
M6 – C/C++ Preprocessor

CS 136L F23 – LEC 8

Yiqing Irene Huang, Qianqiu Zhang

Disclaimer

• The following slides were not presented page by page in class.

• They are my own study notes to share with students.

• In the lab session, we will cover key points, do small demos and give
hints on commonly seen errors

2

Main Points

Learn about the C preprocessor and its features

• Use the #include directive to copy and paste header files

• Use the #define directive to create macros

• Use #if, #ifndef, and #ifdef directives to conditionally compile code

• Use #include guards in header files to avoid including the header files
multiple times

3

Lab Thresholds

Question Description # of Tests Pass Complete

Q1 Include Guards 5 4 5

Q2 Testing Suite Writing 10 4 6

Q3 Conditional Compilation 8 3 8

Q4 Command-line Macros 8 3 8

4

Shell Scripting Tips:
• Do not forget the shebang line
• Be careful with the white spaces
• Recall the shell-defined variables

$1, $2, et. al..

Testing Tips:
• Run the viewer program and

understand its functionality
• Think Edge Cases!

Preprocessor

5

• Preprocessor directives are lines in C beginning with # symbol
• Header file include: #include

• Macro expansion: #define

• Conditional compilation: #if, #ifdef, #ifndef, and #endif

Preprocessor and Header Files

6

• Preprocessor directives are lines in C beginning with # symbol
• Header file include: #include
• Macro expansion: #define
• Conditional compilation: #if, #ifdef, and #ifndef

• C preprocessor #include
• The include path: /usr/include etc. al. and –I

• clang: clang –v <file.h>, clang –Iheader –v <file.h>

• gcc: cpp –v, cpp –Iheader –v

• <file.h>: search include path
• “file.h”: search current source file dir and the include path
• Replaces the #include line with the contents of file.h

• The clang –E option
• Run the preprocessor and output the modified C source code with preprocessor

directives being acted upon and removed.

Macro Expansion

• The #define directive
• Object-like

• #define identifier value, no space in identifier

• The const in modern C make most of use of #define obsolete

• Function-like (not in scope)

7

Expansion of one macro affects anotherNo syntax error,
but don’t do it in real code

Constant Length Array

Variable Length Array

Exercise 1

a) 11

b) 12

c) 13

8

#include <stdio .h>
#define SEVEN 3 + 4

int main (void) {
 printf ("%d\n", SEVEN * 2) ;
 return 0;
}

d) 14

e) None of the above

Exercise 2
• Which one(s) define(s) a variable length array?

9

//A ex2_a.c
int main (void) {
 const int x = 5;
 int arr[x];
 return 0;
}

//B ex2_b.c
int main (void) {
 int x = 5;
 int arr[x];
 return 0;
}

//C ex2_c.c
#define LEN 5
int main (void) {
 int arr[LEN];
 return 0;
}

//D ex2_d.c

int main (void) {
 int arr[5];
 return 0;
}

Conditional Compilation

#if, #ifdef, #ifndef, #elif, #else and #endif

10

Build for different Operating Systems
__unix__ and _WIN32 are compiler defined macros

Build for different features
User defined macros in file or command line

Conditional compilation happens at compile-time

Specify macro value using command line

Exercise 3

• Select all that are true

11

// ex3-1.c
#include <stdio.h>
#define A
int main()
{

printf("A = %d\n", A);
 return 0;
}

// ex3-2.c
#include <stdio.h>

int main()
{

printf("A = %d\n", A);
 return 0;
}

a) clang ex3-1.c does not compile.

b) clang ex3-1.c compiles and ./a.out
prints “A = ” followed by a new line.

c) clang ex3-2.c does not compile.

d) clang –DA ex3-2.c compiles and the
./a.out prints “A = ” followed by a new line.

e) clang –DA ex3-2.c compiles and the
./a.out prints “A = 1” followed by a new line.

f) clang –DA=5 ex3-2.c compiles and the
./a.out prints “A = 5” followed by a new line.

Commenting and Debugging

• We can comment out a block of
code, especially if the block
contains /* */ block comments

• We can nest block comments

12

• We can conditional compile debug
statement

Include Guards

13

#ifndef UNIQUE_MACRO_NAME
#define UNIQUE_MACRO_NAME

// original header file

#endif

Exercise 4

• Suppose we with to write a header le a_file.h to be included possibly
in multiple files. Which of the following is the standard name for the
include guard for this file?

14

a) A_FILE.H

b) A_FILE_H

c) A-FILE-H

d) AFILE_H

e) AFILE

f) a_file_h

g) A_FILE_DOT_H

h) a_file_dot_h

i) AFILE_DOT_H

Exercise 5
• Which one implements the include guard for a.h correctly?

15

//A.
#define A_H
#ifdef A_H
// code here
endif

//B.
#ifndef A_H
#define A_H
// code here
#endif

//C.
#ifndef A_H
#define A_H
#endif
// code here

//D.
#ifdef A_H
#define A_H
// code here
#endif

Discussion

• Why do we want to use conditional compilation?

• Build for different Operating Systems (cross-platform)

• Build for different CPU architecture (ARM vs Intel, 32-bit vs 64-bit)

• Build to include different features

• Build to include/exclude debugging statement

• Comment out a block of code (nested comments)

• Include Guards

16

Acknowledgement

• Slides by courtesy of Carmen Bruni, Anton Mosunov and Dave Tompkins

• Demo notes from Nomair Naeem

• Demo lectures by Carmen Bruni, Dave Tompkins, and Nomair Naeem

17

References

• CS 136L edX notes at https://online.cs.uwaterloo.ca/

18

https://online.cs.uwaterloo.ca/

	Slide 1: M6 – C/C++ Preprocessor
	Slide 2: Disclaimer
	Slide 3: Main Points
	Slide 4: Lab Thresholds
	Slide 5: Preprocessor
	Slide 6: Preprocessor and Header Files
	Slide 7: Macro Expansion
	Slide 8: Exercise 1
	Slide 9: Exercise 2
	Slide 10: Conditional Compilation
	Slide 11: Exercise 3
	Slide 12: Commenting and Debugging
	Slide 13: Include Guards
	Slide 14: Exercise 4
	Slide 15: Exercise 5
	Slide 16: Discussion
	Slide 17: Acknowledgement
	Slide 18: References

