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Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is pro-
posed for solving large-scale bound-constrained minimization problems. This method can be imple-
mented with either sparse Cholesky factorization or conjugate gradient computation. Under reason-

able conditions the convergence properties of this subspace trust region method are as strong as
those of its full-space version.

Computational performance on various large test problems is reported; advantages of our ap-
proach are demonstrated. Our experience indicates that our proposed method represents an efficient
way to solve large bound-constrained minimization problems.
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1. Introduction. Recently Coleman and Li [1, 2, 3] proposed two interior and
reflective Newton methods to solve the bound-constrained minimization problem, i.e.,

(1.1) min {f(z): [ <z <u},

TzeR™
where | € {RU {—0}}", v € {RU {o0}}™, | < u, and f is a smooth function,
f : ®™ — R1. Both algorithms are interior methods since the iterates {x;} are in the

strict interior of the feasible region, i.e., zx € int(F) def {z : | < z < u}. These two
methods differ in that a line search to update iterates is used in {2, 3] while a trust
region idea is used in [1]. However, in both cases convergence is accelerated with the
use of a novel reflection technique.

The line search method version appears to be computationally viable for large-
scale quadratic problems [3]. The trust region framework has more appeal, we feel, for
nonlinear problems; however, the method given in [1], which we refer to as the trust
region interior reflective (TIR) method, is not suitable for the large-scale case. Our
main objective here is to investigate solving large-scale bound-constrained nonlinear
minimization problems (1.1) using an adaptation of the TIR approach suitable for
large problems.

The TIR method generalizes the trust region idea for unconstrained minimiza-
tion to bound-constrained nonlinear minimization. A distinguishing feature of the
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TIR method is that the main computation per iteration is solving a standard scaled
trust region subproblem, that is, the same subproblem as in trust region methods for
unconstrained minimization:

(1.2) g&q{wk(s) ¢ ||Dslle < Ak},

where 1 (s) is a quadratic function, Dy is a positive diagonal matrix, and Ak is a
positive scalar. The method of Moré and Sorensen [4] can be directly applied to (1.2)
if sparse Cholesky factorizations can be computed efficiently. However, this method
is unsuitable for large-scale problems if the Hessian matrix is not explicitly available
or (sparse) Cholesky factorizations are too expensive. Recently, Sorensen [5] proposed
a new method for solving the subproblem (1.2) using matrix-vector multiplications.
Nonetheless, the effectiveness of the Sorensen approach for large-scale minimization,
particularly in the context of our trust region algorithm, is yet to be investigated.

We take the view that solving the full-space trust region subproblem (1.2) is too
costly for a large-scale problem. This view is shared by Steihaug [6], who proposes
an approximate (conjugate gradient) approach. Steihaug’s approach to (1.2) is vi-
able, although the computational studies in [7, 8] indicate that important negative
curvature information can be missed, causing a significant increase in the number of
minimization iterations.

In this paper, we propose an alternative: an approximate subspace trust region
approach (STIR). We verify that, under reasonable conditions, the convergence prop-
erties of STIR are as strong as those of its full-space version. We explore the use of
sparse linear algebra techniques, i.e., sparse Cholesky factorization and preconditioned
conjugate gradients, in the context of this approach.

In addition, we demonstrate the benefits of our affine scaling, reflection, and
subspace techniques with computational results. First, for (1.1), our affine scaling
technique outperforms the classical Dikin scaling [9], at least in the context of our
algorithm. Second, we examine our method with and without reflection. We show
that the reflection technique can substantially reduce the number of minimization
iterations. Third, our computational experiments support the notion that the sub-
space trust region method is a promising way to solve large-scale bound-constrained
nonlinear minimization problems. Finally, our subspace method is competitive with
the active set method in LANCELOT [10] and we include results on test problems
with negative curvature where our subspace method outperforms the LANCELOT
method.

The paper is organized as follows. In section 2 we briefly summarize the existing
TIR method. In section 3 we focus on how to solve the trust region subproblem (1.2):
We summarize the Steihaug algorithm and our version of the subspace trust region
method. We introduce a subspace method STIR and discuss its convergence properties
in section 4. Issues concerning the computation of negative curvature vectors and
inexact Newton steps are discussed in section 5; computational results are provided
in section 6 indicating that performance typically is not impaired by using an inexact
Newton step. Concluding remarks appear in section 7. The convergence analysis of
the STIR method is included in the Appendix.

2. The TIR method. In this section we briefly review the full-space TIR
method [1] sketched in Fig. 1. This method closely resembles a typical trust region
method for unconstrained minimization, mingzeg~ f{z). The key difference is the pres-
ence of the affine scaling (diagonal) matrices Dy and Cj. Next we briefly motivate
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The TIR Method [1]
Let 0<p<n<1,0<A; <Ay andy <1< begiven. Let zg € int(F), Ay <
Ay
For k=0,1,...
1. Compute fg, gk, Dk, Hi, and Cy; define the quadratic model
Yi(s) def gi s+ 35T (Hy + Cy)s.
2. Compute a step si, with zx + s € int(F), based on the subproblem

min{tk(s) : || Desllz < Ag}.

3. Compute

. f(zr + sx) — f(zk) + 25T Cisy,
Yi(sk) ’

4. If py > p then set x4 = xi + sk. Otherwise set zx11 = z.
5. Update Ay as specified below.

Updating Trust Region Size A,

1. If pr < p then set Agt1 € (0,710k].
2. If pr € (1,m) then set Agiq € [11Ak, Ag].
3. If pr > n then
if Ax > A; then
set Agyq € either ['ylAk,Ak] or [Ak,’}’gAk],
otherwise
set Agt1 € [Ag, min(y2Ag, Ay)]-

Fi1G. 1. The TIR method for minimization subject to bounds.

these matrices and the TIR algorithm.

The trust region subproblem (1.2) and the affine scaling matrices Dy and Cy (the
diagonal matrix C is defined subsequently in (2.8)) arise naturally from examining
the Kuhn-Tucker conditions for (1.1),

(2.1) D(z)™*Vf(z) = 0,
where
(2.2) D(z) ¥ diag(jv(z)|~/?)

and the vector v(z) € R"™ is defined below. For each 1 < i < n,
(i) if g; < 0 and u; < oo then v; &ef T; — Uj;

(ii) if g; > 0 and [; > —oo then v; def T — I

(iii) if g; < 0 and u; = oo then v; - —1;

(iv) if g; > 0 and l; = —oo then v; def .
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The nonlinear system (2.1) is not differentiable everywhere; nondifferentiability
occurs when v; = 0. Hence we avoid such points by maintaining strict feasibility, i.e.,
restricting zj € int(F). A Newton step for (2.1) is then defined and satisfies

(2.3) MiDisy = — ik,
where

o % Dy g, = diag(juel/2) g
(2.4) My, € D H Dy + diag(gx)J}-

Here J¥(z) € R™*™ plays the role of the Jacobian of [v(z)|. Each diagonal component
of the diagonal matrix JV equals zero or 1. If all the components of [ and u are finite,
Jv = diag(sgn(g))- At a point where g; = 0, |v;| may not be differentiable. We define
JY = 0 at such a point. Nondifferentiability of this type is not a cause for concern
because, for such a component, it is not significant which value v; takes. Furthermore,
|v;| will still be discontinuous at this point, but the function |v;| - g; is continuous.

Equation (2.3) suggests the use of the affine scaling transformation & def Dyzx. This
transformation reduces the constrained problem (1.1) into an unconstrained problem:
A local minimizer of (1.1) corresponds to an unconstrained minimizer in the new
coordinates & (for more details, see [1]). Therefore a reasonable way to improve z is
to solve the trust region subproblem

(2.5) min {te(8) : [18ll2 < Ak},

where

5 Ay def AT A AT 2p -
Uk(8) = §T5 + 38T My 3.

Let s = D,:lé. Subproblem (2.5) is equivalent to the following problem in the original
variable space:

(2.6) min {(s) : [ Dksll2 < Ak},
where

(2.7) ¥r(s) def sTgr + 35T Mys,
(2.8) Cr & Dy, diag(gx)J¥ Dk,
(2.9) M, & Hy + Cy.

In addition to the close resemblance to an unconstrained trust region method, the
TIR algorithm has strong convergence properties with explicit «-:nditions on steps for
optimality. We now describe these conditions.

The TIR algorithm requires strict feasibility, i.e., {zx} € int(F). Let 7¢ denote
the minimizer along dx within the feasible trust region, i.e.,

T,: = argminr{'t[zk("rdk) : ‘”TDkdkH < Ag,xzk + 7dg € ]:}

Given the current iterate zj and a direction d, we define a stepsize aj[dx] to be the
optimal step within int(F) if zx + 7dy, is strictly feasible; otherwise, o [dy] is chosen
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just short of the step to the boundary. Let 6 € [;,1] for some 0 < 6; < 1 and
(6 — 1) = O(lldi])- Then

N def , ., def | Tpdg if zx + 77 dy € int(F)
2 | = =J k k ’
(2.10) oldk] = Oxrid { Ox7idr  otherwise.
The above definition implies that Oy = 1 if zx + 77 dx € int(F).

We use 1 [di] to denote the minimum value of ¥ (s) along the direction dj within
the feasible trust region, i.e.,
def

Vilde] = Yi(sk) = min {¢x(s) : s = 7dx, | Dys|| < Ag, 2 + s € F}.

Explicit conditions which yield first- and second-order optimality are analogous
to those of trust region methods for unconstrained minimization [1]:

(AS.3) Yr(sg) < ﬁw,’;[—D;?gk], | Drskll < BoAk, zk + sk € int(F).

(AS.4) Assume that pi is a solution to minsepn{9k(s) : || Drs|| < Ax} and
B39 and (¢ are two positive constants. Then s; satisfies Yr(sk) <
B9V pl, | Dsk|| < B3Ak, zk + sk € int(F).

Condition (AS.3) is necessary for first-order convergence; (AS.4), together with
(AS.3), is necessary for second-order convergence. Both conditions (AS.3) and (AS.4)
are extensions of convergence conditions for unconstrained trust region methods. In
particular, when [ = —00 and u = oo, these assumptions are exactly what is required
of trust region methods for unconstrained minimization problems.

Satisfaction of both conditions (AS.3) and (AS.4) is not difficult. For example, one
can choose si so that 1x(sx) is the minimum of the values ¢}{px] and v}[—D; %gk].
However, this does not lead to an efficient algorithm. In (3, 2], we utilized a reflection
technique to permit further possible reduction of the objective function along a reflec-
tion path on the boundary. We found in {3, 2] that this reflection process significantly
enhances performance for minimizing a general quadratic function subject to simple
bounds.

In the context of TIR when solving nonlinear problems we use a (single) reflection
step defined as follows. Given a step py, consider the first bound constraint crossed by
pk: assume it is the ith bound constraint {either the.ith lower or the ith upper bound).
Then the reflection step ka = pi except in the ith component, where pﬁ = —Pg,-
Note that when the scaled steepest descent direction ——D,:2gk points away from the
ith constraint crossed by pg, as in Fig. 2, the reflected step p,? permits further descent
since —D;jgki * kai > 0.

For all the computational results in this paper, s is determined from the best
of three points corresponding to ¥ [pk], zp;[—DEng], and w,’;{ka], where pﬁ is pg
reflected on the first boundary it encounters as described above; see Fig. 2.

The updating of the trust region size Ay in Fig. 1 differs somewhat from the
typical updating scheme for unconstrained problems. The updating is standard except
in the third step, where we may either increase or decrease Ay when p}: > 7. Such
flexibility allows adjustment of the trust region size Ay for nonlinearity, as in the
unconstrained case, and also for feasibility (this permits further reduction in A even
when pf > 1) [1].

We can appreciate the convergence results for this approach by observing the role
of the affine scaling matrix Dy in {2.1). For the components z; which are approach-
ing the “correct” bounds, the sequence of vectors {—D; ?gx} becomes increasingly
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F1G. 2. Reflection technique.

tangential to these bounds. Hence, the bounds will not prevent a large stepsize along
{—D;QQk}. For the components x; which are approaching the “incorrect” bounds,
{—D,;2 gr} points away from these bounds in relatively large angles (the corresponding
diagonal components of Dy, are relatively large and g, points away from these bounds).
Hence, a reduction of at least 1} [—Dj *gk] implies the scaled gradient {D;?gx} con-
verges to zero (i.e., first-order optimality).

The scaling matrix used in our approach is related to, but is different from, the
scaling typically used in affine scaling methods for linear programming. The affine

scaling matrix Dgffine <o diag(min(zx — lg,ux — zx)) {9], commonly used in linear
programming, is formed from the distance of variables to their closest bounds. Our
scaling matrix D equals szﬁ“e only when min(zy — l, ux — k) = |vk|- (Even in this
case we employ the square root of the quantities used to define Daffine )

Before we investigate a subspace adaptation of TIR, we demonstrate the effec-
tiveness of our reflection idea and affine scaling technique. We consider random prob-
lem instances of molecule minimization [11, 12], which minimize a quartic subject to
bounds on the variables. Tables 1 and 2 list the average number of iterations (more
than 10 random test problem instances for each entry) required for the different tech-
niques under comparison. The notation > in front of a number indicates that the
average number is at least this number because the iteration number exceeds 1000,
the maximum allowed, for some instance. Details of the algorithm implementation are
given in section 6.

Table 1 demonstrates the significant difference made by a single reflection. The
only difference between the rows with and without reflection is the following. With-
out reflection, si is determined by the best of the two points based on i [px] and
z/;,’;[——D;ng]; with reflection, si is determined by the best of the three points based
on ¥ [pks w,’;[—D,ZQQk], and ¥;[pf] (with reflection). The advantage of using the
reflection technique is clearly demonstrated with this problem.

In Table 2 we compare the computational advantage of the selection Dy over
Dim“e: the only difference is the scaling matrix. In this table, all the problems have
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TABLE 1
The STIR algorithm with and without reflection: number of iterations.

n
100 200 400 800 1000
With reflection | 34.1 41.7 66.8 83.4 93.6
| Without reflection | 71.4 > 210.1 >4254 > 302.2 > 4085

TABLE 2
Comparison of the STIR scaling Dy, and Dikin scaling Dzﬂ'ine : number of iterations.

n
100 200 400 800 1000 |
Unconstrained: Dy 38.6 47.3 61.4 72.7 93.6
Dgffine 36.4 49 58.5 73.9 94.6 |
Constrained: Dy 36.6 50.5 65.6 89.7  102.3
Dgffire | >5174 >617.6  >517.3  >1000 > 1000

bound constraints, but we differentiate between problems that have an unconstrained
solution (no bounds active at a solution) and those with a constrained solution. We
observe that for the unconstrained solution problems there is no significant difference
between the two scaling matrices. However, for the constrained solution problems we
tested, the choice Dy is clearly superior. When Dy, is used, the number of iterations for
a constrained solution problem is roughly the same as that for the corresponding un-
constrained solution problem. For Dzﬁi“e, on the other hand, the number of iterations
for a constrained problem is much larger than for the corresponding unconstrained

solution problem. A single reflection strategy was used for these problems (with both
scalings).

3. Approximation to the trust region solution in unconstrained mini-
mization. We discuss two approaches that have been shown effective in approximat-
ing a full-space trust region solution in unconstrained minimization.

Shultz, Schnabel, and Byrd [13] suggest replacing the full trust region subproblem
in the unconstrained setting by

(3.1) S,Iél;?rvlz{d}k(s) D slle < Ag, s € Sk},
where S, is a low-dimensional subspace.

Another possible consideration for the approximation of (1.2) is the Steihaug idea
[6], also proposed in the large-scale unconstrained minimization setting. In a nutshell,
Steihaug proposes applying the method of preconditioned conjugate gradients (PCG)
to the current Newton system until negative curvature is revealed, the Newton Sys-
tem residual is sufficiently reduced, or the current approximate solution reaches the
boundary of the trust region.

We prefer the subspace approach given in [13]. In our implementation of the sub-
space method we apply the PCG method to the current Newton system. The PCG
algorithm iterates until either a negative curvature direction is discovered or the New-
ton system residual is sufficiently decreased. Uniike the Steihaug method, our method
ignores the boundary of the trust region during the PCG computation; thus this
boundary will not keep us from finding either negative curvature or a step that suf-
ficiently decreases the Newton system residual. Then we solve the subproblem (3.1)
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with the subspace Sy constructed from the gradient and the output -of the PCG al-
gorithm: Sj spans the gradient and a direction of negative curvature, or it spans the
gradient and an inexact Newton step.

We believe that a subspace trust region approach leads to faster convergence be-
cause it better captures the negative curvature information than does the Steihaug
approach [6]. This belief is based on computational studies, in the unconstrained
minimization setting, given in (7, 8].

4. The STIR method. On the basis of the discussion in section 3 (and the
computational studies in {7, 8]), we propose a large-scale subspace adaptation of the
TIR method [1] for the bound-constrained problem (1.1).

In applying the unconstrained subspace approach to the box constrained setting,

we eplace the full trust region subproblem (1.2) by the following subspace subprob-
lem:

(4.1) min {¢k(s) : | Desllz < Ak, s € Sk},

where Si is a small-dimensional subspace in R", e.g., a two-dimensional subspace.
For example, a two-dlmenswnal subspace for the trust region subproblem (2.5) can
be defined by the span of {Dk gk, 81} when M, is positive definite and by the span
of {Dk gk, Dy L} when My, is not pos1t1ve definite and wy is a vector of nonpositive
curvature of M. Will such subspace formulations succeed in achieving optimality?
We examine this issue in more detail.

It is easy to prove that including the scaled gradient vector D,:Q gk in Sk and satis-
fying (AS.3) will guarantee convergence to a point satisfying the first-order optimality
conditions. Let us assume for now that {z)} converges to a first-order point z.. To
guarantee that z, is also a second-order point, i.e., satisfies second-order necessary
conditions, the following conditions must be met.

First, when the matrix M, is indefinite or negative definite, a “sufficient negative
curvature” condition must be carried over from the unconstrained setting {14]. To this
end, we can require that sufficient negative curvature of the matrix M, be captured
if My is indefinite or negative definite; i.e., Sy must contain a vector wy = Dy g
such that
W Myy,

(4.2) < Inax{_fnm T Amin (lwk)}v

fwkll
where €,. and T are positive constants and Amin(-) is the smallest {most negative)
eigenvalue.

Second, it is important that a solution to (4.1) lead to a sufficiently large step—the
potential difficulty is running into a (bound) constraint immediately. This difficulty
can be avoided if the stepsize sequence, along the trust region solution direction, is
bounded away from zero. Subsequently, we define the angle property.

DEFINITION 1. Let {xx} be a strictly feasible sequence and define diagonal ma-
tric Dp = D(zk) via (2.2). A vector sequence {si} has the angle property if
lim infg_ oo | DZsk| < 00.

If fast local convergence is desired, then the subspace Si should also contain
a sufficiently accurate apprommatlon to the Newton direction Dk sk when M}, is

positive definite and 3} = y k. An inexact Newton step Y for problem (1.1) is
defined as an approximate solutlon to

Mys = — g
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with accuracy n:
(4.3) My 3iN = g + ry, such that ||re)|/llgkll < 7k

We can select two-dimensional subspaces satisfying all three properties and thus
guarantee quadratic (superlinear) convergence to a second-order point. The subspace
adaptation of the TIR algorithm (STIR) in Fig. 3 is an example of a subspace method
capable of achieving the desired properties.

Our convergence results given below require the solution sequence of the subspace
trust region subproblems (4.1) to have the angle property. Lemma 2 below indicates
that this can be achieved if we set S = span{ws,z;}, where {wr} and {24} are
the two angle property sequences of uniformly independent vectors in the sense that
lim inf{sz - wk||} > 0.

LEMMA 2. Assume that {wx} and {z} have the angle property with | Drwy|| = 1
and || Dyzk|| = 1. Moreover, assume that lim in fx_.co{||2k—w||} > 0. Then a sequence
of solutions {px} to subproblems (4.1) with S = span{zx,wx} has the angle property.

Proof. The proof is straightforward and is omitted here. O

For the STIR method, a natural extension of the condition (AS.4) necessary for
second-order optimality is as follows:

(AS.5) Assume that p is a solution to minsesn{1k(s) : || Dis| < Ag,s €
Sk} and B? and 3] are two positive constants. Then s; satisfies
Yi(sk) < B%%%[p], where ||Disi|| < B§Ak and zy + s € int(F).

Theorem 3 formalizes the convergence properties of STIR. The proof is provided
in the appendix.

THEOREM 3. Let the level set L ={z € R" : f(z) < f(z0), T € F} be compact
and f : F — R be twice continuously differentiable on L. Let {x1} be the sequence
generated by the STIR algorithm in Fig. 3. Then

1. If (AS.3) is satisfied, then the Kuhn-Tucker conditions are satisfied at every
limit point.
2. Assume that both (AS.3) and (AS.5) are satisfied and Wy in Fig. 3 contains

sufficient negative curvature information whenever My, is indefinite (negative
definite), i.e.,

ATM_ A .
M < max(—e€pe, TAmin My)),
[l |2

with €pe >0 and 0 < 7 < 1. Then

(a) if every limit point of {z\} is nondegenerate, there is a limit point x, at which
both the first- and second-order necessary conditions are satisfied;

(b) if z. is an isolated nondegenerate limit point, both the first- and the second-
order necessary conditions are satisfied at x,;

(¢) if M, is nonsingular for some limit point z. of {xx} and W = 8N when-
ever My, is positive definite, M, is positive definite, {x} converges to ., all
iterations are eventually successful, and {Ay} is bounded away from zero.

The degeneracy definition is as in [1].

DEFINITION 4. A point x € F is nondegenerate if, for each inder i,

(4.4) g(x)i =0 = <z, < Uj.
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The STIR Method
Let0 < p<n<1,0<A; <Ay,and 91 <1 < 72 begiven. Let zp € int(F), Ag < Ay

For k=0,1,...
1. Compute fi, gk, Dk, Hg, and Cg; define the quadratic model
Vr(s) = gi s + 35T (Hy, + Ci)s.
2. Compute a step sg, with zx + sx € int(F), based on the subspace subproblem
min{yk(s) : || Dsll2 < Ak, s € Sk},

where the subspace Sy is set up as below.
3. Compute

_ flzk + sk) — f(:ck) + 35} C'ksk
Sk)

4. If px > p then set T4 = Tk + Sk. Otherwise set zx41 = xk.
5. Update Ay as specified in Fig. 1.

Determine Subspace Si

Assume that wy = Dy 'y where {wy} has the angle property. Let 0 < 7 < 1 be a
small positive constant.

IF M, is positive definite
f _
Sk q—g span{Dk 2gk, wk}
ELSE M, is not positive definite

_ _ D-2 2
IF (Dj; *sgn(9r))” Me(Dy *sen(ge)) < r i qgel-wl Miwy

Sk & span{D;; *sgn(gx)}
ELSE
S, span{Dj, >sgn(gx), wx }
END
END

FiG. 3. The STIR method for minimization subject to bound constraints.

We have established that in principle it is possible to replace the full-dimensional
trust region subproblem with a two-dimensional variation. However, the equally strong
convergence properties of STIR hinge on obtaining (guaranteed) sufficient negative
curvature vectors with the angle property. We discuss this next.

5. Computing negative curvature vectors with the angle property. It
is possible, in principle, to satisfy both the sufficient negative curvature requirement
(4.2) and the angle property. Let ux be a unit eigenvector -of My, corresponding to the
most negative eigenvalue, i.e., My = /\mm(AM;c ug. It is easily verified that for any
convergent subsequence with limg_, o Amin(Mk) < 0, the sequence {D, uk} has the
angle property.

However, it is not computationally feasible to compute the (exact) eigenvector
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ug. Therefore approximations and short cuts are in order. We next consider how to
compute approximate eigenvectors with the angle property.

A good approximation to an eigenvector corresponding to an extreme eigenvalue
can usually be obtained through a Lanczos process [15]. Using the Lanczos method for

M, with an initial vector gk, approximate eigenvectors at the jth step are computed
in the Krylov space

~ ~ . def - A i—1 A
’C(A{k»QkJ) é Spa.n(qk,Mka,..., i ! )

In the context of our algorithm, the vectors D,:lsgn(gk) or D, 1gx are natural choices
for the initial vector g5 when applying the Lanczos method.

Our Key observation is as follows: If a sequence {D;l(jk} has the angle property,
then each sequence {D;lM,i(}k}, 1= 1,...7 retains this property.

Now assume that @y is the computed vector from the Lanczos method which
contains the sufficient negative curvature mformatlon with respect to My. It can be
verified, based on the recurrence relation, that {D; '¢;,... quc} all have the angle
property if the Lanczos vectors {gj .. qi} retain orthogonality. Since wg is in the
Krylov space K(My, Gk, j) it is clear that {wi = D; "1k} has the angle property. In
other words, in order to generate a negative curvature vector sequence with the angle
property, orthogonality needs to be maintained in the Lanczos process. In practice
maintaining orthogonality can be a delicate and expensive business [16].

A second {and cheaper) strategy is to employ a modified preconditioned conjugate
gradient scheme, e.g., modified preconditioned conjugate gradient algorithm (MPCG)
in Fig. 4. Unfortunately, this process is not guaranteed to generate sufficient negative
curvature; nonetheless, as indicated in [7], the MPCG output will satisfy the angle
property.

Finally we consider a modified Cholesky factorization, e.g., {17], to obtain a neg-
ative curvature vector.

LEMMA 5. Assume that {Mk} is indefinite or negative definite and {dy} is ob-
tained from the modified Cholesky method. Then the sequence {dy = D,:lcik} has the
angle property under a nondegeneracy assumption.

Proof. The negative curvature vector oik = Dydj computed from the modified
Cholesky method (see (17, p. 111]) satisfies

Lidy=ej, and PTMPy + Ex = Ly diag(6) LT,

where L is a lower triangular matrix, P is a permutation matrix, and €. is the
Jkth elementary vector, ie., e;, (i) = 0, if i # jr and e, (jx) = 1. Moreover, E} is
a bounded and nonnegative diagonal matrix. Without loss of generality, we assume
that P, = 1.

We argue, by contradiction, that {dk} has the angle property. Assume that {dj}
does not have this property. From L dh = €jy | and the fact that Ly, is a lower trlangula.r
matrix with unit diagonals, it is clear that dk( jxH : n) = 0. Moreover, from M.dy +
Eidy = Okj. Lk€jy, Ok > 6 for some 6 > 0 and definition (2.4) of M., the first gk — 1
components of {Dydx} are bounded. This implies that {v;, } converges to zero.

1We use MATLAB {18] notation to specify submatrices {subvectors). In particular, if i < j,
k < I are positive integers then A(i : j,k : l) denotes the submatrix of matrix A defined by rows
4,1+ 1,...,7 and columns k, k+1,...,l.



12 MARY ANN BRANCH, THOMAS COLEMAN, AND YUYING LI

function [p, d, posdef] = MPCG(H, g, P, n)
% Note: P is some preconditioning matrix for H.
% P must be positive definite. P = RZ.
% € is a small positive constant.
% n is the relative residual stopping tolerance.
n = length(g);
kmaz = n/2; posdef = 1;
k=0;po=0;r0=—9;
while k < kmaz

Step 1: Solve Pz =1y,

Step 2: k=k+1

Step 3: ifk=1

d] =29
else
Brx = TkT.lzk-l/T{_zzk—z
dr = zk—1+ Brdir—1
end

Step 4: vy = d{Hdk
Step 5: if < e(d;";Pdk)
d=dg, p=pr_1, posdef = 0, return
else
ag = TkT_lzk—l/’Yk
Pk = Pk-1 + oxdg
Tk =Tk—-1 — OlkHdk
end
Step 6: if [R™1] - [Irell < ml|R-1g]
p = pg, d =0, return
end
end
p=pg, d=0, return

F1G. 4. Modified preconditioned conjugate gradient algorithm.

From the modified Cholesky factorization, the matrix My (1:jk, 1:x) is indefi-
nite (negative definite) but My(1:jx—1, 1:j3—1) is positive definite. However, this is
impossible for sufficiently large k because, again using the definition (2.4) of My,
{Mk(l :Jk, 1:jk)} converges to a matrix of the form

Mi(1:jx1,1:5:=1) O ]
0 e |’

where 7y is positive (because of the nondegeneracy assumption). Therefore, we con-
clude that {dx} has the angle property. 0

6. Computational experience. We demonstrate the computational perfor-
mance of our STIR method given in Fig. 3. Below we report our experience with
the modified Cholesky and the conjugate gradient (MPCG) implementations. We ex-
amine the sensitivity of the STIR method to a starting point. Finally, some limited
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Updating Trust Region Size A,
Let p = 0.25, n = 0.75, Ay = 1, Ay = max(/>_, min((u; — [;)2,1000), 1), Ag =
min(0.1|g||, Av), Yo = 0.0625, v; = 0.5,2 = 2 be given.
1. If pr <0 then set Ay = YoA.
2. If pr € (0, p] then set Agyy = max(vAx, 11| Diskll)-
3. If px € (u,7m) then set Agy1 = Ag.
4. If px > n then
if A > A
Dgi1 = 72Dk
otherwise
Ag41 = min(max(Ag, y2|| Diskll), Au).-

F1G. 5. Updating trust region size.

comparisons with SBMIN of LANCELOT [10] are also made.

In the implementation of STIR, we compute s; using a reflective technique as
shown in Fig. 2. The exact trust region updating procedure is given in Fig. 5.

Our experiments were carried out on a Sun SPARC workstation using MAT-
LAB [18]. '

The stopping criteria used are as follows. We stop if

either f(zx) — f(Tr4+1) < 11 + [ f(zr)])
or lzkt1 — zkll2 < 72

or no negative curvature has been detected for M} and 1 D% gk lloo < T1-

We define 71 = 1071% and 75 = v/71/10 = 1076. We also impose an upper bound of
600 on the number of minimization iterations.

We first report the results of the STIR method using the modified Cholesky
factorization. Table 3 lists the number of major iterations required for some standard
test problems (for details of these problems, see {19]). (For all the results in this paper,
the number of iterations is the same as the number of objective function evaluations.)
The problem sizes vary from 100 to 10,000. The results in Table 3 indicate that, for
these test problems at least, the number of iterations increases only slightly, if at all,
with the problem size. This is true whether the solution is unconstrained (e.g., VAR
U) or constrained (e.g., VAR C). This is depicted pictorially in Fig. 6. In this graph,
the problem size is plotted versus iteration count. For each problem the corresponding
points have been connected to show how the iteration count relates to the problem
size.

Our second set of results are for the STIR algorithm, using a conjugate gradient
implementation. We use algorithm MPCG in Fig. 4 to find the vectors needed to form
the subspace Si. The stopping condition applied to the relative residual in MPCG is
n = 0.005. The results are shown in Table 4 and Fig. 7. Again, for these problems
the iteration counts are low and steady. The exception is for the problem VAR C
with 10,000 variables, where the iteration count jumps to 86. This is one of several
degenerate problems included in this test set. With a tighter bound 7 on the relative
residual in MPCG, we could decrease the number of minimization iterations for this
problem; for example, using n = 0.0005 the problem VAR C with 10,000 variables
takes 57 minimization iterations as opposed to 86 iterations.

Next we include some results which indicate that our STIR method is fairly
insensitive to the starting point (insensitive in the sense that the iteration counts do
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TABLE 3
STIR method with exact Newton steps: number of iterations.

n

| Problem 100 200 500 1000 10000
GENROSE U | 25 25 25 25 25
GENROSE C 11 11 11 11 10
GENSING U 24 25 25 26 27
GENSING C 18 19 20 20 21
CHAINSING U 23 23 23 23 23
CHAINSING C 16 16 16 16 19
DEGENSING U 22 23 23 40 39
DEGENSING C 28 28 28 28 29
GENWOOD C 9 10 10 10 11
CHAINWOOD C 9 10 10 10 11
BROYDEN1A U 12 12 13 13 14
BROYDENIAC | 11 11 11 11 11
BROYDEN1B U 7 7 7 7 7
BROYDENI1B C 8 8 8 8 8
BROYDEN2A U 13 13 13 14 14
BROYDEN2A C 14 19 17 19 19 |
BROYDEN2B U 9 9 9 9 9
BROYDEN2B C 13 11 15 14 15
TOINTBROY U 8 8 8 8 8 ]
TOINTBROY C 9 9 9 9 9 |
CRAGGLEVY U 16 14 15 16 15
CRAGGLEVY C 29 29 30 30 31
AUGMLAGN C 38 32 35 36 37
BROWN3 U 8 8 8 8 8
BROWN3 C 17 10 11 9 11
BVP U 9 10 9 8 8
BVP C 11 11 10 10 7
VAR U 9 9 10 12 15
VAR C 18 18 23 45 38

100

iterations
w
=}
T

problem size

F1G. 6. STIR performance with ezact Newton steps.

not appear correlated to the problem size for any start). The results in Table 5 were
obtained using exact Newton steps on problems of dimension 1000. The results in
Table 6 were obtained using the conjugate gradient implementation, also on problems
with 1000 variables. The starting points are as follows: original is the suggested
starting point according to [19]; upper starts all variables at upper bounds; lower
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TABLE 4
STIR method with inezact Newton steps, ||r{|/|lgl| < 0.005: number of iterations.

n

Problem 100 200 500 1000 10000
1 GENROSE U 21 21 21 21 21
GENROSE C 10 10 10 10 17
GENSING U 23 23 24 24 25
GENSING C 16 16 16 16 16
CHAINSING U 21 21 21 21 21
CHAINSING C 14 17 19 19 20
DEGENSING U 32 32 33 33 35
DEGENSING C 33 56 35 33 31
GENWOOD C 8 8 8 8 8
CHAINWOOD C 8 8 8 8 8
BROYDEN1A U 11 11 11 11 12
BROYDEN1A C 9 8 8 8 8
BROYDEN1B U 6 6 6 6 6
BROYDENIB C 7 7 7 7 7
BROYDEN2A U 15 15 19 17 20
BROYDEN2A C 10 10 10 10 10
BROYDEN2B U 8 8 8 8 9
BROYDEN2B C 9 9 9 9 9
TOINTBROY U 7 7 7 7 7
TOINTBROY C 8 8 8 8 8
CRAGGLEVY U 26 26 27 27 29
CRAGGLEVY C 26 26 26 26 27
AUGMLAGN C 26 33 29 34 27
BROWN3 U 7 7 7 7 7
BROWNS3 C 7 7 7 7 8
BVP U 13 13 12 13 25
BVP C 15 15 14 14 15
VAR U 34 35 35 37 36
VAR C 19 21 32 36 86
100

§

£ 50 -[\

2

- -~

= — E—
_———
0 1 1 J
100 1000 10000

problem size

FI1G. 7. STIR method with inezact Newton steps.

starts all variables at the lower bounds; middle starts at the midpoint between bounds;
zero starts each variable at zero (the origin); upper-lower starts the odd variables at
the upper and the even variables at the lower bounds; lower-upper is the reverse of
this. For all of these, we perturb the starting point slightly if necessary to be strictly
feasible. Note that for the problem BROWNS3 C, the iteration count is not shown
starting at middle and at origin as the gradient is undefined at both these starting
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TABLE 5

STIR method with ezact Newton steps for n = 1000: number of iterations (* denotes gradient
undefined at starting point).

‘Starting Point |
Problem Original Upper Lower Middle Zero Up-low Low-up
GENROSE C 11 27 33 15 16 43 27
GENSING C 20 31 45 25 22 31 32
CHAINSING C 16 29 33 13 11 32 30
GENWOOD C 10 18 14 13 10 17 17
CHAINWOOD C 10 17 14 13 10 17 16
BROYDENI1A C 11 24 25 13 12 25 24
BROYDENI1B C 8 22 19 18 9 19 21
BROYDEN2A C 19 38 38 13 9 38 38
BROYDEN2B C 14 30 34 12 8 33 30
BROWN3 C 9 28 14 * * 28 14
BVP C 10 17 8 9 10 11 17
VAR C 45 9 32 18 21 23 17
TABLE 6

STIR method with inezact Newton steps for n = 1000: number of iterations (* denotes gradient
undefined at starting point).

Starting Point
Problem Original Upper Lower Middle Zero Up-low Low-up
GENROSE C 10 23 37 17 20 37 23
GENSING C 16 27 57 26 22 30 29
CHAINSING C 19 29 33 11 10 33 28
GENWOOD C 8 14 10 11 8 13 13
CHAINWOOD C 8 14 10 11 8 13 13
BROYDENI1A C 8 24 21 13 8 21 24
BROYDEN1B C 7 21 16 13 8 16 21
BROYDEN2A C 10 35 35 13 8 36 35
BROYDEN2B C 9 28 32 12 8 31 28
BROWN3 C 7 29 53 * * 29 53
BVP C 14 21 14 13 14 14 21
VAR C 36 7 34 29 25 28 8
points.

For all but four problems, the same solution point was found for all starting points.
For the four problems BROYDEN1A C, BROYDENI1B C, BVP C, and VAR C, two
different minima were found for each problem. For BROYDENI1A C, BROYDEN1B
C, and VAR C, the solution points were the same except for when started at upper and
lower-upper, which resulted in a second solution. For BVP C, a second local minimum
was found when started at lower and upper-lower. The solutions found were consistent
between the exact and inexact methods; for example, the same solution was found for
BVP C when started at lower whether exact or inexact STIR was used.

The results in Tables 5 and 6 are also shown graphically in Figs. 8 and 9. From
these graphs it is clear that both implementations of STIR are fairly robust when it
comes to starting points. This is in contrast to active set methods where the starting
point can have a more dramatic effect on the iteration count.

Last we contrast the performance of the STIR method using the conjugate gra-
dient option with the SBMIN algorithm, an active set method, in the LANCELOT
software package [10]. In particular, we choose problems where negative curvature
is present or where it appears that the “active set” at the solution may be difficult
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100
£
L
< 50
3
0 1 1 1 1 1 1 1
orig up low mid zero up-lo lo—up
F1G. 8. STIR method with exact Newton steps at varied starting points.
100
5
s S0
8
0 1 1 1 1 L 1 1

orig up low mid zero up-lo lo—up
F1G. 9. STIR method with inezact Newton steps at varied starting points.

to find. We expect our STIR method to outperform an active set method in these
situations; indeed, we have found this to be the case. For these problems, we used the
following SPEC.SPC file

exact-second-derivatives-used
diagonal-preconditioned-cg-solver-used
gradient-tolerance 1.0D-6

which uses the default settings for LANCELOT, except we provide exact second
derivatives, we use a diagonal preconditioner as opposed to a bandsolver precondi-
tioner of semibandwidth 5 (because we also use a diagonal preconditioner with STIR),
and we use a gradient tolerance of 1.0e-6 as opposed to 1.0e-5. (The use of a diago-
nal preconditioner seems to be more illustrative as far as the iterative nature of the
methods. However, we note that LANCELOT takes many fewer iterations, as does
the STIR method when used with the type of preconditioner that is LANCELOT’s
default.) We adjusted our STIR stopping conditions to be comparable if not more
stringent: We stop if

either no negative curvature has been detected for My and 9x{5) > —5.0e — 12,
or no negative curvature has been detected for M and ||Dj *gilloo < 1€ — 6.
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TABLE 7

STIR with inexzact Newton steps vs. LANCELOT SBMIN on a conver quadratic: number of
iterations.

Inexact STIR | SBMIN
n = 800 iteration c.g. it | iteration c.g. it
BIGGSB2 16 5451 243 40846
TABLE 8

STIR with ineract Newton steps versus LANCELOT SBMIN when negative curvature exists:
number of iterations.

Inexact STIR SBMIN
n n
Problem 100 1000 10000 100 1000 10000
AUGMLAGN U 21 22 22 29 38 46
CHAINWOOD U 151 935 9298 | 6594 > 10000 > 10000
GENWOOD U 77 92 91 439 952 554
GENROSE U 21 21 21 76 76 76
CHAINWOOD NC 17 28 21 54 48 61
GENWOOD NC 13 25 24 47 1136 60

First consider a constrained convex quadratic problem.? The results, given in Ta-
ble 7, show that our proposed STIR method is superior (by an order of magnitude) to
SBMIN on this problem (e.g., it is the total number of conjugate gradient iterations).
SBMIN takes many iterations on this problem when the starting point is near some of
the bounds—the method misidentifies the correct active set at the solution and takes
many iterations to recover. Our proposed STIR method, a strictly interior method,
moves directly to the solution without faltering when started at the same point. For
this problem, the STIR and SBMIN solution points agreed to within 7.8e-05, and
within 7.2e-07 in the function values at these solutions.

Table 8 summarizes the performances of STIR and SBMIN on a set of constrained
problems exhibiting negative curvature. (Again the problems are from {19], except the
last two have been constrained differently to display negative curvature: the bounds

are set to —0.1 < z; <09: 7= 1,3,5,...,n instead of 1.1 < z; < 21 : 7 =
1,3,5,...,n; the start point is (0, -1,0,-1,0,0,...,0) not (-3,-1,-3,-1,-2,0, -2,
0,...,—2,0).) For all these problems except CHAINWOOD U, the STIR and SBMIN

solution points agreed to within 1.5e-06 and within 1.5e-06 in the function values at
these solutions. CHAINWOOD U is an exception. When the problem size is 100,
SBMIN and STIR converge to two different solutions where the function values are
4.6713e+01 and 4.5743e+00, respectively. For problem size 1000 and 10000, SBMIN
did not converge so solution comparison is not possible. STIR is significantly better
on these problems—probably because negative curvature is better exploited in our
subspace trust region approach than in the Steihaug trust region method, which
SBMIN employs. This is consistent with the remarks in section 3 and (7, 8].

2BIGGSB?2 is a modification of problem BIGGSB1 {20]. Active set methods, such as LANCELOT,
are likely to struggle with the identification of the correct active set on this modified version (from
the given starting point). BIGGSB2: f(z) = (21 —1)24+(1—zn)%+ ;:ll(\(a:i_H — ;)% 40.00001z;),
where 0.0 < 0.9 for i = 1 and z is free. The starting point is (i) = 0.01 for i = 1 to n. The
problem size is n = 800.
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7. Conclusion. Based on the TIR method in 1], we have proposed a subspace
TIR method {STIR) suitable for large-scale minimization with bound constraints on
the variables. In particular, we consider a two-dimensional STIR in which a subspace
is formed from the scaled gradient and (inexact or exact) Newton steps or a negative
curvature vector.

We have designed and reported on a variety of computational experiments. The
results strongly support the different components of our approach: the “subspace
idea,” the novel affine scaling matrix, the modified Cholesky factorization and con-
Jugate gradient variations, and the “reflection technique.” Moreover, preliminary ex-
perimental comparisons with code SBMIN, from LANCELOT [10], indicate that our
proposed STIR method performs as well as, and can outperform, an active set ap-
proach for some large-scale problems.

Appendix A. The convergence results (Theorem 2) for the STIR algorithm
can be obtained in a manner similar to Theorem 3.10 for the full-space trust region
and interior reflective method (TIR) {1]. Indeed, first-order optimality is a direct
consequence of the condition (AS.3). The second-order optimality rests on the fact
that the solution subsequence of the subspace trust region subproblem would have
the angle property if the corresponding {M,} were indefinite {negative definite) at a
limit point (see Lemma 6, below). Moreover, if M is positive definite at a limit point
then we prove that the stepsize along the subspace trust region solution is sufficiently
large in the following sense:

ag > é—zmin(HD;lng, | Ds¥ 1) for some x, > 0.

Here oy is the stepsize, along pg, to the boundary of the feasible region (see Lemma
6). On the basis of this inequality, it follows that the trust region size is bounded away
from zero and Newton steps are eventuaily successful.
Assume that pi is a solution to a subspace trust region subproblem (4.1) with
Sk = span{wg, zx}. Assume that the columns of Y; form an orthonormal basis for
span {Dgzk, Drwi}. Then py = D;lkak where y;, solves

(A1) (Y MeYe+ MeDyk = ~YIDlge, Y MLYi + Ml = RT Ry,
and
(A.2) (Dipr)T MiDipr + Mellyell> = —(Dipr) 7 g

Next we prove that the subspace trust region solution sequence from the STIR
algorithm in Fig. 3 has the angle property if the corresponding sequence {]W « } satisfies
that limg_, oo )\mm(Mk) <0.

LEMMA 6. If lim sup )\mm(Mk) < 0 for a subsequence, then the corresponding
solution subsequence {px} of the subspace trust region subproblem (4.1) has the angle
property. .

Proof. Consider two subsequences of {M}: one sequence satisfies |S;| = 1 and
the other sequence has |Si| = 2.

For the subsequence with |Sy| = 1, the corresponding trust region solution se-
quence clearly has the angle property.

For the subsequence with |Si| = 2, it is clear that

lim inf- {

s5gn gk Wk

‘HD *sgn(gx )| lwﬁilﬂ}
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Since {zx} = {Dj *sgn{gx)} and {wx} have the angle property, we have that {p;} has
the angle property following Lemma 2. 0

We state the following result, which is similar to Lemma 8 in [1], and omit the
proof.

LEMMA 7. Assume that (AS.4) is satisfied. Then

— i (sg) > %{min{l,ai})\kAi +frnin{1,ak}HRkka2],

where oy, s the stepsize along py = Dy Yiyr to the boundary and yx is defined by
(A.1).
Let s denote the Newton step (2.3) of (2.1). Then

(A.3) diag(gk)J3 Disy = —Dy gk — Dy ' Hi Dy Dysyy .

The next result is required to establish that Newton steps s will eventually lead to
successful steps.

LEMMA 8. Assume that pg is a solution to the subspace subproblem (4.1) with
S = span{D,Zng,skN }. If {zx} converges to a nondegenerate point x. where the
second-order sufficiency conditions are satisfied, then

Xo . _
(A4) o < 52 min(| Dy gel, | Dist 1)

for k sufficiently large, where oy, is the stepsize to the boundary along p.
Proof. By definition

. lki — Thi Uki — Tii
ak = min (max ( 1 ki , ki ki ]
? Prki Dki

For any k, if D,:lgk = kaks{cV for some pr € R!, then pi =

Ak -2
HD;‘gknDk gk. Hence

if ;(l; > |lgklloo We have
X . - N
x> X2 min((|D; gk, |1 Dest ).

Assume that D,:l gk # kakskN . We first show that if we can establish
(A.5) Pr = W (—Dy *gk) + Bst ,

where 8; > 0 and 7 > 0, then (A.4) holds. From (A.5) and (DysY)T(—Dj, 'gk) > 0,

we have
(BeDrsy )T ((—Dj ' gk)) > 0.
Using pr = Dipr = ve(—Dj 'gk) + BiDisy , again
16112 = 721D "9kl + 2(v Dis )T (Be(—Dj  gk)) + B2l Desi {12,

but ||pk|| < Ag. Hence

Ay
and 0< < ——F__
| Dr.syy |
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Hence. from (A.3), the boundedness of 9k, Dy 1 gk,Dksﬁ, and the fact that z, is a
nonde:enerate first-order point, it is easy to verify that

X ,
ag > Z%min(l{D,:ngH, | Dis¥||) for some xo > O.

Flnally, we need to establish (A.5) under the linearly independent assumption
Dy gk # Pka sy - Assume that the columns of Y}, form an orthonormal basis for span
{Dk gk, Dksk }. Then YkYTDk gk = Dk gk, YkYk Dksk = Dksk , and YTYk =1y
where I5 is the 2-by-2 identity matrix. Moreover,

pr = D 'Yi[YT (M + \1)Yi] 1Y DA gk,
where A, > 0 and if Ax > 0, || Dipi|| = Ak > 0. Let (A) = Dygpr(N) and
(A.6) PO E YV (M + AV YT D gk for A > 0.
Then there exists G(A) and () such that
A(A) = B(N)(=Dy ' gk) + (X Disy, -
First, it is clear that $(0) = 0,v(0) = 1. From (A.6),

_ B(A) _ Dilgk
L TBON] = D6k

and by the linear independence assumption D;lgk # kaksiv we have

BN 1

im = = —.
A—too BN || Dy gk||

Hence, for X sufficiently large, 5(A) > 0.
We now prove that v(A*) > 0 by contradiction. Assume that v(\*) < 0 (this

means that || Disf’ || > Ag). From continuity of v()),v(0) = 1 and Y{(A*) < 0, there
exists 0 < X < A* so that y()) = 0. This implies that

BND; gk = ~Yi (YT (M, + M) Y)Y Dy gk

From M3l = —-Dilgk Y Y,T5Y = 5, and the fact that the columns of Yy are
linearly independent, there exists x such that

YIMYY I Dl gk = X[V M Y)Y, T Y
Again using Y;Y,7 D} ' gk = D; ' gk and YiY,T'8Y = 3, we have
Dl: gk = XDksk, )

which contradicts the assumption D ' gy # prDisy

Similarly, we can prove that B(A*) > 0 based on 8(\) > 0 for sufficiently large ).
Therefore (A.5) holds. This completes the proof. g

Now we establish the convergence properties of the STIR algorithm.

THEOREM 9. Let the level set £ = {z € R" : f(z) < f(zo), = € F} be compact
and f : F — R be twice continuously differentiable on L. Let {xy} be the sequence
generated by the STIR algorithm in Fig. 3. Then the following hold:
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1. If (AS.3) is satisfied, the Kuhn-Tucker condition is satisfied at every limit
point.
2. Assume that both (AS.3) and (AS.5) are satisfied and Wi in Fig. 3 contains

sufficient negative curvature information whenever My is indefinite (negative
definite), i.e.,

~T ”, ~
%gﬂi < max(_fnc’ TAmin(‘Mk))a
with €pe > 0 and 0 < 7 < 1. Then the following hold:
(a) If every limit point is nondegenerate, there is a limit point T, at which both
the first- and second-order necessary conditions are satisfied.
(b) If z. is an isolated nondegenerate limit point, both the first- and second-order
necessary conditions are satisfied at ..

(c) If M, is nonsingular for some limit point z. of {zx} and Wwr = 8Y when-
ever My, is positive definite, M, is positive definite, {xx} converges to z., all
iterations are eventually successful, and {Ay} is bounded away from zero.

Proof. Using Lemma 6, for any subsequence with limg_. )\min(Mk) < 0, the

corresponding {px} has the angle property. Therefore there exists ¢g > 0 such that
ar > € for k sufficiently large. Hence using Lemma 7, for some €; > 0,

~i(se) > o VR + | ReDepul?).

Condition (AS.3) then implies that
pe 2 2
(A7) flax) = f(zr41) 2 per—o AeBi + | ReDipre [7]-

Now assume that M, is positive definite and {z} converges to z.. From Lemma
7 we have

—Yr(sk) = %{min{l,ai}/\kAi + min{1, o H| Ry || *],

where oy, is the stepsize along pi. Let € > 0 be a lower bound for the eigenvalues of
M.

From (A.1), (A.4) in Lemma 8, and ||Dysl|| < 1Dy gk, there exists x > 0
such that

(A.8) [wilpe]l = x min{AZ, | Dest %}
Using (A.7) and (A.8), the proof is essentially the same as that of Theorem 3.10
in [1]: replacing (3.21) in {1] by (A.7) and (3.22) in [1] by (A.8). 0
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