation on W ;. By the definition of 3;, we have

Wn-l—l M/lr_zl_hwn Wnl‘l’e)

( 2

(W7 W WL, ) + Bielst 4 ¢ AHB(X) — B(X))
( €
(

AV
a3 :m

HER )‘|‘6€ + o905 (Si+1—5i—1)(5i_‘9i_1)

Vv

F (W W W W),

From equation (28), ®'(-) is positive. Therefore ®(-) is monotone increasing. It is then easy to
verify that
E(WITL WL W e W) < F(WIHL W W W),

From equation (31), it is obvious that
Fi(vvin-l—l —I' €, M/ir-ll—lv Vvinv szn—l) Z Fi(vvin-l—lv M/ir-ll—lv Vvinv szn—l)

By Definition 3.1, the fully implicit discretization is monotone.

13



Similar to [11], we establish the stability property for the implicit finite difference scheme
for the nonlinear HIB equation (29).

Lemma 3.3. The fully implicit discretization (31) is unconditionally stable.
Proof: Let us denote W as the boundary values of W associated with all time grids. Denote

n+1

w = max( max W/ W)
1<a<m

W™t = min( min W' W),
1<a<m

Assume that the maximum values of W is achieved at 1 ,

T

wr=W"

Without loss of generality, let us assume 1 < 79 < m. From Lemma 3.2, we have

o
Il

n+1 n n n
Fio(VVio ) Vvio-l—lv Vviov Vvio—l)

—n+1

< F (W Wi Wi, Wiy
< B (W' WL W W)
= W —wr —eatwy
Then we have
i1
Wy < T (33)

Similarly, let us assume that the minimum value of W) is achieved at jo,

Wi =Wwr

Without loss of generality, let us assume 1 < jp < m. From Lemma 3.2, we have

o
Il

F;, (W;;H, weo L W W

Jgo+12 "7 300 ]o—l)

F (W W W W

Jgo+12 "7 300 ]o—l)

Fy (W WL WL W)

Jo? Jo?

W™ Wi — r AW

(AVARAYS

wrtt
wr > ——,
o1+ r At (39)
Hence, from (38) and (39), we have
—n+t1 Wt .
Wl s wrs 2 V=1 m.
2WE T A VL
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Following Lemma 3.2 and Lemma 3.3, we conclude that the implicit finite difference method is
consistent, monotone, and stable.

4 Computational Examples

We now present some computational examples to illustrate calibration of an uncertain volatility
model using the proposed quadratic penalty formulation. Our main focus here is on calibration
accuracy and sensitivity to different weights and prior settings. We note that, in [6], additional
computational examples and discussions are provided for calibrated volatility surfaces, including
using real market data.

Recall that our objective is to solve two entropy minimization problems to calibrate an
uncertain volatility model,

dSy
S

where o <o <7.

=(r—q)dt+ O'tdZt \

where Q is the risk neutral probability measures, ZtQ is a standard Brownian motion under @Q,
r and ¢ are interest rate and dividend yield respectively.

Each volatility bound, ¢ or 7, is determined by approximately solving an entropy minimiza-
tion problem,

inf 5(@, Qo)

Qeo(opoyn)
subject to E© (e_TTiG,'(STi)) =V, i1=12,....M.

where {V;}M, are given standard European option prices. This entropy problem is approxi-
mately solved based on its quadratic penalty formulation,

inf (5(@,@0 )+ %Zw (EY (e Gi(S7)) —v,»)2>

Qed(o1hoyp) )

where the dynamics of S; are described by (2) and {w;}}, are the specified weights. Prices {V;}
correspond to bid (or ask) prices of specified liquid call and put options, {G;}¥, are associated
payoff functions, Qg corresponds to a constant volatility pricing measure.

Using a pseudo entropy function in the continuous setting, we have shown that the solution
to the quadratic penalty formulation can be approximated by solving

min IV(Sp, 0, ).

We compute the objective function value W (Sy,0,) in the above optimization problem by
solving the nonlinear HIB equation (24) with the fully implicit method presented in §3.
In subsequent computational examples, we assume that the mid-prices are generated by the
model option prices assuming the underlying price follows a CEV process
dS;

< =(r—qdt+ EdZQ (40)
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with o = 15, where ZtQ is a standard Brownian motion under the pricing probability measure
Q. Assume the initial underlying price Sy = 100, the risk free interest rate r = 0.05, and the
dividend rate ¢ = 0.01.

Suppose that a vector V' of 35 European call and put option mid-prices are given. Table 5
displays their strikes, maturities, values, and associated implied volatilities denoted as .

In addition, we assume that a vector V of 35 option bid prices and a vector V of 35 option
ask prices are generated from a fixed spread from the middle price V' as follows

1
V=V- §spread,

and

— 1
V=V4+ §spread.

In following examples, we assume that the bid and ask spread level is a monotone function
of maturity as listed in Table 1; these spreads are similar to the empirical observations on the
average spread level of S&P500 index options on April 20, 1999.

To illustrate the accuracy of the quadratic penalty function calibration, we consider a set
of six tests, corresponding to different priors oy and weights w. We report computation results
for different values of oy to test the accuracy of calibration; the values of the prior considered
are listed in Table 2, where & denotes implied volatilities of the mid-prices.

For calibration of the lower volatility o, {V;}}£, are the given option bid prices. The prior
volatility constant g corresponds to a prior measure Qg. For the lower volatility o calibration,
the prior oy in general corresponds to estimation of the lowest volatility. For lower volatility
calibration, the constant volatility prior og is also used as oyp,. To stress test the calibration
method, we also set

oup = max(og, a/S),

since this makes calibration problem more difficult; note that V' is the model price using the
volatility function «/S. Recall that the prior oq for the lower volatility ¢ is listed in the second
column of Table 2.

For calibration of the upper bound 7, {V;}}, are given option ask prices, the constant
volatility prior oy corresponds to estimation or subjective view on the maximum volatility. We
set oy}, to this constant volatility and oy, is now set to

o = min(og, a/9),

where oy is a prior for the upper volatility bound calibration. When calibrating the upper
volatility bound @, the prior o values considered in our tests are given in the third column of
Table 2.

In Table 3, calibration errors for lower volatility bound ¢ and the upper volatility bound
o are reported. In Test 1 - Test 4, the maximum calibration error is less than 1 cent and the
2-norm of the calibration error is about 0.01. Comparing to Test 1 - Test 4, we observe slightly
larger calibration errors in Test 5 and Test 6. The large calibration errors are associated with
deeper out-the-money options and the calibration errors for other options remain relatively
small. The averages of absolute calibration errors for the lower and upper volatility function
bounds in Test 5 are 8.8191e-04 and 0.0026 respectively.
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Table 1: Spread Assumptions: spread is a monotonic increasing function of the maturity

Maturity(T) | Spread($)
0.1 0.10
0.25 0.12
0.5 0.14
0.75 0.18

1 0.20

Table 2: Priors and Weights Considered: a uniform weighting is assumed for each test.

Test | ogfor o oo for @ | weight w;
1 0.2min(c) | 2max(d) 1
2 0.2min(c) | 2max(d) 0.01
3 0.5min(c) | 1.5max(5) 1
4 | 0.5min(s) | 1.5 max(7) 0.01
5 0.8 min(c) | 1.2max(5) 1
6 0.8 min(c) | 1.2max(5) 0.01

Finally, we discuss the impact of the weights on the calibration. Theoretically the calibra-
tion error decreases as weights decrease. This can be observed from results in Table 4. For this
example, the calibration error is acceptably small when weights are equal to 1. There is no sig-
nificant improvement in calibration accuracy for smaller weights considered in our experiments,

see Table 3 & 4.

Table 3: Calibration Errors for Lower and Upper Volatility Bounds: Error and Error denote
calibration errors of the lower volatility bound and upper volatility bound respectively.

Test | ||Error||s | ||Error||s | ||Error|y | ||Error| s
1 0.0101 0.0050 0.0048 0.0023
0.0127 0.0045 0.0073 0.0041
0.0094 0.0043 0.0016 0.0011
0.0087 0.0031 0.0003 0.0001
0.0086 0.0063 0.0461 0.0425
0.0027 0.0010 0.0461 0.0424

O O W | WO N
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Table 4: Sensitivity of Calibration Error to Weights: uniform weighting is used for each test.
Prior values are the same as in Test 1 in Table 2.

Weight | ||Error||; | ||Error||
10° 2.6972 0.9731
104 0.5382 0.2280
103 0.0824 0.0406
100 0.0162 0.0080
10 0.0095 0.0042

1 0.0101 0.0050
0.01 0.0127 0.0045

5 Conclusion

In option pricing, volatility is a crucial parameter since it is the only variable that is not directly
observable. An uncertain volatility model, proposed by [3, 4], is a potentially promising model
to address volatility uncertainty.

In order for an uncertain volatility model to be practically useful for option pricing and
risk management, an appropriate uncertain volatility model which is consistent with market
observations needs to be calibrated. Following typical practice in derivative pricing, calibrating
such an model from market liquid option bid and ask prices directly is both intuitive and
reasonable.

In [6], entropy optimization formulations are proposed for calibrating an uncertain volatility
model to the bid and ask option prices.

The main objective of this paper is to provide mathematical justification for the proposed
entropy formulations and computational methods. We explain that the quadratic penalty for-
mulation for the constrained entropy minimization problem can be solved by minimizing a
convex function. We show that the objective function can be evaluated by solving a Hamilton-
Jacobian-Bellman equation. We propose to solve the resulting HJB equation using an implicit
finite difference method. Moreover we prove that the solutions to the implicit finite differ-
ence equations converge to the viscosity solution of the Hamilton-Jacobian-Bellman equation.
Finally computational examples are provided to illustrate the accuracy of calibration.
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Table 5: European option middle prices and associated implied volatilities of computation
examples. The underlying price is assume to follow process (40). Sy = 100, r = 0.05, ¢ = 0.01.

Maturity (7;) | Type | Strike (K;) | Middle Price | implied vol &
Call 105 0.4198 0.1464
0.1 Call 100 2.0928 0.1500
Put 95 0.3019 0.1539
Call 110 0.4234 0.1430
Call 105 1.4047 0.1464
0.25 Call 100 3.4924 0.1500
Put 95 0.9001 0.1539
Put 90 0.2388 0.1581
Call 115 0.5725 0.1399
Call 110 1.3828 0.1431
Call 105 2.8756 0.1465
0.5 Call 100 5.2276 0.1501
Put 95 1.6094 0.1539
Put 90 0.6864 0.1581
Put 85 0.2494 0.1626
Call 120 0.5962 0.1369
Call 115 1.2606 0.1399
Call 110 2.4069 0.1431
Call 105 4.1817 0.1465
0.75 Call 100 6.6687 0.1501
Put 95 2.1077 0.1540
Put 90 1.0802 0.1581
Put 85 0.4992 0.1626
Put 80 0.2067 0.1674
Call 125 0.5741 0.1341
Call 120 1.1231 0.1369
Call 115 2.0333 0.1400
Call 110 3.4219 0.1431
Call 105 5.3815 0.1465
1.0 Call 100 7.9543 0.1502
Put 95 2.4823 0.1540
Put 90 1.4092 0.1582
Put 85 0.7415 0.1626
Put 80 0.3602 0.1674
Put 75 0.1609 0.1727
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