
Zero-Overhead Lexical Effect Handlers
CONG MA, University of Waterloo, Canada
ZHAOYI GE, University of Waterloo, Canada
MAX JUNG, University of Waterloo, Canada
YIZHOU ZHANG, University of Waterloo, Canada

Exception handlers—and effect handlers more generally—are language mechanisms for structured nonlocal
control flow. A recent trend in language-design research has introduced lexically scoped handlers, which
address a modularity problem with dynamic scoping. While dynamically scoped handlers allow zero-overhead
implementations when no effects are raised, existing implementations of lexically scoped handlers require
programs to pay a cost just for having handlers in the lexical context.

In this paper, we present a novel approach to implementing lexically scoped handlers of exceptional effects.
It satisfies the zero-overhead principle—a property otherwise met by most modern compilers supporting
dynamically scoped exception handlers. The key idea is a type-directed translation that emits information
indicating how handlers come into the lexical context. This information guides the runtime in walking the
stack to locate the right handler. Crucially, no reified lexical identifiers of handlers are needed, and mainline
code is not slowed down by the presence of handlers in the program text.

We formalize the essential aspects of this compilation scheme and prove it correct.We integrate our approach
into the Lexa language, allowing the compilation strategy to be customized for each declared effect based on
its expected invocation rate. Empirical results suggest that the new Lexa compiler reduces run-time overhead
in low-effect or no-effect scenarios while preserving competitive performance for effect-heavy workloads.

CCS Concepts: • Software and its engineering→Compilers;Control structures;Correctness; Semantics;
Runtime environments; • Theory of computation → Type structures; Control primitives; Functional
constructs; Operational semantics.

Additional Key Words and Phrases: Lexa, exception handling, algebraic effects, compiler correctness.

ACM Reference Format:
Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang. 2025. Zero-Overhead Lexical Effect Handlers. Proc. ACM
Program. Lang. 9, OOPSLA2, Article 399 (October 2025), 27 pages. https://doi.org/10.1145/3763177

1 Introduction
Exception handling is a common feature in modern programming languages, designed to help
programmers manage abnormal or unusual run-time conditions. The idea is to allow control to be
transferred in a nonlocal but structured manner to handler code, separating common-case code
from the handling of exceptional conditions.

Effect handlers [Plotkin and Power, 2003; Plotkin and Pretnar, 2013] generalize exception handlers,
effectively allowing programmers to define custom delimited control operators. They can express a
wide range of control-flow patterns, including exceptions, coroutines, and cooperative multitasking.
Mainstream languages such as OCaml, Scala, and WebAssembly have adopted or are considering
adopting some forms of effect handlers.

Authors’ Contact Information: Cong Ma, cong.ma@uwaterloo.ca; Zhaoyi Ge, zhaoyi.ge@uwaterloo.ca; Max Jung,
max.jung@uwaterloo.ca; Yizhou Zhang, yizhou@uwaterloo.ca. All authors are affiliated with the David R. Cheriton
School of Computer Science, University of Waterloo, Ontario, Canada.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART399
https://doi.org/10.1145/3763177

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0005-0842-4697
https://orcid.org/0009-0008-0100-0201
https://orcid.org/0009-0000-4627-5403
https://orcid.org/0000-0002-8206-4694
https://doi.org/10.1145/3763177
https://orcid.org/0009-0005-0842-4697
https://orcid.org/0009-0008-0100-0201
https://orcid.org/0009-0000-4627-5403
https://orcid.org/0000-0002-8206-4694
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763177

399:2 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

Ever since the inception of exception handling [Goodenough, 1975; MacLaren, 1977; Liskov and
Snyder, 1979], language designers have always chosen to make exception handlers dynamically
scoped : when an exception is raised, the dynamically closest enclosing handler is chosen to handle
it. Designers of languages with effect handlers have largely followed this convention [Bauer and
Pretnar, 2015; Leijen, 2017; Lindley et al., 2017; Sivaramakrishnan et al., 2021].

Lexically scoped handlers. There is a growing recognition that dynamically scoped handlers
are not semantically well-behaved, for a reason similar to why dynamically scoped variables are
not the go-to choice for language designers. It seems to have started with the observation that
dynamically scoped exception handlers can accidentally catch exceptions not meant for them
[Zhang et al., 2016]. It was further argued that this unintended interception of exceptions—and
control effects more generally—is a symptom of a deeper modularity problem [Zhang and Myers,
2019]: the dynamic-scoping semantics compromises abstraction safety, leaking implementation
details and obstructing local reasoning about effectful programs.

A wave of recent language-design efforts responds to the problems with dynamic scoping
by making handlers lexically scoped. These designs include research languages such as Genus
[Zhang et al., 2016], Effekt [Brachthäuser et al., 2020b], and Lexa [Ma et al., 2024]. Some form of
lexically scoped handlers is also being considered for Scala. Even language designs that have mostly
focused on dynamically scoped handlers, such as Koka and WebAssembly, have implemented or
are considering support for lexically scoped handlers under the term named handlers [Xie et al.,
2022; Phipps-Costin et al., 2023].

The core idea is that a handler serves as a lexically scoped capability. Only code that possesses the
capability—either code within the handler’s lexical scope or code that has received the capability
from its caller—can raise effects to the handler. It has been shown that lexically scoped handlers
support strong reasoning principles [Zhang andMyers, 2019; Biernacki et al., 2020] while preserving
the expressive power of effect handlers.This development has sparked active research into compilation
techniques for lexically scoped handlers [Zhang et al., 2016; Schuster et al., 2022; Xie et al., 2022;
Müller et al., 2023; Ma et al., 2024].

What you don’t use, you don’t pay for.

— Stroustrup [1995, 2012]

The zero-overhead principle. We observe that all
existing implementations of lexically scoped handlers
share a common trait: they impose a run-time overhead
on execution paths evenwhen no effects are raised. A small overhead onmainline paths is acceptable
in return for efficient handling of effects. However, there exist a broad class of programs that raise
effects much less frequently than they perform effect-free computation. These programs still use
handlers—in particular, exception handlers—to deal with unusual conditions, but their effect-free,
mainline paths are expected to be traversed far more often than effect-raising paths. For such
programs, the primary performance consideration for the compiler writer is to ensure that mainline
paths are not slowed down by the presence of handlers.

This consideration is an instance of the zero-overhead principle: what you don’t use, you don’t
pay for. In the context of exception handling, the term “zero-overhead exception handlers” means
that code should not pay for exceptions unless they are actually raised. Notice that it does not mean
that the raising and handling of exceptions should have no cost. On the contrary, it means just the
opposite: it accepts a relatively high cost for exceptional paths, which are expected to be unusual,

Normal case execution efficiency should
not be impaired at all.

— Atkinson, Liskov, and Scheifler [1978]
and Liskov and Snyder [1979]

in exchange for minimal overhead on mainline paths, so
that this trade-off leads to an overall performance gain.

The zero-overhead principle has long shaped the
design and implementation of exception handling. It
dates back to CLU [Liskov et al., 1977], whose designers

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:3

emphasized mainline-path efficiency as a key criterion for an implementation strategy. CLU’s design
methodology has influenced languages including C++ and Java—and more recently, WebAssembly
[Wagner, 2017] and Python [Shannon, 2021]. In all these languages, exception handlers are
dynamically scoped. Zero-overhead implementation strategies for dynamically scoped handlers
are well understood, drawing on the seminal work of CLU.

However, zero-overhead lexically scoped handlers remain elusive. The semantics of lexically
scoped handlers involves generating fresh labels that serve as identifiers of installed handlers
and passing these labels down to code that can raise effects to the handlers [Zhang et al., 2016;
Zhang and Myers, 2019; Biernacki et al., 2020]. This semantics suggests that implementations would
need to represent these labels and pass the representations around at run time, which inevitably
incurs some overhead even when no effects are raised. Indeed, all existing implementations do
exactly what the semantics suggests: handlers are identified via pooled objects [Zhang et al., 2016],
subregion evidence [Schuster et al., 2022; Müller et al., 2023], evidence vectors [Xie et al., 2022], or
memory addresses [Ma et al., 2024], and therefore extra instructions are needed to propagate these
identifiers.

It would be unfortunate if adopting lexically scoped handlers necessarily entailed a performance
penalty on mainline execution, which could create a barrier to adoption despite the benefits of
abstraction safety. Current implementation strategies, such as the approach of Ma et al. [2024],
already keep the overhead on mainline execution low in practice. Nevertheless, compiler writers,
loss-averse by nature, may hesitate to adopt lexically scoped handlers if they believe they are giving
up efficiency for intangible gains that are not easily measured.

This work. We present a novel approach to compiling lexically scoped effect handlers that satisfies
the zero-overhead principle. The key idea is a type-directed translation that enables the compiler
to emit static information tracking the lexical provenance of handlers in scope. This information
guides the runtime system in walking the stack to locate the handler for a raised effect.

The approach is complementary to, and compatible with, existing implementations of lexically
scoped handlers: effects expected to be raised rarely can use the new zero-overhead implementation
strategy, while effects expected to be raised more frequently can still use existing strategies. This
flexibility allows the programmer to customize the implementation strategy based on the expected
usage patterns of individual effects for optimal performance.

2 Main Ideas
Dynamically scoped handlers risk accidental handling of effects. Lexically scoped handlers address
this modularity problem. To understand the risk of accidental handling, consider the example
shown in Figure 1. It consists of four pieces: a library, a plugin, a framework, and an application,
each developed without knowing the implementation details of the other pieces. The code in peach
color pertains to lexical effect handlers and can be ignored for now.

• The library function libFun can raise the Logging effect to log messages. It is expected that the
Logging effect will occur rarely under normal circumstances.

• Both framework and plugin call libFun, so they may further propagate the Logging effect raised
by libFun to their callers.

• The framework function installs a Logging handler to handle Logging effects raised from its own
call to libFun.

• The framework function is a higher-order function that receives an add-on from its caller and
calls the add-on; it is oblivious to the effects that the add-on may raise.

• The main function passes plugin to framework as an add-on, so it is aware that plugin may raise
Logging effects. As a result, main installs a Logging handler to handle Logging effects from plugin.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:4 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

8 def plugin [logger: Logging] (x: int) =

9 ^^...

10 libFun [logger] (^^...)

11 ^^... plugin code

3 def libFun [logger: Logging] (^^...) =

4 ^^...

5 raise logger.log(”^^...”)

6 // logging effects are expected to occur rarely
7 ^^... library code

1 effect Logging =

2 | log : string → unit effect declaration
12 def framework [𝛼] (addon: {𝛼}int → unit) =

13 handle

14 ^^...

15 addon (^^...)

16 // framework is oblivious to effects raised by add-on
17 ^^...

18 libFun [fileLogger] (^^...)

19 ^^...

20 with fileLogger: Logging

21 // handler is intended for effects raised from line 18
22 | log(s) ⇒ logToFile(s)

framework code

23 def main () =

24 handle

25 framework [consoleLogger] (plugin[consoleLogger])

26 with consoleLogger: Logging // handler is intended for effects raised from plugin
27 | log(s) ⇒ logToConsole(s) application code

Figure 1. A program consisting of a library, a plugin, a framework, and an application.

2.1 Handler Search Semantics and Implementation Strategies
Figure 2 shows the call stacks at the point when libFun raises a Logging effect during a call
from addon. Each column depicts how a Logging handler is found using different semantics and
compilation strategies. A triangle represents the consoleLogger handler installed in main, and a
circle represents the fileLogger handler installed in framework. The gray arrows represent the
searching behavior of the semantics or the compilation strategy.

For now, we focus on the first column, which shows the behavior of dynamically scoped handlers.
When an effect is raised, the runtime searches for the nearest handler on the stack that can handle
the effect. In this case, the handler installed in the framework frame handles the effect, and the
message is logged to the file. In prior work [Zhang et al., 2016; Zhang and Myers, 2019; Biernacki
et al., 2020], it is argued that this behavior is problematic; below, we explain why.

For modularity, the application should be able to swap a different implementation of the
framework that has the same observable behavior, without noticing any difference. However,
if the new framework does not call libFun and thus does not install a Logging handler, the effect
raised from addon will be propagated over the framework and be handled in main—implementation
details of the framework are leaked to its caller! This example demonstrates that dynamically
scoped handlers threaten to leak implementation details of higher-order abstractions and also
hinder modular reasoning.

Lexically scoped handlers address this modularity problem. When a handler is installed, a label
is freshly generated, representing the newly created handler instance; effects can be raised to the
handler instance only using this label. Function definitions can have extra bindings for labels, and
function calls can take in labels as arguments. In Figure 1, both libFun and plugin take as input a
label logger that represents a handler instance for the Logging effect. Labels can also be captured in
closures. The framework function is parameterized by a capability variable 𝛼 that abstracts over the
possible labels that addon may capture—this polymorphism indicates that framework is oblivious to
any effects possibly raised by addon. It might be useful to clarify the relationship between plugin

and addon. One can view addon as a closure of plugin that captures the label consoleLogger from
the environment at line 25. One can also view addon as a curried function of plugin that is partially
applied with the label consoleLogger.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:5

framework

main

plugin

libFun

framework

main

plugin

libFun

env:

Dynamically scoped
handlers

Lexically scoped
handlers

using labels

framework

main

plugin

libFun

env: 0x3245

0x3245

Lexically scoped
handlers

using addresses

framework

main

plugin

libFun

Lexically scoped
handlers

using clues and hoppers

Handlers
consoleLogger
fileLogger

Arrows

function call

handler search

Hoppers

2

4

3

Clues

1

immediate

follow α from caller

follow logger from closure

follow logger from caller

1

2

4

3

Figure 2. Stack diagrams illustrating different handler search semantics and implementation strategies.

The behavior of lexically scoped handlers for our example is shown in the second column of
Figure 2. The function plugin captures consoleLogger in its closure environment. At run time, a
label is freshly generated at line 24 upon entering the handle block in main, and it substitutes the
consoleLogger in the handle block. We use a small triangle to represent this label in Figure 2. When
plugin calls libFun, this label is passed to libFun, which then uses this label to raise the effect.
The runtime searches for the nearest handler instance identified by this label, skipping over the
handler installed in framework which has a different label, and eventually reaches consoleLogger
installed in main. Readers should be convinced that regardless of the implementation details of
the framework, the application has the guarantee that messages from plugin will be logged to the
application’s console rather than intercepted by the framework.

The third column in Figure 2 shows a representative, efficient implementation of lexically scoped
handlers on a low-level machine [Ma et al., 2024]. Instead of generating fresh labels, the compiler
simply uses the stack address of the handler as the label. When an effect is raised, the runtime
directly jumps to the handler using the stack address. While the raising of effects is efficient in this
implementation strategy, there is always an overhead associated with passing extra arguments
even when effects are not raised.

While we use logging as an example of an effect, control effects in practice—especially in
mainstream languages—most often appear as exceptions. Exception-handling code is common, but
exceptions themselves are expected to be rare in normal circumstances. Thus, it is important to
keep the overhead of exception handlers on mainline paths minimal. Even if the actual overhead is
small with current implementation strategies, the mere violation of the zero-overhead principle can
still discourage language designers from adopting lexically scoped handlers over dynamic scoping.

2.2 A Zero-Overhead Implementation Strategy
We contribute an implementation strategy for lexically scoped handlers thatmeets the zero-overhead
principle. Unlike the existing approaches, this new strategy does not involve reifying or passing
any representations of handler instances at run time. Rather, the information needed to locate
the handler is spread across the call stack. When an effect is raised, the runtime system invokes a
procedure called stackwalker. The stackwalker always carries a piece of information called clue. If
the clue indicates that the stackwalker should further walk up the stack, the stackwalker will find

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:6 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

in the caller’s frame a transition function, called hopper, that maps the current clue to the next clue,
which the stackwalker uses to continue the walk.

We now illustrate how the stackwalker works for our example, using the fourth column in
Figure 2. For the purpose of presentation, in Figure 2, each clue is shown as a textual description of
what the stackwalker should do next (see the Clues legend).
1 When libFun raises the Logging effect, the initial clue tells the stackwalker to follow the logger

label parameter of libFun, which is instantiated by libFun’s caller plugin.
2 When the stackwalker reaches the call site of libFun in plugin, it discovers, through the hopper,

that plugin calls libFun with a label named logger that comes from the closure environment of
the partially applied plugin. Since the captured logger label must come from somewhere up
the call stack, the stackwalker continues to walk up the stack.

3 As the stackwalker reaches framework, it discovers, through the hopper, that the label captured
in the callee addon is abstracted by a capability variable 𝛼. Now the stackwalker turns to follow 𝛼,
which comes from the caller main. It skips over fileLogger installed in the frame of framework.

4 Finally, as the stackwalker reaches main, it discovers, through the hopper, that the capability
variable 𝛼 of the callee framework is instantiated by the label consoleLogger, which represents
the handler installed in the frame of main. As the handler for consoleLogger lives in the very
same frame, the stackwalker reaches the handler implementation directly.

The hopper at a call site helps the stackwalker to transition from walking the callee’s frame to
walking the caller’s frame. We have not yet explained what information hoppers store. In the rest of
this section, we will use a more elaborate example in Figure 3, where functions are parameterized
by multiple label variables (ℓ) and capability variables (𝛼). The function fun0 is parameterized over
a capability variable 𝛼0 and two label variables ℓ0 and ℓ1. The body of fun0 consists of just a call
to a nested function fun1. The function fun1 is parameterized over a capability variable 𝛼1 and a
label variable ℓ2. fun1 takes in a function argument g, and fun0 takes in a function argument f and
passes it to fun1. The header of fun1 also shows the label captured by fun1 in curly braces {ℓ1}.

The right of Figure 3 depicts the definition of fun0. The box shaded with gray 0 corresponds to
the body of fun0, while the box shaded with gray 1 corresponds to the body of fun1. The body of
fun0 consists of a single call to fun1, with the arguments (ℓ0, 𝛼0) and ℓ0 shown in the brackets.
For each function body, the black boxes above it are the capability variables parameterizing the
function, and the gray boxes are the label parameters. The white boxes with dashed borders
are the capture set of the function. fun1’s capture set is {ℓ1}. fun0 has an empty capture set, because
it is a top-level function. The dotted arrows indicate the lexical provenance of the variables.

The main enabler of the zero-overhead implementation strategy is a typing discipline that
makes it explicit which of the three kinds of binders (the legend at the bottom of Figure 3) a
handler is associated with. This typing discipline provides a call site with sufficient knowledge—
embedded in the hopper—about the provenance of a label or capability variable, so that it can
use that knowledge to send the stackwalker up the call stack: just reverse the arrows in Figure 3!
Hoppers can be computed at compile time, and the stackwalker only needs the return address of a
call site to locate its hopper (see Section 5). Therefore, our implementation requires nothing to be
put on the stack besides the return address, which is already there.

We use three stack snapshots (Figure 4) to illustrate how hoppers guide the stackwalker at run
time. Each snapshot corresponds to a different effect raised from fun1 or from further down the
call stack. The stack frames are shaded with gray 0 or gray 1, indicating whether the frame is for
fun0 or fun1. Between two stack frames are the three types of binders . Above each binder
box is one or more light-blue boxes —this is where the hopper conceptually resides on the stack.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:7

1 effect F = unit → unit

2 def fun0 [𝛼0, ℓ0: F, ℓ1: F] (f: {ℓ0,𝛼0}unit → unit) =

3 def fun1 {ℓ1} [𝛼1, ℓ2: F] (g: {𝛼1}unit → unit) =

4 raise ℓ2 ()

5 raise ℓ1 ()

6 g ()

7 fun1 [(ℓ0, 𝛼0), ℓ0] (f)

00
00
00
00
00
00
00
00
00
00
00
00

[,]11111111111111111111
11111111111111111111
11111111111111111111

α1 ℓ2: Fℓ1
(ℓ0, α0) ℓ0

α0 ℓ0: F ℓ1: F

captured variable capability-variable binder label-variable binder lexical provenance

Figure 3. Higher-order functions with assorted binding structures.

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

α1 ℓ2: Fℓ1

ℓ1 ℓ0 ℓ0

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

α0 ℓ1: Fℓ0: F

fun0’s
frame

fun1’s
frame

2

1

α0

(a) line 4

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

α1 ℓ2: Fℓ1

ℓ1 ℓ0

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

α0 ℓ1: Fℓ0: F

fun0’s
frame

2

1

fun1’s
frame

ℓ0 α0

(b) line 5

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

α1 ℓ2: Fℓ1

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

α0 ℓ1: Fℓ0: F

fun0’s
frame

2

1

fun1’s
frame

ℓ1 ℓ0ℓ0 α0

α1

(c) line 6 (f’s frame now shown)

Figure 4. Stack snapshots illustrating the behavior of the stackwalker when effects are raised from different
points of the program in Figure 3.

The hopper records how each parameter of the callee is instantiated. It also records the lexical
provenance of the captured variables in the protruding box.

• In snapshot (a), fun1 raises ℓ2 (line 4 in Figure 3). The stackwalker starts by holding an initial
clue 1 that indicates the handler can be traced back to the label parameter ℓ2 of fun1. So the
stackwalker queries the hopper in the caller’s frame. The hopper, given the clue 1 , returns a
new clue 2 that indicates the handler can be traced back to the label parameter ℓ0 of fun0. The
stackwalker then continues to walk up the stack.

• In snapshot (b), fun1 raises ℓ1 (line 5 in Figure 3). ℓ1 is a free variable captured by fun1. By our
typing discipline, captured label or capability variables are reflected in a function’s type (in curly
braces), and the compiler includes their provenance information in the hopper emitted at the
call site. Therefore, when the stackwalker queries the hopper and gives it the initial clue 1 , the
hopper returns a clue 2 that indicates the handler can be traced back to the label parameter ℓ1 of
fun0. The stackwalker then continues to walk up the stack.

• In snapshot (c), the effect is raised from further below fun1’s frame, by the callee f of fun1 (line 6
in Figure 3). Recall that fun1 is a higher-order function that receives f as g and calls g.
When the stackwalker queries the hopper at the call site of g, it gives the hopper a clue that
indicates the handler comes from the capture set of g. Because the hopper records the lexical

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:8 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

provenance of the capture set, it returns a clue 1 that indicates the handler can be traced back to
the capability variable 𝛼1 parameterizing fun1.
The stackwalker then uses this clue 1 to query the hopper at the call site of fun1. The hopper
returns a clue 2 that indicates the handler can be traced back to the label parameter ℓ0 of fun0.
How does the hopper know that it is ℓ0 and not 𝛼0 that the stackwalker should follow? It might be
possible that the intended handler is further abstracted away by 𝛼0, in which case the stackwalker
should be directed to follow 𝛼0. Section 2.3 addresses this possible ambiguity.

2.3 Nonambiguity Requirement on Capture Sets
To help the stackwalker determine the variable to follow when the call site is instantiated with more
than one label or capability variables, we make the clue structure contain the name of the raised
effect. Assume that the original raised effect is F. When the stackwalker queries the hopper at the
call site of fun1, it determines that ℓ0 has the matching effect name F, so it is the intended handler.

However, we still have not ruled out the possibility that the intended handler is in 𝛼0. We prevent
this possibility by eliminating the source of the ambiguity: we require that for every function
definition, if its capture set is nonempty, then the capture set should contain either a single capability
variable or labels of distinct effect names. With this restriction, as soon as the stackwalker finds a
label with the matching effect name in the hopper, it need not look further. As Section 3 shows,
this restriction is enforced by the type system and allows hoppers to always uniquely determine
the handler to follow.

This nonambiguity requirement on the capture set of a function definition is mild. Current
surface-language designs for lexically scoped handlers enforce a stronger condition [Zhang et al.,
2016; Brachthäuser et al., 2020a]: if two effects of the same effect name are raised from the same
function, then they must be handled by the same handler. This stronger condition allows the surface
language to have a lightweight syntax that avoids explicit parameterization over capability and
label variables. Our implementation strategy can be readily applied to such surface languages.

It is sometimes useful to allow multiple handler instances with the same effect name to coexist in
the same scope [Xie et al., 2022]. Our implementation strategy supports this expressive power—with
one caveat. First of all, our strategy fully supports functions parameterized by multiple handlers
with the same effect name, as is shown by fun0 in Figure 3, which is parameterized by ℓ0 and ℓ1
both having the effect name F.

The caveat is that the restriction on capture sets also applies to a code block being handled,
potentially restricting expressiveness. Consider a computation C being handled by a handler H, as
in the term handle C with H. The code block C needs to be typed like a function definition. This is
because when an effect raised from within C is handled by H, the remaining computation in C may
be reified as a continuation object, which behaves like a function and needs to be treated as such.
Therefore, it is required that the labels in the capture set of C all have distinct effect names.

This restriction on C, however, is unnecessary if the handler H is tail-resumptive or abortive,
because such handlers do not require reifying the continuation: the continuation either can be
resumed in-place or does not resume at all. Since our implementation strategy is designed chiefly for
exceptional effects, which are typically abortive, the practical impact of this restriction is minimal.
This restriction can be further mitigated by allowing multiple handlers to be attached to the same
code block at the same level of enclosure.

3 A Formal Model of the Zero-Overhead Compilation Scheme
In this section, we capture the essential aspects of the compilation scheme formally. The essence
lies in a type-directed compilation between two languages: in the source language, handlers are
identified by freshly generated labels passed down to effect-invocation sites, whereas in the target

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:9

language, handlers are located purely by piecing together information left on the evaluation context.
Everything else, to some extent, is an implementation detail.

To this end, we define two core languages, SL and TL. Both languages are based on the simply-
typed lambda calculus, and we model their semantics as abstract machines. It is intentional that
the source language is not high-level enough to be considered a surface language and that the
target language is not low-level enough to be considered a machine language; we aim to distill the
essence of the compilation scheme, by making the semantic gap between SL and TL only concerned
with how handlers are located.

3.1 Source Language SL
SL programs use lexically scoped variables to identify handlers. In SL, every use of a handler
explicitly refers to a label variable that stands for the handler. A surface language can offer a
lighter-weight syntax by resolving implicit handler references to label variables bound in the lexical
context, as in prior work [Zhang and Myers, 2019; Brachthäuser et al., 2020a].

Syntax. The syntax of SL is given in Figure 5. Auxiliary syntax needed for the operational semantics
appears in Figure 6. We defer the type system to Section 3.3.

An overline denotes a sequence of (possibly empty) syntactic elements, with the empty sequence
denoted by 𝜖. For example, ℓ∶𝐹 denotes an ordered mapping from label variables to effect names.
The 𝑖-th element of a sequence • is denoted by a superscript •(𝑖). The size of a sequence • is denoted
by |•|. Capture-avoiding substitution is denoted by •[• ↦ •].

Values include term-level variables, the unit value, and abstractions (i.e., function definitions).
An abstraction [𝛼 ; ℓ](𝑥) ⇒ 𝑡 can be parameterized by a sequence 𝛼 of capability variables and a
sequence ℓ of label variables. A label 𝑙 substitutes for a label variable ℓ, and a capability 𝑇 substitutes
for a capability variable 𝛼. The parameterization over 𝛼 allows a higher-order function to be
polymorphic over the capabilities required by its function arguments.

Expressions include function applications, handle expressions, the raising of effects, and the
resuming of continuations. SL programs have undergone A-normalization [Flanagan et al., 1993]
such that every subexpression, except the ones in handle and with clauses, is a value.

Function applications have the form 𝑣1 [𝑇; 𝑙] (𝑣2), where 𝑣1 is the function, 𝑇 is the sequence of
capabilities instantiating the function’s capability variables, 𝑙 is the sequence of labels instantiating
the label variables, and 𝑣2 is the sequence of arguments. A capability 𝑇 is composed of a sequence
of labels and at most one capability variable. That at most one capability variable is allowed in a
capability is a simplification rather than a limitation; see the end of Section 3.3 for a discussion.

In a handle expression handle [ℓ∶𝐹] ⇒ 𝑡1 with (𝑥, 𝑘) ⇒ 𝑡2, the label variable ℓ is bound in 𝑡1.
The handler code 𝑡2 takes two arguments: the payload 𝑥 of the raised effect and the resumption 𝑘. A
raise expression raise 𝑙(𝑣) raises an effect to the handler identified by label 𝑙, passing the value 𝑣
as the payload.

A term let 𝑥1 = 𝑒1 in ⋯ let 𝑥𝑛 = 𝑒𝑛 in 𝑣 sequences the expressions 𝑒1, …, 𝑒𝑛, binding 𝑥𝑖 to 𝑒𝑖 in
the rest of the term.

Wemake the standard simplifications that an effect signature contains exactly one effect operation
and that an effect operation has exactly one argument.

Operational semantics. Figure 6 defines the operational semantics of SL as an abstract machine.
The syntax of labels 𝑙 is extended with 𝐿. Metavariable 𝐿 ranges over labels that are freshly

generated at run time and thus do not appear in the program text.
A machine state 𝑀 (a.k.a. configuration) is in one of three modes. In normal mode, the machine

state ⟨𝐸 ∥ 𝑡⟩ consists of an evaluation context and a redex within that context. In search mode, the
machine state ⟨𝐸 ∥ 𝐾 ∥ 𝐿 ∥ 𝑣⟩ consists of an evaluation context, a continuation under construction,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:10 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

effect name 𝐹 label variable ℓ capability variable 𝛼 term variable 𝑥, 𝑦 , 𝑧, 𝑘

label 𝑙 ⩴ ℓ

value 𝑣 ⩴ 𝑥 ∣ () ∣ [𝛼 ; ℓ] (𝑥) ⇒ 𝑡

capability 𝑇 ⩴ 𝜖 ∣ 𝛼 ∣ 𝑇 , 𝑙

expression 𝑒 ⩴ 𝑣1 [𝑇 ; 𝑙] (𝑣2) ∣ handle [ℓ∶𝐹] ⇒ 𝑡1 with (𝑥, 𝑘) ⇒ 𝑡2 ∣ raise 𝑙(𝑣) ∣ resume 𝑣1(𝑣2)

term 𝑡 ⩴ 𝑣 ∣ let 𝑥 = 𝑒 in 𝑡

Figure 5. Syntax of SL.

label 𝑙 ⩴ ⋯ ∣ 𝐿

value 𝑣 ⩴ ⋯ ∣ cont #𝐿(𝑥,𝑘)⇒𝑡𝐾

frame 𝐴 ⩴ let 𝑥 = � in 𝑡 ∣ let 𝑥 = #𝐿(𝑦 ,𝑘)⇒𝑡2� in 𝑡1
evaluation contex 𝐸 ⩴ 𝜖 ∣ 𝐸 ⋅ 𝐴

continuation 𝐾 ⩴ 𝜖 ∣ 𝐴 ⋅ 𝐾

configuration 𝑀 ⩴ ⟨𝐸 ∥ 𝑡⟩ ∣ ⟨𝐸 ∥ 𝐾 ∥ 𝐿 ∥ 𝑣⟩ ∣ ⟨𝐸 ∥ 𝐾 ∥ 𝑣⟩

s-app ⟨𝐸 ∥ let 𝑦 = ([𝛼 ; ℓ] (𝑥) ⇒ 𝑡1) [𝑇 ; 𝐿] (𝑣) in 𝑡2⟩ ⟶

⟨𝐸 ⋅ (let 𝑦 = � in 𝑡2) ∥ 𝑡1 [𝛼 ↦ 𝑇, ℓ ↦ 𝐿, 𝑥 ↦ 𝑣]⟩

s-return ⟨𝐸 ⋅ (let 𝑥 = � in 𝑡) ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑡 [𝑥 ↦ 𝑣]⟩

s-handle ⟨𝐸 ∥ let 𝑥 = (handle [ℓ∶𝐹] ⇒ 𝑡1 with (𝑦 , 𝑘) ⇒ 𝑡2) in 𝑡3⟩ ⟶
⟨𝐸 ⋅ (let 𝑥 = (#𝐿(𝑦 ,𝑘)⇒𝑡2�) in 𝑡3) ∥ 𝑡1 [ℓ ↦ 𝐿]⟩ where 𝐿 is fresh

s-leave ⟨𝐸 ⋅ (let 𝑥 = (#𝐿(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑡1 [𝑥 ↦ 𝑣]⟩

s-raise ⟨𝐸 ∥ let 𝑥 = raise 𝐿(𝑣) in 𝑡⟩ ⟶ ⟨𝐸 ∥ let 𝑥 = � in 𝑡 ∥ 𝐿 ∥ 𝑣⟩

s-unw-let ⟨𝐸 ⋅ (let 𝑥 = � in 𝑡) ∥ 𝐾 ∥ 𝐿 ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ (let 𝑥 = � in 𝑡) ⋅ 𝐾 ∥ 𝐿 ∥ 𝑣⟩

s-unw-hdl ⟨𝐸 ⋅ (let 𝑥 = (#𝐿′(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ∥ 𝐾 ∥ 𝐿 ∥ 𝑣⟩ ⟶
⟨𝐸 ∥ (let 𝑥 = (#𝐿′(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ⋅ 𝐾 ∥ 𝐿 ∥ 𝑣⟩ where 𝐿 ≠ 𝐿′

s-found ⟨𝐸 ⋅ (let 𝑥 = (#𝐿(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ∥ 𝐾 ∥ 𝐿 ∥ 𝑣⟩ ⟶
⟨𝐸 ⋅ (let 𝑥 = � in 𝑡1) ∥ 𝑡2 [𝑦 ↦ 𝑣, 𝑘 ↦ cont #𝐿(𝑦 ,𝑘)⇒𝑡2𝐾]⟩

s-resume ⟨𝐸 ∥ let 𝑥 = resume (cont #𝐿(𝑦 ,𝑘)⇒𝑡2𝐾) (𝑣) in 𝑡1⟩ ⟶
⟨𝐸 ⋅ (let 𝑥 = (#𝐿(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ∥ 𝐾 ∥ 𝑣⟩

s-rew-let ⟨𝐸 ∥ (let 𝑥 = � in 𝑡) ⋅ 𝐾 ∥ 𝑣⟩ ⟶ ⟨𝐸 ⋅ (let 𝑥 = � in 𝑡) ∥ 𝐾 ∥ 𝑣⟩

s-rew-hdl ⟨𝐸 ∥ (let 𝑥 = (#𝐿(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ⋅ 𝐾 ∥ 𝑣⟩ ⟶
⟨𝐸 ⋅ (let 𝑥 = (#𝐿(𝑦 ,𝑘)⇒𝑡2�) in 𝑡1) ∥ 𝐾 ∥ 𝑣⟩

s-done ⟨𝐸 ∥ 𝜖 ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑣⟩

Figure 6. Operational semantics of SL as an abstract machine.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:11

a label, and a payload. In rewind mode, the machine state ⟨𝐸 ∥ 𝐾 ∥ 𝑣⟩ consists of an evaluation
context, a continuation to be rewound, and a payload.

An evaluation context 𝐸 is composed of a sequence of frames 𝐴.
• A frame can be a let frame, which takes the form let 𝑥 = � in 𝑡.
• A frame can also be a handler frame, which takes the form let 𝑥 = #𝐿(𝑦 ,𝑘)⇒𝑡2� in 𝑡1. A handler
frame consists of a label 𝐿 identifying the handler instance and the handler code (𝑦 , 𝑘) ⇒ 𝑡2.

The notation 𝐸[𝑡] denotes the evaluation context 𝐸 with the redex 𝑡 placed in the hole of 𝐸.
A continuation 𝐾 is similar to an evaluation context but is constructed inside-out rather than

outside-in.
The syntax of values is extended with reified continuations cont #𝐿(𝑥,𝑘)⇒𝑡𝐾. It represents a

continuation 𝐾 guarded by a handler frame. SL uses the standard deep-handler semantics [Kammar
et al., 2013], so all continuations begin with a handler frame.

Figure 6 shows the selected small-step operational semantics of SL abstract machine. The SL
syntax is in A-normal form, so the order of evaluation is already indicated by the syntax; no
structural rules are needed for locating the next redex. The rules s-app, s-return, s-leave, and
s-done are straightforward. The rules s-handle, s-raise, and s-resume are standard for a language
with lexical effect handlers.

The s-handle rule installs a handler frame onto the evaluation context. The handler frame
contains a freshly generated label 𝐿 that identifies this newly installed handler instance. The term
𝑡1 in the handle clause then becomes the redex to be evaluated next. This generativity of labels is
seen in the semantics of previous calculi or language implementations supporting lexical handlers
[Zhang et al., 2016; Zhang and Myers, 2019; Biernacki et al., 2020; Brachthäuser et al., 2020a; Xie
et al., 2022; Ma et al., 2024].

The s-raise rule suspends the current computation and transfers control to a handler. The first
operand of raise is a label 𝐿 identifying the handler instance that should handle the effect. The
second operand is the payload (i.e., the argument to the effect operation). The machine transitions
from normal mode to search mode, searching for a handler frame matching 𝐿 and constructing a
continuation representing the suspended computation. Once the machine is in search mode, the
rules s-unw-let and s-unw-hdl take over to unwind the frames off the evaluation context and
accumulate the frames into the continuation being constructed, until a handler frame that matches
the label 𝐿 is found, at which point the s-found rule takes over.

In s-found, the machine transitions to normal mode, and the handler code 𝑡2 recorded in the
handler frame becomes the redex to be evaluated next. The accumulated continuation substitutes
for the free variable 𝑘 in the handler code 𝑡2, and the payload 𝑣 substitutes for 𝑦.

The s-resume rule restores a captured continuation on the evaluation context. In s-resume,
the machine transitions from normal mode to rewind mode, installing the handler frame found
at the top of the continuation to the evaluation context. Once the machine is in rewind mode,
rules s-rew-let and s-rew-hdl move the frames off of the continuation and put them onto the
evaluation context. When there are no more frames to rewind, the s-done rule takes over, and the
machine transitions back to normal mode, with the payload in the redex position.

3.2 Target Language TL
The target language TL is defined in Figure 7.

Syntax. The syntax of TL values, expressions, and terms looks similar to that of SL. The main
difference lies in that no label variables or capability variables are directly present in TL: abstractions
are not parameterized by them, and the handle construct does not bind any label variables. Crucially,
the raise construct does not reference any label variable but instead uses a clue.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:12 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

label index ℓ ⩴ ∞ ∣ ̂𝑖

capability index 𝛼 ⩴ ∞ ∣ ̊𝑖

value 𝑣 ⩴ 𝑥 ∣ () ∣ (𝑥) ⇒ 𝑡 ∣ cont #(𝑥,𝑘)⇒𝑡𝐾

clue 𝐶 ⩴ ⟨ℓ, 𝐹⟩ ∣ ⟨𝛼, 𝐹⟩

capability 𝑇 ⩴ 𝜖 ∣ 𝛼 ∣ 𝑇 , ℓ

call-site metadata 𝐻 ⩴ 𝑇0; 𝑇; ℓ∶𝐹

expression 𝑒 ⩴ 𝑣 (𝑣)𝐻 ∣ handle𝑇 𝑡1 with (𝑥, 𝑘) ⇒ 𝑡2 ∣ raise 𝐶(𝑣) ∣ resume𝑇 𝑣(𝑣)

term 𝑡 ⩴ 𝑣 ∣ let 𝑥 = 𝑒 in 𝑡

frame 𝐴 ⩴ let 𝑥 = � in 𝑡 ∣ let 𝑥 = �𝐻
in 𝑡 ∣ let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡�)𝑇 in 𝑡

evaluation contex 𝐸 ⩴ 𝜖 ∣ 𝐸 ⋅ 𝐴

continuation 𝐾 ⩴ 𝜖 ∣ 𝐴 ⋅ 𝐾

configuration 𝑀 ⩴ ⟨𝐸 ∥ 𝑡⟩ ∣ ⟨𝐸 ∥ 𝐾 ∥ 𝐶 ∥ 𝑣⟩ ∣ ⟨𝐸 ∥ 𝐾 ∥ 𝑣⟩

t-app ⟨𝐸 ∥ let 𝑥 = ((𝑦) ⇒ 𝑡1) (𝑣)
𝐻

in 𝑡2⟩ ⟶ ⟨𝐸 ⋅ (let 𝑥 = �𝐻
in 𝑡2) ∥ 𝑡1 [𝑦 ↦ 𝑣]⟩

t-ret ⟨𝐸 ⋅ (let 𝑥 = � in 𝑡) ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑡 [𝑥 ↦ 𝑣]⟩

t-ret-app ⟨𝐸 ⋅ (let 𝑥 = �𝐻
in 𝑡) ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑡 [𝑥 ↦ 𝑣]⟩

t-handle ⟨𝐸 ∥ let 𝑥 = (handle𝑇 𝑡1 with (𝑦 , 𝑘) ⇒ 𝑡2) in 𝑡3⟩ ⟶
⟨𝐸 ⋅ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡3) ∥ 𝑡1⟩

t-leave ⟨𝐸 ⋅ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑡1 [𝑥 ↦ 𝑣]⟩

t-raise ⟨𝐸 ∥ let 𝑥 = raise 𝐶(𝑣) in 𝑡⟩ ⟶ ⟨𝐸 ∥ let 𝑥 = � in 𝑡 ∥ 𝐶 ∥ 𝑣⟩

t-unw-let ⟨𝐸 ⋅ (let 𝑥 = � in 𝑡) ∥ 𝐾 ∥ 𝐶 ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ (let 𝑥 = � in 𝑡) ⋅ 𝐾 ∥ 𝐶 ∥ 𝑣⟩

t-unw-app ⟨𝐸 ⋅ (let 𝑥 = �𝐻
in 𝑡) ∥ 𝐾 ∥ 𝐶 ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ (let 𝑥 = �𝐻

in 𝑡) ⋅ 𝐾 ∥ hopper𝐻 (𝐶) ∥ 𝑣⟩

t-unw-hdl ⟨𝐸 ⋅ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ∥ 𝐾 ∥ 𝐶 ∥ 𝑣⟩ ⟶

⟨𝐸 ∥ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ⋅ 𝐾 ∥ hopper𝑇 ;𝜖;𝜖 (𝐶) ∥ 𝑣⟩ where 𝐶 ≠ ⟨0̂, 𝐹⟩ for any 𝐹

t-found ⟨𝐸 ⋅ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ∥ 𝐾 ∥ ⟨0̂, 𝐹⟩ ∥ 𝑣⟩ ⟶

⟨𝐸 ⋅ (let 𝑥 = �𝑇 ;𝜖;𝜖
in 𝑡1) ∥ 𝑡2 [𝑦 ↦ 𝑣, 𝑘 ↦ cont #(𝑦 ,𝑘)⇒𝑡2𝐾]⟩

t-resume ⟨𝐸 ∥ let 𝑥 = resume
𝑇 (cont #(𝑦 ,𝑘)⇒𝑡2𝐾) (𝑣) in 𝑡1⟩ ⟶

⟨𝐸 ⋅ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ∥ 𝐾 ∥ 𝑣⟩

t-rew-let ⟨𝐸 ∥ (let 𝑥 = � in 𝑡) ⋅ 𝐾 ∥ 𝑣⟩ ⟶ ⟨𝐸 ⋅ (let 𝑥 = � in 𝑡) ∥ 𝐾 ∥ 𝑣⟩

t-rew-app ⟨𝐸 ∥ (let 𝑥 = �𝐻
in 𝑡) ⋅ 𝐾 ∥ 𝑣⟩ ⟶ ⟨𝐸 ⋅ (let 𝑥 = �𝐻

in 𝑡) ∥ 𝐾 ∥ 𝑣⟩

t-rew-hdl ⟨𝐸 ∥ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ⋅ 𝐾 ∥ 𝑣⟩ ⟶

⟨𝐸 ⋅ (let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1) ∥ 𝐾 ∥ 𝑣⟩

t-done ⟨𝐸 ∥ 𝜖 ∥ 𝑣⟩ ⟶ ⟨𝐸 ∥ 𝑣⟩

Figure 7. Syntax and operational semantics of TL.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:13

A clue consists of the name of the effect being raised—akin to the situation in a language with
dynamically scoped handlers—and an index. The index is in one of three forms: ̂𝑖, ̊𝑖, or ∞. Their
usage will be discussed in Section 3.3. For now, readers can think of them as de Bruijn indices for
the SL variables they correspond to.

The TL syntax of applications, handle expressions, and resume expressions are enriched with
call-site metadata 𝐻 or 𝑇, which is produced during the translation from SL to TL. Hoppers are
defined in terms of call-site metadata. When an effect is raised, the runtime uses the hopper at each
call site in the evaluation context to update clues until the right handler is found.

Operational semantics. The operational semantics of TL is given as an abstract machine. An
evaluation context can be a let frame, a handler frame, or a call frame. Unlike in SL, handler frames
in TL are not marked by labels, as no labels are present in TL. A call frame let 𝑥 = �𝐻

in 𝑡 carries
the call-site metadata 𝐻. A handler frame let 𝑥 = (#(𝑦 ,𝑘)⇒𝑡2�)𝑇 in 𝑡1 carries the metadata 𝑇.

Similar to SL, the abstract machine of TL also operates in three modes. The difference is that, in
search mode, the machine state uses a clue 𝐶 rather than a label 𝐿. The initial clue is provided by
the raise expression, and it is updated as the machine traverses the evaluation context.

The rules t-app, t-ret, t-ret-app, t-handle, and t-leave govern evaluation in normal mode.
The t-app and t-handle rules install a call frame and a handler frame, respectively, attaching the
call-site metadata 𝐻 or 𝑇 to the new frame.

The t-raise rule steps a raise 𝐶 (𝑣) expression, with the machine transitioning from normal
mode to search mode. Once the machine enters search mode, the unwinding rules t-unw-let,
t-unw-hdl, and t-unw-app take over.

The t-unw-app rule skips over a call frame during handler search. It updates the clue 𝐶 using
the call-site metadata 𝐻. The new clue hopper𝐻(𝐶) is given by a meta-level function hopper𝐻(⋅)
indexed by the call-site metadata 𝐻. The definition of hopper𝐻(⋅) will be given in Section 3.3.

The t-found rule is in effect when the immediately enclosing frame is a handler frame and the
clue index is 0̂, meaning that the handler frame is the one that should handle the effect. If the clue
index is not 0̂, then the t-unw-hdl rule is applied to skip over the handler frame and continue
searching, with the clue updated using hopper𝑇 ;𝜖;𝜖.

The only puzzle that remains is how hopper𝐻 is defined to generate a new clue from an old clue
and the call-site metadata 𝐻. Section 3.3 explains it after first defining a type system for SL.

3.3 Type-Directed Translation from SL to TL
We have now seen the untyped operational semantics of SL and TL. Section 3.3 formally defines
the type-directed translation from SL to TL.

SL type system. Figure 8 presents the type system of SL. A type can be the unit type, a function
type, or a continuation type. Function types and continuation types are annotated with a capture
set 𝑇, which stands for the capability or label variables captured by the function or continuation.

The typing rules shown in Figure 8 simultaneously perform type checking and translation. We
explain type checking first. The rules st-unit, st-var, and st-let are straightforward.

Expressions are type-checked under four contexts: Δ (resp. Σ) for capability variables (resp. label
variables) parameterizing the immediately enclosing abstraction, Θ for the capability variable or
label variables lexically captured by the immediately enclosing abstraction, and Γ for term variables.
The typing rules are implicitly parameterized by a global context 𝔽 mapping effect names to effect
signatures. The use of the three contexts Θ, Δ, and Σmakes it explicit with which of the three kinds
of lexical binders (cf. the legend at the bottom of Figure 3) a handler in scope is associated.

In the st-fun rule, the function body 𝑡 is typed under the capture set 𝑇, whose contents may
come from any of the typing contexts Θ, Δ, and Σ. The typing rule requires that the captured

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:14 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

𝜏⩴ unit ∣ {𝑇}∀ [𝛼 ; ℓ∶𝐹] (𝜏1) → 𝜏2 ∣ {𝑇} cont 𝜏1 → 𝜏2

Θ⩴ 𝜖 ∣ 𝛼 ∣ ℓ∶𝐹 Δ⩴ 𝜖 ∣ Δ, 𝛼 Σ⩴ 𝜖 ∣ Σ, ℓ∶𝐹 Γ⩴ 𝜖 ∣ Γ, 𝑥∶𝜏 𝔽⩴ 𝜖 ∣ 𝔽, 𝐹∶𝜏 → 𝜏

Θ ∣ Σ ⊢ ℓ ∶ 𝐹 ⇝ ℓ

indexΣ(ℓ) = 𝑖 Σ(ℓ) = 𝐹
Θ ∣ Σ ⊢ ℓ ∶ 𝐹 ⇝ ̂𝑖

ℓ∶𝐹 ∈ Θ
Θ ∣ Σ ⊢ ℓ ∶ 𝐹 ⇝ ∞

Θ ∣ Δ ⊢ 𝛼 ⇝ 𝛼

indexΔ(𝛼) = 𝑖

Θ ∣ Δ ⊢ 𝛼 ⇝ ̊𝑖

𝛼 ∈ Θ
Θ ∣ Δ ⊢ 𝛼 ⇝ ∞

Θ ∣ Δ ∣ Σ ⊢ 𝑇 as Θ′ unamb

Θ ∣ Δ ∣ Σ ⊢ 𝜖 as 𝜖 unamb
Θ ∣ Δ ⊢ 𝛼

Θ ∣ Δ ∣ Σ ⊢ 𝛼 as 𝛼 unamb

Θ ∣ Δ ∣ Σ ⊢ 𝑇 as ℓ′∶𝐹 ′ unamb Θ ∣ Σ ⊢ ℓ ∶ 𝐹 𝐹 ∉ 𝐹 ′

Θ ∣ Δ ∣ Σ ⊢ 𝑇 , ℓ as ℓ′∶𝐹 ′, ℓ∶𝐹 unamb

⊢ {𝑇}∀ [𝛼 ; ℓ∶𝐹] (𝜏1) → 𝜏2 nonfriv

∀𝛼0 ∈ 𝛼. ∃𝑖.
𝜏1

(𝑖) = {𝑇 ′}∀ [𝛼 ′ ; ℓ′∶𝐹 ′] (𝜏 ′1) → 𝜏 ′2
∧ 𝛼0 ∈ 𝑇 ′

⊢ {𝑇}∀ [𝛼 ; ℓ∶𝐹] (𝜏1) → 𝜏2 nonfriv

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣 ∶ 𝜏 ⇝ 𝑣 Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑒 ∶ 𝜏 ⇝ 𝑒 Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑡 ∶ 𝜏 ⇝ 𝑡

st-unit Θ ∣ Δ ∣ Σ ∣ Γ ⊢ () ∶ unit ⇝ () st-var
Γ(𝑥) = 𝜏

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑥 ∶ 𝜏 ⇝ 𝑥

st-let
Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑒 ∶ 𝜏1 ⇝ 𝑒 Θ ∣ Δ ∣ Σ ∣ Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑡 ∶ 𝜏2 ⇝ 𝑡

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ let 𝑥 = 𝑒 in 𝑡 ∶ 𝜏2 ⇝ let 𝑥 = 𝑒 in 𝑡

st-fun

Θ′ ∣ 𝛼 ∣ ℓ∶𝐹 ∣ Γ, 𝑥∶𝜏1 ⊢ 𝑡 ∶ 𝜏2 ⇝ 𝑡
Θ ∣ Δ ∣ Σ ⊢ 𝑇 as Θ′ unamb ⊢ {𝑇}∀ [𝛼 ; ℓ∶𝐹] (𝜏1) → 𝜏2 nonfriv

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ [𝛼 ; ℓ] (𝑥) ⇒ 𝑡 ∶ {𝑇}∀ [𝛼 ; ℓ∶𝐹] (𝜏1) → 𝜏2 ⇝ (𝑥) ⇒ 𝑡

st-app

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣1 ∶ {𝑇}∀ [𝛼 ; ℓ∶𝐹] (𝜏) → 𝜏1 ⇝ 𝑣1 ∀𝑖. Θ ∣ Δ ∣ Σ ⊢ 𝑇1
(𝑖)

∀𝑖. Θ ∣ Σ ⊢ ℓ1
(𝑖)
∶ 𝐹

(𝑖)

∀𝑖. Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣2
(𝑖) ∶ 𝜏(𝑖) [ℓ ↦ ℓ1] [𝛼 ↦ 𝑇1] ⇝ 𝑣2

(𝑖) Θ ∣ Δ ∣ Σ ⊢ 𝑇 ; 𝑇1; ℓ1∶𝐹 ⇝ 𝐻

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣1 [𝑇1; ℓ1] (𝑣2) ∶ 𝜏1 [ℓ ↦ ℓ1] [𝛼 ↦ 𝑇1] ⇝ 𝑣1 (𝑣2)
𝐻

st-handle

𝔽(𝐹) = (𝜏1) → 𝜏2 Θ ∣ Δ ∣ Σ ⊢ 𝑇 as Θ′ unamb
Θ ∣ Δ ∣ Σ ⊢ 𝜏ans Θ′ ∣ 𝜖 ∣ ℓ ∶ 𝐹 ∣ Γ ⊢ 𝑡1 ∶ 𝜏ans ⇝ 𝑡1

Θ′ ∣ 𝜖 ∣ 𝜖 ∣ Γ, 𝑥∶𝜏1, 𝑘∶{𝑇} cont 𝜏2 → 𝜏ans ⊢ 𝑡2 ∶ 𝜏ans ⇝ 𝑡2 Θ ∣ Δ ∣ Σ ⊢ 𝑇 ⇝ 𝑇

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ handle [ℓ∶𝐹] ⇒ 𝑡1 with (𝑥, 𝑘) ⇒ 𝑡2 ∶ 𝜏ans ⇝ handle
𝑇 𝑡1 with (𝑥, 𝑘) ⇒ 𝑡2

st-raise
Θ ∣ Σ ⊢ ℓ ∶ 𝐹 ⇝ ℓ 𝔽(𝐹) = 𝜏1 → 𝜏2 Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣 ∶ 𝜏1 ⇝ 𝑣

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ raise ℓ(𝑣) ∶ 𝜏2 ⇝ raise ⟨ℓ, 𝐹⟩ (𝑣)

st-resume
Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣1 ∶ {𝑇} cont 𝜏1 → 𝜏2 ⇝ 𝑣1 Θ ∣ Δ ∣ Σ ∣ Γ ⊢ 𝑣2 ∶ 𝜏1 ⇝ 𝑣2 Θ ∣ Δ ∣ Σ ⊢ 𝑇 ⇝ 𝑇

Θ ∣ Δ ∣ Σ ∣ Γ ⊢ resume 𝑣1(𝑣2) ∶ 𝜏2 ⇝ resume
𝑇 𝑣1(𝑣2)

Figure 8. The SL type system and the type-directed translation from SL to TL: selected rules.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:15

capability 𝑇 be unambiguous, through the judgment Θ ∣ Δ ∣ Σ ⊢ 𝑇 as Θ′ unamb, so that 𝑇 can be
used as the context Θ′ of captured variables for typing the function body. Nonambiguity of 𝑇means
that if it is not empty, it must be composed of either a single capability variable or a list of label
variables with distinct effect names. As mentioned in Section 2.3, this is not a strong restriction,
as existing surface languages already make stronger assumptions. The st-fun rule also requires
that the function type be nonfrivolous, which means that each capability variable parameterizing
this function must appear in the capture set of some function argument. This condition serves as a
sanity check that the capability variables stand for capabilities needed by the function arguments.

The st-app rule is standard, typing the function 𝑣1 and the arguments 𝑣2 under the same contexts.
In the st-handle rule, the handle expression can be viewed as defining two functions with the

body 𝑡1 and 𝑡2—𝑡1 is parameterized by ℓ, and 𝑡2 is parameterized by 𝑘 and 𝑥—and then applying the
first function. The subterms 𝑡1 and 𝑡2 capture a set 𝑇 of variables coming from the contexts Θ, Δ,
and Σ. This capture set 𝑇 is required to be unambiguous so that it can be used as the context Θ′

for typing 𝑡1 and 𝑡2.1 The continuation parameter 𝑘 of the handler has a continuation type that
carries the same capture set 𝑇. The subterm 𝑡1 is typed under a label context with a single label ℓ∶𝐹,
which serves as a lexical identifier of the handler. It is required that the label ℓ not appear in the
answer type 𝜏ans, to prevent ℓ from escaping—a standard requirement in type-and-effect systems for
lexically scoped handlers [Zhang and Myers, 2019; Biernacki et al., 2020] or lexical regions [Tofte
and Talpin, 1997; Crary et al., 1999; Grossman et al., 2002] to ensure type safety.

The st-raise and st-resume rules are standard. In st-raise, the effect signature of the effect
being raised is used to type-check the payload 𝑣. In st-resume, 𝑣1 is required to have a continuation
type whose input type matches the type of the payload 𝑣2, and the resume expression is given the
answer type of the continuation type.

The type system of SL is similar to those in prior works on lexically scoped handlers—with
two key differences. First, SL uses two kinds of contexts to distinguish function parameters from
captured variables. This distinction is crucial for the implementation of the stackwalker, but does
not restrict nor relax the typability of SL programs. Second, SL imposes a nonambiguity condition
on the capture set of a function definition and that of a handled computation. This restriction, in
theory, reduces the expressiveness of SL programs. But as argued in Section 2.3, it appears to be of
little practical concern. As the typing conditions of SL are a strengthening of those in prior type
systems shown to be sound, we omit the proof of type soundness for SL.

TL call-site metadata. The TL program generated from a well-typed SL program uses call-site
metadata 𝐻 to track the lexical provenance of the label variables and capability variables the callee
in SL has access to. A call-site metadata 𝐻 is a three-tuple 𝑇0; 𝑇; ℓ∶𝐹, where 𝑇0 is the “capture
set” of the function being called, 𝑇 is the “capabilities” instantiating the capability variables of
the function, and ℓ∶𝐹 is the “labels” instantiating the label variables of the function. Notice that
call-site metadata is a concept in TL, so they contain TL indices rather than SL labels or capabilities.

A TL index is in one of three forms: ̂𝑖, ̊𝑖, or ∞. The index ̂𝑖 corresponds to a label variable at de
Bruijn index 𝑖. The index ̊𝑖 corresponds to a capability variable at de Bruijn index 𝑖. The index ∞
refers to either a label or capability variable in the capture set.

SL-to-TL translation. Figure 8 defines the type-directed translation from SL to TL, shown in
orange. Rules of the forms Θ ∣ Σ ⊢ ℓ ∶ 𝐹 ⇝ ℓ and Θ ∣ Δ ⊢ 𝛼 ⇝ 𝛼 translate SL variables to
TL indices. If an SL variable is bound by the immediately enclosing abstraction (i.e., it is in Δ
or Σ), it is translated to its de Bruijn index; otherwise, it is translated to ∞. Rules of the forms

1As discussed in Section 2.3, we can relax this nonambiguity requirement on the capture set if the handler is tail-resumptive
or abortive. We omit the formalization of this relaxation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:16 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

hopper𝐻(𝐶) = 𝐶′

hopper𝑇0; 𝑇; ℓ∶𝐹 (⟨
̂𝑖, 𝐹

(𝑖)
⟩) = ⟨ℓ

(𝑖)
, 𝐹

(𝑖)
⟩

hopper𝑇0; 𝑇; ℓ∶𝐹 (⟨
̊𝑖, 𝐹 ′⟩) = {

⟨ℓ′, 𝐹 ′⟩ if there is a unique ℓ′ such that ℓ′∶𝐹 ′ ∈ 𝑇
(𝑖)

⟨𝛼, 𝐹 ′⟩ else if there is an 𝛼 such that 𝛼 ∈ 𝑇
(𝑖)

hopper𝑇0; 𝑇; ℓ∶𝐹 (⟨∞, 𝐹 ′⟩) = {
⟨ℓ′, 𝐹 ′⟩ if there is a unique ℓ′ such that ℓ′∶𝐹 ′ ∈ 𝑇0
⟨𝛼, 𝐹 ′⟩ else if there is an 𝛼 such that 𝛼 ∈ 𝑇0

Figure 9. Definition of hopper𝐻(𝐶).

Θ ∣ Δ ∣ Σ ⊢ 𝑇 ⇝ 𝑇 and Θ ∣ Δ ∣ Σ ⊢ 𝑇0; 𝑇1; 𝑙 ⇝ 𝐻 are defined structurally and omitted here for
brevity.

The most interesting rules are st-app, st-handle, st-raise, and st-resume. In st-app, the call-
site metadata 𝐻 is computed from the capture set 𝑇 and the instantiation [𝑇1; ℓ1]. In st-handle and
in st-resume, the call-site metadata 𝑇 is computed using the captured capability 𝑇. In st-raise, the
label variable ℓ is translated to an initial clue consisting of a TL index and an effect name.

The hopper𝐻 function. Figure 9 shows the definition of hopper𝐻. Recall that it is used by the
operational semantics of TL to update clues in search mode (Figure 7). The function is indexed by
the call-site metadata 𝐻, and it accepts a clue 𝐶 and returns a new clue. The function is defined by a
case analysis on the index component of the clue 𝐶, which is in one of the three forms: ̂𝑖, ̊𝑖, or ∞.

If the index is ̂𝑖, the handler responsible for handling the effect in SL must have been passed
into the callee as a label instantiating one of the label variables. Therefore, as the search enters the
caller’s frame, the index in the clue is updated to be the TL index of the label argument.

If the index is ̊𝑖, the handler responsible for handling the effect in SL must have been abstracted
away by a capability variable when the callee was invoked. So we check out the capability 𝑇

(𝑖)

instantiating the capability index ̊𝑖. If it contains a label index ℓ′ matching the effect name in the
clue, then ℓ′ must be responsible for handling the effect. Otherwise, the desired handler must have
been further abstracted away by another capability index 𝛼, so the clue is updated to reference 𝛼.

Notice that here we rely on the nonambiguity and nonfrivolity conditions required of an
abstraction: they together guarantee that, at run time, the capture set of any function that is
called must contain labels of distinct effect names. So as soon as a label index that matches the
effect name is found, it is guaranteed that this label index identifies the desired handler, because
there cannot be any other label index with the same effect name that exists in the instantiation 𝑇

(𝑖)

or in the further instantiation of any capability index in 𝑇
(𝑖)
.

The hopper𝐻 function is partial; it is undefined if there is ambiguity in how to resolve an index ̊𝑖,
which may cause the evaluation of TL programs to get stuck. The simulation result in Section 4
guarantees that this cannot happen to a TL program generated from a well-typed SL program.

If the index is ∞, the handler responsible for handling the effect must have been captured by the
callee. The first component 𝑇0 of the call-site metadata 𝐻 is exactly the variables captured by the
callee, so hopper𝐻 looks up 𝑇0 to find the index of the variable responsible for handling the effect.
The nonambiguity condition plays a similar role here as in the previous case.

Relaxing a syntactic restriction on capabilities. In both SL and TL, it is required that a
capability 𝑇 contain at most one capability variable or capability index. We now explain why
we have this restriction in the first place and how to relax it. This restriction simplifies the definition

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:17

value 𝑣 ⩴ ⋯ ∣ {𝑇 } [𝛼 ; ℓ ∶𝐹] (𝑥) ⇒ 𝑡 ∣ cont {𝐿𝐹} #𝐿
(𝑥,𝑘)⇒𝑡
𝐹 𝐾

expression 𝑒 ⩴ ⋯ ∣ 𝑣1 [𝑇 ; 𝑇; 𝑙] (𝑣2) ∣ {𝑇} handle [ℓ ∶ 𝐹] ⇒ 𝑡1 with (𝑥, 𝑘) ⇒ 𝑡2 ∣ resume 𝑣1 [𝑇] (𝑣2)

label 𝑙 ⩴ ℓ ∣ 𝐿𝐹
frame 𝐴 ⩴ ⋯ ∣ let 𝑥 = ({𝐿𝐹} #𝐿

(𝑦 ,𝑘)⇒𝑡2
𝐹 �) in 𝑡1

Figure 10. Selected syntax of SL∗. The difference between SL∗ and SL is highlighted.

of hopper𝐻, as it means that there is at most one capability variable we need to follow when there is
not a label with the matching effect name immediately present. It is possible to relax this restriction
and allow 𝑇 to contain multiple capability variables. This can be done by generalizing clues to carry
a list of indices, which allows the stackwalker to follow multiple capability variables during handler
search. Any of them might abstract away the handler label we are looking for. We do not pursue
this generalization in this work, as we have not encountered a situation where it is necessary.

4 Compiler Correctness
We now prove that the translation presented in Section 3.3 is correct by proving that it preserves
semantics. We first present the theorem statements and then present selected rules of the simulation
relation ∼ used to establish the result. The full definition of the simulation relation and the proof
can be found in appendices available in the extended version [Ma et al., 2025b]. For visual aid, in
this section, we use colors to distinguish between SL (blue) and TL (orange).

Theorem 1 (Simulation). Given a well-typed SL configuration 𝑀 and a TL configuration 𝑀
such that 𝑀 ∼ 𝑀, if 𝑀 ⟶ 𝑀 ′, then there exists a TL configuration 𝑀 ′ such that 𝑀 ⟶∗ 𝑀 ′ and
𝑀 ′ ∼ 𝑀 ′.

The semantics-preservation result follows from Theorem 1.
Corollary 1 (Semantics Preservation). If 𝜖 ∣ 𝜖 ∣ 𝜖 ∣ 𝜖 ⊢ 𝑡 ∶ 𝜏 ⇝ 𝑡, and ⟨𝜖 ∥ 𝑡⟩ ⟶∗ ⟨𝜖 ∥ 𝑣⟩,

then exists 𝑣 such that 𝜖 ∣ 𝜖 ∣ 𝜖 ∣ 𝜖 ⊢ 𝑣 ∶ 𝜏 ⇝ 𝑣 and ⟨𝜖 ∥ 𝑡⟩ ⟶∗ ⟨𝜖 ∥ 𝑣⟩.
It states that if a closed, well-typed SL program terminates with a value, then its translation in TL also
terminates and produces the expected result. The proof framework of Corollary 1 is standard and
can be found in Leroy [2009]. Such a proof consists in establishing three conditions. (1) Condition
on initial states: if 𝜖 ∣ 𝜖 ∣ 𝜖 ∣ 𝜖 ⊢ 𝑡 ∶ 𝜏 ⇝ 𝑡, then ⟨𝜖 ∥ 𝑡⟩ ∼ ⟨𝜖 ∥ 𝑡⟩. (2) Condition on final states: if
⟨𝜖 ∥ 𝑣⟩ ∼ 𝑀, then 𝑀 = ⟨𝜖 ∥ 𝑣⟩, and 𝜖 ∣ 𝜖 ∣ 𝜖 ∣ 𝜖 ⊢ 𝑣 ∶ 𝜏 ⇝ 𝑣. (3) Simulation (Theorem 1). The first two
conditions accept straightforward proofs. We focus on proving the third condition.

An enriched SL syntax. We carry out the simulation proof using a version of SL, which we
call SL∗, where values and expressions carry additional type-level annotations. The annotations
facilitate the definition of the simulation relations. The extra annotations in SL∗ can be obtained
simply from the typing of SL programs.

The differences between SL∗ and SL are highlighted in Figure 10. In this enriched syntax,
abstractions and handle expressions are enriched with a capture set {𝑇 }, which in SL only exists as
part of types. Continuation values are also enriched with a capture set; because continuations are
created at run time, the capture set of a continuation is in the form of a list of run-time labels.

Applications and resume expressions are enriched with the capture set of the function and
continuation, respectively. Additionally, a label 𝐿 is enriched with its effect name, as in 𝐿𝐹. We will
omit the effect name when it is not relevant to the presentation.

Next, we define the simulation relation between SL∗ and TL. We present selected rules.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:18 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

Relational contexts. Most relations are defined under a pair of contexts: promise Π and evidence Ξ.

promise Π ⩴ Θ̃; Δ̃; Σ̃

evidence Ξ ⩴ 𝜖 ∣ Ξ, 𝐶 ↦ 𝐿

label promise Σ̃ ⩴ 𝜖 ∣ Σ̃, ℓ∶𝐹 ∼ ̂𝑖

capability promise Δ̃ ⩴ 𝜖 ∣ Δ̃, 𝛼 ∼ ̊𝑖

capture promise Θ̃ ⩴ 𝜖 ∣ 𝛼 ∣ 𝑙∶𝐹

Promises relate TL indices to SL∗ labels and capabilities that come from an abstraction’s parameters
or capture set. A promise Π has three components. Σ̃, the label promise, relates TL label indices
to SL∗ label variables. Δ̃, the capability promise, relates TL capability indices to SL∗ capability
variables. Θ̃, the capture promise, is either an SL∗ capability or a list of SL∗ labels with their effect
names. While Σ̃ and Δ̃ may only contain SL∗ variables, Θ̃ may contain both variables and run-time
labels. We will use ∅ to denote a promise where all three components are empty.

Evidences are used to relate clues in TL to run-time labels in SL∗. Having an evidence 𝐶 ↦ 𝐿 in
the relational context means that the TL abstract machine in search mode carrying the clue 𝐶 will
find the handler corresponding to the SL∗ label 𝐿. Since evidences relate run-time labels, they are a
more dynamic notion than promises.

Label and capability relations. 𝑙 𝑙∼
Ξ∣Θ̃;Σ̃

𝐶 𝑇 𝑇∼
Ξ∣Π

𝑇 𝑇0; 𝑇; 𝑙 ∼
Ξ∣Π

𝐻

The definitions of the label and capability relations are given in an appendix. Informally, an SL∗

label 𝑙 is related to a TL clue 𝐶 if either the promise Π or the evidence Ξ relates them. The relation
between capabilities 𝑇 and 𝑇, as well as that between 𝑇0; 𝑇; 𝑙 and call-site metadata 𝐻, are defined
structurally. Recall that 𝐻 in TL has a three-tuple structure matching 𝑇0; 𝑇; 𝑙 in SL.

Value, expression, and term relations. 𝑣 val∼ 𝑣 𝑒 expr∼
Ξ∣Π

𝑒 𝑡 term∼
Ξ∣Π

𝑡

promise (𝑇 ; 𝛼 ; ℓ∶𝐹) = 𝑇; { 𝛼(𝑖) ∼ ̊𝑖 | 𝑖 }; { ℓ∶𝐹
(𝑖)
∼ ̂𝑖 | 𝑖 }

evidence (𝐿0𝐹0; 𝐿1𝐹1; 𝐿2𝐹2) = { ⟨∞, 𝐹0
(𝑖)
⟩ ↦ 𝐿0

(𝑖)
| 𝑖 } ∪ { ⟨ ̊𝑖, 𝐹1

(𝑗)
(𝑖)

⟩ ↦ 𝐿1
(𝑗)

(𝑖)

| 𝑖, 𝑗 } ∪ { ⟨ ̂𝑖, 𝐹2
(𝑖)
⟩ ↦ 𝐿2

(𝑖)
| 𝑖 }

r-v-fun
𝑡 term∼
∅∣promise(𝑇 ; 𝛼; ℓ∶𝐹)

𝑡

{𝑇} [𝛼 ; ℓ∶𝐹] (𝑥) ⇒ 𝑡 val∼ (𝑥) ⇒ 𝑡
r-e-app

𝑣1
val∼ 𝑣1 𝑣2

val∼ 𝑣2 𝑇0; 𝑇; 𝑙 ∼
Ξ∣Π

𝐻

𝑣1 [𝑇0; 𝑇; 𝑙] (𝑣2)
expr∼
Ξ∣Π

(𝑣1(𝑣2))
𝐻

r-v-cont
𝑡 term∼
Ξ∣∅

𝑡 𝐾 cont∼
Ξ∪{⟨0̂,𝐹⟩↦𝐿}

𝐾 Ξ = evidence (𝐿′𝐹 ′; 𝜖; 𝜖)

cont { 𝐿′𝐹 ′ } #𝐿
(𝑥,𝑘)⇒𝑡
𝐹 𝐾 val∼ cont #(𝑥,𝑘)⇒𝑡𝐾

r-e-raise
𝑙 𝑙∼
Ξ∣Θ̃;Σ̃

𝐶 𝑣 val∼ 𝑣

raise 𝑙 (𝑣) expr∼
Ξ∣Θ̃;Δ̃;Σ̃

raise 𝐶 (𝑣)

r-v-fun states that an SL∗ function is related to a TL function if the function bodies are related
through the promise computed from the SL∗ function’s parameters and capture set. It might be
surprising that the evidence used to relate the function body is empty, as SL∗ run-time labels could
have been substituted into the function body, which one might expect to be related through the
evidence. Within the function body, such run-time labels are related through the promise, which
will be fulfilled by the evidence available at the call site of the function.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:19

r-e-app states that an SL∗ application is related to a TL application if the functions 𝑣1 and 𝑣1 are
related, the arguments 𝑣2 and 𝑣2 are related, and also 𝑇0; 𝑇; 𝑙 and the TL call-site metadata 𝐻 are
related. The last premise effectively guarantees that all the capabilities that this function application
needs are either promised to be related by Π or are already related by Ξ.

r-v-cont states that an SL∗ continuation is related to a TL continuation if the handlers 𝑡 and 𝑡
are related through the evidence Ξ computed using the labels 𝐿′ captured by the continuation. It
also requires that the continuations 𝐾 and 𝐾 are related through the same evidence Ξ extended
with an extra evidence for the label 𝐿. Notice that the handler bodies 𝑡, in contrast to the function
bodies in r-v-fun, are related entirely through the evidence and use an empty promise.

r-e-raise states that an SL∗ raise expression is related to a TL raise expression if the SL∗ label 𝑙
and the TL clue 𝐶 are related and also the payloads 𝑣 and 𝑣 are related.

These relations are also indexed by a context relating free term variables. We omit this standard
context here for conciseness.

Evaluation-context relation. 𝐸 ctx∼
Ξ
𝐸

∀𝐶 ∈ dom(Ξ′). Ξ (hopper𝐻 (𝐶)) = Ξ′(𝐶)
truthfulΞ∣𝐻 (Ξ′)

r-ec-app
𝐸 ctx∼

Ξ
𝐸 𝑡 term∼

Ξ∣∅
𝑡 truthfulΞ∣𝐻 (Ξ′)

𝐸 ⋅ (let 𝑥 = � in 𝑡) ctx∼
Ξ′
𝐸 ⋅ (let 𝑥 = �𝐻

in 𝑡)

r-ec-handler
𝐸 ctx∼

Ξ
𝐸 𝑡2

term∼
Ξ∣∅

𝑡2 𝑡1
term∼
Ξ′∣∅

𝑡1 truthfulΞ∣𝑇 ;𝜖;𝜖 (Ξ′) Ξ′ = evidence (𝐿′𝐹 ′; 𝜖; 𝜖)

𝐸 ⋅ (let 𝑥 = { 𝐿′𝐹 ′ } #𝐿
(𝑥,𝑘)⇒𝑡1
𝐹 � in 𝑡2)

ctx∼
Ξ′∪{⟨0̂,𝐹⟩↦𝐿}

𝐸 ⋅ (let 𝑥 = (#(𝑥,𝑘)⇒𝑡1�)𝑇 in 𝑡2)

The evaluation-context relation uses a judgement truthfulΞ∣𝐻 (Ξ′), which means that all the
evidence mappings in Ξ′ can be found in Ξ with an extra indirection through hopper𝐻. In the
expression and term relations, the evidence Ξ can be viewed as input. By contrast, in the evaluation-
context relation, the evidence should be viewed as output, which will serve as the input for relating
expressions and terms plugged into the evaluation context.

r-ec-app states that if an evaluation context 𝐸 in SL∗ is related to an evaluation context 𝐸 in TL
and yields an evidence Ξ, then the extended evaluation contexts with an extra call frame are related
and yield an evidence Ξ′, as long as Ξ′ is truthful with respect to Ξ and the call-site metadata 𝐻 on
the frame.

r-ec-handler states that if an evaluation context 𝐸 in SL∗ is related to an evaluation context
𝐸 in TL and yields an evidence Ξ, then the extended evaluation contexts with an extra handler
frame are related and yield a new evidence made of a truthful Ξ′ and an evidence for the newly
introduced label 𝐿.

Simulation proof. The proof of Theorem 1 is by a case analysis on the SL∗ transition relation
𝑀 ⟶ 𝑀 ′. The proof can be found in an appendix.

5 Implementation
We implemented our design for the Lexa programming language. Lexa is a functional language
featuring lexical effect handlers. Its compiler uses segmented stacks to implement continuations,
which allows it to capture and restore continuations efficiently [Ma et al., 2024]. Lexa uses stack
addresses to represent labels, which makes handler search efficient. In fact, it obviates the need
for handler search, since the stack address of the handler is passed down the call chain to the
place where the effect is raised. However, this implementation strategy incurs a small overhead on
mainline paths. The present work extends Lexa with a new implementation strategy that satisfies

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:20 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

capture
set

capability
instantiation

label
instantiation

call site in SL ℓ1 (ℓ0, 𝛼0) ℓ0
call site in TL 0̂∶𝐹1 (1̂∶𝐹0, 0̊) 1̂∶𝐹0

(a) Call-site information for line 7 in Figure 3.

∞ 0̊ 0̂

𝐹0 NA ⟨1̂, 𝐹0⟩ ⟨1̂, 𝐹0⟩

𝐹1 ⟨0̂, 𝐹1⟩ ⟨0̊, 𝐹1⟩ NA

(b) Tabular representation of the hopper function.

return address
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴64
0x4312

frame size
⎴⎴⎴⎴⎴⎴8
42

hopper function
⎴⎴⎴
⟨
2
0,

4
0,

4
0⟩⟨

2
0,

4
1,

4
𝐹0⟩⟨

2
0,

4
1,

4
𝐹0⟩⟨

2
0,

4
0,

4
𝐹1⟩⟨

2
1,

4
0,

4
𝐹1⟩⟨

2
0,

4
0,

4
0⟩

in-place invocation?
⎴1
0

(c) Binary representation of the hopper function.

Figure 11. Compiling a hopper instance.

the zero-overhead principle. We refer to the original implementation strategy as Direct Lexa, and
the new one as Zero Lexa.

Our extended Lexa language allows the programmer to declare effects as exceptional. Exceptional
effects are expected to be raised rarely, so they are compiled using the Zero Lexa strategy, while non-
exceptional effects are compiled using the Direct Lexa strategy. Importantly, effects implemented
with different strategies can coexist in the same program.

The Lexa compiler is written in OCaml. It compiles Lexa programs to C code, which is then
compiled and optimized by LLVM. In Lexa, raising effects and resuming continuations are efficient,
implemented using handwritten assembly as stack-switching routines. Since Zero Lexa differs from
Direct Lexa only in how the runtime locates handlers, it has a similar compilation pipeline.

5.1 Hopper Table
At the core of our formal model of the zero-overhead implementation strategy is the hopper
functions, which guide handler search frame by frame. It may appear that evaluating hopper at run
time could be expensive. However, notice that each hopper instance only depends on the typing
information at compile time, so we pre-compute each hopper instance into a static lookup table
that maps a clue to the next clue. Moreover, since each hopper instance is uniquely associated
with a call site, we build a global lookup table that maps the return address of each call site to
the corresponding hopper function. This global lookup table also stores the mapping from return
addresses to the frame sizes, which is needed for walking the stack. The global lookup table is
stored in the program’s data section, completely hidden away from mainline execution paths.

We demonstrate how to compile a hopper instance into a lookup table, using the program in
Figure 3. Specifically, we show how to compile the hopper table for the call site at line 7.

The call-site information at line 7 is shown in Figure 11(a). The hopper function at this call site
can be represented as a table shown in Figure 11(b), where each cell shows the output clue for
an input clue. Each row corresponds to a possible effect name in the input clue, and each column
corresponds to a possible index in the input clue. Because fun1 accepts one capability variable and
one label variable, the table has three columns, including ∞ for effects raised to the handlers in the
capture set. NA means the input clue is impossible.

We can flatten this hopper instance into bits. The global hopper table consists of entries that look
like the one in Figure 11(c). Each entry consists of the return address associated with the call site,
the frame size, and the bit-encoded hopper function. The number above each value represents how
many bits are used to encode the value beneath. We assume that the program defines at most 16

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:21

effect signatures, and at any program point, there are at most 16 label or capability variables in
scope. Thus, we use four bits each to encode the effect name and index, plus a two-bit number to
indicate the type of index (̂𝑖, ̊𝑖, or ∞). Each entry also contains a one-bit flag to indicate whether the
caller is invoking a tail-resumptive handler in-place; this flag is explained in Section 5.4.

5.2 Stackwalker
The stackwalker is implemented as a function that takes an initial clue from the effect raise site.
When it arrives at a frame, it uses the return address at the frame to fetch a new clue from the
global hopper table. It then uses the clue to either locate the handler at the current frame, or to
jump to the next frame. The stackwalker continues this process until it finds the handler.

5.3 Multishot Resumptions
The Direct Lexa implementation strategy does not fully support multi-shot resumptions, and we
briefly explain why here. Direct Lexa represents handler labels as stack addresses, and passes these
memory addresses down the call chain as arguments, which are stored on the stack as function-local
variables. If a resumption is resumed more than once, the stacks would have to be copied. These
copies all contain the same stack addresses pointing to the handlers in the original stack, which
might not be the right handler for a specific copy. There is no easy way to efficiently recover the
right handler from the stale stack addresses.

With the new implementation strategy, no run-time representation of labels is needed, so
multiple copies of the same resumption do not interfere. This allows Zero Lexa to support multishot
resumptions without extra effort. Still, we do not view full support for multishot resumptions as a
key advantage of Zero Lexa: applications requiring multishot resumptions are usually effect-heavy
and thus do not benefit from the trade-off that Zero Lexa is designed for.

5.4 Tail-Resumptive Handlers
Compilers that feature effect handlers often support optimizations for tail-resumptive handlers.
A tail-resumptive handler invokes the resumption as its final action. Since the resumption is not
used in an interesting way, the handler can be invoked in-place like a regular function, eliminating
the overhead of capturing and restoring the continuation. However, with our new design, it is
tricky to get such an optimization right. After a tail-resumptive handler is invoked in-place, if it
further raises effects, these effects must be handled in the context where the handler was originally
installed, which may be higher up the call chain. If the stackwalker starts the walk from the current
frame, it may find the wrong handler.

To address this issue, we modify the compiler in two places. First, when the program invokes a
tail-resumptive handler in-place, the clue of this handler is pushed to the stack before making the
call. Second, when a stackwalker reaches a frame, it checks the flag in the hopper entry to determine
whether the caller is invoking a tail-resumptive handler. If so, it loads the previously stored clue
from the stack and uses it to walk to the frame where the tail-resumptive handler was installed,
before switching back to the clue it currently has. In general, it is possible that the stackwalker
encounters another tail-resumptive call site before switching to the original clue; therefore, the
stackwalker keeps track of a stack of clues, repeatedly pushing and popping clues as it encounters
tail-resumptive call sites and install sites.

5.5 Separate Compilation
Zero Lexa is compatible with separate compilation. Each compilation unit can be compiled separately
and produce its own hopper table. At link time, hopper tables from all compilation units can be
merged, with code addresses in the hopper tables updated based on relocation information. We
leave the implementation of this feature as future work.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:22 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

6 Evaluation
Our goal in this section is to understand the performance characteristics of the new zero-overhead
strategy as implemented in the Lexa compiler. This new Lexa compiler supports two different
implementation strategies making different trade-offs. We call them Direct Lexa and Zero Lexa.

The Direct Lexa strategy, described in prior work [Ma et al., 2024], makes handler search and
continuation capture efficient, but it incurs a small overhead even when effects are not raised, thus
violating the zero-overhead principle. Zero Lexa gives up some efficiency in handler search, trading
it for minimal overhead on mainline paths. We expect Zero Lexa to have a performance advantage
for effects that are rarely raised.

A benchmark suite [Bench, [n.d.]] exists that has been employed in past evaluations of effect-
handler implementations [Müller et al., 2023; Ma et al., 2024]. This suite targets effect-heavy
workloads, stressing the efficiency of handler search and continuation capture. On these benchmarks,
Lexa delivers state-of-the-art, competitive results, as the Lexa compiler uses the Direct Lexa strategy
for effects that are not declared as exceptional. Crucially, integrating the zero-overhead strategy
does not degrade the quality of code produced by the Lexa compiler for effect-heavy programs.

No benchmark suite exists that stresses the efficiency of mainline code. We fill this gap by
gathering a new benchmark suite. These benchmarks are similar in size and complexity to the
existing ones, but they raise effects infrequently. Most of them use exceptions to indicate illegal
arguments or other exceptional conditions that are not expected to occur in normal circumstances.
We compare how Direct Lexa and Zero Lexa perform in such low-effect or no-effect scenarios.

We include a case study involving cooperative multitasking. By varying the length of time slices,
we control the frequency that effects are raised and compare the performance of the two strategies.

An appendix contains a detailed comparison of the new Lexa compiler with other systems
supporting lexically scoped handlers—specifically, Effekt and Koka. Across both sets of benchmarks,
Lexa demonstrates strong, competitive performance.

6.1 Effect-Heavy Benchmarks
The first set of benchmarks in Table 1 comes from the community-maintained benchmark suite
[Bench, [n.d.]]. These benchmarks are effect-heavy programs designed to stress the efficiency of
handler search and continuation capture. The Lexa compiler uses the Direct Lexa strategy for these
benchmarks, as it is the default strategy. So the Direct Lexa column reflects the out-of-the-box
performance of Lexa on these effect-heavy programs, while the Zero Lexa column shows the
performance when the Zero Lexa strategy is forced.

As expected, the performance of Lexa degrades significantly if it is forced to use the Zero Lexa
strategy for these benchmarks, due to the cost of stackwalking, which becomes a major overhead
when effects are raised frequently.

With Direct Lexa, the Countdown and Iterator benchmarks are optimized to constants through
aggressive inlining by LLVM. However, with Zero Lexa, such optimizations are not feasible because
the stackwalking logic introduces complexity that prevents LLVM from performing similar inlining.
Parsing Dollars contains nested handlers. Zero Lexa performs poorly on this benchmark, as the

stackwalker needs to walk over multiple stack frames to find the handler. In contrast, with Direct
Lexa, finding the handler for a raised effect is a constant-time operation.
Handler Sieve uses a chain of tail-resumptive handlers. As discussed in Section 5.4, under Zero

Lexa, additional complexity is required to allow tail-resumptive handlers to be invoked in-place.
This complexity incurs a significant overhead.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:23

Table 1. Two sets of benchmarks are used: the existing suite of effect-heavy benchmarks and a new suite of
effect-infrequent benchmarks we curated. Lexa’s default behavior is reflected in the Direct Lexa column
and the Zero Lexa column, respectively, for these two sets of benchmarks. The last two columns show the
hopper size as a percentage of the binary size and the stackwalking time as a percentage of the total running
time. All experiments were conducted on a workstation with an AMD Ryzen 7 CPU (4.5 GHz).

Benchmarks
Direct
Lexa

(ms)

Zero
Lexa

(ms)

Loss / Gain
Zero vs. Direct

Zero Lexa
Hopper

Size

Zero Lexa
Stackwalk

Time

Countdown 0 2488 −Inf 2.87% 96.9%
Fibonacci Recursive 507 506 0.2% 0.45% 0.0%

Product Early 95 99 −4.2% 3.54% 1.9%
Iterator 0 285 −Inf 2.87% 92.4%
Nqueens 280 403 −43.9% 2.79% 55.4%
Generator 846 1956 −131.2% 2.38% 55.7%
Tree Explore 197 220 −11.7% 1.91% 19.2%

Triples 203 319 −57.1% 4.33% 54.1%
Resume Nontail 119 177 −48.7% 2.05% 48.5%
Parsing Dollars 271 2622 −867.5% 6.07% 99.6%
Handler Sieve 475 3556855 −748711.6% 4.34% 100.0%

Catalan 344 301 12.5% 5.12% 0.0%
Bézout 680 671 1.3% 4.53% 0.0%
Golomb 651 563 13.5% 2.91% 0.0%

Hofstadter Q 576 559 3.0% 3.30% 0.0%
Karatsuba 804 702 12.7% 6.95% 0.0%
Ackermann 3975 3954 0.5% 2.51% 0.0%

Palindrome Partition 112 113 −0.9% 5.03% 0.0%
Lattice Path 1002 971 3.1% 2.50% 0.0%
Two Threads 153 140 8.5% 2.03% 0.5%

6.2 Effect-Infrequent Benchmarks
We now turn to the new benchmark set. It consists of programs and inputs that either produce no
effects at run time or trigger them only rarely.
Catalan computes the 𝑛-th Catalan number, Bézout computes Bézout coefficients, Golomb

computes the 𝑛-th number in the Golomb sequence, Hofstadter Q computes the 𝑛-th number of the
Hofstadter Q sequence, and Karatsuba computes the product of two numbers using Karatsuba’s
algorithm.These programs use exceptions to indicate invalid input—for example, when the modulus
of a modular division is not positive. Although exceptions do not occur at run time for the inputs
we use, exception handlers still need to have run-time representations when Direct Lexa is used.
Due to the recursive nature of the benchmark programs, passing these run-time representations of
exception handlers around at run time is a major overhead. Zero Lexa does not incur this overhead
and is hence faster.

Ackermann computes the Ackermann function, a simple recursive function with rapidly growing
output. An exception handler is used to handle invalid input. Zero Lexa does not have a clear
advantage over Direct Lexa on this benchmark, even though each function call in Direct Lexa uses
an extra argument. We conjecture that this might be because the program is very simple, and the
CPU can absorb the overhead of shuffling the extra argument around with out-of-order execution.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:24 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

Palindrome Partition computes the number of possible palindromic partitions of a string. It raises
an index-out-of-bounds exception when an illegal string index is accessed. Zero Lexa fails to gain
any advantage over Direct Lexa on this benchmark, for reasons similar to Ackermann.

Lattice Path computes the number of 2D lattice paths between two points that avoid a third point.
It contains a function that already takes six arguments, so the additional argument representing
the exception handler in Direct Lexa introduces noticeable overhead. Zero Lexa does not require
this additional argument and therefore outperforms Direct Lexa.

20000 40000 60000

scheduling time slice

180

200

220

tim
e
(m

s)

Direct Lexa
Zero Lexa

1

Two Threads runs two lightweight threads that cooperatively
multitask on a shared OS thread. Each thread holds a counter
representing its time slice and decrements the counter at the start
of each recursive call. When the counter reaches zero, the thread
raises a Yield effect, allowing the other thread to take over and
run with a new time slice. The time slice is configurable and given
as input to the program. When the time slice is large, the threads
yield infrequently. In this case, the overhead of propagating the
Yield handler is more significant than the overhead of handler search via stackwalking. Thus, in
Table 1, we see that Zero Lexa is faster than Direct Lexa. However, when the time slice is small, the
threads yield frequently to each other, and the cost of stackwalking dominates. This trade-off is
illustrated in the figure above, which plots the running times of the two strategies against the time
slice. As the time slice increases, the performance advantage shifts from Direct Lexa to Zero Lexa.

6.3 Hopper Size and Stackwalking Time
The second-to-last column of Table 1 shows the hopper size as a percentage of the binary size. The
increase in binary size caused by Zero Lexa is modest; across all benchmarks, hoppers take up a
single-digit percentage of the binary size.

The last column of Table 1 shows the stackwalking time as a percentage of the total running
time. Stackwalking time varies significantly across benchmarks. In the effect-heavy benchmarks,
it largely dominates the total running time. In the effect-infrequent benchmarks, it is negligible.
These results confirm that the zero-overhead implementation strategy is best suited for low-effect
or no-effect scenarios where effects are rarely raised. We expect future engineering work to reduce
the cost of stackwalking further, but we leave these optimizations to future efforts.

7 Related Work
Almost all languages with an exception mechanism use dynamic scoping for exception handlers.
CLU is one of the earliest languages to support exception handling [Atkinson et al., 1978; Liskov
and Snyder, 1979]. The compiler generates exception tables that are consulted at run time to find
the closest dynamically enclosing handler for an exception. Similar approaches are used in Java
and most C++ implementations.

Dynamic scoping is flexible but potentially hazardous. Zhang et al. [2016] notice that dynamically
scoped exception handlers can cause exceptions to be caught by accident. They address this problem
in the Genus programming language [Zhang et al., 2015], with tunneled exceptions. In Genus,
exceptions tunnel through program contexts oblivious to them. Tunneling, in its essence, is a form
of lexically scoped handlers. It is based on the principle of local reasoning. The implementation
works by a translation to Java exceptions and requires generating fresh identifiers for each handler
instance at run time. This implementation strategy does not satisfy the zero-overhead principle.

What does it mean for an exception mechanism to prevent accidental handling? Zhang et al.
[2019, 2020] suggest that the unintended interception of exceptions is a symptom of a deeper
modularity problem that can be understood in analogy to a loss of parametricity [Wadler, 1989].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

Zero-Overhead Lexical Effect Handlers 399:25

They construct logical-relations models for type-and-effect systems supporting effect polymorphism
and prove that local reasoning principles are restored by lexically scoped effect handlers. In our SL,
effect polymorphism exists in the form of parameterization over capability variables.

Biernacki et al. [2020] coined the term lexically scoped effect handlers. They investigate two
semantics, an open semantics and a generative semantics and show that generativity is necessary
when effect operations can be polymorphic. This generativity is seen in all existing implementations
that support lexical handlers. Our work is the first to show that lexical handlers can be implemented
without generating any form of reified representations of handlers.

Effekt supports lexical effect handlers, featuring lightweight effect polymorphism via the use
of second-class values [Brachthäuser et al., 2020a], which is also used in Genus for lightweight
exception polymorphism [Zhang et al., 2016].The surface language does not require that handlers be
explicitly named. A recent version of the Effekt compiler works by a translation to an intermediate
language called System Ξ, where handlers are passed explicitly. System Ξ is further translated
to a calculus Λcap with a region system [Müller et al., 2023]. This second translation is called lift
inference, generating subregion evidence that determines how many handlers have to be jumped
over until the right handler is found when an effect is raised. Λcap is subsequently translated to
System F [Schuster et al., 2022]. This implementation strategy does not satisfy the zero-overhead
principle, as subregion evidence has to be reified at run time as a sequence of function applications.
A more recent version of Effekt moved away from this pipeline [Effekt Evolution, [n.d.]] and instead
builds on Lexa’s approach of compiling lexical effect handlers to stack switching [Ma et al., 2024].

Ma et al. [2024] observe that lexical handler search ought to run in constant time, yet prior
implementations can incur costs akin to the search for dynamically scoped handlers. Lexa achieves
constant-time handler search and resumption capture by compiling to stack switching, which
improves asymptotic performance for effect-heavyworkloadswith deep stacks.This implementation
strategy requires reifying handler instances as stack addresses. The present work extends the Lexa
compiler by exploring a different trade-off aimed at low-frequency effects.

Koka is initially designed with dynamically scoped handlers [Leijen, 2017]. Xie et al. [2022]
present a type-and-effect system for first-class named handlers in Koka, which are a form of lexically
scoped handlers. This implementation of named handlers requires reifying handler instances as
evidence information at run time and therefore does not satisfy the zero-overhead principle.

There is an ongoing effort to add some form of effect handlers to WebAssembly. The proposal is
known as WasmFX [Phipps-Costin et al., 2023]. The design focuses on dynamically scoped handlers
but also considers the possibility of named handlers. The work does not study implementation
techniques for named handlers.

8 Conclusion
Lexically scoped handlers address a long-standing modularity problem with dynamic scoping,
but existing implementations do not meet the zero-overhead principle for exceptional effects,
which is otherwise satisfied by most modern compilers supporting dynamically scoped exception
handlers. We have introduced a compilation strategy restoring this principle through a type-
directed translation that emits information tracking the lexical provenance of handlers. The emitted
information guides the runtime system in walking the stack to find the right handler for a raised
effect. The payoff is reduced overhead on mainline paths, achieving parity with the performance
profile of dynamically scoped exception handlers. Our approach complements existing techniques,
allowing customization of compilation strategies for each declared effect to match their expected
invocation frequencies. By identifying and removing a key barrier to adoption, we hope this work
encourages language designers and implementers to embrace lexically scoped handlers for their
modularity benefits.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

399:26 Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang

Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This work was supported in part
by the Natural Sciences and Engineering Research Council of Canada. The views and opinions
expressed are those of the authors and do not necessarily reflect the position of any funding agency.

Data-Availability Statement
The artifact accompanying this paper is available [Ma et al., 2025a]. The latest release of the Lexa
compiler can be found at the following link:

Github https://github.com/lexa-lang/lexa

References
Russell R. Atkinson, Barbara H. Liskov, and Robert W. Scheifler. 1978. Aspects of implementing CLU. In Proceedings of the

1978 Annual Conference (ACM ’78). https://doi.org/10.1145/800127.804079
Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic

Methods in Programming 84, 1 (2015). https://doi.org/10.1016/j.jlamp.2014.02.001
Bench [n.d.]. Effect handlers benchmarks suite. https://github.com/effect-handlers/effect-handlers-bench Accessed:

2025-03-01.
Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect

instances via lexically scoped handlers. Proc. of the ACM on Programming Languages (PACMPL) 4, POPL (Jan. 2020).
https://doi.org/10.1145/3371116

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020a. Effects as capabilities: Effect handlers
and lightweight effect polymorphism. Proc. of the ACM on Programming Languages (PACMPL) 4, OOPSLA (Nov. 2020).
https://doi.org/10.1145/3428194

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020b. Effekt: Capability-passing style for
type- and effect-safe, extensible effect handlers in Scala. Journal of Functional Programming (JFP) 30 (March 2020).
https://doi.org/10.1017/S0956796820000027

Karl Crary, David Walker, and Greg Morrisett. 1999. Typed memory management in a calculus of capabilities. In ACM
SIGPLAN Symp. on Principles of Programming Languages (POPL). https://doi.org/10.1145/292540.292564

Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 75, 5 (1972). https:
//doi.org/10.1016/1385-7258(72)90034-0

Effekt [n.d.]. Effekt: A language with lexical effect handlers and lightweight effect polymorphism. https://effekt-lang.org
Accessed: 2025-07-01.

Effekt Evolution [n.d.]. A brief history of Effekt for fellow researchers. https://effekt-lang.org/evolution Accessed:
2025-07-01.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The essence of compiling with continuations. In
ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/155090.155113

John B. Goodenough. 1975. Exception handling: Issues and a proposed notation. Comm. of the ACM 18 (Dec. 1975).
https://doi.org/10.1145/361227.361230

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. 2002. Region-based memory
management in Cyclone. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/512529.512563

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN Conf. on Functional Programming
(ICFP). https://doi.org/10.1145/2500365.2500590

Koka [n.d.]. Koka: A functional language with effect types and handlers. https://koka-lang.github.io Accessed: 2025-07-01.
Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In ACM SIGPLAN Symp. on Principles of

Programming Languages (POPL). https://doi.org/10.1145/3093333.3009872
Xavier Leroy. 2009. A formally verified compiler back-end. Journal Automated Reasoning 43, 4 (Dec. 2009). https:

//doi.org/10.1007/s10817-009-9155-4
Lexa [n.d.]. The Lexa Programming Language. https://github.com/lexa-lang/lexa
Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In ACM SIGPLAN Symp. on Principles of

Programming Languages (POPL). https://doi.org/10.1145/3009837.3009897

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

https://github.com/lexa-lang/lexa
https://github.com/lexa-lang/lexa
https://doi.org/10.1145/800127.804079
https://doi.org/10.1016/j.jlamp.2014.02.001
https://github.com/effect-handlers/effect-handlers-bench
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1145/292540.292564
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://effekt-lang.org
https://effekt-lang.org/evolution
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/2500365.2500590
https://koka-lang.github.io
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://github.com/lexa-lang/lexa
https://doi.org/10.1145/3009837.3009897

Zero-Overhead Lexical Effect Handlers 399:27

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. 1977. Abstraction mechanisms in CLU. Comm. of the
ACM 20, 8 (Aug. 1977). https://doi.org/10.1145/359763.359789

Barbara H. Liskov and Alan Snyder. 1979. Exception handling in CLU. IEEE Trans. Software Engineering 5, 6 (Nov. 1979).
https://doi.org/10.1109/TSE.1979.230191

Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang. 2025a. Zero-Overhead Lexical Effect Handlers (artifact). https:
//doi.org/10.5281/zenodo.16928355

Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang. 2025b. Zero-Overhead Lexical Effect Handlers (Extended Version).
Technical Report CS-2025-04. School of Computer Science, University of Waterloo.

Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang. 2024. Lexical effect handlers, directly. Proc. of the ACM on Programming
Languages (PACMPL) 8, OOPSLA2 (2024). https://doi.org/10.1145/3689770

M. Donald MacLaren. 1977. Exception handling in PL/I. In ACM Conf. on Language Design for Reliable Software. https:
//doi.org/10.1145/800022.808316

Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann, and Jonathan Immanuel Brachthäuser. 2023.
From capabilities to regions: Enabling efficient compilation of lexical effect handlers. Proc. of the ACM on Programming
Languages (PACMPL) 7, OOPSLA2 (Oct. 2023). https://doi.org/10.1145/3622831

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,
and Sam Lindley. 2023. Continuing WebAssembly with effect handlers. Proc. of the ACM on Programming Languages
(PACMPL) 7, OOPSLA2 (Oct. 2023). https://doi.org/10.1145/3622814

Gordon Plotkin and John Power. 2003. Algebraic operations and generic effects. Applied Categorical Structures 11, 1 (Feb.
2003). https://doi.org/10.1023/A:1023064908962

Gordon Plotkin and Matija Pretnar. 2013. Handling algebraic effects. Logical Methods in Computer Science 9, 4 (Dec. 2013).
https://doi.org/10.2168/LMCS-9(4:23)2013

Philipp Schuster, Jonathan Immanuel Brachthäuser, MariusMüller, and Klaus Ostermann. 2022. A typed continuation-passing
translation for lexical effect handlers. In ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI). https://doi.org/10.1145/3519939.3523710

Mark Shannon. 2021. “Zero cost” exception handling. https://bugs.python.org/issue40222
KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/3453483.3454039

Bjarne Stroustrup. 1995. The design and evolution of C++. Addison-Wesley Publishing Co.
Bjarne Stroustrup. 2012. Foundations of C++. In European Symp. on Programming (ESOP). https://doi.org/10.1007/978-3-642-

28869-2_1
Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management. Information and Computation 132, 2 (1997).

https://doi.org/10.1006/inco.1996.2613
Philip Wadler. 1989. Theorems for free!. In Int’l Conf. on Functional Programming Languages and Computer Architecture

(FPCA). https://doi.org/10.1145/99370.99404
Luke Wagner. 2017. Should producers/consumers assume throwing is “rare” and, if so, can the spec note this? https:

//github.com/WebAssembly/exception-handling/issues/19
Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-class names for effect handlers. Proc. of the ACM

on Programming Languages (PACMPL) 6, OOPSLA2 (Oct. 2022). https://doi.org/10.1145/3563289
Yizhou Zhang, Matthew C. Loring, Guido Salvaneschi, Barbara Liskov, and Andrew C. Myers. 2015. Lightweight, flexible

object-oriented generics. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/2737924.2738008

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. of the ACM on Programming
Languages (PACMPL) 3, POPL (Jan. 2019). https://doi.org/10.1145/3290318

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. 2016. Accepting blame for
safe tunneled exceptions. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/2908080.2908086

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling bidirectional control flow. Proc. of the ACM on
Programming Languages (PACMPL) 4, OOPSLA (Nov. 2020). https://doi.org/10.1145/3428207

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 399. Publication date: October 2025.

https://doi.org/10.1145/359763.359789
https://doi.org/10.1109/TSE.1979.230191
https://doi.org/10.5281/zenodo.16928355
https://doi.org/10.5281/zenodo.16928355
https://doi.org/10.1145/3689770
https://doi.org/10.1145/800022.808316
https://doi.org/10.1145/800022.808316
https://doi.org/10.1145/3622831
https://doi.org/10.1145/3622814
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/3519939.3523710
https://bugs.python.org/issue40222
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/99370.99404
https://github.com/WebAssembly/exception-handling/issues/19
https://github.com/WebAssembly/exception-handling/issues/19
https://doi.org/10.1145/3563289
https://doi.org/10.1145/2737924.2738008
https://doi.org/10.1145/2737924.2738008
https://doi.org/10.1145/3290318
https://doi.org/10.1145/2908080.2908086
https://doi.org/10.1145/2908080.2908086
https://doi.org/10.1145/3428207

	Abstract
	1 Introduction
	2 Main Ideas
	2.1 Handler Search Semantics and Implementation Strategies
	2.2 A Zero-Overhead Implementation Strategy
	2.3 Nonambiguity Requirement on Capture Sets

	3 A Formal Model of the Zero-Overhead Compilation Scheme
	3.1 Source Language SL
	3.2 Target Language TL
	3.3 Type-Directed Translation from SL to TL

	4 Compiler Correctness
	5 Implementation
	5.1 Hopper Table
	5.2 Stackwalker
	5.3 Multishot Resumptions
	5.4 Tail-Resumptive Handlers
	5.5 Separate Compilation

	6 Evaluation
	6.1 Effect-Heavy Benchmarks
	6.2 Effect-Infrequent Benchmarks
	6.3 Hopper Size and Stackwalking Time

	7 Related Work
	8 Conclusion
	References

