V¥ | . L
q~‘ Computational Optimization and Applications, 19, 243-272, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Segmentation of Pulmonary Nodule Images
Using 1-Norm Minimization
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Abstract. Total variation minimization (in the 1-norm) has edge preserving and enhancing properties which
make it suitable for image segmentation. We present Image Simplification, a new formulation and algorithm
for image segmentation. We illustrate the edge enhancing properties of 1-norm total variation minimization in a
discrete setting by giving exact solutions to the problem for piecewise constant functions in the presence of noise.
In this case, edges can be exactly recovered if the noise is sufficiently small. After optimization, segmentation is
completed using edge detection. We find that our image segmentation approach yields good results when applied
to the segmentation of pulmonary nodules.
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1. Introduction

Image segmentation is the partitioning of an image into regions so that each region
corresponds to one object in the image. Due to the importance of the segmentation prob-
lem in computer vision, numerous strategies have been proposed. See the surveys [7, 9,
15] for some examples. We propose Image Simplification, a new (1-norm) total variation
minimization approach for image segmentation.

An image 1s a matrix whose entries are called pixels. One segmentation approach is to
categorize pixels according to their numerical values. A histogram is used to find clusters of
pixels with similar values, and a final segmentation is obtained by finding connected sets of
pixels in the same clusters. Methods which divide up pixels based on their numerical values
are called thresholding methods and were surveyed in [19]. Because spatial information
is poorly exploited, these approaches work best when the objects have sharp contrast and
appear on a non-varying background [9]. These methods often require a priori knowledge
of the number of objects in the image [7].

Region growing is a spatial approach in which pixels are regarded as the nodes of a graph.
They are connected to their neighbors according to some criterion such as the difference in
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value [1, 3]. A segmentation is obtained by identifying the connected components of the
graph. However, it only takes one extra edge in the graph to erroneously join two regions;
therefore, this method is particularly susceptible to noise [9]. An image is corrupted by
additive noise when the pixels are perturbed from their correct values. Noise is inevitably
introduced in the process of acquiring images, but sometimes the noise is very small and
can be ignored. Usually noise is modeled as a random image whose pixels are independent
identically distributed Gaussian random variables.

A more sophisticated approach is to associate with each region of the image some value
such as the average pixel value over the region. Adjacent regions are merged if the values
are close enough to each other. The algorithm can be started with every pixel in a region
by itself. Often several passes are required to obtain a segmentation. Algorithms of this
type were surveyed in [20]. This process is inherently sequential and does not use global
information [7].

Edge detection is another technique that has been applied to image segmentation. Objects
in the image are thought to have boundaries where pixel values change rapidly. Many edge
detection approaches are based on discrete approximations to the gradient [7]. Boundary
points are identified and assembled into paths using methods such as heuristic search [12]
or line fitting [6]. These paths divide the image into regions. A major difficulty with this
approach is that edge detection methods often produce edges with gaps, and they tend to
produce false edges, particularly in the presence of noise.

Image segmentation has been formulated as an optimization problem, e.g., Mumford and
Shah [14]. Their strategy is to seek an approximation to the given image along with a set of
regions. This approximation should be flat on each region and the length of the boundaries
of all the regions should be small. This set of conditions is obtained by formulating an
optimization problem with a two part objective function. One part imposes a penalty for
deviation from the original function; the other part imposes a penalty proportional to the
length of the boundary of the regions. This optimization problem has both discrete vari-
ables that specify where region boundaries lie, and continuous variables that give the value
of the approximation. A major disadvantage of this approach is that no algorithm is known
that provably converges to the solution. Blake and Zisserman propose a heuristic in [2]. In
[13], the idea of solving image segmentation with this type of optimization formulation is
considered in great detail. In addition, an energy-minimizing spline method has also been
proposed, e.g., [10].

Recent work has indicated the value of TV, total variation in the 1-norm, in image
processing. Total variation was introduced by Rudin and Osher [16] for image restoration
and noise removal. In [11], Li and Santosa present a computationally simpler 1-norm total
variation formulation for image restoration. Total variation measures are useful in image
processing because they are able to produce sharp edges in the output images. This ability
has applications to image segmentation where identification of edges is very important.

The ability of total variation methods to preserve edges can be understood through analysis
of special cases. Strong and Chan found exact solutions to special cases of continuous total
variation problems [17]. These exact solutions show that in certain special cases in the
presence of noise, edges are perfectly restored by the algorithm. We present the exact
solution in a discrete setting using our formulation.
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We apply the formulation of Li and Santosa to image segmentation by using a noise
removal method. The typical goal of noise removal is to restore an image to a noise-
free state. We wish to go further, removing from the image small scale details which impede
image segmentation. Unlike many of the traditional image segmentation approaches, our
method is a global one which operates on the entire image at once. It can be used effectively
on very noisy images. Unlike other variational formulations, our proposed formulation isé
convex programming problem and a solution can be computed.

We apply our segmentation approach to the problem of identifying pulmonary nodules in
X-ray computed tomography (CT) scans (see for example {8. 18]). Pulmonary nodules are
abnormal growths in the lungs which often, but not always, lead to lung cancer. Early iden-
tification of malignant nodules is crucial for effective treatment of lung cancer. Automation
is sought because CT scans produce an enormous amount of information, and searching
through the information by hand is time consuming. Precise identification of nodule bound-
aries is important for diagnostic purposes. Nodule boundary information can be used to
estimate nodule volume, making determination of the nodule growth rate possible. Features
of the boundary of pulmonary nodules are important for distinguishing between malignant
and benign nodules. The main difficulty of the pulmonary nodule segmentation problem
involves the separation of nodules and blood vessels, which can have very similar intensity
values near boundaries.

In Section 2 of this paper we describe Image Simplification, an £; optimization method
using the 1-norm total variation. We prove that for certain piecewise constant images that
have been corrupted by a sufficiently small noise image, the edges in the original image will
be recovered exactly. Section 3 of the paper explains a computational method for solving
the Image Simplification problem. Section 4 describes how we extract the boundaries of
pulmonary nodules from the image after Image Simplification.

2. Total variation (in the 1-norm) for image simplification

Image Simplification comprises an optimization problem and an algorithm for solving that
problem. In this section we consider the formulation of the Image Simplification optimiza-
tion problem. An image in a continuous setting is a real valued function. Let Q C R", let
u be Lebesgue measure, and let f be a differentiable image defined on Q2. The definition
used by Rudin and Osher in [16] is

TV(f)=/QIIVsz du. (1)

The total variation TV(f) defined above is rotationally invariant. We define the 1-norm
total variation of an image by

TVi(f) = / IVl du. )
Q

Although TV, (f) is not rotationally invariant in the continuous setting, we have chosen
this definition because it leads to a piecewise linear objective function in a discrete setting
rather than a piecewise quadratic, which is the case with TV( f). In addition, given adiscrete
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image, edge detection and image segmentation depend on the intensity difference among
neighboring pixels rather than the orientation of the image; the examples in Section 4
illustrate this.

A 1-dimensional image is called a signal. The 1-norm total variation of a signal x in the
discrete setting is given by

TVi(x) = Z lx; — xi-1].

In two dimensions, the 1-norm total variation involves terms for the horizontal, vertical,
and possibly two diagonal directions. In general, the discrete 1-norm total variation can
be formulated in n dimensions in two different ways: differences can be taken in orthog-
onal directions, or differences can be taken in both orthogonal and diagonal directions. In
n-dimensional space there are n orthogonal directions to consider, and there are (3" — 1) /2
diagonal directions. The 1-norm total variation can be represented generally in a discrete
setting as

TVi(x) = |IBx|

where B is a matrix which takes differences between adjacent pixels in the image, possibly
with spatially dependent weights. For 1-dimensional problems, we define Bip so that an
increase in the signal x from left to right results in a positive entry in B;px. For example if
we deal with length 6 signals, then

1
-1
0
0
0

Bip =

S O O O =

0
0
1
-1
0

—_ = O O O
- O O O O

0
1
-1
0
0

For two-dimensional problems, we define B,p so that an increase in an image x from left
to right or from top to bottom results in a positive entry in Bopx. The B,p matrix will have
a block for horizontal differences and one for vertical differences. If diagonal differencing
is desired, B,p will have four blocks.

Unlike more traditional Jeast squares measures, the total variation assigns the same value
to edges as it does to other monotonic functions (see figure 1). This edge tolerance is crucial
for image segmentation because it enables total variation methods to preserve or enhance
edges; least squares methods usually smooth out edges.

For computational purposes, we represent m x n images as vectors in R”". Let x, € R™
be the original image. We want to find a new image x which is close to x, but which has the
smallest total variation. In order to do this, we use the Image Simplification formulation

min [|Bx[l; s.t. - [lx —xoll2 < o (3)

where o is a parameter which specifies how far x will be from the original image. We
select o by choosing it to be some fraction of the adjusted norm of the original image,
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Figure 1. These two signals have the same total variation. Least squares methods will strongly favor the ramp
signal because it has a much smaller £; norm than the step signal.

llxo — avg(xo)ll2 where avg(xp) is the average value of x(. Note that there always exists a
solution satisfying the constraint ||x — x|l = o since any image with constant intensity
yields zero objective function value. ’

The ability of the Image Simplification formulation (3) to retain edges relies on the
interaction between the objective function and the constraint. We start with a simple piece-
wise constant example and follow it with some theorems proving that Image Simplification
preserves edge location in piecewise constant data. Consider the situation where the original
data is a step function defined on 2n points by

0 if0<i<n-1

1 ifn<i<2n-1.

xo(i) =

As noted above, the two signals shown in figure 1 have the same total variation, leading to the
concern that Image Simplification (3) could produce a ramp function like r (i) = i /(2n — 1)
which obliterates the sharp edge in the data. The constraint prevents this ramp function
from occuring. Even if o is chosen large enough to admit the ramp function into the feasible
region, Image Simplification will not produce the ramp function because the function

) if 0
1—-6 ifn

) <i<n-1
xs(i) = -

i <2n-—1

has a smaller total variation than r, but ||r — x¢|l2 = ||x5 — x¢/||2 for an appropriate §. In fact,
x; is the unique optimal solution to the Image Simplification problem when § = o /+/2n. In
this simple example, Image Simplification preserves edges. In Theorem 1 we prove that in the
noise free case Image Simplification will preserve the edges in any piecewise constant signal.
By studying some simple cases, we hope to gain some insight into the general behavior
of Image Simplification. Strong and Chan in [17] proved similar results for continuous
functions using (1). We prove our results in a discrete setting with the 1-norm total variation
given by a discretized form of (2).

In order to state the theorems we need some definitions. Different constant sections of
a piecewise constant signal will be shifted in different directions by Image Simplification
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depending on values taken on the surrounding sections. Sections of the signal that are above
neighboring sections will be Jowered. Sections which are below neighboring sections will be
raised. Sections which have one neighbor above and one below will be unchanged. In order
to express this formally, we make the following definition. Let x be a piecewise constant
image whose domain is partitioned into N regions Rj, ..., Ry such that R; is adjacent
only to R;4; and R;_;. Assume that x is constant on R; where it takes the value x(R;). If
x(R;) > x(R;—1) and x(R;) > x(R;11), then R; is a maximal region. If x(R;) < x(R;_1)
and x(R;) < x(R;11), then R; is a minimal region. If R; is a maximal region or a minimal
region then it is also an extreme region. Define the index set for the extremal regions by

& = {i | R; is an extreme region}. (4)

We also establish a proportionality result for the shifts that Image Simplification produces.
In order to express this proportionality result, we need some notation:

o; = area of R;

Bi = size of the boundary of R;. (5)

For piecewise constant signals, «; is the length of a region, B; = 2 for interior regions and
B: = 1 for the two edge regions. We show in Theorem 1 that the size of the shift produced by
Image Simplification is proportional to the size of the boundary and inversely proportional
to the size of the area. Intuitively this is because the objective function favors shrinking the
size of the jumps at the boundary, and the constraint keeps large regions from shifting up
or down too far.

Theorem 1 (Piecewise Constant Signals). Suppose xq is a piecewise constant signal
defined on segments R;,i = 1...N (where R; is adjacent only to R;.; and R;_,) and o is
a sufficiently small positive constant. Let

——-ﬁi—— if R; is a minimal region
2|hr]e

8 = ———'B'—- if R; is a maximal region
PAVSElH
0 otherwise

where o; and B; are defined by (5). The value of | 11| is specified by

B
) Ziéf Z‘{T
M=
with £ given by (4). Let x. = xo + 8; on R;. Then x. is the unique optimal solution 1o the
Image Simplification problem (3) where B = Bp.

The proof can be found in the appendix. A similar result holds in two dimensions: symmetric
images of nested squares are preserved by Image Simplification. An image, x. is an image
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of nested squares if it can be obtained as the result of the following construction. Let {S;},
i =1...N,be afamily of squares on a grid such that S; C S, and all of the squares have
the same center point. Set Sy = ¥ and define R; = S;\S;,_; fori = 1...N. Let x be the
vector representation of an image defined on the grid and constant on each R;.

Theorem 2 (Symmetric Nested Square Images). ~ Suppose x is an image of nested squares,
with R;,i = 1... N, the regions on which it is constant, and o is a sufficiently small positive
constant. Let

—ﬂ'— if R; is a minimal region
PAVSILZ

=1 P if R; is a maximal region
2{A o
0 otherwise

where a; and B; are defined by (5). The value of | 11| is specified by

B
Zief o

433 = >
g

with & given by (4). Let x,, = xo + &; on R;. Then x, is the unique optimal solution to the
Image Simplification problem (3) where B = B,p.

Real images contain noise. In the presence of noise, we can establish similar results. We
do this by using a very general theorem concerning solutions to perturbed problems which
have the same form as the Image Simplification problem. Let sgn(x) denote sign of its
argument with the convention that sgn(0) = 0.

Theorem 3 (Noise Perturbed Solutions). Suppose x, is the optimal solution to

min ||Bx||; s.2. |x —=xola <o
X

where B is a matrix and o > 0. Let b be the ith row of B. Let A = {i | bl x, = 0} and let
A 4 be the Langrange multiplier vector associated with entries in A. Assume that the entries
of A4 are strictly between 1 and —1. Let B4 be the matrix containing rows whose indices
are in A. Now set Xo = xo + n where n is a perturbation. Let X, be the optimal solution to

min |Bx|l; s.t. |lx — Xl <o.
X

Then if n is sufficiently small there exists a scalar, G, so that the solution %, 1o the
perturbed problem satisfies

BA)?* = BAx*
and

sen(b] %.) = sen(b] x.) ifi e AC.
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Combining Theorem 3 with Theorems 1 and 2 leads to a generalization of the noiseless
results to the noisy situation. If the noise is sufficiently small, then there is a range of o
values such that Image Simplification preserves the locations of edges in signals and squares
in images.

Corollary 1. Let x( be either a piecewise constant function or an image of nested squares,
with R; the regions on which xo is constant. Assume that R; is an extremal region for
every i. Suppose that xq is corrupted by noise 1o give xo = xo + n, and define X, so that
%, — xo = 6; on R;. Suppose n is sufficiently small. Then there exist & iy, and &qy so that if
Omin < O < Omax then X, is the optimal solution to

mjn IBx|ly s.t. |lx —Xpll2 <0

where B = Bip or B = Bsp as appropriate and X, depends on 6. Furthermore the edges
in X, have the same direction as the edges in xo.

Corollary 1 requires that all of the regions be extremal. This means that the signal or image
must alternate “hills” and “valleys™ rather than having an ascending or descending staircase
pattern. Without this assumption, the corollary does not hold. All of these results are proved
in the appendix. The results obtained by Strong and Chan for the continuous case using
(1) are very similar; our results are different because we use formulation (3) in the discrete
setting. Our requirement that o be sufficiently small corresponds to the «-condition of
Strong and Chan. Often very large values of o are small enough, as can be seen in figure 4.

The two-dimensional result uses only orthogonal differences. When both orthogonal and
diagonal differences are used, computations have revealed that Image Simplification appears
to preserve octagons rather than squares. We have also observed from our computations
that if o is too large, then adjacent intervals of the signal, or adjacent regions in the image
will be combined into a single region. All of the remaining edges will still be accurately
preserved. Although we have only shown that squares are preserved, in practice, edges in
two-dimensional images are preserved very well for a a variety of shapes.

Sharpness of edges can sometimes be further improved by introducing weights in the
total variation. In one dimension, the weighted formulation is

minzwilxi —xi—1] st |lx = xoll2 < 0.
i

The weighted formulation produces sharper edges when the signal to noise ratio is high
(See figure 2). We select the weights based on the initial image xo. Where the difference
between two pixels in xq is large, we choose a small weight; where this difference is small,
we use a large weight. Our experiments have shown weighted Imaged Simplification to be
weakly dependent on the exact function used to compute these weights; most strictly positive
concave functions produce similar results. We have therefore chosen to use w(d) = e~¢
because of its simple form; d corresponds to the intensity difference in the initial image x.
When the signal to noise ratio is small, weighting data obtained from the original image is
noisy and interferes with edge identification. Experiments have confirmed that, in this case,
the unweighted algorithm is superior.
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Figure 2. On the leftis the initial image xo. a slice from a lung nodule. In the center is the result of the unweighted
algorithm. On the right is the result of the weighted algorithm.
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Figure 3. On the left is the convergence of a steepest descent method: on the right is the convergence of an affine
scaling method for the same problem. The steepest descent method gets stuck at an objective function value much
larger than the value achieved by the affine scaling method.

3. Solving the image simplification problem

The Image Simplification optimization problem (3) cannot be solved with standard
optimization approaches. The objective function is piecewise linear, and there is a quadratic
constraint. A steepest descent type method can get stuck far from the optimum (see figure 3);
therefore, we use a modification of affine scaling, a method introduced by Coleman and
Li for solving unconstrained linear £; problems {5]. The dimension of the problem can be
very large. In order to process an n x n image, we need to handle n? variables. Therefore
it is crucial to exploit sparsity.

The weighted total variation can be written as ||Bx||; for an appropriate matrix B. The
matrix B is very sparse: it has only two nonzero entries per row. With the definitions

[ 2 _ T(v _ +
o 0% — (x — x0)" (x — xp) J = —2(x — x0)
Bx
6)
= 0 M=][J BT]
§= _sgn(Bx) T
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the complementarity conditions for (3) can be written

Mi=20
diag(r)(g — ») = 0.

Applying Newton’s method to these equations gives

—21 M Ax | 0
diag(g — MMT  —diag(r) || 2+ A% | | —diag(r)g )

where I is the identity matrix. The second equation can be solved for A + AA to obtain

diag(g —») . 7
A+ Al=g+ ———M" Ax.
At & diag(r) : (8)
Set s; = (gi — 4;)/ri. The first entry of s is s; and the rest of s is s,y. The multiplier 2,
cannot be computed accurately from (8) because g; = 0 and r; approaches zero as an
optimal solution is approached. Therefore, eliminate all of the 4 values except 4; from (7)
to get

—2i1 + BT diag(seq) B J Ax — BT g1
a7 ol + x| 0 ’

In order to solve this system, write —2A; I + B” diag(s,e) B = R” R using a sparse Cholesky
factorization. Then apply Gaussian elimination to obtain

MJT(RTR) (=BT grest)

}\. "‘]"A)\, =
: : MJT(RTRY1J — ry

To solve an Image Simplification problem, we begin by using a steepest descent method,
using a line search which avoids points of nondifferentiability. The steepest descent it-
eration is much less expensive than the Newton type iteration, and it usually makes good
progress initially. When the objective function is decreasing slowly, or after a certain number
of iterations, we switch to the Newton type iteration described above. We have applied this
algorithm to a variety of images.

Our first example illustrates the ability of Image Simplification to recover edges in a
simple noisy image. In image processing, the noise level is often characterized by the
signal to noise ratio which is the ratio of the signal power to the noise power. This ratio is
generally expressed in decibels (dB):

SNR = 101og, (M) dB.
noise power

. . . o) . .
The power of a signal or image x 1s ||x — avg(x)||5. The power of random noise is the
variance.



SEGMENTATION OF PULMONARY NODULE IMAGES 253

n o | |
\ 1 140 4
| ‘ZOM

’ 1 100

80 1 80 4

- S "'f::r'-.-'»'-*-
=-"'I : LI " -
* 'g-lll':! l:l -'.;-.;
r .t

:: (75 J "".-'-r
YRR 3

Figure 4. The first image in the left column is the noisy original image. The second picture in the left column
shows the values on a slice of that image. The bottom picture in the left column shows the results of edge detection
applied to this image. The right hand column shows the result of Image Simplification.

We exhibit Image Simplification on a 64 x 64 image consisting of alternating bands of
values 115 and 140. The image is corrupted by Gaussian noise n with variance 20. This
gives a SNR of —4.5dB. This corrupted image is shown in the top left of figure 4. Below
it is the graph of a slice of the original image. We applied edge detection (as described in
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Section 4) to the original image; the result is a dense cloud of edge points shown at the
bottom left of figure 4.

Image Simplification removes the noise and retains a low contrast version of the original
image. The result is displayed in the top right of figure 4. Beneath that is the cross section
where the three stripes are clearly visible. The result of edge detection appears at the bottom
right. The edges of the rings in the original image are completely restored. In this case, we
obtain a good restoration of the edge Jocations in the image even though the image is not
one of the special cases we have analyzed.

In figure 5, the results of applying Image Simplification to a pulmonary nodule image are
displayed. The top section shows a surface plot of the original image. It has a bumpy surface
and various details around the based. The two slices show that there are lots of small-edges
both at the top of the nodule and around it. After Image Simplification, these extraneous
details have been smoothed out. The two cross sections show a simple rectangular structure.

4. Segmentation of a processed image

After image simplification is completed, it is necessary to perform a second phase, object
extraction, 1o extract the objects from the image. Our object extraction approach begins
with edge detection. Objects are bounded by loops, so we identify loops in the edge data.
When edge points do not lie on loops, we close off the loops by using level sets of the
image. This procedure sometimes produces duplicate loops surrounding the same object.
To associate a single loop with each object, we define a distance measure and group loops
together if they are close to each other. We then collapse each group of loops into a single
loop which bounds the segmented object. The object extraction phase can be divided into
the following five steps: edge detection, extraction of loops, edge fragment closure, loop
classification, and loop collapsing.

Edge detection. Inordertoidentify edges in the image x, we convolve the image with the
Prewitt derivative approximation matrices which produce the components of the gradient:

1 0 -1 1 1 1
Proriz = I 0 -1 Pven= 0 0 0
1 0 -1 -1 -1 -1

Next we identify local maxima in the gradient approximation. If a pixel’s gradient magnitude
value is larger than the interpolated values along the gradient direction, we identify it as
a Jocal maximum. Because pulmonary nodules can have faintly defined edges where they
meet blood vessels, we do not threshold based on edge strength. We are interested in the
nodules rather than other features of the lung images so we use knowledge of the range
of intensity values for pulmonary nodules to select a cutoff. We then consider connected
clusters of edges and retain those connected clusters which have at least one edge point with
image intensity value above the cutoff (see figure 6). Once edge detection is completed, it
1s necessary to organize the edge pixels into meaningful structures.

Loop extraction. The second step of the object extraction algorithm is to extract loops
from the edge data. We treat each cluster as a graph G by letting the nonzero pixels be the
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Figure 5. At the top is the original image. The bottom shows the result of Image Simplification applied 1o the
top image.
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Figure 6. On the left is the result of edge detection applied to a pulmonary nodule image without thresholding.
On the right is the same edge detection method with thresholding on the intensity values on the original image.
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Figure 7. Pixels containing letters are on; empty pixels are off. At the left, pixels A and B are connected by an
edge in the graph because they are horizontally adjacent. In the center, pixels A and B are connected by an edge.
But at the right, the addition of pixel C breaks the direct edge connection. Pixel C is a mutual neighbor to A and
B. so A and B are not connected by an edge in the graph; pixels A and C are connected, as are pixels C and B.

F E D

A B C

Figure 8. The circuit ACDF is not minimal in the graph because of the circuits ABEF and BCDE which make
use of segment BE in the interior of ACDF.

vertices of the graph. We define the edge set of the graph by connecting any two vertically
or horizontally adjacent pixels with an edge. We connect diagonally adjacent pixels when
they do not have a mutual neighbor defined by vertical or horizontal connections. See
figure 7.

Objects in the edge data correspond to circuits in the graph. The circuits of primary
interest are those circuits which correspond to only one object rather than a collection of
objects. Below we define the notion of a minimal circuit to identify these circuits. Let L be
the set of pixels that form a circuit and define int(L) to be the finite set of pixels surrounded
by L. A circuit L is minimal in the graph G if the only circuit in G N (L U int(L)) is L
itself. See figure 8 for an example.

In order to identify the circuits of interest, we first form a fundamental set of circuits. A
set of fundamental circuits of a graph is obtained from a spanning tree of the graph. Adding
any edge of the graph to the spanning tree creates one of the fundamental circuits. Write
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Figure 9. On the left the loops identified by the algorithm are shown. On the right are the edge pixels that remain
after the loops have been removed.

circuits in binary vectors by setting the ith component equal to 1 if edge i is in the circuit,
and zero otherwise. With this representation, all circuits in a graph can be represented as
sums modulo 2 of the vectors corresponding to the fundamental circuits {4].

To produce a final list of circuits, we use a greedy heuristic to approximate the set of
minimal circuits of the graph. Start with C equal to the empty set, and consider every circuit
of the graph starting with the shortest one and proceeding in order by size. Whenever a
circuit contains edges not already represented in C, add that circuit to C. We remove all of
the pixels represented in C from the edge data. See figure 9.

The algorithm described so far fails to extract loops which are visually obvious but fail
to close because they lack one or two pixels. We search for partial loops by considering the
leaves, or endpoints, of each edge tree. For a given edge tree, if there is a path which starts
at an endpoint, is sufficiently long, and has its other endpoint close enough to the starting
point, then it is identified as a partial loop and closed off. We remove all of the pixels which
lie on partial loops from the edge data. Removing these pixels leaves behind a collection of
edge pixels which are not associated with any loops; however, these edge fragments may
mark the presence of important image features.

Edge fragment closure. The next step is to make sense of the remaining edge data. For
a given cluster of edge pixels, we pick an endpoint ¢ from the set E of endpoints. We
then find a contour line passing through eg. We select a second endpoint e; from E which
minimizes the distance to the contour. Let ¢ be the point on the contour closest to e;. There is
aunique path from ¢ to e; in the edge cluster, and there are two paths from ¢ to c. We select
one of those two paths and join it together with the path from e to e; and the line segment
from e; to c. The result is a closed loop. Having finished with our selected endpoint eg, we
now continue with the remaining endpoints in E (including e;), until we have constructed
|E| loops. See figure 10 for an example. This procedure can produce several loops that
correspond to a single object in the image. In order to make sense of this data, we use a
loop classification process.

Loop classification. The loops constructed in the last two steps cover all of the edge
pixels found by the edge detection algorithm. However, some objects will be identified with
multiple boundary loops as shown in figure 10. In order to group together contours which
encircle the same object, we place a distance measure on loops.
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Figure 10.  On the left is the set of edge data. The two right images show how the same object is encircled in two
different ways by using level sets to make a loop from an edge fragment.

For a loop L, define ext (L) to be all the pixels which are not in L and not in int (L). Use
u(X) for the area of the set X. Then the distance between two loops can be defined as the
symmetric difference of the interiors:

d(L,,Ly) = /,L((]'I’lt Li\ext L,) U (int Lz\eXl Ly)).

We define the following relative distance measure:

d(Ly, Ly)/(|Ly| 4 |L2]) whenint Ly Nint Ly # @

d(Ly, Ly) = : :
whenint Ly Nint L, =0
For concentric circles, d gives the distance between the loops. For non-overlapping loops, the
distance measure uses the area of the loops to measure separation. This can be problematic
when the loops are small: all small loops will be close to each other. The infinite weight for
non-overlapping loops eliminates this problem.

Using d,we group the Joops together into sets such that the relative distance between loop
sets is larger than a cutoff value c using the greedy algorithm given below. The parameter ¢
should be chosen so that each set of loops encircles one object. Loops with no interior are
discarded at this point.

i=0
L = {all loops with nonempty interior}
while £ # 0
pick some L € £
G ={L}
repeat
N={AeLl:d(A, L) <c)
L =L\N
Gi=G;UN
until N =0
i=i+1
end
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v

Figure 11.  On the leftis a collection of loops. Points which are not-edge points appear in black. Edge points are
shaded. On the right is the result of collapsing this loop set into a single loop.

The result of this algorithm is a collection of loops sets {G;}. Each loop set corresponds to
an object. If a loop set contains multiple loops then they must be combined. The next'step is
to combine these multiple loops into a single loop that identifies the boundary of an object.

Loop collapsing. In order to combine loop sets together, we select the longest loop L
from a loop set and pick a starting pixel s on that Joop. Then we align the other loops with
L by finding the pixel in each loop which is nearest to s. We map all of the loops in the
loop set onto L, starting at s and using arc length, scaled for loop lengths, to define the
map. Then for every pixel in the L, there is a point (possibly interpolated between pixels)
on each loop in the loop set. We consider this set of points. If it contains any points which
are edge pixels (or lie between edge pixels), then we take the average of those edge points.
Otherwise we take the average of all of the points. The result is a single point corresponding
to each pixel in L. We connect these points together to produce the final collapsed boundary
corresponding to the Joop set. Figure 11 shows an example. This step of the algorithm
produces a segmentation: a collection of loops which specifies the boundaries of the objects
in the image.

Figure 12 shows the results of applying our segmentation algorithm to an entire nodule.
This nodule image spans six slices and includes one slice on which the nodule has an internal
hole. The algorithm produces excellent segmentations on all slices, with the identified
boundary neatly following the boundary visible in the original image. The algorithm is able
to separate the nodule from nearby blood vessels in the third and fourth slices.

5. Concluding remarks

Our £, based total variation method, Image Simplification, has features that make it useful for
image segmentation. For two classes of simple functions—piecewise constant signals and
nested square images—we have analytically identified the optimal solutions. When Image
Simplification is applied to these functions, maximal regions shift downward, minimal
regions shift upward, and other regions stay fixed. In the presence of small amounts of
noise, edges can be recovered exactly, and the noise can be completely eliminated.
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Original Processed Segmentation

Figure 12. A three-dimensional segmentation.
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The Image Simplification problem can be attacked by using a steepest descent method.
However, this method can get stuck and fail to reach the optimal solution due to nondif-
ferentiability of the objective function. We have described a Newton type method which
does not have this problem. Image Simplification problems can be solved more efficiently
by using a hybrid method involving both steepest descent and Newton type iterations. The
result of Image Simplification is an image that is easy to segment, with sharply defined
edges and flat regions. Unlike other variational segmentation approaches, the optimization
problem used for Image Simplification is a convex problem and a solution can be computed.
In addition, Image Simplification is a global method which operates on the entire image.

We obtain a final segmentation by using edge detection. Edges are grouped into paths
and closed into loops by following contours. Contours are classified and collapsed into
boundaries of objects.

Appendix: Proofs

The proofs in this section are all based on the KKT conditions for the optimization prob-
lem (3). These conditions can be written:

Mi=0

diag(r)(g —2) =0

IAx —xol <o . )
=<0

Al <1 fori>1
where M, J, r, and g are defined by Eq. (6). The optimization problem (3) is convex:
therefore, to establish that a particular x is a solution to (3) it suffices to exhibit A such that

(9) holds for that x.

Lemma 1 (Uniqueness of Solutions). Suppose x. satisfies the optimality conditions (9)
for the problem

mxinHBxlll s, flx —xoll2 < o. (10)

Let biT bethe ithrow of B andlet A = {i | biTx* = 0}. Foranm x n image, let dim(x) = mn.
Then if either

lxs — xollo =0 and iy #0 (11)
or

|| < 1fori € A andrank{b; | i € A) = dim(x) (12)

<

then x, is the unique solution to (10).
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Proof: Pick d to be a nonzero feasible direction at x,. If (1 1) holds this means that
JTd > 0; otherwise d can be any nonzero direction.
Now consider taking a small step in the direction d and evaluating the objective function:

IBCx. +ed)lly = Y [b]x. +ebld|+ > |bTx, + bl d|.
ieA i€ AC

In A, we know that b] x, = 0, 50 |b] x, + €b] d| = |b] x,| + |eb] d|. In A€, the absolute
value term can be rewritten as |b] x,| + sgn(b! x,)b! de for € sufficiently small. This gives
the following equality:

IBGo + €d)lly = [ Bxully + € (Z p7d|+ 3" g,-b?d) (13)
icA ie AC

where g; = sgn(b] x,).
Because the optimality conditions (9) are satisfied we know that

Jhy + BT e = JA; + Zb,x,- =0.

i>1

If i € A€ then the equation diag(r)(g — ) = 0 from (9) forces A; = g;. Using this and
taking the inner product with d gives

MITd+ > gibld+ Y ibld=0.
i€ AC ieA

Taking absolute values inside the rightmost summation gives the inequality

wmdTd+ Y gibTd+ Y |mbld| =0,
i€ A€ ieA

and taking the maximum of the |};| coefficients widens the gap to give

miTd+ Y gibld + (lga%m) g [pTd| > 0.

i€ AC

Rearranging terms and adding 3, _ , |b7 d| to both sides gives

> gibld+ ) |pld] = —ad7d + (1 - maxixil) Y [pfdl.
ie A€ ieA ieA ;g_j

Call the right hand side of this inequality y. If (11) holds then A; < 0by (9)so —x;J7d > 0.
The second term in y is a sum of nonnegative values, so y > 0. If (12) holds then i; = 0.
However, (1 — max;c 4 |4;]) > 0. Because the rank of {b; | i € A} is equal to the dimension
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of the space, mn, there must be some i for which b7 d # 0. Therefore, we can conclude
that y > 0. Inserting this result into Eq. (13) reveals that

B(xs +ed)lly = | Bx.|ly + €y > || Bx|l;.

Since (10) 1s a convex optimization problem, we can conclude that x,, is the unique solution
to (10). O

Theorem 1 (Piecewise Constant Signals). Suppose xq is a piecewise constant signal
defined on segments R;.i = 1... N (where R; is adjacent only to R; 4, and R;_;) and o is
a sufficiently small positive constant. Let

Bi o . .
5 d if R; is a minimal region
‘.[)\.] |O(,
8 = - hi if R; is a maximal region (14)
VST
0 otherwise

where o, and B; are defined by (5), and the value of |i1| is specified by

Zieé‘ %i
433 = — (15)

with € given by (4). Let x, = xo + §; on R;.
Then x, is the unique optimal solution to

min ||Bx||; s.. |lx —xgpll. <o
X
where B = Bip.
Proof: Since Bxg and Bx, are zero at the same points, we can assume that ¢ is small

enough so that sgn (Bxo) = sgn(Bx,). We will produce a i which satisfies the optimality
conditions (9). First consider the complementarity condition

diag(r)(g — 4) = 0. (16)
The firstentry in r is 6 — ||x, — x |3 which equals 0> — Z,N:1 @;82. 1t’s easy to verify from
(14) and (15) that r; = 0. The rest of r is equal to Bx,, which is zero everywhere except at
points of discontinuity where jumps occur in x. For each such point, d, set »; = g4. Then
rd(gd —Ad) = 0, so (]6) holds.
Next we will define the rest of A so that
Mi=0 17

and

A1 <0 and|r;| <1 fori > 1. (18)
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The matrix M is equal to [J B7]. The vector J is defined in (6) by J=2(x¢p — x,).
Equation (17) can be rewritten as B e = —21J. Define the Lagrange multiplier i,
according to (15) with A; < 0 in accordance with (18).

In order to help define Ay, we first examine the B” operator in detail. Let & = BT Jpeq.
The operator B takes a signal as input and produces differences between adjacent entries;
these can be thought of as points between the pixels in the signal. The B” operator is a map
from the points between the pixels to the pixels, so £ is a signal. The value of a pixel in &
depends only on the A values associated with the two points bounding that pixel. Suppose
these bounding A entries are 4; and 4;1. The B” operator takes differences in the opposite
direction than B so the value of the entry of £ will be 4; — ;1. When a pixel is at the end
of the signal, one of its bounding points will have no associated entry in . Set A to 0 at
these locations to handle this situation without special cases.

The value of A is already defined on the points bounding R;. Define it on the interior
by linearly interpolating between the two boundary values. These boundary values are

always between 1 and —1, so (18) is satisfied. Next we need to verify that & = —3,J.
On R; we know that —4;J = 24,§; since J = 2(xo — x,). By using (14) we can write
2218; = —sgn(é;)B;/e;. Therefore, to complete the proof we need to verify that
—Ssgen 5,’ i
£ = ’—(—)—'B— on R;. 19)
of]
If 1 <i < N and R; is a maximal region, then A = 1 on the left side and ». = —1 on the

right side. Therefore, £ = 2/a; on R; which satisfies (19) since B; = 2. The sign is correct
because §; < 0in R;.If R; is minimal then (19) holds as well. If R; is not an extreme region
then the two A values are equal on both sides of R; and hence £ = 0 as required. If i = 1 or
i = N then one of the bounding /. values is zero, so £ = +1/a; which satisfies (19) with
Bi = 1. Since (19) holds, we have satisfied that the last of the optimality conditions. For
this problem, the constraint is tight and A; # 0. Therefore, by Lemma 1, x, is the unique
optimal solution. O

Theorem 2 (Symmetric Nested Square Images).  Suppose xq is an image of nested squares,
with R;,i = 1...N,theregions on which it is constant, and o is a sufficiently small positive
constant. Let

2[)»’31 ila,- if R; is a minimal region

=4 —bBi if R; is a maximal region .
2| A1 e
0 otherwise

where «; and B; are defined by (5), and the value of |i,| is specified by

B?
Zief o

5 (21)

with € given by (4). Let x, = xo + 8; on R;.

B

2
432 =
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Then x, is the unique optimal solution to

min [|Bx|; sz, [[x —xll2 <o
X
where B = Bjp.

Proof: Assume that R; is the central square region and R is the outermost region. Let n;
be the outer side length of R; and k; the inner side length of R;. Since Bx, and Bx, are zero at
the same points, we can assume that o is small enough so that sgn(Bxg) = sgn(Bx,). We will

produce a A which satisfies the optimality conditions (9). First consider the complementarity
condition

diag(r)(g — ») = 0. (22)

The first entry in 7 is 0> — ||x, — xo |3 which equals 02 — 3"~ | ;82 1t’s easy to verify from
(20) and (21) that r; = 0. The rest of r is equal to Bx,, which is zero everywhere except at
points of discontinuity where jumps occur in x. For each such point, d, set 1, = ga- Then
ra(gqs — Aq) = 0, so (22) holds.

Next we will define the rest of A so that

Mi=0 (23)
and
A <0 and|x;| <1 fori>1. (24)

The matrix M is equal to [J B]. The vector J is defined in (6) by J = 2(xq — x,).
Equation (23) can be rewritten as B Ao = —x;J. Define the Lagrange multiplier A,
according to (21) with 4; < 0 in accordance with (24).

In order to help define Areq, we will first examine the BT operator in detail. Let £ =
BT Aresi. The operator B takes as input an image made of square pixels and produces
horizontal and vertical differences which can be regarded as lying on the lines between
the pixels. The B” operator is a map from the lines between the pixels to the pixels, so £ is

an image. The value of a pixel in £ depends only on the X values associated with the four
lines bounding that pixel:

/‘H—]

The BT operator takes dlfferences in the opposite direction than B so the pixel in £ will
have the value 2 — AY, | + A] AP, ;. When a pixel is at the edge of an image some of its
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Figure 13. This diagram shows the step size which is used to select 4 in different regions of the the image. The
numbers next to the arrows indicate the difference between values of % in that direction. In each region, the sum
of the vertical difference and the horizontal difference is ¢, and sgn(8){¢ja/B = 1.

bounding lines will have no associated entry in .. We assign A values of 0 to these locations
to handle this situation without special cases.

The 2 values we select must satisfy £ = —Ai;J. On R; we know that —i;J = 24,6;.
Combining this with (20), we find 24,8; = —sgn(é;)8; /«;. Therefore, as we specify values
of A on R;, we will check that

—sgn(d;) Bi
—_— 0
a;

g = n Ri. (25)

We now consider the values of i in the different regions. Figure 13 may clarify the
argument. Since i is fixed we drop the subscripts on n; and k;. First consider the values
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of A in Rj, and assume that R; is a maximal region. (Note that it must be an extreme
region because it is completely surrounded by a region with a different value.) This region
is bounded on the top and left by A = 1 and on the bottom and right by » = —1. We define
2 1o step uniformly in both directions from 1 down to —1. In order to do this, the step
size must be —2/n. The corresponding value of £ is 4/n, with the sign change occuring
because we subtract the bottom from the top and the right from the left. The sign of §; is
—1 in this region, so we can verify (25):

4 —(—Dén

n n?

If R; is a minimal region then the condition still holds.

Next consider an interior region R; where 1 < i < N. If this region is not an extreme
region, then it is bounded by A values which are either all 1 or all —1. Set % to be uniformly
equal to the value on the boundary. All of the differences in both directions are zero, so
& = 0 on R; as required. Otherwise, assume that R; is a maximal region (the minimal
case being analogous). Because the squares are centered, we can fill in the j values using
symmetry. Therefore, it suffices to give values for one strip of the hollow square (labeled R;
in figure 13). At the top and left of the square, A isequal to 1. Fill inthe (n — &)’ 2 x (n — k) /2
square in the upper left with uniform steps of —2/(n — k). This sets 4 = 0 on the lower and
right boundaries of that square. It gives a & value of 4/(n — k) for the region. In the strip
to the left of the central hole, set the vertical A values to zero. Let the horizontal . values
descend from 1 on the left to —1 on the right by steps of —4/(n — k). The £ values in this
area are also 4/(n — k). Continuing down the strip, we fill in the vertical A values just as we
did in the top corner by stepping from 0 down to —1 in steps of 2/(n — k). The remaining
portions of 4 are filled in symmetrically. The value of & is uniformly 4/(n — k) on R;. The
sign of §; 1s —1. Checking Eq. (25) we have

4 —(=1)am+k)
n—k n? — k2

so the equation is satisfied.

The last region to consider is Ry. This region must be an extreme region; again assume
it is a maximal region. Unlike the other regions, this one is bounded by A = 0 around the
outside. In the top left corner, define 4 in both directions to descend from 0 to —k/(n 4 %)
which requires steps of —2k/((n — k)(n + k)) since this square has side (n — k)/2. Moving
down the strip to the left of the hole, define A to rise from —k/(n + k) up to +k/(n +k)
in the vertical direction, which requires steps of length 2/(n + k). In this region set the
horizontal steps to be the linear interpolation from the zero on the left to the —1 on the
right; this means steps of —2/(n — k). Continuing down to the bottom corner, we go from
k/(n + k) down to zero in steps of —2k/((n — k)(n 4 k)). The rest of i can be filled in by
symmetry. The resulting value of & along the side is

2 2 4k 4k
n—k n+k (m—k)n+k) n2—k2

It’s easy to see that the same & value arises in the corners, and easy to verify (25).
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Since (25) holds for all R; we have established (23). Throughout the construction of A, we
have defined 4 by interpolating linearly between 1 and —1 or between 0 and +1. Therefore,
the resulting entries must all lie between 1 and —1, so we have satisfied (24). The constraint
is tight and 4; # 0, so by Lemma 1, x, is the unique optimal solution. O

Theorem 3 (Noise Perturbed Solutions). Suppose x, is the optimal solution 1o

min |[|Bx|l; s.1. [x—xl2 <o

where B is a matrix and o > 0. Let b be the ith row of B. Let A = {i | bIx, = 0} and let
A 4 be the Lagrange multiplier vector associated with entries in A. Assume that the entries
of i 4 are stricily between 1 and —1. Let B 4 be the matrix containing rows whose indices
are in A. Now set Xy = xo + n where n is a perturbation. Let X, be the optimal solution to

min ||Bx||; s.2. |lx —=Xol» <o.
X

Then if n is sufficiently small there exists a positive scalar, G, so that the solution %, to
the perturbed problem satisfies

BA)Z* = Bax, (26)
and
sgn(b] %) = sen(b] x.) if i € AC. (27)

Proof: Let Ax, = n— B (B%)™n where (B})* is the pseudoinverse of BY. We will
show that x, = x, + Ax, by considering the optimality conditions (9). First note that it is
easy to venfy that B4Ax, = 0 using the Moore-Penrose properties of the pseudoinverse,
hence establishing (26) for our choice of x,.

The equation M4 = 0 can be rewritten as

2(x0 — xs)A1 + Bachgc + Barg =0 (28)

where B 4c is formed from rows whose indices are not in A and X 4c is the multiplier vector
corresponding to .A“. Note that A 4c is equal to the sign of the residuals. For i € A, we
know that b x, is not zero. Therefore, since Ax, is just a matrix times 7, as long as n is
small enough, b/ %, will have the same sign as b] x, for i € AC. This establishes Eq. (27).

Next define 44 = Ag— 2(B£)+n}»]. Set 4; = 4, and set iAc = X 4c. Substituting these
definitions into Eq. (28) gives

2(xo—n —x, + AX*)il + B;CS\-AC + Bﬁ (;»A -+ 2(B£)+ni]) = 0.
Expanding Ax, shows that

2(% — %. — BL(BY) n)hy + BT, ciac + BL(a+2(B}) niy) = 0.
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The two expressions involving (B )* cancel leaving
2(%0 — X:)h + Blchac + Bhia =0

which is Eq. (28) rewritten for the perturbed problem. Since (26) and (27) hold, we know
that the A is the same for the perturbed problem.

Set 6 = [lx, — Xoll2. Then the optimality equauon diag(r)(g — A) = 0 will be satisfied
since (27) holds. Since A; = A;, the constraint on 41 1s satisfied. The last constraint that
must be checked is lk,l < Ifori > 1. This needs to be checked only for a 4 because the
other % values are fixed at &1. In order to satisfy this condition, we need the entries of

s — 2(BY) na, (29)

to lie between 1 and —1. Because we assumed that the entries of 4 4 are strictly between
1 and —1, we can conclude that for sufficiently small n, this condition will hold which
completes the proof. O

Remark. 1f there are entries in 4 4 which are equal to %1 then the conclusion can hold if
the noise function satisfies an additional technical condition. For example, if every entry in
—2(B, TY*ni, which corresponds to a A value of 1 (—1) has sign equal to —1 (1), then the
resu]ts of the theorem hold.

Corollary 1.  Let xq be either a piecewise constant function or an image of nested squares,
with R; the regions on which xo is constant. Assume that R; is an extremal region for
every i. Suppose that xq is corrupted by noise to give Xo = xo+ n, and define %, so that
Xy — xg = &; on R;. Suppose n is sufficiently small. Then there exist Gyin and Gmay SO that
If Omin < O < Omax then X, is the optimal solution to

min |Bxl; s.z. |lx—Foll <&
X

where B = Byp or B = Byp as appropriate and x, depends on &. Furthermore the jumps
in X, have the same sign as the jumps in x.

Proof: Let x,(0) = xo+;(0) on R;. By Theorem 1 or Theorem 2, we know that there
is @ omax such that for any o satisfying 0 < 0 < opay, the 8; (o) can be chosen so that x, (o)
is the optimal solution to

min ||Bx||; s.t. |lx —xgll2 < o.
X

Because R; is an extremal region for all i, we know from the proof of Theorems 1 and 2
that the multipliers are equal to =1 only at points where jumps occur in the solution, so % 4
is strictly between 1 and — 1. Furthermore, the value of % 4 is independent of the value of .

We want to establish that the results of Theorem 3 hold over an interval of o values.
To do this, we must show that there exists a fixed n which is small enough independent
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of o over some interval. In the proof of Theorem 3, the perturbation is bounded in two
places. The perturbation is required to be small enough so that (27) holds. This condition
is independent of o. We require that n be small enough so that (27) holds. The second
bound on the perturbation is Eq. (29) from the proof of Theorem 3 which requires that
g — 2(B£)+n}q have entries lying between 1 and —1. Equation (15) from Theorem 1 or
(21) from Theorem 2 allows us to rewrite that expression as

« 2
b ({2 L) 2 @

i€ i

We have shown that 4 4 does not depend on o, and we also know that ;, a;, and B 4 are
independent of o . Therefore, there is a minimal value of ¢ so that (30) is between 1 and —1
(where n is assumed to be fixed). Define oy, to be this minimal value of o. It is possible
that 0min > Omax. The value of oy, can be reduced by making n smaller; we require that n
be small enough so that oy < Oppax.

We have shown thatif o, < 0 < 0, then the conclusions of Theorem 3 hold. Theorem 3
provides information about X, (o). which is the optimal solution to

min [|Bx|; st [lx =Xl <6(0)
X

where o (o) is specified by the theorem. In this setting, B4 from Theorem 3 is a matrix
which takes differences between all adjacent pixels that lie within the same constant regions
of xo; therefore, B 4x,(0) is equal to zero since all of these differences are zero. Theorem 3
says that B4x,(0) = Bx,(0) so we can conclude that X, (o) also has zero differences at
the same locations, hence x, (o) is constant on the same regions as x, (o). By conclusion
(27) from Theorem 3 we see that the jumps in X, (0') have the same sign as the jumps in x,,
and furthermore, these jumps are still present—they have not been smoothed out.
The value of ¢ (o) is given in the proof of Theorem 3:

6(0) = |Ix:(0) — x0 — nll>.

Theorem 3 also says that x,(0) = x,(0) + Ax, where Ax, depends on n but not on x, or
o. Hence

6(0) = ||lx:(0) + Axy — x¢ — n||5.

The function ¢ is a continuous function of x,(c). By examining the definition of x, (o)
given in Theorems 1 and 2, it is clear that x, (o) is a continuous function of o. Therefore
the composition ¢ (¢) is a continuous function of o.

For the interval (Omin, Omax) We have established that x,(o) solves the problem for
parameter 0. Since ¢ depends continuously on o, we can conclude that X, (o) solves the
problem for a connected set of values of 6.

The final step is to establish that this connected set contains more than one point. This
is easy to establish because x,(o) is a one to one function, hence x,(o) is also one to
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one. Therefore if o) # o, then x,(0;) # X.(02). By uniqueness of solutions, it follows that
6(01) # 6(02), so 0 (o) is one to one. Hence there is a nonempty connected set of values
as required. This set must contain an open interval. Call that interval’s lower bound 6.,
and call the upper bound Gax. O
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