Pointwise maximum

if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex

examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of x) proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex

examples

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Composition with scalar functions

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if $\begin{aligned} & g \text { convex, } h \text { convex, } \tilde{h} \text { nondecreasing } \\ & g \text { concave, } h \text { convex, } \tilde{h} \text { nonincreasing }\end{aligned}$

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if g_{i} convex, h convex, \tilde{h} nondecreasing in each argument g_{i} concave, h convex, \tilde{h} nonincreasing in each argument proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex

examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0, \quad C \succ 0
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$
g is convex, hence Schur complement $A-B C^{-1} B^{T} \succeq 0$

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

- f^{*} is convex (even if f is not)
- will be useful in chapter 5

examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

Quasiconvex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbf{R}_{++}^{2}
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

- distance ratio

$$
f(x)=\frac{\|x-a\|_{2}}{\|x-b\|_{2}}, \quad \operatorname{dom} f=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}
$$

is quasiconvex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1
$$

f is log-convex if $\log f$ is convex

- powers: x^{a} on \mathbf{R}_{++}is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})}
$$

- cumulative Gaussian distribution function Φ is log-concave

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if

$$
f(x) \nabla^{2} f(x) \preceq \nabla f(x) \nabla f(x)^{T}
$$

for all $x \in \operatorname{dom} f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is log-concave, then

$$
g(x)=\int f(x, y) d y
$$

is log-concave (not easy to show)

consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
(f * g)(x)=\int f(x-y) g(y) d y
$$

- if $C \subseteq \mathbf{R}^{n}$ convex and y is a random variable with log-concave pdf then

$$
f(x)=\operatorname{prob}(x+y \in C)
$$

is log-concave
proof: write $f(x)$ as integral of product of log-concave functions

$$
f(x)=\int g(x+y) p(y) d y, \quad g(u)= \begin{cases}1 & u \in C \\ 0 & u \notin C\end{cases}
$$

p is pdf of y

