
M7 – Memory Checkers

CS 136L F23 – LEC 9

Yiqing Irene Huang, Qianqiu Zhang

Disclaimer

• The following slides were not presented page by page in class.

• They are my own study notes to share with students.

• In the lab session, we will cover key points, do small demos and give
hints on commonly seen errors

2

Main Points

Use memory checkers to identify memory errors.

• Valgrind directly operates on the executable
• Supports both clang and gcc compiled code, works better with gcc

• memcheck tool

• AddressSanitizer injects instrumentation at compile time
• Part of clang, gcc version 4.8 and up also supports it.

3

Memory Errors

1. Using uninitialized memory

2. Dereferencing/accessing a NULL pointer or an invalid address.

3. Buffer overflow

4. Using stack memory after function has returned

5. Memory Leak

6. Accessing dynamic memory beyond the range of memory allocated

7. Accessing dynamic memory that has already been deallocated

8. Trying to deallocate memory that is no-longer/not ours to
deallocate

4

Lab Thresholds
Question Description # of Tests Pass Complete

Q1 Allocating a node 4 1 3

Q2 Deallocating a node 4 1 3

Q3 Printing a list 4 1 3

Q4 Computing list length 4 1 3

5

Valgrind
gcc -Wall -O0 -g <files-in-the-program-come-here>

valgrind -s --leak-check=full --track-origins=yes ./executable-name

AddressSanitizer
clang -Wall -O0 -g -fsanitize=address <files-in-the-program-come-here>

./executable-name

Bug Reporter
/u2/cs136l/pub/lab7/bug-reporter

How to name the executable?
What is a.out?

Introduction

• Valgrind

• AddressSanitizer

6

Which optimization level does the module recommend to use when using Address Sanitizer?

Uninitialized Memory

7

• The –Wall option is required to identify the error both for
clang and gcc at compile time

• Clang: –fsanitize=address at compile time
• Valgrind will capture the memory error at runtime.

• Use –track-origins=yes option for details
• AddressSantizer will not report runtime error

• -O0 gives consistent output
• -O1 gives random output

Conditional Jump Over Uninitialized Values

8

• The –Wall option is required to identify the error for gcc
• clang cannot capture this error at compile time
• Valgrind will capture the memory error at runtime.

• Use –track-origins=yes option for details
• AddressSantizer will not report runtime error
• MemorySanitizer will report runtime error

-fsanitize=memory

NULL Address

9

Invalid Write Invalid Read

Segmentation fault both for clang and gcc
Segmentation fault for gcc
Only SEGV with –O0 for clang

Buffer Overflow

• Valgrind cannot detect buffer overflow

• AddressSanitizer can detect it with –O0 only

10

Stack Use After Run

• Valgrind cannot detect the error.

• AddressSanitizer can detect the
error with special flags

11

Stack Use After Run – Cont’d

• The –Wall will detect it both for gcc and clang at compile time

12

Stack Use After Run – Cont’d

• Both valgrind and
AddressSantizer will catch
the error

13

Heap Memory Errors

• Memory leak
• malloc without the matching free()

• Incorrect use of malloced memory
• Access memory that is not allocated. Allocate X bytes, access X+n (n>0) bytes

• Incorrect free
• Free a pointer that is not returned by malloc

• Premature free
• After free, access the memory

14

Linked Structure

15

NULL

Acknowledgement

• Slides by courtesy of Carmen Bruni and Dave Tompkins

• Demo notes from Nomair Naeem

• Demo lectures by Carmen Bruni, Dave Tompkins, and Nomair Naeem

16

References

• CS 136L edX notes at https://online.cs.uwaterloo.ca/

17

https://online.cs.uwaterloo.ca/

	Slide 1: M7 – Memory Checkers
	Slide 2: Disclaimer
	Slide 3: Main Points
	Slide 4: Memory Errors
	Slide 5: Lab Thresholds
	Slide 6: Introduction
	Slide 7: Uninitialized Memory
	Slide 8: Conditional Jump Over Uninitialized Values
	Slide 9: NULL Address
	Slide 10: Buffer Overflow
	Slide 11: Stack Use After Run
	Slide 12: Stack Use After Run – Cont’d
	Slide 13: Stack Use After Run – Cont’d
	Slide 14: Heap Memory Errors
	Slide 15: Linked Structure
	Slide 16: Acknowledgement
	Slide 17: References

