
Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

• sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

examples

• support function of a set C: SC(x) = supy∈C yTx is convex

• distance to farthest point in a set C:

f(x) = sup
y∈C

‖x− y‖

• maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax(X) = sup
‖y‖2=1

yTXy
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Composition with scalar functions

composition of g : Rn → R and h : R→ R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

• proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x)

examples

• ∑m
i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex
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Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

• f(x, y) = xTAx+ 2xTBy + yTCy with

[
A B
BT C

]
� 0, C � 0

minimizing over y gives g(x) = infy f(x, y) = xT (A−BC−1BT )x

g is convex, hence Schur complement A−BC−1BT � 0

• distance to a set: dist(x, S) = infy∈S ‖x− y‖ is convex if S is convex
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The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ is convex (even if f is not)

• will be useful in chapter 5
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examples

• negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{ −1− log(−y) y < 0
∞ otherwise

• strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn
++

f∗(y) = sup
x
(yTx− (1/2)xTQx)

=
1

2
yTQ−1y
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Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

• f is quasiconcave if −f is quasiconvex

• f is quasilinear if it is quasiconvex and quasiconcave
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Examples

• √|x| is quasiconvex on R

• ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

• log x is quasilinear on R++

• f(x1, x2) = x1x2 is quasiconcave on R2
++

• linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear

• distance ratio

f(x) =
‖x− a‖2
‖x− b‖2 , dom f = {x | ‖x− a‖2 ≤ ‖x− b‖2}

is quasiconvex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

• powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

• many common probability densities are log-concave, e.g., normal:

f(x) =
1√

(2π)n detΣ
e−

1
2(x−x̄)TΣ−1(x−x̄)

• cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2 du
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Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom f

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if f : Rn × Rm → R is log-concave, then

g(x) =

∫
f(x, y) dy

is log-concave (not easy to show)
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consequences of integration property

• convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =
∫

f(x− y)g(y)dy

• if C ⊆ Rn convex and y is a random variable with log-concave pdf then

f(x) = prob(x+ y ∈ C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

f(x) =

∫
g(x+ y)p(y) dy, g(u) =

{
1 u ∈ C
0 u �∈ C,

p is pdf of y
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