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Programming-language design is more active than ever: existing languages are

evolving continually and rapidly, and new languages keep springing up. While

this constant iteration of language design aims to help programmers manage

a growing software complexity, programmers are still frequently frustrated by

poor design decisions in even the most essential aspects of modern program-

ming languages. Less than satisfactory solutions to generic programming and

exception handling typify this situation: the inadequacy of current solutions has

even forced language designers to abandon these problematic language features.

This is an unfortunate state of affairs.

Language design does not have to be about abandoning old features or piling

on new ones. This dissertation proposes novel linguistic abstractions for the

aforementioned design problems, offering ease of use, expressive power, strong

guarantees, and good performance all at the same time.

It introduces a new mechanism for generic programming, embodied in the

Genus programming language. Genus adds expressive power and strengthens

static checking, while handling common usage patterns simply. The power of

Genus is then integrated into a second language design, Familia, that unifies

several polymorphism mechanisms in a lightweight package. Evaluation sug-

gests the design of Genus and Familia addresses the need for genericity and

extensibility in developing large, complex software.

This dissertation also introduces a new mechanism for exception handling.

By allowing exceptions to tunnel through handlers, the design offers both the

static assurance of checked exceptions and the flexibility of unchecked exceptions.



This tunneling semantics is then generalized to a broader class of control effects

to address a fundamental modularity problem: it prevents effect-polymorphic

abstractions from handling effects by accident. This claim about abstraction

safety is formally accounted for.

We hope that the language-design ideas presented here will make their way

into mainstream programming languages and help make it easier to write and

reason about software.
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CHAPTER 1

INTRODUCTION

The complexity of computer software is growing constantly. Taming this com-

plexity places an ever growing demand for expressive power and static assurance

on programming languages.

As responses to this demand, existing language designs—including Rust [154],

Swift [169], JavaScript [62], Java [167], C# [90], Scala [133], and Haskell [67], to

name a few—are evolving continually and rapidly, and new languages keep

emerging.

While these efforts help address some challenges faced by programmers,

awkward design decisions persist in even the most essential aspects of modern

programming languages. This situation is typified by the unsatisfactory support

for generic programming and for exception handling in existing languages. In

fact, the lack of a good solution to generics or exceptions even induced language

designers to abandon the problematic language features. For example, C# was

designed without support for statically checked exceptions, but only because the

language designers did not know how to design such an exception mechanism

well [89]. The Go programming language was designed without support for

generic programming, only to find itself needing a solution now because it is

failing to scale to large software projects [50].

This dissertation examines these challenging problems in language design,

and proposes new linguistic abstractions for code genericity and for handling

exceptions and other control effects alike. These linguistic abstractions are flex-

ible and modular to use, making it easier to construct and reason about large,

complex software. Specifically, the dissertation advances the state of the art in

the following two aspects:

1



• The dissertation presents a new exception mechanism that offers, at the

same time, expressive power, static guarantees, and good performance,

therefore addressing unsatisfactory tradeoffs in previous approaches that

have made exception handling an unattractive language feature. Further-

more, it generalizes the approach to a broader class of control-flow effects

(known as algebraic effects), and formally pins down the claim that this

new semantics of algebraic effects protects abstraction boundaries.

• The dissertation presents an expressive yet lightweight language mecha-

nism for generic programming, offering better code reuse and enforcing

stronger static checking. It also unifies this genericity mechanism with the

more common object-oriented (OO) programming paradigm, and further

integrates the power of family polymorphism. The result is a compact set

of linguistic abstractions that enable powerful forms of polymorphism and

extensibility.

The rest of this chapter overviews these contributions.

1.1 Fixing the Tragedy of Exceptions

Since the advent of exception-handling mechanisms in the 1970s, there has been

debate about whether exceptions should be subject to static checking. Unhandled

exceptions crash programs, so a static checking should in principle make software

more reliable. However, checked exceptions are so rigid that programmers often

intentionally subvert static checking. This problem has become more apparent

as programming with higher-order abstractions has become more common. As a

result, new languages are being designed without statically checked exceptions,

2



simply because the designers do not know how to design such an exception

mechanism well. This is an unfortunate state of affairs.

This dissertation proposes a new tunneling semantics for exceptions. It breaks

with the commonly perceived but rather rigid dichotomy between checked

exceptions and unchecked exceptions. Instead, guided by modular thinking,

exceptions are statically checked, but only in contexts aware of them. Otherwise,

exceptions tunnel through handlers.

Tunneling combines the benefits of static checking with the flexibility of

unchecked exceptions. An evaluation of this design on real-world codebases

shows it is effective in improving expressivity and safety: tunneled exceptions

avoid tedious antipatterns, and more importantly, restore static checking and

local reasoning, uncovering bugs including unhandled and accidentally handled

exceptions.

The new design also helps implement exceptions efficiently. An implementa-

tion of the new mechanism outperforms Java on exception-heavy programs, and

achieves comparable performance on standard benchmarks, despite the extra

bookkeeping needed for tunneling.

1.2 Protecting Abstraction against Accidental Handling

Algebraic effects [16, 147, 148] are an emerging language abstraction that is

quickly gaining popularity among language designers and programmers. They

subsume a wide variety of built-in language features for control flow, including

exceptions, coroutine iterators, and async–await.

Unfortunately, the safety of algebraic effects is threatened by the possibility

that effect-polymorphic abstractions may handle, by accident, effects they are

not designed to handle. While the aforementioned tunneling semantics for
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exceptions can be adapted to address this problem for algebraic effects, it remains

an open problem to account formally and rigorously for what it means for a

language to safely prevent accidental handling.

A key insight is that accidental handling is an abstraction violation. Current

semantics of algebraic effects allow a client to observe different behaviors about

two implementations of the same abstraction, when one of them happens to

use effects internally (and can thus handle effects by accident). Implementation

details leak through abstraction boundaries!

To formally capture this insight, we develop a logical-relations model for a

core language equipped with tunneled algebraic effects, and prove it satisfies

an “abstraction theorem”. This logical-relations model offers a sound reasoning

process for proving the equivalence of pure and effectful program fragments,

justifying the claim that tunneling enforces abstraction.

1.3 Redesigning Generics for Object-Oriented Languages

The benefits of generics are evident: more code reuse and more modularity. But

it appears that current OO languages still offer an unsatisfactory tradeoff among

expressivity, modularity, and usability. Designing a generics mechanism requires

answering the questions of how to expose operations of type parameters and

how to show type arguments have these operations. Current solutions to these

questions fall short in expressivity and safety. For example, languages such as

Java and C# expose operations of type parameters using subtyping constraints,

making it impossible to use generics with type arguments that are not declared in

advance as subtypes. As a result, programmers—and even Java’s own collections

framework—shy away from using subtyping constraints and resort to unsafe

workarounds.
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This dissertation provides the design and implementation of a new generics

mechanism, embodied in a language called Genus. Genus introduces a pair

of language constructs called constraints and models. Constraints specify oper-

ations of type parameters, and models satisfy constraints for type arguments,

with no preplanning needed. Constraints and models are inspired by Haskell’s

type classes and instances [176]. But unlike type classes, constraints can be wit-

nessed in more than one way, and the type system, for modularity, prevents the

programmer from confusing these witnesses.

Genus makes generics safer and more expressive, as demonstrated by an

evaluation that ports significant Java codebases into Genus. By optimizing

generic code for particular type arguments, the Genus compiler can deliver

very good performance. The deep integration with OO subtyping and variance

poses algorithmic challenges to inference; yet inference remains decidable with

generally accepted syntactic restrictions.

1.4 A Deep Unification of Polymorphism Mechanisms

The language design literature has accumulated a rich set of powerful language

mechanisms for polymorphism. But it remains an elusive goal to harmoniously

integrate these distinct mechanisms in a single language. The design of Genus is a

step towards this goal; it integrates constrained parametric polymorphism (in the

form of type classes and instances) with object-oriented polymorphism. But the

addition of constraints and models burdens an already feature-rich language with

entirely new kinds of constructs. Even for Haskell, it has been argued that type

classes and instances introduce feature redundancy that confront programmers

with added surface complexity.
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This dissertation presents a language design called Familia that integrates

several polymorphism mechanisms in a deep way. Familia is lightweight—it can

be used as an ordinary Java-like OO language. By exploiting a duality between

object-oriented polymorphism and type-class-based parametric polymorphism,

Familia readily supports expressive generics à la Genus, but without needing ad-

ditional language constructs. The design further unifies associated types found in

Haskell type classes with family polymorphism approaches found in OO languages,

allowing a group of related interfaces, classes, and modules to be extended in a

coordinated and type-safe way.

A case study of using Familia to implement a highly reusable program analy-

sis framework suggests that this set of design ideas coheres, and has a high payoff

in increasing code extensibility for large, complex software. A formalization of

Familia in a core language shows the design is type-safe.

1.5 Roadmap and Published Work

The remainder of this dissertation proceeds as follows. Chapter 2 presents the

design and implementation of the new exception mechanism. Chapter 3 gener-

alizes the tunneling semantics to algebraic effects and develops the theoretical

underpinning of abstraction-safe effect handlers. Chapter 4 presents the design

and implementation of the new generics mechanism embodied in the Genus

language. Chapter 5 discusses the design of Familia, a language that unifies

Genus-style generics, OO programming, and family polymorphism. Chapter 6

concludes.

These chapters are based on the following published work of the author:

Zhang et al. [193], Zhang and Myers [189], Zhang et al. [190], and Zhang and

Myers [186].
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CHAPTER 2

ACCEPTING BLAME FOR TUNNELED EXCEPTIONS

Exceptions make code more reliable by helping programmers handle abnor-

mal or unusual run-time conditions. The core idea is to transfer control in a

nonlocal way to handler code that can be factored out from common-case code.

This separation of concerns simplifies code and prompts programmers not to

forget about exceptional conditions.

There has been disagreement since the 1970s about how or whether exceptions

should be subject to static checking [80, 111]. This disagreement continues to the

present day [78]. Some currently popular languages—Java [82] and Swift [169]—

offer checked exceptions that the compiler statically ensures are handled. However,

exceptions are not part of type checking in other popular languages such as

C++ [164], C# [90], Scala [133], and Haskell [143].

Proponents of static checking argue that exceptions represent corner cases

that are easy to forget. The evidence suggests they have a point. One study

of a corpus of C# code [36] determined that 90% of the possible exceptions are

undocumented. Undocumented exceptions make it hard to know whether all

exceptions are handled, and these unhandled exceptions percolate up through

abstraction layers, causing unexpected software failures. Statically checked

exceptions help programmers build more robust code [175].

Opponents of static checking argue that the annotation burden of statically

checked exceptions does not pay off—that statically checked exceptions are too

rigid to support common design patterns and common ways in which software

evolves [61, 180]. They, too, have a point. The problems with statically checked

exceptions have become more apparent in recent years as object-oriented (OO)

languages like C#, Scala, and Java have acquired lambda expressions and the use
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of higher-order functions has become more common. As a result, the promise of

exceptions to help make software more reliable has been partly lost.

Studies of the effectiveness of exception mechanisms have concluded that

existing mechanisms do not satisfy the appropriate design criteria [34, 35]. C#

does not statically check exceptions because its designers did not know how

to design such an exception mechanism well, saying “more thinking is needed

before we put some kind of checked exceptions mechanism in place” [89]. It

seems the long-running conflict between checked and unchecked exceptions can

be resolved only by a new exception mechanism.

This chapter aims to provide a better exception mechanism, one that combines

the benefits of static checking with the flexibility of unchecked exceptions. The

new mechanism gives programmers static, compile-time guidance to ensure

exceptions are handled, but works well with higher-order functions and design

patterns. It adds little programmer burden and even reduces that burden. The

run-time overhead of the mechanism is low, because exception handling does

not require stack-trace collection in common use cases and avoids the need to

wrap checked exceptions inside unchecked ones.

Two main insights underlie the new design. The first is that the distinction

between “checked” and “unchecked” should not be a property of the type of

the exception being raised, as it is in Java, but rather a property of the context in

which the exception propagates. In contexts that are aware of an exception, the

exception should be checked statically to ensure that it is handled. To handle

higher-order functions and design patterns, however, some contexts must be

oblivious to exceptions propagating through them; exceptions should tunnel

uncaught through oblivious contexts, effectively unchecked.
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This principle implies that the same exception may be both checked and

unchecked at different points during its propagation. To prevent oblivious code

from accidentally catching exceptions, a second insight is needed: exceptions

can be distinguished by expanding the space of exception identifiers with an

additional label that describes the exception-aware context in which this excep-

tion can be caught. These labels can be viewed as an extension of the notion

of blame labels found in previous work on gradual typing [178]. Unlike with

gradual typing, this sort of “blame” is not a programmer error; it is instead a

way to indicate that exceptions should tunnel through the oblivious code until

they arrive at the right exception-aware context.

We start the rest of the chapter by exploring requirements for a good ex-

ception mechanism in Section 2.1. Sections 2.2–2.5 present our new exception

mechanism informally in the context of a Java-like language. Section 2.6 defines

a core language whose semantics show more precisely how the mechanism

works. Using this core language, we prove the key theorem that all exceptions

are handled explicitly. Section 2.7 describes our implementation of the new ex-

ception mechanism in the context of the Genus programming language [190].

The effectiveness of the mechanism is evaluated in Section 2.8, using code drawn

from real-world codebases. Related work is explored more fully in Section 2.9.

2.1 Design Principles for Exceptions

The goal of an exception mechanism is to simplify and regularize the handling

of exceptional events, making programs more reliable. However, there are two

quite different classes of exceptional events, with different design goals:

• Failures. Some events cannot reasonably be expected to be handled cor-

rectly by the program—especially, events that arise because of programmer
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mistakes. Other events such as running out of memory also fall into this

category.

• Unusual conditions. Other events arise during correct functioning of the

program, in response to an unusual but planned-for state of the environ-

ment, or even just an unusual case of an algorithm.

These two classes place different requirements on the exception mechanism.

For failures, efficiency is not a concern because the program is not expected to

recover. However, programmers need the ability to debug the (stopped) program

to discover why the failure occurred, so it is important to collect a stack trace.

Furthermore, since failures imply violation of programmer assumptions, having

to declare them as part of method signatures or write handler code for them

is undesirable. Nonetheless, there are cases where the ability to catch failure

exceptions is useful, such as when building frameworks for executing code that

might fail.

For the second class of exceptions, unusual conditions, the design goals are

different. Now efficiency matters! Because exceptions are slow in many common

languages, programmers have learned to avoid using them. One insight is that

because unusual conditions are part of the correct functioning of the program,

the overhead of collecting a stack trace is unnecessary.

Unfortunately, existing languages tend not to support the distinction between

these two exception classes well. For example, typical Java usage always leads to

stack-trace collection, making exceptions very expensive. At the same time, code

is cluttered with handlers for impossible exceptions.
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2.1.1 Higher-Order Functions and Exceptions

Current exception mechanisms do not work well in code that uses higher-order

functions. An example is an ML-style map method that applies a function argu-

ment to each element of a list, returning a new list. Callers of the higher-order

function may wish to provide as an argument a function that produces exceptions

to report an unusual condition that was encountered, such as an I/O exception.

Of course, we want these exceptions to be handled. But the implementation of

map knows nothing about these exceptions, so if such exceptions do occur, they

should be handled by the caller of map. It is unreasonable for map either to handle

or to declare them—its code should be oblivious to the exceptions.

This example illustrates why otherwise statically typed functional program-

ming languages such as ML and Haskell do not try to type-check exceptions

statically [104]. The problem has also become more prominent in modern OO

languages that have added lambda expressions and are increasingly relying on

libraries that use them (e.g., JavaFX, Apache Spark). The problem is encoun-

tered even without lambda expressions, though; for example, Java’s Iterator

interface declares no exceptions on its methods, which means that implementa-

tions of Iterator are not allowed to generate exceptions—unless they are made

“unchecked”.

Our goal is to achieve the notational convenience of the functional program-

ming languages along with the assurance that exceptions are handled, which is

offered by languages such as Java, Swift [169], and Modula-3 [128]. We propose

that a higher-order function like map should be implementable in a way that

is oblivious to the exceptions possibly generated by its argument. The possible

exceptions of the argument should not be declared in the signature of map; nor

should the code of map have to say anything about these exceptions.
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A subtle problem arises when a higher-order function like map uses excep-

tions inside its own implementation. If the exceptions of the argument and the

internal exceptions collide, the map code could then accidentally catch exceptions

that are not intended for it—an effect we call exception capture by analogy with

the problem of variable capture in dynamically scoped languages [163]. For

modularity, a way is needed to tunnel such exceptions through the intermediate

calling context. In fact, accidentally-caught exceptions are a real source of serious

bugs [52, 70].

An alternative to our oblivious-code approach that has been suggested pre-

viously [79, 155, 174] is to parameterize higher-order code like map over the

unknown exceptions of its argument. This exception polymorphism approach re-

quires writing annotations on oblivious code yet still permits accidental exception

capture.

2.1.2 Our Approach

Backed by common sense and some empirical evidence, we believe that code

is more reliable when compile-time checking guides programmers to handle

exceptional cases. It is disappointing that recent language designs such as C#

and Scala have backed away from statically declared exceptions.

We propose a new statically checked exception mechanism that addresses the

weaknesses of prior exception mechanisms:

• It supports static, local reasoning about exceptions. Local reasoning is

efficient, but more importantly, it aids programmer understanding. A code

context is required to handle only the exceptions it knows about statically.

• The mechanism is cheap when it needs to be: when exceptions are used for

nonlocal control flow rather than failures.
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• In the failure case, however, the mechanism collects the stack trace needed

for debugging.

• It supports higher-order functions whose arguments are other functions

that might throw exceptions to which the higher-order code is oblivious.

• It avoids the exception-capture problem both for higher-order functions

and for failures.

2.2 The Exception Mechanism

We use Java as a starting point for our design because it is currently the most

popular language with statically checked exceptions. Our design is presented as

a version of the Genus language, a variant of Java with an expressive constrained

genericity mechanism [190]. The essential ideas should apply equally well

to other languages, such as Java, C# [118], Scala [133], and ML [121]. Since

exception-oblivious code (like map) is often generic, it is important to study how

exceptions interact with sophisticated generics.1

Previous languages have either had entirely “checked” or “unchecked” ex-

ceptions (in Java’s terminology), or, as in Java, have assigned exception types

to one of these two categories. Our insight is that “checked” vs. “unchecked”

is a property of the context of the exception rather than of its type. Any excep-

tion should be “checked” in a context that is not oblivious to the exception and

can therefore handle it. But in a context that is oblivious to the exception, the

exception should be treated as “unchecked”.

Genus requires that a method handle or explicitly propagate all exceptions it

knows can arise from operations it uses or methods it calls. If the implementa-
1Genus uses square brackets rather than angle brackets for generic type arguments: List[T]

rather than List<T>. For brevity, we use Genus syntax and the Genus equivalents of Java core
classes without further explanation.
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tion of a method explicitly throws an unhandled exception whose type (or the

supertype thereof) is not listed in the method’s header, the program is rejected.

Like in Java, exceptions can be handled using the try–catch construct, and a

finally block that is always executed may be provided. (The try-with-resources

statement of Java 7 is easily supported; it is orthogonal to the new features.)

A method that wishes merely to propagate an exception to its caller can simply

place a throws clause in its signature. We say such an exception propagates in

checked mode. Unlike in Java, exceptions in checked mode do not cause stack-trace

collection.

2.2.1 Failures

Unlike Java, our mechanism makes it easy for the programmer to indicate that an

exception should not happen. The programmer ordinarily does this by putting a

fails clause in the method header. Any caller of the method is then oblivious

to the exception, meaning that the exception will be treated as unchecked as

it propagates further. When code fails because of an exception, the exception

propagates in a special mode, the failure mode.

For example, a programmer who is certain that the Object class can be loaded

successfully can write

Class loadObject() fails ClassNotFoundException {

return Class.forName("genus.lang.Object");

}

where the method forName in Class declares ClassNotFoundException in its

throws clause. Note that a fails clause is really part of the implementation

rather than part of the method signature or specification. We write it in the

header just for convenience.
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Exceptions propagating in failure mode also differ in what happens at run

time. Programmers need detailed information to debug the stopped program to

discover how the failure occurred. Therefore, failure exceptions collect a stack

trace. This is relatively slow (as slow as most Java exceptions!) but efficiency is

not a concern for failures.

2.2.2 Avoiding Exception Capture

Since exceptions propagating in failure mode do not appear in method signatures,

it is important to avoid catching them accidentally. For example, consider the

following code that calls two functions g() and h():

void f() {

try {

g(); // signature says throws MyExc

h(); // signature doesn’t say throws MyExc

} catch (MyExc e) { ... }

}

Suppose that because of a programmer mistake, the call to h() unexpectedly

fails with exception MyExc. If this exception were caught by the catch clause,

f() would execute code intended to compensate for something that happened

in g(). We prevent this undesirable exception capture by ensuring that failure

exceptions cannot be caught by any ordinary catch clauses: failure exceptions

tunnel past all ordinary catch clauses.

Although exceptions in failure mode are not normally handled, there may

be value in catching them at the top level of the program or at the boundary

between components, to allow for more graceful exit. Genus supports this with

a rarely used catch all construct that catches all exceptions of a given type,
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regardless of propagation mode. For example, if the try statement above were

extended to include a second clause

catch all (MyExc e) { ... }

the first catch clause would catch the expected MyExcs thrown by g, and the

second catch all clause would catch failure-mode MyExcs tunneled through h.

2.2.3 Fail-by-Default Exceptions

Java has a commonly accepted set of exceptions that usually correspond to

programmer mistakes: the built-in subclasses of RuntimeException or Error.

To reduce annotation burden for the programmer, our mechanism does not

ordinarily require writing a fails clause in order to convert such exceptions to

failure mode. We say these exceptions fail by default.

Fail-by-default exceptions are different from Java’s unchecked exceptions.

Unchecked exceptions conflate failures with ordinary exceptions that are tunnel-

ing through oblivious code but that still ought to be subject to static checking.

In contrast, fail-by-default exceptions remain in checked mode until they

reach a method-call boundary; they convert from checked mode to failure mode

only if the current method does not declare the exception in its throws clause.

A fail-by-default exception collects a stack trace only if and when it does fail,

so code can still handle exceptions like NoSuchElementException efficiently. It is

therefore reasonable and useful to write code that handles such exceptions.

2.3 Higher-Order Abstractions and Tunneling

As discussed in Section 2.1.1, higher-order functions pose a problem for statically

checked exception mechanisms. The same problem arises for many common
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List[R] map[T,R](Function[T,R] f, List[T] src) {

List[R] dest = new ArrayList[R]();

for (T t : src) dest.add(f.apply(t));

return dest;

}

Figure 2.1. A higher-order function written in Genus

1 List[String] x = ...;
2 List[Class] y;

3 try { y = map(Class::forName, x); }

4 catch (ClassNotFoundException e) { ... }

Figure 2.2. Passing a function that throws extra exceptions

object-oriented design patterns, which are essentially higher-order functions.

Our solution is to tunnel exceptions through oblivious code.

For example, Genus allows the programmer to pass to the higher-order

function map (Figure 2.1) an implementation of Function that throws exceptions,

even though the signature of Function does not mention any exceptions. If the

passed Function throws an exception, that exception is tunneled through the

exception-oblivious code of map to the caller of the exception-aware code that

called map.

In the code of Figure 2.2, the method forName in class Class is passed to

map. This call is legal even though forName is declared to throw an exception

ClassNotFoundException. Since map is oblivious to this exception, it cannot be

expected to handle it. By contrast, the caller of map is aware that an object

that throws exceptions is used at a type (Function) that does not declare any
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exceptions. Because it is aware of the exception, the caller is responsible for the

exception.

If ClassNotFoundException arises at run time, it tunnels through the code

of map and is caught by the catch clause. Alternatively, the caller could have

explicitly converted the exception to a failure (via a fails clause) or explicitly

allowed it to propagate (via a throws clause). In any case, exception handling is

enforced statically.

2.3.1 Exception Tunneling is Safe and Lightweight

In Java, the rigidity of checked exceptions has led to some verbose and dangerous

idioms, especially when higher-order functions and design patterns are used.

Exception tunneling helps avoid these undesirable programming practices.

In particular, Java programmers often abandon static checking of exceptions

to make it possible for their exceptions to pass through exception-oblivious

higher-order code. They either define their own exceptions as unchecked, or

they cope with preexisting checked exceptions by calling unsafe APIs—e.g.,

sun.misc.Unsafe::throwException [116]—or by wrapping checked-exception

objects inside unchecked-exception objects. Wrapping with unchecked excep-

tions is the safest of these workarounds because it makes exception capture less

likely, but wrappers are verbose and expensive.

Figure 2.3 shows an example of this idiom taken from the javac compiler [139],

which contains a number of visitors for the Java AST. In order to conform to the

Visitor interface, the visit methods in the pretty-printing visitor Pretty wrap

the checked IOException into unchecked wrappers, which are then unwrapped

as shown in method printTree. This programming pattern is verbose, abandons

static checking, and is likely to be slow due to stack-trace collection.
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interface Visitor {

void visit(IfTree t);

...
}

class IfTree implements Tree {

void accept(Visitor v) { v.visit(this); }

...
}

class Pretty implements Visitor {

void visit(IfTree t) {

try { ... } // pretty-print IfTree
catch (IOException e) { throw new UncheckedIO(e); }

} // wraps IOException
...

}

void printTree(Tree t, Pretty v) throws IOException {

try { t.accept(v); }

catch (UncheckedIO u) { throw u.getCause(); }

} // unwraps UncheckedIO

class UncheckedIO extends RuntimeException { ...}

Figure 2.3. The pretty-printing visitor in javac (simplified). Code for exception
wrapping and unwrapping is highlighted.

When written in Genus, the same Visitor pattern (Figure 2.4) does not require

exception wrapping or unwrapping to achieve tunneling. The modifier weak on

the interface Visitor (see Section 2.3.4) makes it legal for its implementations

to declare new exceptions (the interface Function is annotated similarly). In

printTree, the call t.accept(v) passes a visitor object that throws the additional

exception IOException. If this exception is thrown by the visitor, it tunnels until
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weak interface Visitor{

void visit(IfTree t);

...
}

class IfTree implements Tree {

void accept(Visitor v) { v.visit(this); }

...
}

class Pretty implements Visitor {

void visit(IfTree t) throws IOException { ... } // OK
...

}

1 void printTree(Tree t, Pretty v) throws IOException {

2 t.accept(v);

3 }

Figure 2.4. Exception tunneling in javac, ported to Genus

Checked
mode

Failure
mode

Tunneling
mode

(1)

(2) (3)

(4)

(1)(2): Sections 2.3.2 and 2.3.3 (3)(4): Sections 2.2.1 and 2.2.3

Figure 2.5. Three exception propagation modes

it reaches printTree. Thus, the antipattern of exception wrapping becomes

unnecessary.
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List[R] map[T,R](Function[T,R] f, List[T] src) {

List[R] dst = new ArrayList[R]();

mapImpl(f, src, dst);

return dst;

}

void mapImpl[T,R](Function[T,R] f,

List[T] src, List[R] dst) {

if (dst.size() >= src.size()) return;

dst.add(f.apply(src.get(dst.size())));

mapImpl(f, src, dst);

}

map
mapImpl

caller of map

mapImpl

mapImpl
f checked

tunneling

checked

mapImpl
mapImpl
mapImpl

Figure 2.6. A recursive implementation of map (left) and a stack snapshot showing
propagation of an exception caused by f (right). The stack grows downwards.

2.3.2 Tunneling Checked Exceptions

Earlier we discussed two modes of exception propagation: checked mode and

failure mode. Tunneling mode is a third mode of propagation. The relationships

between the three modes are summarized in Figure 2.5. In tunneling mode, as

in checked mode, static checking enforces handling of exceptions. As in failure

mode, these exceptions do not need to be declared in signatures of the methods

they tunnel through.

A given exception may propagate in more than one mode. Consider the

alternative, slightly contrived implementation of map in Figure 2.6. It calls a

helper method mapImpl, which then recursively calls itself to traverse the list.

Suppose an exception arises when function f is applied to the sixth element in

the list. Figure 2.6 shows a snapshot of the current call stack. Since f is the place

where the exception is generated, the exception first propagates in checked mode

within the function f. Because its caller mapImpl is oblivious to the exception,

the exception then switches to tunneling mode and propagates through all the
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mapImpl stack frames. Finally, the caller of map knows about the exception and

thus can handle it. The exception returns to checked mode when it reaches this

caller. From there, it can be either caught, rethrown in checked mode, or turned

into failure.

2.3.3 Tunneling, Exception Capture, and Blame

Tunneling avoids the phenomenon of exception capture discussed in Section 2.2.

In OO languages like Java and C#, exception capture occurs because of an

unexpected collision in the space of exception identifiers; an exception identifier

in these languages is simply the exception type. We avoid exception capture by

augmenting the identity of a thrown exception to include a notion of “blame”.

To ensure that every exception is eventually either handled or treated as a

failure, a method must discharge every exception it is aware of statically. There

are three ways to discharge an exception:

(1) handle it with a catch clause,

(2) propagate it to its caller as a checked exception via a throws clause, or

(3) convert it to a failure via a fails clause (which is implicit for fail-by-default

exceptions).

Each of these three ways discharges exceptions from a set of program points

that are statically known to give rise to these exceptions. We say these program

points can be blamed for the exception. With each such program point, we

associate a blame label that identifies where responsibility lies for the exception.

At run time, then, a thrown exception is identified both by its exception

type, and by its blame label. An exception is discharged (e.g., caught by a catch

clause, or converted to failure by a fails clause), only if the blame label of the
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exception lies within the lexical scope covered by that particular discharging

point. Otherwise, the exception is one that the discharging point is oblivious to.

We use the word “blame” because this mechanism is related to the notion of

blame used in work on behavioral contracts [72, 73] and gradual typing [178].

A compiler for a gradually typed language might label program points with

unique identifiers wherever there is a mismatch between expected and actual

types. When a cast failure happens at run time, blame can be attributed to the

program point at fault.

Here, mismatch occurs analogously when the type of an actual argument

declares exceptions not encompassed by those declared by the formal parameter

type. Any exception mismatch in the parameters passed to a method call causes

blame to be assigned to the program point of the method call. However, unlike

in gradual typing, exceptions arising from a program point assigned blame do

not imply mistakes,2 since the programmer must discharge the exceptions.

For example, in Figure 2.2, the program point where Class::forName is used

at type Function is in the scope of the ensuing catch clause at line 4. Because

it creates a mismatch with the signature of Function, this program point can

be blamed for the exception. Similarly, in Figure 2.4, the highlighted program

point (line 2) where a Pretty object is used at type Visitor is in the scope of the

clause throws IOException (line 1). Because there is a mismatch between Pretty

and Visitor, the highlighted program point can be blamed for the exception.

Throughout this chapter , we highlight program points that are assigned blame

and their matching discharging points.

2Findler et al. [73] use the term “blame” to mean “the programmer should be held accountable
for shoddy craftsmanship”. At the risk of confusion, we reuse the term to mean there is an
exception to be discharged in this context.
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weak interface Iterator[E] {

// The exception indicates iteration is over
E next() throws NoSuchElementException;

...
}

class Tokenizer implements Iterator[Token] {

Token next() throws IOException, NoSuchElementException { ... }

...
}

Figure 2.7. The Iterator interface and an inexact subtype

2.3.4 Weak Types

Some supertypes, usually interfaces, abstract across families of otherwise un-

related subtypes. Such interfaces often arise with design patterns like Iterator

and Visitor. The intention of such types is to capture only a fragment of the

behavior—a core set of methods—so that various implementations can have a

common interface other software components can use.

Frequently there is utility in allowing subtypes of these interfaces to throw

new exceptions. For example, suppose a lexer breaks input files into tokens;

an Iterator might be used to deliver the tokens to code that consumes them.

However, reading from a file can cause an IOException; the exception cannot

reasonably be handled by the iterator, so should be propagated to the client

code. In Java, programmers cannot throw a checked exception like IOException

in such an implementation; they must either resort to unchecked exceptions,

abandoning static checking, or define their own interfaces that compose poorly

with existing components.
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Iterator[Token] iter = new Tokenizer(reader);

while (true) {

Token t;

try { t = iter.next(); }

catch (NoSuchElementException e) { break; }

catch (IOException e) { log.write(...); continue; }

...
}

Figure 2.8. Using a Tokenizer as an Iterator generates blame

Genus addresses this need for flexibility. Methods that allow their overridings

to throw new exceptions are declared with the weak modifier. The weak modifier

can also be applied to a type definition to conveniently indicate that all methods

in that type are intended to be weak; see the definition of Iterator in Figure 2.7

for an example.

A subtype of a weak type can be inexact; for example, the Tokenizer class in

Figure 2.7 is inexact with respect to its weak interface since its next method adds

IOException. A Tokenizer can be used as an Iterator but this generates blame,

forcing IOException to be handled, as in Figure 2.8.

Behavioral subtyping and conformance. Behavioral subtyping [109] is based

on the idea that the allowed uses of an object should be known based on its

apparent type. Therefore, an overriding method cannot add new exceptions to

the supertype’s signature for the method.

Our mechanism relaxes this requirement for weak types. Methods of an

inexact subtype must obey the supertype specification—except that they can

throw more exceptions. This implies that their additional exceptional conditions

must be signaled with different types than those in the supertype method—
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Tokenizer indicates an I/O problem by throwing IOException, not NoSuch-

ElementException—and that the exceptional conditions the supertype defines

must not be signaled in other ways—Tokenizer cannot issue a failure or return

null when the iteration has no more elements.

2.4 Generics and Exceptions

We have also used Genus to explore the important interaction between exceptions

and mechanisms for constrained parametric polymorphism. Various languages

constrain generic type arguments in various ways: for example, Java and C#

use subtyping constraints, whereas Haskell and Genus use the more flexible

mechanism of type classes [176].

Genus provides constrained parametric polymorphism via constraints and

models [190]. Like type classes, Genus constraints are predicates describing type

features required by generic code. Genus models show how types can satisfy

constraints, like type class instances in Haskell. Unlike Haskell instances, models

are explicitly part of the instantiation of a generic abstraction. For example,

the two instantiations Set[String] and Set[String with CaseInsensEq] are dif-

ferent types distinguished by the use of the model CaseInsensEq in place of

default string equality. This distinction is helpful for precisely reasoning about

exceptions.

As with interfaces, we would like the flexibility to instantiate generic abstrac-

tions with types whose operations throw additional exceptions not provided for

by the constraint. Thus, similar to interfaces, Genus constraints can be weak;

models may be inexact with respect to the weak constraints they witness.

The example in Figure 2.9 shows the utility of this feature, comparing Java

and Genus code for an object pool abstraction. The upper half of the figure shows

26



class ObjectPool<T> {

Factory<T> f;

T borrow() throws Exception { ... f.make() ... }

...
}

interface Factory<T> { T make() throws Exception; }

class ConnFactory implements Factory<Connection> {

Connection make() throws SQLException { ... }

}

class ObjectPool[T] where Factory[T] {

T borrow() { ... T.make() ... }

...
}

weak constraint Factory[T] { static T make(); }

model ConnFactory for Factory[Connection] {

static Connection make() throws SQLException { ... }

}

Figure 2.9. Object pool in Java (top) and in Genus (bottom)

an example adapted from the Apache Commons project [9]. The abstract fac-

tory type Factory defines a method make with a signature that declares “throws

Exception”. This idiom is common in Java libraries, because it permits subtypes

to refine the actual exceptions to be thrown.

However, such declarations are a source of frustration for Java program-

mers [180]. Consider that method make is called by the method borrow in

ObjectPool to create a new object in case there is no idle one, so borrow must also

declare “throws Exception”. The precise exception (in the example, SQLException)

is therefore lost. Clients of ObjectPool<Connection> must handle Exception,

which is no better, and perhaps worse, than having an unchecked exception.
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Further, client code that handles the overly general exception is more likely to

suffer from exception capture.

The lower half of Figure 2.9 shows a reasonable way to implement the exam-

ple in Genus. A constraint Factory[T] is used to express the requirement that

objects of type T can be made in some way; because it does not declare any excep-

tions, method borrow need not either. However, a model like ConnFactory can

add its exceptions such as SQLException to the method make. Client code can then

use the type ObjectPool[Connection with ConnFactory] to recycle Connection

objects. Because the model is part of the type, it is statically apparent that the ex-

ception SQLException may be thrown; the client code will be required to handle

this exception—but only this exception.

2.5 Exactness Analysis

The new exception mechanism poses new challenges for type checking. One

challenge is that the identity of an exception includes a blame label, so blame

should not be allowed to escape its scope. Otherwise, an exception might not be

handled.

For example, consider the first definition of the PeekingIterator class in Fig-

ure 2.10. It decorates a wrapped Iterator in field inner to support one-element

lookahead. Its next and peek methods call inner.next(). Per Section 2.3.4, it is

possible to pass an object of some inexact subtype of Iterator to the constructor,

to be assigned to inner. However, Iterator is a weak type, so the methods of

the actual object being passed may throw exceptions not declared by Iterator.

If the assignment to inner were allowed, the same exceptions would propagate

when the next method of the PeekingIterator object were called. And this call
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could be delayed until outside the context that is aware of the mismatch with

Iterator. In this case, the exceptions would not be guaranteed to be handled.

Therefore, we want to detect statically that the assignment to inner lets the

blame from the inexact object escape. Storing an inexact object into a data

structure at a weak type, or even returning an inexact object from a method, may

permit such an escape of blame.

A second challenge for the new exception mechanism, and indeed for excep-

tion mechanisms generally, is that programmers should not be forced to write

handlers for program points where exceptions cannot happen. To address this

challenge, the location of blame should be precise. Figure 2.8 offers an example

of this problem. The method call iter.next() might appear (to the compiler) not

to throw any exceptions because iter has type Iterator[Token], yet we know

that it may throw an IOException because iter is initialized to a Tokenizer. A

safe, conservative solution would be to require all of the code below this initial-

ization to be wrapped in a try–catch. But this solution would make it difficult

to continue the iteration after an IOException is raised.

Genus addresses these two challenges using an intraprocedural program

analysis that assigns exactness to uses of weak types, with little annotation effort

by the programmer.

2.5.1 Exactness Annotations and Exactness Defaults

Indicating intolerance of inexactness at use sites. When a formal parameter

or local variable is assigned a weak type, the programmer can annotate the type

with @exact to indicate that an exact subtype must be used. For example, if the

programmer adds @exact to the formal parameter of the constructor at line 3 in

Figure 2.10,
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1 class PeekingIterator[E] implements Iterator[E] {

2 Iterator[E] inner;

3 PeekingIterator(Iterator[E] it) { inner = it; ... }

4 E peek() throws NoSuchElementException { ... inner.next() ... }

5 ...
6 }

class PeekingIterator[I extends Iterator[E], E] implements Iterator[E] {

I inner;

PeekingIterator(I it) { inner = it; ... }

E peek() throws NoSuchElementException { ... inner.next() ... }

...
}

Figure 2.10. Two definitions of PeekingIterator. The top one allows blame to
escape, so a warning is issued for the constructor. The bottom one uses dependent
exactness to soundly avoid the warning.

PeekingIterator(@exact Iterator[E] it) { inner = it; ... }

it becomes a static error to pass an inexact implementation of Iterator to the

constructor. So it is guaranteed that using inner will not generate unexpected

exceptions. By contrast, without @exact, Genus issues a warning about the

assignment to the escaping pointer inner at line 3. If the exception is actually

thrown at run time, it is converted into failure and the usual stack trace is

collected.

Although @exact might appear to add notational burden, our experience

with porting existing Java code into Genus (Section 2.8) suggests that this escape

hatch is rarely needed. We have not seen the need to use the @exact annotation

to dismiss such warnings in existing code ported from Java. It seems that

programmers use weak types differently from other types—weak types provide

functionality rather than structure. Further, exactness defaults and exactness
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inference (Section 2.5.2) reduce annotation overhead, and exactness-dependent

types (Section 2.5.3) provide more expressiveness.

Exactness defaults. Exactness defines what exceptions that are not declared

by the weak type might nevertheless be generated by the term being typed.

Exactness E is formally a mapping from methods to sets of exceptions. These

mappings form a lattice ordered as follows:

E1 ≤ E2 ⇔ domain(E1) ⊆ domain(E2) ∧ ∀m. E1(m) ⊆ E2(m)

The bottom lattice element is strict exactness, denoted by �.

To avoid the need for programmers to write the annotation @exact for most

uses of weak types, the compiler determines exactness using a combination of

exactness defaults and automatic exactness inference. To see how these mecha-

nisms work, consider the code in Figure 2.11.

1. Weak types used as return types or field types are exact, as these are the

channels through which pointers can escape. For these types, we have

E = �.

2. Methods and constructors are implicitly polymorphic with respect to exact-

ness. That is, they can be viewed as parameterized by the exactness of their

argument and receiver types.

3. Weak types in a local context are labeled by exactness variables: for exam-

ple, x and y in Figure 2.11, at lines 2 and 11 respectively.

A unification-based inference engine solves for these variables, inferring

exactness from the local variable uses (Section 2.5.2).

4. For a procedure call, an exactness variable is generated for each argument

and/or receiver whose formal parameter type is weak. Exactness variables

of this kind in Figure 2.11 are z (line 9) and w (line 12).
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weak interface Runnable { void run(); }

1 void g[T extends Runnable〈e〉](List[T] l) {

2 Runnable〈x〉 r0;

3 if (new Random().nextBoolean()) {

4 r0 = new Runnable() { void run() throws IOException { ... } };

5 } else {

6 r0 = new Runnable() { void run() throws EOFException { ... } };

7 }

8 try {

9 r0.run(); // Runnable〈z〉
10 } catch (IOException ex) { ... }

11 for (Runnable〈y〉 r : l)

12 r.run(); // Runnable〈w〉
13 }

Figure 2.11. Running example for exactness analysis. Uses of weak types are
tagged by exactness variables, to be fed into the solver. (EOFException is a
subtype of IOException.)

5. Recall that Genus supports constrained parametric polymorphism via type

constraints [190]. Subtype constraints and where-clause constraints can

also specify exactness. Their default exactness is deduced in ways similar

to those listed above. For example, in Figure 2.11 the use of Runnable in

g’s signature (line 1) constrains the type parameter T, so its exactness is

resolved to a fresh name e, with respect to which g is polymorphic.

2.5.2 Solving Exactness Constraints

At each assignment (including variable initialization and argument passing) to a

variable with weak type τ , inexact values must not escape into variables with

exact types. Therefore, constraints of form τ 〈Er 〉 ≤ τ 〈El〉 are generated, where El
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is the exactness of the left-hand side expected type τ in an assignment, resolved

as described in Section 2.5.1, and Er is the exactness of the right-hand side actual

type with respect to τ . For example, the code of Figure 2.11 then generates the

following constraints with line numbers attached:

τ 〈Er 〉 ≤ τ 〈El〉

Runnable〈 { run 7→ IOException } 〉 ≤ Runnable〈x〉 line 4

Runnable〈 { run 7→ EOFException } 〉 ≤ Runnable〈x〉 line 6

Runnable〈x〉 ≤ Runnable〈z〉 line 9

Runnable〈e〉 ≤ Runnable〈y〉 line 11

Runnable〈y〉 ≤ Runnable〈w〉 line 12

Iterator[T]〈�〉 ≤ Iterator[T]〈v〉 line 11

The last constraint is due to desugaring of the loop at lines 11–12:

for (Iterator[T]〈v〉 i = l.iterator(); ; ) {

Runnable〈y〉 r;

try { r = i.next(); }

catch (NoSuchElementException ex) { break; }

r.run();

}

Note that enhanced for loops are translated differently by Java and Genus.

Genus exceptions are fast enough that it is often faster to call next() and catch a

final exception, rather than calling hasNext() on every iteration.

The compiler solves these constraints by finding the least upper bounds of x ,

y, z, w , and v:

x = z = { run 7→ { IOException, EOFException } }

y =w = e

v = �

The fact that a solution exists implies that inexact pointers will not escape to

the heap, addressing the first challenge of escaping blame.
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The solution also reveals precisely where exception handling is required,

addressing the second challenge of blame precision. Specifically, the solution to

each variable generated via the fourth case of exactness defaults (Section 2.5.1)

tells what exception can be produced by the method call. In our running example,

the solution to z is that the method call r0.run() may throw IOException or

EOFException, which are handled by the catch block. Notice that although

mismatches happen at lines 4 and 6, the blame does not take effect until the

method call at line 9.

The solution to w is the polymorphic label e, which means that the current

context is oblivious to whatever exceptions correspond to e when g is called, as

discussed in Section 2.3.

2.5.3 Exactness-Dependent Types

It is possible to write a type-safe PeekingIterator using the @exact annota-

tion, but we might want a peeking iterator that throws the same exceptions as

its underlying iterator does. This expressiveness can be obtained by making

PeekingIterator talk about the potential mismatch, as in the bottom definition

of PeekingIterator in Figure 2.10. The class is now parameterized by the type of

the iterator it decorates. In the using code below, PeekingIterator is instantiated

on an inexact subtype of Iterator, so the compiler requires the exception to be

handled:

try {

PeekingIterator[Tokenizer,Token] pi =

new PeekingIterator[Tokenizer,Token](...);
while (pi.hasNext()) { ... pi.peek() ... }

} catch (IOException e) { ... }
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Parameterized by a weak constraint, the Genus version of ObjectPool in Fig-

ure 2.9 is similarly exactness-dependent.

The special this keyword, when referring to the current object of a weak

class, also has an exactness-dependent type—it is dependent on the exactness of

the run-time class of the object with respect to the enclosing weak class. Since

the run-time class is statically unknown, the compiler must assume that it can

add arbitrary exceptions. Thus it results in a compiler warning to use this in

ways that generate blame. However, we expect this to be rare: most weak types

are interfaces, which do not normally use this.

2.6 Formalization

We formalize the new exception mechanism using a core calculus, CBC (for

Checked Blame Calculus).

2.6.1 Syntax and Notations

Figure 2.12 defines both a surface and a kernel syntax for CBC. Programs are

written in the surface syntax, and rewritten to and evaluated in the kernel

calculus. Applications in surface terms are tagged by unique blame labels (ranged

over by `) representing lexical positions where blame can arise. Rewriting

propagates these labels from the surface language to the kernel language, for

blame tracking during kernel evaluation.

The surface syntax assumes a fixed set of exception names ranged over by

E. The kernel syntax allows them to be labeled to form new names; E and E` are

different names.
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Surface types (τ ) include weak types and strong types. A strong type (σ ) is

either the base type B or a function type τ ⊥
−→[σ ]E that does not allow mismatch

against E. (An overline denotes a (possibly empty) set.) A weak type τ >
−→[σ ]E ,

on the other hand, tolerates mismatch. Notice that function return types must

be strong to prevent blame from escaping. The same can be said about kernel

types. Since there is an obvious injection (syntactic identity) from surface types

to kernel types, we abuse notation by using τ and σ in places where kernel types

T and S are expected.

Environments Γ contain mappings from variables to their types and exact-

ness. Exactness is represented by sets of exceptions. Strong types enforce strict

exactness, so their exactness is represented by �. The auxiliary function K(·)

returns ⊥ for strong types and > for weak types; values of strong types must not

escape. Γ⊥ retains only the strongly-typed variables in Γ.

2.6.2 Semantics

Surface-to-kernel rewriting. Figure 2.13 defines the rewriting rules. The judg-

ment Γ;K ` f  e : [τ ]E translates the surface term f to the kernel term e,

assigns f the type τ , and infers the exceptions E that evaluating e might raise.

Typing is dependent on K , which indicates whether the term in question is

guaranteed not to escape. For example, the left-hand-side term in an application

is type-checked with K = > as in [R-APP-E] and [R-APP-I], while the body of

an abstraction is type-checked with K = ⊥ as in [R-ABS]. [R-VAR-W] denies

first-class citizenship to weakly typed variables, and augments the return type if

the environment indicates inexactness.

Exception mismatch is computed using the subtyping relation .E , as in

[R-APP-I] and [R-LET]. But only with [R-APP-I] can blame take effect, and
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surface terms f ::= b | x | λx :τ . f | { f1 f2}
` |

let x :τ ← f1 in f2 |

throw E | try f1 catch E . f2

surface types τ ::= σ | τ
>
−→[σ ]E

surface strong types σ ::= B | τ
⊥
−→[σ ]E

kernel terms e ::= b | x | λx :T . e | e1 e2 |

let x :T ← e1 in e2 |

throw U | try e1 catch U . e2

kernel types T ::= S | T
>
−→[S]U

kernel strong types S ::= B | T
⊥
−→[S]U

kernel exceptions U ::= E | E`

environments (surface) Γ ::= � | Γ, x :τ 〈E〉

environments (kernel) ∆ ::= � | ∆, x :T 〈U 〉

escape kind K ::= > | ⊥

K(σ ) = ⊥ Γ⊥ =
{
x :σ 〈�〉

�� x :σ 〈�〉 ∈ Γ
}

K
(
τ
>
−→[σ ]E

)
= > Γ> = Γ

K(S) = ⊥ ∆⊥ =
{
x :S 〈�〉

�� x :S 〈�〉 ∈ ∆
}

K
(
T
>
−→[S]U

)
= > ∆> = ∆

Figure 2.12. Syntax of CBC

its translation is consequently less obvious. To avoid exception capture, we

need to give new names to exceptions involved in the mismatch. Therefore, the

translation wraps the argument in an abstraction, which, when applied, catches

any exceptions in the mismatch (E) and rethrows their labeled versions (E`). The

caller is aware of the exceptions E, so it catches the labeled exceptions tunneled

to its context and strips off their labels.
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Γ;K ` f  e : [τ ]E

[R-CONST]
Γ;K ` b  b : [B]�

[R-VAR-S]
x :σ 〈�〉 ∈ ΓK

Γ;K ` x  x : [σ ]�

[R-VAR-W]
x :τ >
−→[σ ]E1

〈E2〉 ∈ ΓK

Γ;K ` x  x :
[
τ
>
−→[σ ]E1∪E2

]
�

[R-ABS]
ΓK , x :τ 〈�〉;⊥ ` f  e : [σ ]E

Γ;K ` λx :τ . f  λx :τ . e :
[
τ
⊥
−→[σ ]E

]
�

[R-LET]
Γ; K(τ1) ` f1  e1 : [τ3]E1

τ3 .E τ1 Γ, x :τ1〈E〉;K ` f2  e2 : [τ2]E2

Γ;K ` let x :τ1 ← f1 in f2  let x :τ1 ← e1 in e2 : [τ2]E1∪E2

[R-APP-E]
Γ;> ` f1  e1 :

[
τ1

>
−→[σ ]E3

]
E1

Γ; K(τ1) ` f2  e2 : [τ2]E2
τ2 .∅ τ1

Γ;K ` { f1 f2}
`  e1 e2 : [σ ]E1∪E2∪E3

[R-APP-I]

Γ;> ` f1  e1 :
[
τ1

>
−→[σ1]E3

]
E1

Γ; K(τ1) ` f2  e2 : [τ2]E2

τ2 .E τ1 τ2 = τ21
>
−→[σ22]E4

Γ;K ` { f1 f2}
`  

try e1

(
let x :τ2 ← e2 in
λy :τ21 . try x y catch E . throw E`

)
catch E` . throw E

: [σ1]E1∪E2∪E3∪E

[R-TRY-CATCH]
Γ;K ` f1  e1 : [τ ]E1

Γ;K ` f2  e2 : [τ ]E2
E ∈ E1

Γ;K ` try f1 catch E . f2  try e1 catch E . e2 : [τ ](E1\{E })∪E2

[R-THROW]
Γ;K ` throw E  throw E : [σ ]E

[R-SUBSUME]
Γ;K ` f  e : [τ1]E1

τ1 .� τ2 E1 ⊆ E2

Γ;K ` f  e : [τ2]E2

Figure 2.13. CBC surface-to-kernel rewriting
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τ1 .E τ2

[SS-B]
B .� B

[SS-S]
τ2 .� τ1 σ1 .� σ2 E1 ⊆ E2

τ1
⊥
−→[σ1]E1

.� τ2
⊥
−→[σ2]E2

[SS-W]
τ2 .� τ1 σ1 .� σ2

τ1
K
−→[σ1]E1

.E1\E2
τ2

>
−→[σ2]E2

Figure 2.14. CBC surface subtyping

Semantics of the kernel calculus. The static semantics of the kernel can be

found in the technical report [192]. The static semantics is largely similar to

the typing induced by rewriting, except that the kernel need not worry about

exception capture. Hence, exception propagation happens in the usual way.

Figure 2.15 defines the dynamic semantics of the kernel.

2.6.3 Type Safety

The type system guarantees that if a program can be typed without exceptional

effects, it cannot get stuck when evaluated, or terminate in an exception. This

guarantee easily follows from two other standard results.

First of all, the kernel type system is sound:

Theorem 1 (KERNEL SOUNDNESS: PRESERVATION AND PROGRESS).

• If �;K ` e : [T ]U and e −→ e′ then �;K ` e′ : [T ]U .

• If �;K ` e : [T ]U then either

1. ∃v . e = v, or

2. ∃U0 ∈ U . e = throw U0, or
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values v ::= k | λx :T . e

evaluation contexts E ::= [·] | E e | v E | let x :T ← E in e |

try E catch U . e

e −→ e′

e −→ e′

E[e] −→ E[e′]

throw U y E

E[throw U ] −→ throw U

(λx :T . e) v −→ e {v/x}

let x :T ← v in e −→ e {v/x}

try v catch U . e −→ v

try (throw U ) catch ... U . e ... −→ e

throw U y E

throw U y [·] e

throw U y v [·]

throw U y let x :T ← [·] in e

throw U0 y try [·] catch U . e (U0 < U )

Figure 2.15. Dynamic semantics of the CBC kernel
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3. ∃e′. e −→ e′.

Proof. This is proved in the usual way, by induction on the kernel typing deriva-

tion. See the technical report [192] for details of this proof and of other formal

results in this chapter.

Second, the translation from the surface language to the kernel language is

type-preserving:

Lemma 1 (REWRITING PRESERVES TYPES).

If Γ;K ` f  e : [τ ]E then Γ;K ` e : [τ ]E .

Proof. By induction on the derivation of the translation.

The guarantee that well-typed programs handle their exceptions is a direct

corollary of these two previous results:

Corollary 1 (NO UNCAUGHT EXCEPTIONS).

If �;⊥ ` f  e : [τ ]� and e −→∗ e′, then either ∃v . e′ = v or ∃e′′. e′ −→ e′′.

2.7 Implementation

We have implemented the new exception mechanism for the Genus programming

language. The implementation consists of about 5,800 lines of code, extending

the compiler for the base Genus language [190]. Genus is implemented using

Polyglot [130], so code generation works by translating to Java code, using a Java

compiler as a back end.
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class Blame extends RuntimeException {

Throwable inner;

Blame(Throwable t) { inner = t; }

Throwable fillInStackTrace() { return this; }

} // represents exceptions in tunneling mode

class Failure extends RuntimeException {

Throwable inner;

Failure(Throwable t) { inner = t; }

} // represents exceptions in failure mode

Figure 2.16. The Blame and Failure classes in the Genus runtime

The rest of this section focuses on the translation into Java. The translation

is guided by two goals: 1) it should prevent accidental capturing of exceptions,

and 2) it should add negligible performance overhead to normal control flow.

2.7.1 Representing Exceptions in Non-Checked Modes

Unlike exceptions in checked mode, exceptions traveling in tunneling mode or

failure mode must acquire new identities to avoid accidental capturing. These

identities are implemented by wrapping exceptions into objects of classes Blame

and Failure (Figure 2.16). Both classes extend RuntimeException, but Blame does

not collect a stack trace.

2.7.2 Translating Exception-Oblivious Code

Methods with weakly typed parameters ignore extra exceptions generated by

them. To ensure they are handled in the appropriate context, weakly typed

parameters, including the receiver, are accompanied by an additional Blame
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argument that serves as the blame label. When the actual argument is exact, the

Blame argument is null. For example, the weak type Iterator has the following

translation:

interface Iterator<E> {

E next$Iterator(Blame b$) throws NoSuchElementException;

...
}

It receives a Blame object from its caller to accompany the weakly typed receiver.

If an implementation of Iterator throws a mismatched exception, it is wrapped

in this Blame object and tunneled through the code oblivious to it.

Exception-oblivious procedures are translated in a similar way. For example,

the code generated for map (Figure 2.1) looks like the following:

<T,R> List<R> map(Function<T,R> f, List<T> src, Blame b$) {

... f.apply$Function(t, b$) ...
}

The extra Blame argument b$ is intended for potential mismatch in the argument

function f, and is passed down to the method call f.apply$Function(...) so that

exceptions from f have the right blame label.

2.7.3 Translating Exception-Aware Code

The definition of Iterator’s inexact subtype Tokenizer is exception-aware. Its

translation is shown in the top of Figure 2.17. Per Java’s type-checking rules, the

overriding method in Tokenizer cannot throw extra checked exceptions. Instead,

the overriding method next$Iterator(Blame) redirects to method next() that

does the real work, possibly throwing an IOException, and then turns that excep-

tion into either a Blame or a Failure, which is unchecked. If the Blame argument

is not null, there must be a program point ready to handle the exception. So
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// Translation of class Tokenizer from Figure 2.7
class Tokenizer implements Iterator<Token> {

Token next$Iterator(Blame b$) throws NoSuchElementException {

try { return next(); }

catch (IOException e) {

if (b$ != null) { b$.inner = e; throw b$; }

else throw new Failure(e);

}

}

Token next() throws IOException, NoSuchElementException { ... }

...
}

// Translation of the using code from Figure 2.8
Blame b$ = null;

try {

Iterator<Token> iter = new Tokenizer(reader);

while (true) {

Token t;

try { t = iter.next$Iterator(b$ = Thread.borrowBlame$()); }

catch (NoSuchElementException e) { break; }

catch (Blame bCaught$) {

if (bCaught$ == b$) { log.write(...); continue; }

else throw bCaught$;

}

}

} finally { Thread.handbackBlame$(b$); }

Figure 2.17. Translating exception-aware code into Java
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the IOException is wrapped in the Blame object and is tunneled to that program

point. If the Blame object is null, a Failure object wrapping the IOException is

created and thrown. This might happen, for example, if the programmer chose

to disregard the compiler warning reported for passing a Tokenizer (Figure 2.7)

into the constructor of PeekingIterator (top of Figure 2.10).

The code in Figure 2.8 is also exception-aware, and Figure 2.17 (bottom) shows

its translation. Instead of creating a new Blame object every time a mismatch

happens, each thread maintains a Blame object pool that recycles Blame objects. A

Blame object is borrowed from the pool at the blamable program point in the try

block, and is returned in the finally block. The catch block catches any Blame,

but only executes the exception handling code if the Blame caught is indeed the

one associated with the blamable program point; otherwise it rethrows the Blame.

Aggressive interweaving of try–catch in method bodies might preclude

certain compiler optimizations. Therefore, the translation uses a simple program

analysis to identify existing enclosing try blocks onto which these new catch

blocks can be attached.

2.7.4 Translating Failure Exceptions

A method body is wrapped in a try block whose corresponding catch block

catches all exceptions that will switch to failure mode after exiting the method.

A catch all block is translated into possibly multiple catch blocks to also catch

compatible Failure and Blame objects.
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2.8 Evaluation

The aim of our evaluation is to explore the expressiveness of the new exception

mechanism, and its overhead with respect to both performance and notational

burden.

2.8.1 Porting Java Code to Use Genus Exceptions

To evaluate the expressive power of the new exception mechanism, we ported

various existing Java programs and libraries into Genus. Some of this code

(ObjectPool and PeekingIterator) is described earlier, but we examined some

larger code samples:

• We ported the Java Collections Framework and found that no @exact anno-

tations were needed. In addition, the Genus compiler found unreachable

code in AbstractSequentialList, thanks to fail-by-default exceptions prop-

agating in checked mode (Section 2.2.3).

• We ported the javac visitor of Figure 2.3 into Genus, as mentioned earlier

in Section 2.3.1. Conversion to the new exception mechanism allows more

than 200 lines of code to be removed from class Pretty (~1,000 LOC), and

more importantly, restores static checking.

• Using only checked exceptions, we managed to reimplement the EasyIO

text parsing package3 that was developed for a Cornell programming

course. This codebase (~1,000 LOC) uses exceptions heavily for backtrack-

ing.
3www.cs.cornell.edu/courses/cs2112/2015fa/#Libraries
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Figure 2.18. Performance of the exception mechanism on the JOlden benchmarks
and SunFlow

2.8.2 Performance

The current Genus implementation targets Java. We explored its performance

through several experiments. All data were collected using Java 8 on a 3.4GHz

Intel Core i7 processor after warming up the HotSpot JVM.

Performance of normal-case code. Perhaps the most important performance

consideration for an exception mechanism is whether it slows down normal-case

code. To evaluate this, we ported Java code that only uses exceptions lightly—

specifically, the JOlden benchmarks [37] and, representing larger applications,

the SunFlow benchmark [168] from the DaCapo suite [21]. SunFlow is a ray

tracer containing ~200 classes and ~21K LOC.

To evaluate the overhead of the new exception mechanism fairly, we com-

pared the running times of this code between the extended Genus language

(Section 2.7) and the base Genus language. Despite support for reified generics,

47



Table 2.1: Performance with EasyIO (s)

Java w/ stack Genus Java w/o stack
7.19 1.16 1.16

the performance under base Genus is close to Java: compared to Java, it incurred

a slowdown of 0.3%.

Figure 2.18 reports the results of this comparison. Each reported measurement

averages at least 20 runs, with a standard error less than 1.2%. Benchmark

parameters were set so that each run took more than 30 seconds.

Overall, the extended compiler generates slightly faster code than the orig-

inal compiler. The average speedup is 2.4%, though performance varies by

benchmark. The speedup is caused largely by the exception-based translation of

enhanced for loops.

Performance of exception-heavy code. To evaluate the performance improve-

ment that Genus obtains by avoiding stack-trace collection on realistic code,

we measured the running times of pattern-matching regular expressions using

the EasyIO package. It makes heavy use of exceptions to control search. The

running times are shown in Table 2.1. Each number averages 10 runs, with 6.2M

exceptions thrown in each run.

Stack-trace collection in Java causes more than 6× overhead compared to

Genus exceptions. Genus targets Java, so it is not surprising that similar per-

formance can be achieved with Java, if stack-trace collection is turned off and

exception objects are cached.

Exception tunneling performance. We used a microbenchmark to explore the

overhead of exception tunneling, the key difference between Genus and Java.

The microbenchmark performs method calls on objects passed down from a
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Table 2.2: Exception tunneling microbenchmarks

mechanism exception time (ns)objects

Java exceptions new instance 817.7
cached 124.7

Java unchecked wrappers cached 826.0
Genus exceptions new instance 139.8

(tunneled) cached 128.6

higher-order function; the method call either throws an exception or returns

immediately, and is prevented from being inlined. Since there is no other work

done by the method, performance differences are magnified.

The results are shown in Table 2.2. We compare exception tunneling in Genus

to two (unsafe) Java workarounds: typical Java exceptions and unchecked-

exception wrappers. We also refine the comparison for typical Java exceptions

and tunneled Genus exceptions based on whether a new exception object is

created for each throw; throwing a single cached instance is reasonable for non-

failure exceptions carrying no extra information. Each number averages 20 runs,

with a standard error less than 0.6% of the mean.

The rightmost column measures time to exit via an exception. Genus ex-

ceptions perform well because they do not collect a stack trace. The slowdown

compared to the second row is mostly because exception mismatch requires

borrowBlame$ and handbackBlame$ calls (Section 2.7.3) in every loop iteration.

On the other hand, Genus exceptions significantly outperform unchecked

wrappers, the safest way to tunnel in Java. Java’s performance is poor here

because an unchecked-exception object is created for each raised exception,

whereas the implementation of Genus recycles Blame objects.

The microbenchmark also measures the time to return from a method nor-

mally. The average cost of a call and return in Java was 6.0 ns. In the absence of

mismatch, our translation adds the overhead of passing a null pointer to the nor-
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mal return path, increasing the cost slightly to 6.3 ns. The results in Figure 2.18

suggest this increase is negligible in practice.

2.9 Related Work

Notable approaches to exceptions. PL/I was the first language with excep-

tions. It supports user-defined exceptions with exception handlers dynamically

bound to exceptions [111]. Goodenough [80] and Liskov and Snyder [107] intro-

duced statically scoped handlers. CLU [107] was the first language to support

some static checking of exceptions. Exceptions are declared in function signa-

tures, and thrown exceptions must appear in these signatures. If not explicitly

resignaled, propagating exceptions automatically convert to failure. Mesa [122]

supports both termination- and resumption-style exceptions but does not check

them statically. Ada [3] attaches handlers to blocks, procedures, or packages.

Unhandled exceptions propagate automatically, but exceptions are not declared.

Eiffel [117] exceptions originate from the violation of assertions and are raised

implicitly. Upon exceptions, programmers can retry the execution with different

parameters; otherwise, exceptions implicitly propagate to callers. Modula-3 [128]

introduced fully statically checked exceptions. Black [19] and Garcia et al. [75]

present comparative studies of some exception mechanisms.

Empirical findings. An empirical study by Cabral and Marques [35] shows that

in Java and .NET exception handlers are not specialized enough to allow effective

handling, which we believe is partly attributable to a lack of documentation of

exceptions in the .NET case [36] and the rigidity of checked exceptions in the

Java case. Robillard and Murphy [153] identify the global reasoning required of

programmers as a major reason why exceptions are hard to use.
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Exception analysis. Function types in functional languages such as ML and

Haskell do not include exceptions because they would interfere with the use of

higher-order functions. Exception capture can be avoided in SML [121] because

exception types are generative, but other variants of ML lack this feature. Leroy

and Pessaux [104] observe that uncaught exceptions are the most common failure

mode of large ML applications, motivating them and others [68] to develop

program analyses to infer exceptions. Such analyses can be helpful, especially

for usage studies [184], but they necessarily involve trading off performance

and precision, and entail non-local reasoning that does not aid programmers

in reasoning about their code. A benefit of our mechanism is that it is likely to

lead to more accurate, scalable static analyses, because precise exceptions largely

remove the need to approximate exceptional control flow [27, 161].

Exception polymorphism. Some recent designs attempt to address the rigid-

ity of checked exceptions through exception polymorphism: anchored excep-

tions [174] as a Java extension, polymorphic effects [155] as a Scala extension,

row-polymorphic effect types in the Koka language [102], and the rethrows

clause introduced in Swift 2 [169]. These approaches add annotation burden to

exception-oblivious code; more fundamentally, they do not address exception

capture.

Blame tracking. Our notion of blame is related to that introduced by work

on contracts [72] and further developed by work on gradual typing [178], in

which blame indicates where fault lies in the event of a contract violation (or

cast failure). In our setting, an exception mismatch results in static blame being

assigned that indicates where “fault” lies should an exception arise at run time,
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with the compiler statically checking that the “faulty” program point handles

exceptions.

Blame has polarity [72, 178]; in our setting, exception mismatch at covariant

(or contravariant) positions gives rise to positive (or negative) blame. Existing

mechanisms for checked exceptions only consider positive blame; exceptions

with negative blame are the missing piece. By contrast, in Genus both kinds of

exceptions are subject to static checking, and our implementation and formal-

ization manifest their difference: exceptions with negative blame acquire new

identities to achieve safe tunneling.
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CHAPTER 3

ABSTRACTION-SAFE EFFECT HANDLERS

Algebraic effects [16, 147, 148] have developed into a powerful unifying

language feature, shown to encompass a wide variety of other important fea-

tures that include exceptions, dynamically scoped variables, coroutines, and

asynchronous computation. Although some type systems make algebraic ef-

fects type-safe [15, 103, 106], we argue in this chapter that algebraic effects are

not yet abstraction-safe: details about the use of effects leak through abstraction

boundaries.

As an example, consider the higher-order abstraction map, which applies the

same function to each element in a list:

map[X,Y,E](l : List[X], f : X → Y throws E) : List[Y] throws E

In general, the computation embodied in the functional argument f may be

effectful, as indicated by the clause throws E in the type of f. To make it reusable,

map is defined to be polymorphic over the latent effects E of f, and propagates

any such effect to its own caller.

The map abstraction can be implemented in many different ways; modularity

is preserved if clients cannot tell which implementation is hiding behind the

abstraction boundary. It would thus be surprising if two implementations of

this map abstraction behaved differently when used in the same context. How-

ever, current semantics of algebraic effects allow a client to observe different

behaviors—and to distinguish between the two implementations—when one of

the implementations happens to use algebraic effects internally.

For example, suppose an implementation of map traverses the list using an it-

erator object. The iterator throws a NoSuchElement exception when it reaches the
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end of the list, and the implementation handles it accordingly. If the client func-

tion f also happens to throw NoSuchElement, the implementation may handle—by

accident—an effect it is not designed to handle. By breaking the implementation

of map in this way, such a client thereby improperly observes internals of its

implementation. This violation of abstraction is also a failure of modularity.

We contend that this failure is a direct consequence of the dynamic semantics

of algebraic effect handlers. Intuitively, for Reynolds’ Abstraction Theorem [152]

(also known as the Parametricity Theorem [177]) to hold for a language with type

abstraction (such as System F), polymorphic functions cannot make decisions

based on the types instantiating the type parameters. Analogously, parametricity

of effect polymorphism demands that an effect-polymorphic function should

not make decisions based on the effect it is instantiated with. Yet the dynamic

nature of algebraic effects runs afoul of this requirement: an effect is handled by

searching the dynamic scope for a handler that can handle the effect. To restore

parametricity, we propose to give algebraic effects a new semantics based on

tunneling:

Algebraic effects can be handled only by handlers that are statically

aware of them; otherwise, effects tunnel through handlers.

This semantics provides sound modular reasoning about effect handling, while

preserving the expressive power of algebraic effects.

For a formal account of abstraction safety, the typical syntactic approach to

type soundness no longer suffices, because it is difficult to syntactically track

type-system properties that are deeper than subject reduction [17, 56, 120, 185].

By contrast, a semantic approach that gives a relational interpretation of types

can be applied to the harder problem of reasoning about program refinement

and equivalence. Therefore, a prime result of this chapter is a semantic type-
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soundness proof for a core language with tunneled algebraic effects. To this

end, we define a step-indexed, biorthogonal logical-relations model for the core

language, giving a relational interpretation not just to types, but also to effects.

We show this logical-relations model offers a sound and complete reasoning

process for proving contextual refinement and equivalence. Effectful program

fragments can then be rigorously proved equivalent, supporting reasoning about

the soundness of program transformations. We proceed as follows:

• We illustrate the problem of accidentally handled effects in Section 3.1,

clarifying the observation that algebraic effect handlers violate abstraction.

• We present tunneled algebraic effects in Section 3.2. Tunneling causes no

significant changes to the usual syntax of algebraic effects; it changes the

dynamic semantics of effects but does not lose any essential expressive

power.

• We define the operational and static semantics of tunneling via a core

language (Section 3.3).

• In Section 3.4, we give a logical-relations model for the core language. We

establish important properties of the logical relation, including parametric-

ity and soundness with respect to contextual refinement. These results,

checked using Coq, make rigorous the claim that tunneled algebraic effects

are abstraction-safe.

• We demonstrate the power of the logical relation in Section 3.5 by proving

program equivalence. As promised, effect-polymorphic abstractions in the

core language hide their use of effects.

• We survey related work in Section 3.6.
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3.1 Algebraic Effects and Accidental Handling

Algebraic effects are gaining popularity among language designers because they

enable statically checked, programmer-defined control-flow transfer. Legacy

language abstractions for control flow, including exceptions, yielding iterators,

and async/await, become just instances of algebraic effects.

We illustrate the problems with algebraic effects in the setting of a typical

object-oriented language, like Java, C#, and Scala, that has been extended with

algebraic effects and effect polymorphism. Despite this object-oriented setting,

the problems we identify and the solution we propose are broadly applicable

to languages with algebraic effects or with mechanisms subsumed by algebraic

effects.

3.1.1 Algebraic Effects and Handlers

The generality of algebraic effects comes from the ability to define an effect signa-

ture whose implementations are provided by effect handlers. An effect signature

defines one or more effect operations. For example, the code below

effect Yield[X] {

yield(X) : void

}

defines an effect signature named Yield, parameterized by a type variable X.

This signature contains only one operation, yield, and invoking this operation

requires a value of type X. This Yield effect can be used for declarative definitions

of iterators. For example, the function iterate is an in-order iterator for binary

trees:
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val tr : Tree[int] = ...
try { tr.iterate() }

with yield(x) {

print(x)

resume()

}

(a)

1. calls

2. calls 5. yield

7. calls

yield

10. resume

iterate

3. calls 4. yield

iterate

6. yield

iterate

client

print

8. calls 9. returns

(b)

Figure 3.1. (a) Client code iterating over a binary tree. (b) A stack diagram
showing the control flow.

class Tree[X] {

val value : X

val left, right : Tree[X]

iterate[X]() : void throws Yield[X] {

if (left != null) left.iterate()

yield(value)

if (right != null) right.iterate()

}

...
}

Invoking an effect operation has the corresponding effect. In the example,

the iterate function invokes the yield operation, so it has the effect Yield[X].

Static checking of effects requires that this effect be part of the function’s type, in

its throws clause.

Traversing a tree using the effectful iterate function uses the help of an effect

handler (Figure 3.1a). The effectful computation is surrounded by try { ... },

while the handler follows with and provides an implementation for each effect

operation. In this example, the implementation of yield first prints the yielded

integer, and resumes the computation in the try block.
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The implementation of an effect operation has access to the continuation of

the computation in the corresponding try block. This continuation, denoted

by the identifier resume, takes as an argument the result of the effect operation,

and when invoked, resumes the computation at the invocation of the effect

operation in the try block. Because the result type of yield is void, the call to

resume accepts no argument. Figure 3.1b visualizes the control flow under this

resumptive semantics using a stack diagram.

The handling code of Figure 3.1a is actually syntactic sugar for code declaring

an anonymous handler:

try { tr.iterate() }

with new Yield[int]() {

yield(x : int) : void { ... }

}

The sugared form in Figure 3.1a requires the name yield to be unambiguous in

the context. It is also possible to define standalone handlers instead of inlining

them. Handlers can also have state. For example, handler printInt, defined

separately from its using code, stops the iteration after 8 rounds:

handler printInt for Yield[int] {

var cnt = 0 // State of the handler
yield(x : int) : void {

if (cnt < 8) {

print(x)

++cnt

resume()

}

}

}

// Using code allocates a handler object
// with state cnt initialized to 0
try { tr.iterate() }

with new printInt()

Effect Polymorphism. Higher-order functions like map accept functional argu-

ments that are in general effectful. Such higher-order functions are therefore
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polymorphic in the effects of their functional argument. Language designs for

effects typically include this kind of polymorphism to allow the definition of

reusable generic abstractions [91, 103, 106, 155]. As an example, consider a filter-

ing iterator that yields only those elements satisfying a predicate f that has its

own effects E.

fiterate[X,E](tr : Tree[X], f : X → bool / E) : void / Yield[X], E {

foreach (x : X) in tr

if (f(x)) { yield(x) }

}

Here we introduce “/” as a shorthand for throws. The higher-order function is

parameterized by an effect variable E, which is the latent effect of the predicate f.

The implementation iterates over the tree and yields elements that test true

with f. Because it invokes yield and f, its effects consist of both Yield[X] and E.

3.1.2 Accidentally Handled Effects Violate Abstraction

Suppose we want a higher-order abstraction that computes the number of tree

elements satisfying some predicate. It can be implemented by counting the

elements yielded by fiterate, as shown by function fsize1 in Figure 3.2. The

same abstraction can also be implemented in a recursive manner, as shown by

function fsize2 in Figure 3.2. We would hope that these implementations are

contextually equivalent, meaning that they can be interchanged freely without any

client noticing a difference.

Unfortunately, there do exist clients that can distinguish between the two

implementations, as shown in Figure 3.3. This client code interacts with the

abstraction whose implementation is provided either by fsize1 or by fsize2,

and uses a function named f as the predicate. But it also does something else

with each element that f is applied to, using the help of an effect handler: it
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1 fsize1[X,E](tr : Tree[X], f : X→ bool / E) : int / E {

2 val num = 0

3 try { fiterate(tr, f) }

4 with yield(x : X) : void {

5 ++num

6 resume()

7 }

8 return num

9 }

fsize2[X,E](tr : Tree[X], f : X→ bool / E) : int / E {

val lsize = fsize2(tr.left(), f)

val rsize = fsize2(tr.right(), f)

val cur = f(tr.value()) ? 1 : 0

return lsize + rsize + cur

}

Figure 3.2. Two implementations of a higher-order abstraction. The intended
behaviors of these two implementations are the same: returning the number of
elements satisfying a predicate in a binary tree.

1 val fsize = ... // The right-hand side is either fsize1 or fsize2
2 val g = fun(x : int) : bool / Yield[int] { yield(x) ; f(x) }

3 try { fsize(tr, g) }

4 with yield(x : int) : void {

5 ... // do something with x

6 resume()

7 }

Figure 3.3. A client that can distinguish between fsize1 and fsize2, two suppos-
edly equivalent implementations of the same abstraction.
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1. calls

2. calls 5. yield

6. calls

yield

7. resume

client

fiterate

fsize1

3. calls 4. yield

g

Figure 3.4. Snapshot of the stack when fsize1 accidentally handles an Yield
effect raised by applying g

wraps f in another function g (line 2), which, before calling f, yields the element

to a handler that does the extra work (line 5). The client passes to the abstraction

the wrapper g, which is eventually applied somewhere down the call chain. This

application of g raises an Yield[int] effect, which the programmer would expect

to be propagated back to the client code and handled at lines 4–7.

However, the programmer will be unpleasantly surprised if the client uses

the implementation provided by fsize1. At the point where the effect arises,

the runtime searches the dynamic scope for a handler that can handle the effect.

Because the nearest dynamically enclosing handler for Yield[int] is the one in

fsize1 (lines 4–7 in Figure 3.2), the effect is unexpectedly intercepted by this

handler, incorrectly incrementing the count. Figure 3.4 shows the stack snapshot

when this accidental handling happens.

By contrast, the call to fsize2 behaves as expected. Hence, two well-typed,

type-safe, intuitively equivalent implementations of the same abstraction exhibit

different behaviors to the same client. Syntactic type soundness is preserved—

neither program gets stuck during execution—but the type system is not doing

its job of enforcing abstraction.
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The above example demonstrates a violation of abstraction from the im-

plementation perspective, but a similar story can also be told from the client

perspective: two apparently equivalent clients can make different observations

on the same implementation of an abstraction. For example, consider the follow-

ing two clients of fsize1: one looks like Figure 3.3 but with line 5 left empty, and

the other is simply fsize1(tr, f).

The handling of the Yield effect in the first client ought to amount to a no-op,

so the two programs would be equivalent. Yet the equivalence does not hold

because of the accidental handling of effects in the first program. This client

perspective shows directly that the usual semantics of algebraic effect handling

fails to comply with Reynolds’ notion of relational parametricity [152], which

states that applications of a function to related inputs should produce related

results.

Prior efforts based on effect rows and row polymorphism have aimed to

prevent client code from meddling with the effect-handling internals of library

functions [18, 102]. Notably, recent work by Biernacki et al. [18] has shown

relational parametricity for a core calculus with algebraic effects, but the type

system compromises on the expressiveness of effect subsumption and relies on

extra programmer annotations. For example, under their typing rules, function

fsize1 would not type-check unless (a) its signature mentioned the Yield effect,

thereby exposing the implementation detail that fsize1 handles Yield internally:

fsize1[X,E](tr : Tree[X], f: X → bool / { Yield[X], E } ) : int / E

or (b) a special “lift” operator is inserted at the place where f is applied in

fiterate.
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1. calls

2. calls

5. calls

yield

6. resume

client

fiterate

fsize1

3. calls

4. yield

g

Figure 3.5. Snapshot of the stack when a Yield effect raised by applying g is
tunneled to the client code

3.2 Tunneled Algebraic Effects

Just as algebraic effect handlers arose as a generalization of exception han-

dlers [148], we build on the insight of Zhang et al. [193], who argue that tunneled

exceptions make exceptions safer through a limited form of exception polymor-

phism. We show that tunneling can be generalized to algebraic effects broadly

along with the general form of effect polymorphism presented in Section 3.1.1.

Tunneled algebraic effects address the problem of accidental handling. De-

spite this increase in safety, there is no increase in programmer effort. In fact, with

the new tunneling semantics in effect, the examples from Section 3.1.2 become

free of accidental handling, with no syntactic changes required.

Consider the version of Figure 3.3 that resulted in accidental handling of

effects (i.e., the version that uses fsize1). Under the new semantics, the Yield

effect raised by applying g is tunneled straightaway to the client code, without

being intercepted by the intermediary contexts. Figure 3.5 shows the stack

snapshot when this tunneling happens.
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3.2.1 Tunneling Restores Modularity

This tunneling semantics enforces the modular reasoning principle that handlers

should only handle effects they are locally aware of. In the example, the inter-

mediary contexts, fsize1 and fiterate, are polymorphic in an effect variable

that represents the latent effects of their functional arguments. So they ought to

be oblivious to whatever effect applying g might raise at run time. The modular

reasoning principle hence prohibits handlers in these intermediary contexts from

capturing any dynamic instantiations of the effect variable; accidental handling

is impossible.

The client code, by contrast, is locally aware that applying fsize1 to g mani-

fests the latent effect of g. The modular reasoning principle thus requires that the

client code provide a handler for this effect in order to maintain type safety.

The lack of modularity in the presence of higher-order functions is an inherent

problem of language mechanisms based on some form of dynamic scoping, many

of which are subsumed by algebraic effects. Among such effects, the one that

most famously conflicts with modular reasoning is perhaps dynamically scoped

variables.

Dynamically scoped variables increase code extensibility, as exemplified by

the TEX programming language [101], because they act as implicit parameters

that can be accessed—and overridden—in their dynamic extents. But their

unpredictable semantics prevents wider adoption. In particular, a higher-order

function may accidentally override variables that its functional argument expects

from the dynamic scope, a phenomenon known in the Lisp community as the

“downward funarg problem” [163]. This problem with dynamically scoped

variables is an instance of accidental handling.
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Fortunately, tunneling offers a solution broadly applicable to all algebraic

effects, including dynamically scoped variables and exceptions. We illustrate

this solution through an example involving the tunneling of multiple effects.

3.2.2 Tunneling Preserves the Expressivity of Dynamic Scoping

Consider the Visitor design pattern [74], which recursively traverses an abstract

syntax tree (AST). Visitors often keep intermediate state in some associated

context. For example, a type-checking visitor would use a typing environment

as the context, while a pretty-printing visitor would use a context to keep track

of the current indentation level. The state in such contexts is essentially an

instance of dynamic scoping. Moreover, the type-checking visitor may expect

the context to handle typing errors, while the pretty-printing visitor needs the

context to handle I/O exceptions. A common Visitor interface is therefore

unable to capture this variability in the notion of context. So either uses of the

Visitor pattern are limited to settings that do not need context, or the programmer

has to resort to error-prone workarounds.

One such workaround is to capture context information as mutable state.

However, recursive calls to the visitor often need to update context information.

So side effects need to be carefully undone as each recursive call returns; other-

wise, subtrees yet to be visited would not have the right context information.

Tunneled algebraic effects provide the expressive power needed to address

this quandary, without incurring the problems of dynamic scoping. Figure 3.6

shows a pretty-printing visitor defined using tunneled algebraic effects. The

Visitor interface (lines 1–5) is generic with respect to the effects of the visitor

methods. AST visitors can all implement this interface but provide their own no-

tions of context. For the pretty-printer, indentation is modeled as an (immutable)
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1 interface Visitor[E] {

2 visit(While) : void/E

3 visit(Assign) : void/E

4 ...
5 }

6 interface While extends Stmt {

7 cond() : Expr

8 body() : Stmt

9 accept[E](v : Visitor[E]) : void/E { v.visit(this) }

10 ...
11 }

12 effect Val[X] { get() : X } // Immutable variables
13 effect Var[X] extends Val[X] { put(X) : void } // Mutable variables
14 effect IOExc { throw() : void }

15 print(s : String) : void / IOExc { ... }
16 indent(l : int) : void / IOExc { ... }

17 class pretty for Visitor[{Val[int],IOExc}]{

18 visit(w : While) : void / _ { // Infers effects
19 val l = get() // Current level of indentation
20 indent(l) // Print indentation
21 print("while ")

22 w.cond().accept(this)

23 print("\n")

24 try { w.body().accept(this) }

25 with get() : int { resume(l + 1) } // Increment indentation level
26 }

27 ...
28 }

29 try { program.accept(new pretty()) }

30 with {

31 get() : int { resume(0) }

32 throw() : void { ... }
33 }

Figure 3.6. Using tunneled algebraic effects to provide access to the context for
visitors
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dynamically scoped variable, whose effect signature is given on line 12. This

signature can be extended to support mutability (line 13), though it is not needed

by this example. The visitor also uses methods print and indent (lines 15 and

16), which can raise I/O exceptions.

Pretty-printing While loops (lines 18–26) manipulates the dynamic scope. To

properly indent, the current indentation level is obtained from the dynamically

scoped variable by invoking the effect operation get (line 19). The loop body

is printed using the same visitor, but with an updated indentation level. This

overriding of the dynamically scoped variable is done by providing a new

handler for the recursive visit of the loop body (lines 24–25). The initial level of

indentation is provided by the client code on line 31.

Figure 3.7 visualizes the propagation of a Yield[int] effect and an IOExc

exception raised when visiting a loop body. Notice that these effects tunnel

through the effect-polymorphic accept methods. So even if any of the accept

methods handled effects internally, they would not be able to intercept the effects

passing by.

3.2.3 Accomplishing Tunneling by Statically Choosing Handlers

The modular reasoning principle requires that it be possible to reason statically

about which handler is used for each invocation of effect operations. Accordingly,

the language mechanism for accomplishing tunneling requires that an effect

handler be given whenever an effect operation is invoked. As we show below,

such a handler can take the form of a concrete definition or of a handler variable,

and does not have to be provided explicitly in typical usage.

The effect-handling code on the left is actually shorthand for the code on the

right, which explicitly names the exception handler to use:
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1. calls

2. calls

8. calls

get

9. resume

client

visit

accept

3. calls

accept

5. calls

accept

6. calls

visit

4. calls

visit

7. get

1. calls

2. calls

client

visit

accept

3. calls

accept

5. calls

accept

6. calls

visit

4. calls

visit

7. throw

8. throw

9. throwthrow

10. calls
11. aborts

Figure 3.7. Left: stack snapshot at the point when printing the loop body asks for
the current indentation level. Right: stack snapshot when an I/O exception is
raised while printing the loop body.

try { throw() }

with throw() { ... }

try { H.throw() }

with H = new IOExc() {

throw() : void { ... }

}

The handler with a concrete definition is given the name H, and the invoca-

tion H.throw() indicates that H is chosen explicitly as the handler for the effect

operation.

While the try–with construct introduces bindings of handlers with concrete

definitions, mentions of effect names in method, interface, or class headers

introduce bindings of handler variables. For example, the iterate method from

Section 3.1.1 mentions Yield[X] in its throws clause:

iterate[X]() : void / Yield[X] { ... }

So iterate is desugared using explicit parameterization with a handler variable

named h:
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iterate[X, h : Yield[X]]() : void / h {

if (left != null) left.iterate[X, h]()

h.yield(value)

if (right != null) right.iterate[X, h]()

} // Uses of the handler variable are highlighted

The method is polymorphic over a handler for Yield[X], and the effectful com-

putation in its body is handled by this handler.

Inferring omitted handlers. Naming the handler might seem verbose, but

does not create a burden on the programmer: when programs are written using

the usual syntax, the choice of handler is obvious, so the language can always

figure out what is omitted.

To map a program written in the usual syntax into one in which the choice

of handler is explicit, two phases of rewriting are performed: desugaring, and

resolving omitted handlers. Desugaring involves

(a) introducing explicit bindings for concrete handler definitions and explicit

handler-variable bindings for handler polymorphism, and

(b) identifying where handlers are omitted and must be resolved—namely at

invocation sites of effect operations and of handler-polymorphic abstrac-

tions.

Once the program is desugared, an omitted handler for some effect signature

(or effect operation) is always resolved to the nearest lexically enclosing handler

binding for that signature (or operation).

In the examples above, the concrete handler definition H is the closest lexi-

cally enclosing one for IOExc, and the handler variable h is the closest lexically

enclosing one for Yield[X]. So when they are omitted in the program text, the

language automatically chooses them as handlers for the respective effects.
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Tunneling. Tunneling falls out naturally. Performing the rewriting discussed

above on the example in Figure 3.3 yields the following program:

val fsize = ...
val g = fun[h : Yield[int]](x : int) : bool / h { h.yield(x); f(x) }

try { fsize(tr, g[H]) }

with H = new Yield[int]() { yield(x : int) : void { ... } }

When g is passed to the higher-order function, its handler variable is substi-

tuted with the locally declared handler H, the closest lexically enclosing one for

Yield[int]. As a result, the invocation of the effect operation in g will unequivo-

cally be handled by H, rather than being intercepted by some handler declared in

an intermediary context.

As another example, class pretty in Figure 3.6 is actually parameterized by

two handler variables ind and io representing the dynamically scoped indenta-

tion level and the handling of I/O exceptions:

class pretty[ind : Val[int], io : IOExc] for Visitor[{ind,io}] {

visit(w : While) : void / {ind,io} {

...
try { w.body().accept[{H,io}](this[H, io]) }

with H = new Val[int]() { get() : int { resume(l+1) } }

...
}

...
}

For the code that visits the loop body (i.e., line 24 of Figure 3.6, whose full form is

also shown above), two handlers for Val[int] are lexically in scope—the handler

variable ind and the handler definition named H. The closest lexically enclosing

one is chosen, so loop bodies are visited using an incremented indentation level.

Notice that the this keyword is actually a handler-polymorphic value, so it is

possible to recursively invoke the visitor while overriding the handler. For the

handling of I/O exceptions, the handler variable io is the only applicable handler
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lexically in scope. Both kinds of effects are guaranteed not to be captured by the

effect-polymorphic accept methods.

Disambiguating the choice of handler. Although explicitly naming handlers

is not necessary in most cases, the ability to specify handlers explicitly adds

expressivity. For example, in their recent work on using algebraic effects to

encode complex event processing, Braćevac et al. (2018) describe a situation

where different invocations of the same effect operation need to be handled

by different surrounding handlers. The ability to explicitly specify handlers

addresses this need.

3.2.4 Region Capabilities as Computational Effects

With the rewriting described in Section 3.2.3, it may seem superfluous to still

statically track the effects of methods like iterate and g via throws clauses.

After all, the desugared method signatures explicitly require a handler to be

provided—it appears guaranteed that the effect of any call to iterate or g is

properly handled.

However, programs would go wrong if these effects were ignored. Consider

the program in the upper half of Figure 3.8, where the type system does not track

the effect of g other than requiring a handler to be provided. In this example, g is

passed to the (higher-order) identity function, and the result is stored into a local

variable f. As with the fsize example, the handler to provide for g is resolved

to the closest enclosing handler H. So when a Yield effect arises as a result of

applying f to an integer (line 8), the handling code in H is executed. But H does

not have a computation to resume: the current control state is no longer within a

try block!
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1 val f : int→ void

2 val g = fun[h : Yield[int]](x : int) : void { ... h.yield(x) ... }

3 try { f = identity(g[H]) }

4 with H = new Yield[int]() {

5 yield(x : int) : void { ... resume() }

6 }

7 f(0) // Invokes g[H](0) but causes a run-time error

val f : int→ void

val g = fun[h : IOExc](x : int) : void { ... h.throw() ... }

try { f = identity(g[H]) }

with H = new IOExc() {

throw() : void { ... }

}

... // Unable to transfer control here when H finishes
return f // Run-time error if f is invoked later

Figure 3.8. Both programs would type-check statically but go wrong dynamically
if the type system did not tracking the effect of g other than requiring a handler
to be provided. Region capabilities (Section 3.2.4) address this issue.

A similar problem happens when handlers do not resume—but rather abort—

computations in try blocks, such as exception handlers. In the program in the

lower half of Figure 3.8, g may throw an IOExc exception, and the computation

in g[H] is returned to the caller. When an exception handler finishes, control

ought to be transferred to the point immediately following the corresponding

try–with statement. However, when g[H] is invoked later, raising an exception,

the computation following try–with is no longer available when the exception

handler H finishes execution, because the stack frame containing the computation

has been deallocated.
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B

A
We can view a try–with statement as marking a program point

which, at run time, divides the stack into two regions. In the figure to

the right, the stack grows downwards, and an effect is raised at the

bottom of the stack. The two regions, A and B, represent the possible control-

flow transfer targets when the handler finishes handling the effect: the upper

region A is the computation to jump to if the handler aborts the computation in

the try block, and the lower region B is the try-block computation possibly to be

resumed.

To handle an effect thus requires the capability to access the stack regions.

A try–with statement introduces a unique capability, which the corresponding

handler holds within the try block. Capabilities must not be able to escape

their corresponding try blocks; otherwise, they would refer to deallocated stack

regions.

To this end, the type system tracks these stack-region capabilities as computa-

tional effects. In the example above, applying g needs the capability held by the

handler variable h. So the effect of g is this capability, denoted by h in the throws

clause of g:

val g = fun[h : Yield[int]](x : int) : void / h { ... h.yield(x) ... }

In the try block, the handler H provided by the enclosing try–with is used

to substitute for the handler variable, so the expression identity(g[H])—and

therefore f—must have type int→ void / H, meaning that the capability held by H

is needed to apply f. However, because f outlives the try–with that introduces

this capability, the capability will be unavailable when f is applied. Fortunately,

since capabilities are tracked statically, the type system rejects this program.

This capability-effect system is more expressive than previous approaches to

effect polymorphism that use an escape analysis to prevent accesses to deallo-
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// An effect-polymorphic data structure
class cachingFun[X,Y,E] for Fun[X,Y,E] {

val f : X → Y/E

cachingFun(f : X → Y/E) { this.f = f }

apply(x : X) : Y/E { ... f(x) ... }

...
}

// Using code
val g = fun(x : int) : void / Yield { ... }

try {

val f = new cachingFun(g)

... // apply f

}

with yield(x : int) : void { ... }

Figure 3.9. An effect-polymorphic data structure and its using code

cated regions [141, 193]. In contrast to these approaches, we allow values with

latent polymorphic effects to escape into (effect-polymorphic) data structures, as

long as uses of the data structure do not outlive the corresponding stack regions.

For example, class cachingFun in Figure 3.9 implements a function that caches

the result of its application, and is polymorphic over the latent effects of that

function. In the using code, the effectful computation in g escapes into the newly

allocated data structure denoted by f. So f has type Fun[int,void,H], assuming

the handler is named H. But since f does not outlive the try–with that introduces

the capability held by H, the code is safely accepted.

3.2.5 Implementation

This chapter does not explore the options for implementing the new effect mech-

anism. However, implementation is largely an orthogonal concern. It appears
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entirely feasible to build on ongoing work on efficiently implementing algebraic

effects [25, 103]. When algebraic effects are used as a termination-style exception

mechanism, it is important that try-block computations be cheap; it should be

possible to adapt the technique used by Zhang et al. [193], which corresponds to

passing (static) capability labels rather than whole continuations.

3.3 A Core Language

To pin down the semantics of tunneled algebraic effects, we formally define a core

calculus we call λ , which captures the key aspects of the language mechanisms

introduced in Section 3.2.

3.3.1 Syntax

The language λ is a simply typed lambda calculus, extended with language

facilities essential to tunneling, including effect polymorphism, handler polymor-

phism, a way to access effect operations ( ), and a way to discharge effects ( ).

For simplicity, it is assumed that handlers are always given explicitly for effectful

computations (rather than resolving elided handlers to the closest lexically en-

closing binding), that effect signatures contain exactly one effect operation, and

that effect operations accept exactly one argument. Lifting these restrictions is

straightforward, but adds syntactic complexity that obscures the key issues.

Like previous calculi, our formalism omits explicit handler state. But handler

state can be encoded within the algebraic-effects framework—and consequently

in λ —as Bauer and Pretnar [16] show. It is also possible to extend the core

calculus with handler state and, potentially, existentials to ensure encapsulation

of the state. We expect such an extension to be largely orthogonal.
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effects e ::= α | `

capability labels ` ::= L | h.lbl

types T , S ::= 1 | S→[T ]e | ∀α .T | Πh:F [T ]e

handlers h ::= h | H L

terms t, s ::= () | x | let x :T = t in s |

λx :T . t | t s | Λα . t | t [e] |

λh :F. t | t h | h | L
[T ]e

t

handler definitions H ,G ::= handlerF x k. t

effect var. environments ∆ ::= � | ∆, α

handler var. environments P ::= � | P, h :F

term var. environments Γ ::= � | Γ, x :T

label environments Ξ ::= � | Ξ, L : [T ]e
effect names F

label identifiers L

effect variables α

handler variables h

term variables x, y, k, ...

Figure 3.10. Syntax of λ

Figure 3.10 presents the syntax of λ . An overline denotes a (possibly empty)

sequence of syntactic objects. For instance, e denotes a list of effects, with an

empty sequence denoted by �. The i-th element in a sequence • is denoted by •(i).

Metavariables standing for identifiers are given a lighter color.

Types. Types include the base type 1, function types S→[T ]e , effect-polymorphic

types ∀α .T , and handler-polymorphic types Πh:F [T ]e . The result type of a func-

tion type or that of a handler-polymorphic type can be annotated by effects. For

brevity, we omit explicit annotations when there is no effect; for example, the
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type S→T means S→[T ]�. Computations directly quantified by effect variables

must be pure, an easily lifted simplification that matches both typical usage and

previous formalizations (e.g., [18, 103]). Abstract handlers h implement effect

signatures, whose names are ranged over by F. We assume a global mapping

from effect names to effect signatures; given an effect name F, the helper function

op(·) returns the type of its effect operation.

Terms. Terms consist of the standard ones of the simply typed lambda cal-

culus plus those concerned with effects, including the - and -terms, effect-

polymorphic abstraction Λα . t and its application, and handler-polymorphic

abstraction λh : F. t and its application. The - and - terms, which we read as

“up” and “down”, correspond in the language of Section 3.2 to effect operations

and effect handling.

For example, given a handler variable h that implements an effect F with

signature T1→T2, the term h is an effect operation whose implementation is

provided by h, while the term h v invokes the effect operation (assuming the

value v has type T1), raising an effect.

The try–with construct corresponds to terms of form

L
[T ]e
(λh :F. t) H L

where the term t corresponds to the computation in the try block, and H the

handler in the with clause. Term t is placed in a handler-polymorphic abstrac-

tion, which is then immediately applied to the handler. The handler variable h,

occurring free in t , can be thought of as creating a local binding for handler H

that t uses to handle its effects.

As discussed in Section 3.2.4, a try–with expression implicitly marks a pro-

gram point, creating a stack-region capability that is in scope within the try block.

Correspondingly, -terms in λ mark program points that create capabilities.
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These capabilities are represented by labels L; terms of form L
[T ]e

t bind a label L

whose scope is t . Subterms of t can then use L to show they possess the region

capability. Labels bound by different -terms are assumed to be unique. To

ensure unique typing, a -term is annotated with the type and effects [T ]e of the

very term; they correspond to the type and effects of a try–with expression as a

whole. We omit these annotations when they are irrelevant in the context.

To handle an effect requires both the handling code and the capability. Hence,

handler definitions H are always tagged by a label in scope, forming pairs of

form H L. Our use of -terms supports pairing different handler definitions

with the same program point, a useful feature that is common in programming

languages with exception handlers but that does not seem to be captured by

previous formalisms. For example, the following term corresponds to associating

two handlers with the same try block:

L
[T ]e

(
λh1 :F1. (λh2 :F2. t) H

L
2

)
HL

1

Handlers. A handlerh is either a handler variable h or a definition–label pairH L.

The (statically unknown) label embodied in a handler variable h is denoted

by h.lbl. Substituting a handler of form H L for a handler variable h also replaces

any occurrences of h.lbl with L.

Handler definitions H are of form handlerF x k. t , where F is the effect sig-

nature being implemented and t is the handling code. Variables x and k may

occur free in t : x denotes the argument passed to the effect operation, and k the

continuation at the point the effect operation is invoked.

Effects. The type system needs to track region capabilities as computational

effects. An effect e is either an effect variable α or a capability label `. A capability

label is either a label L bound by a -term, or the label of a handler variable.
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With effects being just capabilities, we can handle effect composition simply:

effect sequences e are essentially sets—the order and multiplicity of effects in a

sequence are irrelevant. Substituting an effect sequence e for an effect variable α

that is part of another effect sequence works by flattening e and replacing α with

the flattened effects.

3.3.2 Operational Semantics

To give an operational semantics to λ , terms in Figure 3.10 are extended with a

-construct:

terms t, s ::= ... | L t

A small-step operational semantics of the core language is given in Figure 3.11.

Individual reduction steps take the form L1 ; t1 −→ L2 ; t2 , meaning that term t1

steps to term t2 while the set of activated region-capability labels grows from L1 to

L2. Per rule [E-DOWN], a label bound by a -term is activated when the -term

is reduced to a -term. While -terms lexically bind labels, -terms are non-

binding constructs; evaluation contexts of form LK serve as stack delimiters.

Closed terms can then mention activated labels, which is useful, for example, in

defining a logical relation on closed terms. The transitive, reflexive closure of the

small-step transition relation −→ is denoted by −→∗. The distinction between

and is not brought up in Zhang and Myers [188, 189], on which this chapter

is based; however, it does exist in the accompanying Coq formalization. This

chapter makes the distinction explicit so that the paper presentation here matches

the Coq formalization more closely.

Rule [E-DOWN-UP] deals with invocations of effect operations. Evaluating an

invocation H L0 v amounts to evaluating the handling code in H , which requires
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values v,u ::= () | λx :T . t | Λα . t | λh :F. t | H L

evaluation contexts K ::= [·] | K t | v K | K [L] | K H L | let x :T = K in t | L K

L1 ; t1 −→ L2 ; t2

[E-KTX]
L1 ; t1 −→ L2 ; t2

L1 ; K[t1] −→ L2 ; K[t2]

[E-APP] L ; (λx :T . t) v −→ L ; t {v/x}

[E-EAPP] L ; (Λα . t) [L0] −→ L ; t
{
L0

/
α
}

[E-HAPP] L ; (λh :F. t) H L0 −→ L ; t
{
H L0

/
h
}

[E-LET] L ; let x :T = v in t −→ L ; t {v/x}

[E-DOWN]
L0 < L

L ; L0 t −→ L, L0 ; L0 t

[E-DOWN-VAL]
L0 ∈ L

L ; L0 v −→ L ; v

[E-DOWN-UP]
op(F) = T1→T2 L0 ∈ L L0 y K

L ; L0 K

[ (
handlerF x k. t

)L0
v

]
−→ L ; t

{
λy :T2 .

L0 K[y]
/
k
}
{v/x}

Ly K

Ly [·]
Ly K

Ly K t

Ly K

Ly v K

Ly K

Ly K [L0]

Ly K

Ly K H L0

Ly K

Ly let x :T = K in t

Ly K L , L0

Ly L0 K

Figure 3.11. Operational semantics of λ
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the capability to access the stack regions marked by L0. Therefore, to reduce

HL0 v, the dynamic scope is searched for an evaluation context L0 K[·]where

L0 y K (that is, K does not contain L0 as a stack delimiter). This evaluation

context K is then passed to the handling code as the resumption continuation.

In case the handler chooses to abort the computation in K , evaluation continues

with the surrounding evaluation context, as rule [E-KTX] suggests. Notice that K

is guarded by L0 when passed to the handling code, so any invocation of effect

operations labeled by L0 in the resumption continuation can be handled properly.

3.3.3 Static Semantics

The static semantics of λ is provided in Figures 3.12–3.14. Term well-formedness

rules have form ∆ | P | Γ | Ξ ` t : [T ]e , where ∆, P, Γ and Ξ are environments of free

effect variables, handler variables, term variables, and labels, respectively. The

judgment form says that under these environments the term t has type T and

effects e.

Rule [T-UP] suggests that an effect operation h is a first-class value with

type T→[S]e , where T→S is the effect signature and e is the capability held by h.

Rule [T-DOWN] suggests that a term t guarded by L possesses the capabil-

ity L: in the premise, t is typed under the label environment augmented with L.

Importantly, however, the label L must not occur free in the result type T and

effects e. Otherwise, L could outlive its binding scope. For instance, it would

then be possible to type the term L
[S1→[S2]L]�

(
H L

)
as S1→ [S2]L, assuming H

implements effect signature S1→S2. Per evaluation rule [E-DOWN-VAL], the term

would then evaluate to H L. But without a corresponding L in the dynamic

context, an invocation of the effect operation H L t would get stuck. Notice that
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∆ | P | Γ | Ξ ` t : [T ]e

[T-UNIT] ∆ | P | Γ | Ξ ` () : [1]� [T-VAR]
Γ(x) = T

∆ | P | Γ | Ξ ` x : [T ]�

[T-ABS]
∆ | P | Ξ ` S ∆ | P | Γ, x :S | Ξ ` t : [T ]e

∆ | P | Γ | Ξ ` λx :S . t : [S→[T ]e ]�

[T-APP]
∆ | P | Γ | Ξ ` t : [S→[T ]e ]e ∆ | P | Γ | Ξ ` s : [S]e

∆ | P | Γ | Ξ ` t s : [T ]e

[T-LET]
∆ | P | Ξ ` S ∆ | P | Γ | Ξ ` s : [S]e ∆ | P | Γ, x :S | Ξ ` t : [T ]e

∆ | P | Γ | Ξ ` let x :S = s in t : [T ]e

[T-EABS]
∆, α | P | Γ | Ξ ` t : [T ]�

∆ | P | Γ | Ξ ` Λα . t : [∀α .T ]�

[T-EAPP]
∆ | P | Γ | Ξ ` t : [∀α .T ]e1

(∀i) ∆ | P | Ξ ` e(i)2
∆ | P | Γ | Ξ ` t [e2] : [T {e2/α }]e1

[T-HABS]
∆, h :F | P | Γ | Ξ ` t : [T ]e

∆ | P | Γ | Ξ ` λh :F. t : [Πh:F [T ]e ]�

[T-HAPP]
∆ | P | Γ | Ξ ` t :

[
Πh:F [T ]e1

]
e2

∆ | P | Γ | Ξ ` h : F | `

∆ | P | Γ | Ξ ` t h : [T {h/h}]e1 {h/h}, e2

[T-UP]
∆ | P | Γ | Ξ ` h : F | ` op(F) = T→S

∆ | P | Γ | Ξ ` h : [T→[S]`]�

[T-DOWN]
∆ | P | Γ | Ξ, L : [T ]e ` t : [T ]e ,L ∆ | P | Ξ ` T ∆ | P | Ξ ` e

∆ | P | Γ | Ξ ` L
[T ]e t : [T ]e

[T-SUB]
∆ | P | Γ | Ξ ` t : [T1]e1

∆ | P | Ξ ` T1 ≤ T2 ∆ | P | Ξ ` e1 ≤ e2

∆ | P | Γ | Ξ ` t : [T2]e2

Figure 3.12. Term well-formedness rules of λ
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∆ | P | Γ | Ξ ` h : F | `

[T-HVAR]
P(h) = F

∆ | P | Γ | Ξ ` h : F | h.lbl
[T-HDEF]

Ξ(L) = [S]e op(F) = T1→T2
∆ | P | Γ, x :T1, k :T2→[S]e | Ξ ` t : [S]e

∆ | P | Γ | Ξ `
(
handlerF x k. t

)L
: F | L

Figure 3.13. Handler well-formedness rules of λ

we do not give a typing rule for the auxiliary construct; -terms emerge only

when evaluating a λ program.

Handler well-formedness rules have form ∆ | P | Γ | Ξ ` h : F | `, which states

that handler h implements the algebraic effect F and has label `. Rule [T-HDEF]

requires that the handling code t of a handler H L be typable using the type and

effects [S]e prescribed by the label L.

Encoding data structures. For simplicity, λ does not have data structures.

However, λ allows their encoding via closures, where the captured variables

may have latent polymorphic effects. For example, a simplified pair data structure

polymorphic over the latent effects of its components can be encoded as follows:

T
def
= S1→[S2]α S1 and S2 can be any closed type

pair
def
= Λα . λx :T . λy :T . λf :T→T→T . f x y construct a pair

first
def
= Λα . λp : (T→T→T )→T . p (λx :T . λy :T . x) obtain the first component

second
def
= Λα . λp : (T→T→T )→T . p (λx :T . λy :T . y) obtain the second component

The two components, both having type T , have α as their latent effects. The pair

constructor is then polymorphic in α .

This example cannot be readily encoded in previous formalisms [141, 193],

which support a limited form of effect polymorphism by introducing second-

class values that cannot escape their defining scope. In particular, these systems
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∆ | P | Ξ ` T

∆ | P | Ξ ` 1
∆ | P | Ξ ` T ∆ | P | Ξ ` S (∀i) ∆ | P | Ξ ` e(i)

∆ | P | Ξ ` T→[S]e

∆, α | P | Ξ ` T

∆ | P | Ξ ` ∀α .T

∆ | P, h :F | Ξ ` T (∀i) ∆ | P, h :F | Ξ ` e(i)

∆ | P | Ξ ` Πh:F [T ]e

∆ | P | Ξ ` e

α ∈ ∆

∆ | P | Ξ ` α

L ∈ domain(Ξ)

∆ | P | Ξ ` L

h ∈ domain(P)

∆ | P | Ξ ` h.lbl

∆ | P | Ξ ` T ≤ S

∆ | P | Ξ ` 1 ≤ 1
∆ | P | Ξ ` T2 ≤ T1 ∆ | P | Ξ ` S1 ≤ S2 ∆ | P | Ξ ` e1 ≤ e2

∆ | P | Ξ ` T1→[S1]e1
≤ T2→[S2]e2

∆, α | P | Ξ ` T1 ≤ T2

∆ | P | Ξ ` ∀α .T1 ≤ ∀α .T2

∆ | P, h :F | Ξ ` T1 ≤ T2 ∆ | P, h :F | Ξ ` e1 ≤ e2

∆ | P | Ξ ` Πh:F [T1]e1
≤ Πh:F [T2]e2

∆ | P | Ξ ` T1 ≤ T2 ∆ | P | Ξ ` T2 ≤ T3

∆ | P | Ξ ` T1 ≤ T3

∆ | P | Ξ ` e1 ≤ e2

(∀j, ∃i) e(j)1 = e(i)2 (∀i) ∆ | P | Ξ ` e(i)2
∆ | P | Ξ ` e1 ≤ e2

Figure 3.14. Type and effect well-formedness of λ
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C ::= [·] | C[λx :T . [·]] | C[[·] t] | C[t [·]] | C[let x :T = [·] in t] |

C[let x :T = t in [·]] | C[Λα . [·]] | C[[·] [e]] | C[λh :F. [·]] | C[[·] h] |

C

[
t
(
handlerF x k. [·]

)L]
| C

[ (
handlerF x k. [·]

)L]
| C

[
L
[·]

]
Figure 3.15. Program contexts of λ

do not admit the subterm λx :T . λy :T . x in the definition of first, or the subterm

λy :T . y in the definition of second. Variable x in the first subterm, being second-

class because it has a polymorphic latent effect, escapes its defining scope via

the closure λy :T . x capturing it. Similarly, in the second subterm, variable y

escapes its defining scope. By contrast, our use of explicit effect polymorphism

and capability labels enables the definition of effect-polymorphic data structures.

3.3.4 Contextual Refinement and Equivalence

A program context is a program with a hole [·] in it. Figure 3.15 shows the different

types of program contexts in λ . Well-formedness judgments for program

contexts have the form

` C : ∆ | P | Γ | Ξ | [S]e  T

The meaning of this judgment is that if a term t satisfies the typing judgment

∆ | P | Γ | Ξ ` t : [S]e , then plugging t into C results in a program that satisfies

� | � | � | � ` C[t] : [T ]�. These rules can be found in Figure 3.16.

Our goal is to prove that with tunneling, algebraic effects can preserve abstrac-

tion. Abstraction is shown by demonstrating that implementations using effects

internally cannot be distinguished by external observers. The gold standard of

indistinguishability is contextual equivalence: two terms are contextually equiv-
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` C : ∆ | P | Γ | Ξ | [S]e  T

` [·] : � | � | � | � | [T ]� T
` C : ∆ | P | Γ | Ξ | [T→[S]e ]� T ′ ∆ | P | Ξ ` T

` C[λx :T . [·]] : ∆ | P | Γ, x :T | Ξ | [S]e  T ′

` C : ∆ | P | Γ | Ξ | [S]e  T ′

∆ | P | Γ | Ξ ` t : [T ]e
` C[[·] t] : ∆ | P | Γ | Ξ | [T→[S]e ]e  T ′

` C : ∆ | P | Γ | Ξ | [S]e  T ′

∆ | P | Γ | Ξ ` t : [T→[S]e ]e
` C[t [·]] : ∆ | P | Γ | Ξ | [T ]e  T ′

` C : ∆ | P | Γ | Ξ | [T ]e  T ′ ∆ | P | Ξ ` S ∆ | P | Γ, x :S | Ξ ` t : [T ]e
` C[let x :S = [·] in t] : ∆ | P | Γ | Ξ | [S]e  T ′

` C : ∆ | P | Γ | Ξ | [T ]e  T ′ ∆ | P | Ξ ` S ∆ | P | Γ | Ξ ` s : [S]e
` C[let x :S = s in [·]] : ∆ | P | Γ, x :S | Ξ | [T ]e  T ′

` C : ∆ | P | Γ | Ξ | [∀α .T ]� T ′

` C[Λα . [·]] : ∆, α | P | Γ | Ξ | [T ]� T ′

` C : ∆ | P | Γ | Ξ | [T {e2/α }]e1
 T ′

(∀i) ∆ | P | Ξ ` e(i)2
` C[[·] [e2]] : ∆ | P | Γ | Ξ | [∀α .T ]e1

 T ′

` C : ∆ | P | Γ | Ξ | [Πh:F [T ]e ]� T ′

` C[λh :F. [·]] : ∆ | P, h :F | Γ | Ξ | [T ]e  T ′

` C : ∆ | P | Γ | Ξ | [T {h/h}]e1 {h/h}, e2
 T ′ ∆ | P | Γ | Ξ ` h : F | `

` C[[·] h] : ∆ | P | Γ | Ξ |
[
Πh:F [T ]e1

]
e2
 T ′

` C : ∆ | P | Γ | Ξ | [T {L/h.lbl}]e1 {L/h.lbl},e2
 T ′

∆ | P | Γ | Ξ ` t :
[
Πh:F [T ]e1

]
e2

Ξ(L) = [S]e3
op(F) = T1→T2

` C

[
t
(
handlerF x k. [·]

)L]
: ∆ | P | Γ, x :T1, k :T2→[S]e3

| Ξ | [S]e3
 T ′

` C : ∆ | P | Γ | Ξ | [T1→[T2]L]� T ′ Ξ(L) = [S]e op(F) = T1→T2

` C

[ (
handlerF x k. [·]

)L]
: ∆ | P | Γ, x :T1, k :T2→[S]e | Ξ | [S]e  T ′

` C : ∆ | P | Γ | Ξ | [T ]e  T ′ ∆ | P | Ξ ` T ∆ | P | Ξ ` e

` C
[

L
[T ]e [·]

]
: ∆ | P | Γ | Ξ, L | [T ]e ,L T ′

` C : ∆ | P | Γ | Ξ | [T2]e2
 T ′ ∆ | P | Ξ ` T1 ≤ T2 ∆ | P | Ξ ` e1 ≤ e2

` C : ∆ | P | Γ | Ξ | [T1]e1
 T ′

Figure 3.16. Context well-formedness of λ
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alent if plugging them into an arbitrary well-formed program context always

gives two programs whose evaluations yield the same observation [124].

We define contextual equivalence in terms of contextual refinement, a weaker,

asymmetric relation that requires one term to be able to simulate the behaviors

of the other:

Definition 1 (contextual refinement 4ctx and contextual equivalence ≈ctx).

∆ | P | Γ | Ξ ` t1 4ctx t2 : [T ]e
def
= ∀C . ` C : ∆ | P | Γ | Ξ | [T ]e  T ′⇒

∀L1, v1. � ; C[t1] −→∗ L1 ; v1 ⇒

∃L2, v2. � ; C[t2] −→∗ L2 ; v2

∆ | P | Γ | Ξ ` t1 ≈ctx t2 : [T ]e
def
= ∆ | P | Γ | Ξ ` t1 4ctx t2 : [T ]e ∧

∆ | P | Γ | Ξ ` t2 4ctx t1 : [T ]e

For programs to be equivalent in the above definition, they only need to

agree on termination, but this seemingly weak observation of program behavior

does not weaken the discriminating power of the definition, because of the

universal quantification over all possible program contexts and because λ is

Turing-complete (see Section 3.4.1). Hence, if two computations that reduce to

observably different values, one can always construct a program context that

makes the two computations exhibit different termination behavior.

However, the universal quantification over contexts also makes it hard to

show equivalence by using the definition directly. We therefore take one of

the standard approaches to establishing contextual equivalence: constructing a

logical relation that implies contextual equivalence.
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3.4 A Sound Logical-Relations Model

We develop a logical-relations model for λ and prove the important property

that logically related terms are contextually equivalent. This semantic soundness

result guarantees that the language λ is both type-safe and abstraction-safe.

3.4.1 Step Indexing

A logical-relations model gives a relational interpretation of types, traditionally

defined inductively on the structure of types. But language features like recursive

types require a more sophisticated induction principle. Algebraic effects present

a similar challenge because effect signatures can be defined recursively.

Recursively defined effect signatures give rise to programs that diverge, and

consequently make the language Turing-complete. For example, suppose effect F

has signature op(F) = 1→Πh:F [T ]h.lbl, which recursively mentions F, and that H

is defined as follows:

H
def
= handlerF x k. k (λh :F. h () h)

Then the evaluation of the program L
[T ]�
(λh :F. h () h) H L does not terminate:

� ; L (
λh :F. h () h

)
H L

−→ L ; L (
λh :F. h () h

)
H L −→ L ; L (

H L () H L
)

−→ L ;
(
λy :Πh:F [T ]h.lbl .

L y H L
) (

λh :F. h () h
)

−→ L ; L (
λh :F. h () h

)
H L −→ · · ·

Because of this recursion in the signature of F, structural induction alone is

unable to give a well-defined relational interpretation of F.

Step indexing [10] has been successfully applied to cope with recursive types

(e.g., by Ahmed [5]). In this approach, the logical relation is defined using a
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[LÖB]
P, .Q ` Q

P ` Q
[MONO]

P,Q ` R

P, .Q ` .R

Figure 3.17. Rules for .

double induction, first on a step index, and second on the structure of types. In-

tuitively, the step index indicates for how many evaluation steps the proposition

is true; at step 0 everything is vacuously true, and if a proposition is true for any

number of steps then it is true in a non-step-indexed setting.

Our definition is step-indexed. It uses a logic equipped with the modality .,

read as “later”, which offers a clean abstraction of step indexing [11, 58]. If

proposition P holds for n steps, then . P means P holds for n − 1 steps. So P

implies . P . Importantly, the .modality provides the [LÖB] axiom (Figure 3.17),

which can be viewed as an induction principle on step indices. The .modality

distributes over other connectives, so rule [MONO] is derivable.

As we shall see in Section 3.4.4, to ensure well-definedness, recursive invoca-

tions of the interpretation of effect signatures occur under the .modality.

3.4.2 World Indexing

The operational semantics presented in Section 3.3.2 evolves a set of activated

capability labels, analogous to how calculi supporting reference cells evolve

a set of allocated memory locations during evaluation. Therefore, our logical

relation is indexed by possible worlds of activated labels, analogous to how a

logical relation for reasoning about reference cells is indexed by possible worlds

describing allocated memory locations [146]. Our logical relation is binary; a

world W is composed of two sets of activated labels, denoted by W1 and W2.
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WorldW ′ is a future world ofW , written asW ⊆W ′, ifW ′ (possibly) adds freshly

activated labels toW .

3.4.3 A Biorthogonal Term Relation

We introduce a logical relation for terms, which are closed under the empty

variable environments but may use capability labels that are not locally bound.

The term relation is defined using the technique of biorthogonality, pioneered by

Pitts and Stark [146]. Biorthogonality, also known as >>-closure, lends itself to

languages whose operational semantics manipulate evaluation contexts [18, 59,

96]: in a biorthogonal term relation, two terms are related if evaluating them in

related evaluation contexts yields related observations.

Figure 3.18 shows that the term relation T is defined using relation R pro-

viding a notion of relatedness for evaluation contexts and relation O relating

observations. Apart from the S relation, the definitions are standard. We define

logical equivalence in terms of a notion of logical refinement, in much the same

way that we define contextual equivalence in terms of contextual refinement.

Rather than requiring the terms to exhibit the same termination behavior, the

observation relation O relates two computations where termination of the first

computation merely implies that of the second one:

O (W , t1, t2)
def
=

(
∃W ′,v1,v2.W

′
1 =W1 ∧ t1 = v1 ∧ W2 ; t2 −→∗ W ′2 ; v2

)
∨(

∃W ′, t ′1.W
′
2 =W2 ∧ W1 ; t1 −→ W ′1 ; t ′1 ∧ .O

(
W ′, t ′1, t2

))
The O relation is defined recursively; the use of the .modality suggests that the

definition is implicitly indexed by the number of remaining evaluation steps the

first computation can take.

Two evaluation contexts are related by R if they yield related observations

when applied to related values. However, in the presence of algebraic effects,
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T n[T ]eoρδ (W , t1, t2)
def
= ∀K1,K2. Rn[T ]eoρδ (W , K1, K2) ⇒ O (W , K1[t1], K2[t2])

Rn[T ]eoρδ (W , K1, K2)
def
= ∀W ′.W ⊆W ′⇒(
∀v1,v2.VnToρ

δ
(W ′, v1, v2) ⇒ O (W

′, K1[v1], K2[v2])
)
∧(

∀t1, t2. Sn[T ]eoρδ (W ′, t1, t2) ⇒ O (W ′, K1[t1], K2[t2])
)

Sn[T ]eoρδ (W , K1[t1], K2[t2])
def
= ∃ψ , L1, L2.Uneoρ

δ

(
W , t1, t2, ψ , L1, L2

)
∧(

∀j . L(j)i y Ki

)
(i = 1, 2) ∧

∀W ′, t ′1, t
′
2.W ⊆W

′⇒ ψ
(
W ′, t ′1, t

′
2

)
⇒

.T n[T ]eoρδ
(
W ′, K1

[
t ′1

]
, K2

[
t ′2

] )
Figure 3.18. Biorthogonality

values are not the only kind of irreducible term. Terms of form K
[

H Lv
]

where

Ly K are stuck when put into an empty evaluation context.

So we borrow from Biernacki et al. [18] a logical relation Sn[T ]eoρδ , which,

being a smaller relation than T n[T ]eoρδ , relates two computations that can possibly

get stuck by themselves because they raise effects among e. The definition of

the R relation then requires that two related evaluation contexts yield related

observations when applied to not only values related byV but also terms related

by S. The S relation is discussed further in Section 3.4.4.

Because of the use of biorthogonality, and assuming parametricity is deriv-

able, our term relation is automatically complete with respect to contextual

refinement [59, 146]: contextually equivalent terms are always logically related.

So the key theorems to prove are parametricity and soundness.

The definitions of the relations T n[T ]eoρδ , Rn[T ]eoρδ , and Sn[T ]eoρδ are mutually

recursive, and are parameterized by the semantic interpretation of the type

(VnToρ
δ
) and that of the effect sequence (Uneoρ

δ
), defined below.
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3.4.4 Semantic Types, Semantic Effect Signatures, and Seman-

tic Effects

The logical relationVnToρ
δ

(Figure 3.19), defined by structural induction on the

type T , interprets T as a binary relation on values. The unit type and function

types are interpreted in a standard way, following the contract that the logical

relation should be preserved by the elimination (or introduction) forms of the

types.

Effect-polymorphic types and handler-polymorphic types bind effect vari-

ables and handler variables. Accordingly, environments δ and ρ are introduced

to provide substitutions for variables occurring free in the type being interpreted:

δ ::= � | δ , α 7→
〈
L1, L2,ϕ

〉
ρ ::= � | ρ, h 7→

〈
H L1

1 ,H
L2
2 ,η

〉
We use δ1 and δ2 (resp. ρ1 and ρ2) to mean the substitution functions for free effect

(resp. handler) variables. In addition to these syntactic substitution functions,

the environment δ maps each effect variable to a third component that is the

semantic interpretation chosen for the effect variable, while the environment ρ

maps each handler variable to a third component that is the term relation the

computations of the two handlers satisfy. (Metavariables ϕ, η, andψ range over

relation variables.) The definitions in Figure 3.19 are also parameterized by a

label environment Ξ; labels in the domain of Ξ may occur free in the types and

effects being interpreted. We omit Ξ for brevity.

The definition ofVn∀α .Toρ
δ

shows the source of the abstraction guarantees

provided by effect-polymorphic abstractions: two effect-polymorphic abstrac-

tions are related if their applications are related however the effect variable is

interpreted. The definition ofVnΠh:F [T ]eoρδ says that two handler-polymorphic

abstractions are related if their applications to any related handlers are related.
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Semantic types

Vn1oρ
δ
(W , v1, v2)

def
= v1 = () ∧ v2 = ()

VnT→[S]eoρδ (W , v1, v2)
def
= ∀W ′,u1,u2.W ⊆W

′⇒VnToρ
δ
(W ′, u1, u2) ⇒

T n[S]eoρδ (W ′, v1 u1, v2 u2)

Vn∀α .Toρ
δ
(W , v1, v2)

def
= ∀W ′, L1, L2,ϕ .W ⊆W

′⇒ ϕ ⊆W ′⇒

T n[T ]�oρδ ,α 7→ 〈
L1, L2,ϕ

〉 (
W ′, v1 [L1], v2 [L2]

)
VnΠh:F [T ]eoρδ (W , v1, v2)

def
= ∀W ′,H L1

1 ,H
L2
2 ,η.W ⊆W

′⇒ Li ∈W
′
i (i = 1, 2) ⇒

.HnFo (W ′, H1, H2, η) ⇒

T n[T ]eo
ρ, h 7→

〈
H L1

1 ,H
L2
2 ,η

〉
δ

(
W ′, v1 H

L1
1 , v2 H

L2
2

)
Semantic effect signatures

HnFo (W , H1, H2, η)
def
= Hi = handlerF x k. ti (i = 1, 2) ∧ op(F) = T→S ∧

∀W ′.W ⊆W ′⇒ ∀v1,v2.VnTo�� (W ′, v1, v2) ⇒

∀u1,u2.
©­«
∀W ′′.W ′ ⊆W ′′⇒
∀w1,w2.VnSo�� (W ′′, w1, w2) ⇒

.η (W ′′, u1 w1, u2 w2)

ª®¬⇒
η (W ′, t1 {u1/k} {v1/x}, t2 {u2/k} {v2/x})

Semantic effects

Unαoρ
δ

(
W , t1, t2, ψ , L1, L2

)
def
= δ (α) =

〈
L′1, L

′
2,ϕ

〉
∧ ϕ

(
W , t1, t2, ψ , L1, L2

)
Un`oρ

δ
(W , t1, t2, ψ , L1, L2)

def
= ρi` = Li (i = 1, 2) ∧ t1 = H L1

1 v1 ∧ t2 = H L2
2 v2 ∧

.HnFo
(
W , H1, H2, T n`oρδ

)
∧ op(F) = T→S ∧

.VnTo�� (W , v1, v2) ∧ ψ ≡ .VnSo��
Uneoρ

δ
(W , t1, t2, ψ , L1, L2)

def
= ∃i .U

�
e(i)

�ρ
δ
(W , t1, t2, ψ , L1, L2)

Auxiliary definitions

T nh.lbloρ
δ
(W , t1, t2)

def
= ρ(h) =

〈
H L1

1 ,H
L2
2 ,η

〉
∧ η (W , t1, t2)

T nLoρ
δ
(W , t1, t2)

def
= Ξ(L) = [T ]e ∧ T n[T ]eoρδ (W , t1, t2)

ϕ ⊆W
def
= ∀W ′, t1, t2,ψ , L1, L2. ϕ

(
W ′, t1, t2, ψ , L1, L2

)
⇒ Li ⊆Wi (i = 1, 2)

Figure 3.19. Relational interpretation of types, effect signatures, and effects
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Handler-relatedness is defined by the logical relation HnFo, indexed by effect

signatures F. As discussed in Section 3.4.1, effect signatures can be recursively

defined. ThusHnFo is invoked here under the .modality so that the definition

is admissible.

The interpretation of an effect signature F is similar to that of a function

type: two handlers are related if their handling code is related under any related

substitutions for the free variables. HnFo relates a third component η that is a

term relation; the handler computations are in this relation. HnFo is not indexed

by environments δ and ρ, because effect signatures are closed.

We revisit the definition of the S relation introduced in Section 3.4.3. As

mentioned earlier, S can relate terms of form K
[

H Lv
]

where Ly K—although

terms in this relation are not necessarily effectful, because it is possible for

programs that use effects and those that do not to be equivalent. The operational

meaning of these terms depends upon a larger surrounding context marked

by label L. Therefore, the relation Sn[T ]eoρδ is defined using theUneoρ
δ

relation,

which relates the (possibly) effectful computations t1 and t2 and also a term

relation ψ specifying the outcomes of these computations in a larger context.

Given this specification, the definition of Sn[T ]eoρδ checks that plugging any pair

of terms t ′1 and t ′2 related by the outcome specification into the current evaluation

contexts yield related terms. Notice that K1
[
t ′1

]
and K2

[
t ′2

]
only need to be related

in the future as indicated by the use of the .modality, because it takes evaluation

steps to reach t ′1.

Capability effects are interpreted by the Uneoρ
δ

relation. For an effect vari-

able α , the interpretation Unαoρ
δ

is simply the relation mapped to by the envi-

ronment δ . For a capability label `, the interpretation Un`oρ
δ

relates two effect

operation invocations: H L1
1 v1 and H L2

2 v2 are related provided the handlersH L1
1
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and H L2
2 are related and the arguments v1 and v2 are related. The outcome rela-

tionψ in this case is the value relation at the return type of the effect operation.

The handler computations must be related at T n`oρ
δ
; this relation is defined at

the bottom of Figure 3.19. For a label of form h.lbl, this relation is the one that ρ

maps h to, while for a label of form L, this relation is T n[T ]eoρδ , provided the label

environment Ξ maps L to [T ]e .

The interpretation of a sequence of effects e is naturally the union of the

interpretation of the individual effects in the sequence.

3.4.5 Properties of the Logical Relations

Basic properties. We point out some basic properties of the logical relations.

These properties are employed by the proof leading to the soundness theorem

and are used frequently in proofs of logical relatedness.

The following lemma applies when the goal is to prove the relatedness of two

terms in which the subterms in the evaluation contexts are related:

Lemma 2. Given worldW and evaluation contexts K1 and K2, if

(a) for any future world W ′ and for any v1 and v2, VnToρ
δ
(W ′, v1, v2) implies

T
�
[T ′]e ′

�ρ
δ
(W ′, K1[v1], K2[v2]), and

(b) for any future world W ′ and for any s1 and s2, Sn[T ]eoρδ (W ′, s1, s2) implies

T
�
[T ′]e ′

�ρ
δ
(W ′, K1[s1], K2[s2]),

then for any future worldW ′ and for any t1 and t2, T n[T ]eoρδ (W ′, t1, t2) implies

T
�
[T ′]e ′

�ρ
δ
(W ′, K1[t1], K2[t2]).

The lemma says it suffices to show the evaluation contexts K1 and K2 satisfy

the following conditions: applying K1 and K2 to (a) related values and (b) re-

lated terms in the Sn[T ]eoρδ relation yields related terms in the T
�
[T ′]e ′

�ρ
δ

rela-
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tion. We capture the preconditions of Lemma 2 by defining a logical relation

K
�
[T ]e  [T

′]e ′
�ρ
δ
: two evaluation contexts K1 and K2 are in this relation under

worldW precisely when they satisfy the preconditions (a) and (b) of Lemma 2.

The following two lemmas show that reduction on either side reflects the

term relation:

Lemma 3.

W2 =W
′
2 ∧ W1 ; t1 −→ W ′1 ; t ′1 ∧ .T n[T ]eoρδ

(
W ′, t ′1, t2

)
⇒ T n[T ]eoρδ (W , t1, t2).

Lemma 4.

W1 =W
′
1 ∧ W2 ; t2 −→ W ′2 ; t ′2 ∧ T n[T ]eoρδ

(
W ′, t1, t

′
2

)
⇒ T n[T ]eoρδ (W , t1, t2).

The asymmetry with respect to the use of the .modality in the preconditions is a

result of the asymmetry in the definition of the O relation.

The following lemma allows proving two terms related by showing that they

are in theV relation or in the S relation:

Lemma 5. VnToρ
δ
⊆ T n[T ]eoρδ ∧ Sn[T ]eoρδ ⊆ T n[T ]eoρδ

These basic properties (Lemmas 2 to 5) are a consequence of the biorthogonal,

step-indexed term relation defined in Section 3.4.3.

In addition, it can be derived that logical relations including R,V,H , and K

are monotone with respect to world extension, precisely because their definitions

are quantified over future worlds. In particular, values related in one world

remain related in a future world:

Lemma 6. W ⊆W ′ ⇒ VnToρ
δ
(W , v1, v2) ⇒ VnToρ

δ
(W ′, v1, v2)

Soundness. Contextual refinement is defined for open terms, so we lift the

term relation and the handler relation to open terms and open handlers by

quantifying over related closing substitutions for the variable environments, as
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∆ | P | Γ | Ξ ` t1 4log t2 : [T ]e
def
= ∀W , δ , ρ,γ . domain(Ξ) ⊆Wi (i = 1, 2) ⇒

∀δ . n∆o (W , δ ) ⇒ ∀ρ. nPo (W , ρ) ⇒
∀γ . nΓoρ

δ
(W , γ ) ⇒

T n[T ]eoρδ (W , δ1ρ1γ1t1, δ2ρ2γ2t2)

∆ | P | Γ | Ξ ` h1 4log h2 : F | `
def
= ∀W , δ , ρ,γ . domain(Ξ) ⊆Wi (i = 1, 2) ⇒

∀δ . n∆o (W , δ ) ⇒ ∀ρ. nPo (W , ρ) ⇒
∀γ . nΓoρ

δ
(W , γ ) ⇒

∀H1, L1,H2, L2. δiρiγihi = H Li
i (i = 1, 2) ⇒

ρi` = Li (i = 1, 2) ∧ HnFo
(
W , H1, H2, T n`oρδ

)
n�o (W , δ ) def

= δ = �

n∆,αo (W , δ ) def
= δ = δ ′,α 7→

〈
L1, L2,ϕ

〉
∧ ϕ ⊆W ∧ n∆o (W , δ ′)

n�o (W , ρ) def
= ρ = �

nP, h :Fo (W , ρ) def
= ρ = ρ′,h 7→

〈
HL1

1 ,H
L2
2 ,η

〉
∧ Li ∈W (i = 1, 2) ∧

HnFo (W , H1, H2, η) ∧ nPo (W , ρ′)
n�oρ

δ
(W , γ )

def
= γ = �

nΓ, x :Toρ
δ
(W , γ )

def
= γ = γ ′,x 7→ 〈v1,v2〉 ∧ VnToρ

δ
(W , v1, v2) ∧ nΓoρ

δ
(W , γ ′)

Figure 3.20. Logical relations for open terms and handlers

shown in Figure 3.20. Here, γ provides substitution functions for term variables:

γ ::= � | γ , x 7→ 〈v1,v2〉. The interpretation of variable environments as relations

on substitutions, also given in Figure 3.20, is standard.

Central to the proof of soundness are the compatibility lemmas; they show

that logical refinement 4log is preserved by the syntactic typing rules. The com-

patibility lemmas corresponding to the typing rules in Figures 3.12 and 3.13 are

stated in Figures 3.21 and 3.22, respectively. The lemmas are written in the style

of inference rules so that they can be read in tandem with the corresponding
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∆ | P | Γ | Ξ ` t1 4log t2 : [T ]e

∆ | P | Γ | Ξ ` t1 4log t2 : [T1]e1
∆ | P | Ξ ` T1 ≤ T2 ∆ | P | Ξ ` e1 ≤ e2

∆ | P | Γ | Ξ ` t1 4log t2 : [T2]e2

∆ | P | Γ | Ξ ` () 4log () : [1]�
Γ(x) = T

∆ | P | Γ | Ξ ` x 4log x : [T ]�

∆ | P | Ξ ` S ∆ | P | Γ, x :S | Ξ ` t1 4log t2 : [S]e
∆ | P | Γ | Ξ ` λx :S . t1 4log λx :S . t2 : [S→[T ]e ]�

∆ | P | Γ | Ξ ` t1 4log t2 : [S→[T ]e ]e ∆ | P | Γ | Ξ ` s1 4log s2 : [S]e
∆ | P | Γ | Ξ ` t1 s1 4log t2 s2 : [T ]e

∆ | P | Ξ ` S ∆ | P | Γ | Ξ ` s1 4log s2 : [S]e ∆ | P | Γ, x :S | Ξ ` t1 4log t2 : [T ]e
∆ | P | Γ | Ξ ` let x :S = s1 in t1 4log let x :S = s2 in t2 : [T ]e

∆, α | P | Γ | Ξ ` t1 4log t2 : [T ]�
∆ | P | Γ | Ξ ` Λα . t1 4log Λα . t2 : [∀α .T ]�

∆ | P | Γ | Ξ ` t1 4log t2 : [∀α .T ]e ′ (∀i) ∆ | P | Ξ ` e(i)

∆ | P | Γ | Ξ ` t1 [e] 4log t2 [e] : [T {e/α }]e ′

∆ | P, h :F | Γ | Ξ ` t1 4log t2 : [T ]e
∆ | P | Γ | Ξ ` λh :F. t1 4log λh :F. t2 : [Πh:F [T ]e ]�

∆ | P | Γ | Ξ ` t1 4log t2 :
[
Πh:F [T ]e ′

]
e ′′ ∆ | P | Γ | Ξ ` h1 4log h2 : F | `

∆ | P | Γ | Ξ ` t1 [h1] 4log t2 [h2] : [T {`/h.lbl}]e ′ {`/h.lbl}, e ′′

∆ | P | Γ | Ξ ` h1 4log h2 : F | ` op(F) = T→S

∆ | P | Γ | Ξ ` h1 4log h2 : [T→[S]`]�

∆ | P | Γ | Ξ, L : [T ]e ` t1 4log t2 : [T ]e , L ∆ | P | Ξ ` T ∆ | P | Ξ ` e

∆ | P | Γ | Ξ ` L
[T ]e t1 4log

L
[T ]e t2 : [T ]e

Figure 3.21. Term compatibility lemmas
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∆ | P | Γ | Ξ ` h1 4log h2 : F | `

P(h) = F

∆ | P | Γ | Ξ ` h 4log h : F | h.lbl

Ξ(L) = [S]e op(F) = T1→T2 ∆ | P | Γ, x :T1, k :T2→[S]e | Ξ ` t1 4log t2 : [S]e

∆ | P | Γ | Ξ `
(
handlerF x k. t1

)L
4log

(
handlerF x k. t2

)L
: F | L

Figure 3.22. Handler compatibility lemmas

typing rules. Parametricity, and the fact that well-formed program contexts

preserve logical refinement, are direct consequences of the compatibility lemmas:

Theorem 2 (PARAMETRICITY, A.K.A., FUNDAMENTAL PROPERTY, A.K.A., AB-

STRACTION THEOREM).

1. ∆ | P | Γ | Ξ ` t : [T ]e ⇒ ∆ | P | Γ | Ξ ` t 4log t : [T ]e

2. ∆ | P | Γ | Ξ ` h : F | ` ⇒ ∆ | P | Γ | Ξ ` h 4log h : F | `

Lemma 7 (CONGRUENCY).

` C : ∆ | P | Γ | Ξ | [T ]e  T ′ ∧ ∆ | P | Γ | Ξ ` t1 4log t2 : [T ]e ⇒

� | � | � | � ` C[t1] 4log C[t2] : [T ′]�

One last step leading to the soundness theorem is to show the logical relation

is adequate—two logically related pure terms are observationally related:

Lemma 8 (ADEQUACY).

� | � | � | Ξ ` t1 4log t2 : [T ]� ⇒ domain(Ξ) ⊆W ⇒ O (W , t1, t2)
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Type safety, the property that well-typed programs can only evaluate to values

or diverge, falls out as an easy corollary of ADEQUACY and PARAMETRICITY, as

the O relation only relates terms whose evaluations do not get stuck.

Theorem 3 (TYPE SAFETY).

If � | � | � | � ` t : [T ]� and � ; t −→∗ L′ ; t ′ , then either there exists v such that

t ′ = v or there exists t ′′ and L′′ such that L′ ; t ′ −→ L′′ ; t ′′ .

The key theorem that logical refinement implies contextual refinement—and

therefore logical equivalence implies contextual equivalence—is a result of ADE-

QUACY and CONGRUENCY:

Theorem 4 (SOUNDNESS).

∆ | P | Γ | Ξ ` t1 4log t2 : [T ]e ⇒ ∆ | P | Γ | Ξ ` t1 4ctx t2 : [T ]e

Formalization in Coq. The definitions and results presented above have also

been formalized using the Coq proof assistant [49]. The codebase contains

about 7,000 lines of code for defining the language and proving syntactic and

operational properties, and another 5,000 lines of code for defining the logical

relations and proving properties about them. The logical relations are defined

using the IxFree library [149], which is a shallow embedding of Dreyer et al.’s

logic LSLR [58] in Coq. It also provides tactics for manipulating inference rules

such as [LÖB] and [MONO], as well as a fixpoint operator for functions contractive

in the use of the step index. We have extended IxFree to support dependently

typed fixpoint functions in the logic; the formalization uses dependently typed de

Bruijn indices to model environments of effect variables, handler variables, and

term variables, by which the logical-relations definitions are indexed. Bindings

of capability labels are modeled using cofinite quantification [14] to make it easy

to generate fresh names.
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3.5 Proving Example Equivalence

We demonstrate that the logical-relations model allows us to prove refinement

and equivalence results that would not hold if algebraic effects were not tunneled.

Beyond the usefulness of equivalence for programmer reasoning, such equiva-

lence results could be used to justify the soundness of compiler transformations

on effectful programs.

In particular, we show that clients of an effect-polymorphic abstraction cannot

cause implementation details of the abstraction to leak out. We assume that λ

has a second base type N with the operator +.

Let f be a variable with an effect-polymorphic type T
def
= ∀α . (N→[N]α )→[N]α .

Our goal is to prove the following two terms contextually equivalent:

t1
def
= f [�] (λx :N . x + x)

t2
def
= let g : Πh:F N→[N]h.lbl = λh :F . λx :N . h x in

L
[N]�
(λh :F . f [h.lbl] (g h)) H L

where H
def
= handlerF x k. k (x + x) and op(F) = N→N. The second term t2 corre-

sponds to the following program written using the try–with construct, assuming

the effect operation is named twice:

effect F { twice(N) : N }

val g = fun(x :N) : N /F { return twice(x) }

try { f(g) }

with twice(x) :N { resume(x + x) }

Notice that this equivalence should apply to all possible implementations of f,

so even if the implementation handles F internally, the clients are unable to make

different observations. As a result, equivalence results of this kind ensure the

correctness of compiler transformations that optimize away uses of effects like

that in t2.
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By the SOUNDNESS theorem, it suffices to show that t1 and t2 are logically

equivalent. Below we show the logical refinement � | � | f :T | � ` t1 4log t2 : [N]�

holds; the proof of the other direction is similar. By the definition of logical

refinement (4log), we need to show for any worldW and for any values f1 and f2

in the logical relationVnTo��, the terms t1 { f1/f} and t2 { f2/f} are in the logical

relation T n[N]�o��. Notice that we can make reduction steps on t2 { f2/f}. So

applying Lemma 4, our goal becomes

T n[N]�o��
(
W ′, f1 [�] (λx :N . x + x), L f2 [L]

(
λx :N . H L x

) )
, (3.1)

whereW ′1 =W1 andW ′2 =W2, L. In fact, we can show a slightly different result:

T n[N]�o�δ
(
W ′, f1 [�] (λx :N . x + x), L f2 [L]

(
λx :N . H L x

) )
, (3.2)

where δ contains the mapping α 7→ 〈�, L,ϕ〉 and ϕ is the interpretation specifically

chosen for α in this example:

ϕ
def
=


〈
W ′′, (λx :N . x + x) n,

(
λx :N . H L x

)
n, {〈W ′′, 2n, 2n〉}, �, L

〉 ������� n ∈ N ∧

W ′ ⊆W ′′

 .
Having the result of (3.2), we can use a weakening lemma (omitted) to obtain

goal (3.1). Proper effect polymorphism allows us to interpret α in arbitrary ways,

but as we shall see, this particular choice of ϕ allows us to establish logical

relatedness. To obtain (3.2), we apply Lemma 2 with evaluation contexts [·] and

L [·]:

• We want to show Kn[N]α  [N]�o�δ
(
W ′, [·], L [·]

)
. We apply the [LÖB] rule

from Section 3.4.1: to prove this goal, we are allowed to assume

.Kn[N]α  [N]�o�δ
(
W ′, [·], L [·]

)
. (3.3)

Unfolding the definition of K generates the following two goals:
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(a) We want to show for any v1 and v2 related byVnNo�δ in a future worldW ′′

(W ′ ⊆ W ′′), the terms v1 and Lv2 are related by T n[N]�o�δ in world W ′′.

This is immediate, because the right-hand side evaluates to v2 and the

value relation is included in the term relation (Lemma 5).

(b) We want to show for any K1[s1] and K2[s2] related by Sn[N]αo�δ in a fu-

ture world W ′′ (W ′ ⊆ W ′′), the terms K1[s1] and LK2[s2] are related by

T n[N]�o�δ in world W ′′. Unfolding the definition of S, we know there

exists an outcome relationψ such that

(i) Unαo�δ
(
W ′′, s1, s2, ψ , L1, L2

)
,

(ii) ∀i . L(i)1 y K1 and ∀i . L(i)2 y K2, and

(iii) ∀W ′′′, s′1, s
′
2.W

′′ ⊆W ′′′⇒ ψ
(
W ′′′, s′1, s

′
2

)
⇒

. T n[N]αo�δ
(
W ′′′, K1

[
s′1

]
, K2

[
s′2

] )
.

Because the interpretation of effect variable α is prescribed by the semantic

substitution δ , and because δ (α) is chosen as ϕ, we know s1, s2,ψ , L1, and

L2 are precisely the terms, relation, and labels in ϕ. Thus we need to show

T n[N]�o�δ
(
W ′′, K1[(λx :N . x + x) n], LK2

[ (
λx :N . H L x

)
n
] )
.

Making evaluation steps on both sides, the goal becomes

.T n[N]�o�δ
(
W ′′, K1[2n], LK2[2n]

)
.

This new goal is guarded by the .modality because evaluation occurred

in the first computation. The new proof context is as follows, where the

first assumption is the Löb induction hypothesis (3.3):

.Kn[N]α  [N]�o�δ
(
W ′, [·], L [·]

)
∀W ′′′, s′1, s

′
2.W

′′ ⊆W ′′′⇒ ψ
(
W ′′′, s′1, s

′
2
)
⇒ .T n[N]αo�δ

(
W ′′′, K1

[
s′1

]
, K2

[
s′2

] )
.T n[N]�o�δ

(
W ′′, K1[2n], LK2[2n]

)
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We already haveψ (W ′′, 2n, 2n), so by the second assumption in the proof

context, we have .T n[N]αo�δ (W ′′, K1[2n], K2[2n]). Now we can apply rule

[MONO] from Section 3.4.1: the presence of the . modality in the goal

cancels out the occurrences of . in the assumptions. The new goal then

follows from the definition of Kn[N]α  [N]�o�δ .

• We are left to show T n[N]αo�δ
(
W ′, f1 [�] (λx :N . x + x), f2 [L]

(
λx :N . H L x

) )
.

BecauseVn∀α . (N→[N]α )→[N]αo�� (W ′, f1, f2), we have that the terms f1 [�]

and f2 [L] are related by T
�
[(N→[N]α )→[N]α ]�

��
δ

in world W ′. It then suf-

fices to show that the values which f1 [�] and f2 [L] are respectively applied

to are related in any future worldW ′′ (W ′ ⊆W ′′):

VnN→[N]αo�δ
(
W ′′, λx :N . x + x, λx :N . H L x

)
,

meaning that applications of these two lambda abstractions to the same natural

number are related by T n[N]αo�δ in world W ′′. By Lemma 5, we show the

applications are actually in the smaller Sn[N]αo�δ relation:

Sn[N]αo�δ
(
W ′′, (λx :N . x + x) n,

(
λx :N . H L x

)
n
)
.

With the evaluation contexts being [·], the following conditions are straightfor-

ward to show forψ
def
= {〈W ′′, 2n, 2n〉}:

(i) Unαo�δ
(
W ′′, (λx :N . x + x) n,

(
λx :N . H L x

)
n, ψ , �, L

)
,

(ii) Ly [·], and

(iii) ∀W ′′′, s′1, s
′
2.W

′′ ⊆W ′′′⇒ ψ
(
W ′′′, s′1, s

′
2

)
⇒ .T n[N]αo�δ

(
W ′′′, s′1, s

′
2

)
.

3.6 Related Work

Previous work proposes ways to make algebraic effects composable. Leijen [102]

suggests using an inject function to prevent client code from meddling with the
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effect-handling internals of library functions. Applying inject to a computation

causes effects raised from that computation to bypass the innermost handler

enclosing it. Biernacki et al. [18] propose a “lift” operator that works in a similar

fashion: computations surrounded by a lift operator [·]F bypass the innermost

effect handler for F. The programmer can use inject or lift to prevent effects

of a client-provided function from being intercepted by the effect-polymorphic,

higher-order function that applies it. Both of these type systems use effect rows

and row polymorphism, and distinguish different occurrences of the same effect

name in a row.

The very use of effect rows in these approaches does not seem to be with-

out limitations. In particular, it poses challenges to composing polymorphic

effects. For example, because α, β is not a legal effect row, this effect-polymorphic

higher-order function type does not seem to be expressible using effect rows:

∀α .∀β . ((T1→[T2]α )→[T3]β )→(T1→[T2]α )→[T3]α,β .

Biernacki et al. [18] show that effect polymorphism in a core language equipped

with the lift operator satisfies parametricity; we borrow useful techniques from

their logical-relations definition. The type system of Biernacki et al. poses restric-

tions on “subeffecting” (cf. subtyping): it rejects—by fiat—an effect variable α as a

subeffect of F,α . The absence of accidental handling hinges upon this restriction:

the programmer must thread lift operators through effect-polymorphic code to

please the type checker. For example, function fiterate from Section 3.1 would

not type-check in their system because the effect of f(x) (i.e., effect variable E) is

not a subeffect of Yield[X], E. The programmer would have to choose between

(a) declaring variable f with type X→ bool /Yield[X], E, and (b) surrounding

f(x) with a lift operator. In contrast, because it rests on the intuitive principle
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that code should only handle effects it is locally aware of, tunneling requires no

essential changes to effect-polymorphic code.

Zhang et al. [193] propose an alternate semantics for exceptions in their

Genus language, in which exceptions are tunneled through contexts that are

not statically aware of them. While we build on this insight, this prior work

is limited to exceptions rather than more general algebraic effects, and impor-

tantly, the mechanism is not shown formally to be abstraction-safe. The kind of

exception polymorphism it supports is also more limited: functions are polymor-

phic in the latent exceptions of only those types that are annotated weak. It is

argued that trading weak annotations for explicit effect variables reduces annota-

tion burden. However, this approach makes it cumbersome, if not impossible,

to define exception-polymorphic data structures, such as the cachingFun class

in Section 3.2.4. The weak annotations are essentially a mechanism for region-

capability effects: values of weak types have a stack discipline and thus can only

be used in a second-class way, but data structures require a finer-grained notion

of region capability.

Functional programming languages like ML and Haskell do not statically

check that exceptions are handled, so we do not consider them fully type-safe.

Interestingly, accidental handling can be avoided in SML, because SML exception

types are generative [121] and because a handler can only handle lexically visible

exception types. However, the type system does not ensure that accidental

handling is avoided or that exceptions are handled at all. Bračevac et al. [26]

observe the need to disambiguate handlers for invocations of the same algebraic

effect operation. Compared with their proposed solution of generative effect

signatures, tunneling addresses the issue straightforwardly: handlers can be

specified explicitly for each invocation of the effect operation.
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Brachthäuser and Schuster [24] encode algebraic effect handlers as a Scala

library named Effekt. Like our use of handler polymorphism, the encoding

passes handlers down to the place where effect operations are invoked, using

Scala’s implicits feature [137] and in particular, implicit function types [136], to

resolve implicit arguments as handler objects in scope. Clients of Effekt do not

have to worry about accidental handling, but this approach does not guarantee

the absence of run-time errors. In addition to the handling code, a stack-marking

prompt must be passed down too, so that when the effect operation is invoked, the

continuation up to the prompt is captured and passed to the handling code. But

there is no static checking that the prompt obeys the stack discipline—type-safety

relies on client code using the library in a disciplined way.

It is hypothesized that this safety issue could be remedied by using the @local

annotation provided in a Scala extension [141]. Parameters of functions and local

variables can be annotated @local, making them second-class. In contrast to

the Genus weak annotation [193], @local is applied to uses of types (instead of

definitions of types), so it seems no lighter-weight than explicit effect variables.

Like the weak annotations, @local cannot offer the fine-grained notion of region

capability needed to express effect-polymorphic data structures.

Our use of capability effects to ensure soundness is adapted from work on

region-based memory management [51, 86, 171]. A capability is a set of live mem-

ory regions. To prevent accesses to deallocated memory regions, computations

are typed with capability effects that specify the set of regions they might access.

We apply this idea to ensure continuations of handling code are accessible. Our

type system is simpler than a full-fledged region type system because safety

concerns only lexical regions delimited by effect handlers.
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The problem of accidentally handled effects generalizes the problem of vari-

able capture in early programming languages (e.g., Lisp) that supported dy-

namically scoped variables. Dynamically scoped variables do not have to be

dynamically typed; Lewis et al. [105] provide a type system for them, treating

them as implicit parameters. To avoid variable capture, Lewis et al. ban the

use of implicitly parameterized functions as first-class values, losing the extensi-

bility that makes dynamically scoped variables attractive. Tunneled algebraic

effects offer abstraction-safe dynamically scoped variables without sacrificing

their expressive power.

Kammar et al. [99] distinguish between deep and shallow semantics for

handlers. A shallow handler is discarded after it is first invoked, while a deep

handler can continue to handle the rest of the computation it envelops. Handlers

for tunneled algebraic effects are deep. Shallow handlers pose challenges to

modular reasoning, because it is difficult to reason statically about how effects

raised from the rest of the computation are handled.

The effect constructs in our core language are essentially a pair of delimited

control operators [53, 69]. With delimited control, one operator C (cf. in λ )

captures the continuation delimited by a corresponding operator of the other

kind D (cf. in λ ). Among the variety of previous delimited control operators,

ours are closest to those with named prompts [60, 88]. Rather than pairing a C

operation with the dynamically closest enclosing D, these mechanisms allow uses

of D to be named and consequently referenced by invocations of C, enabling

static reasoning. Although embedded in statically typed languages, the earlier

mechanisms do not guarantee type safety—a C operation can go unhandled.
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CHAPTER 4

GENUS: LIGHTWEIGHT, FLEXIBLE OBJECT-ORIENTED GENERICS

Generic programming provides the means to express algorithms and data

structures in an abstract, adaptable, and interoperable form. Specifically, generic-

ity mechanisms allow polymorphic code to apply to different types, improving

modularity and reuse. Despite decades of work on genericity mechanisms, cur-

rent OO languages still offer an unsatisfactory tradeoff between expressiveness

and usability. These languages do not provide a design that coherently integrates

desirable features—particularly, retroactive extension and dynamic dispatch. In

practice, existing genericity mechanisms force developers to circumvent lim-

itations in expressivity by using awkward, heavyweight design patterns and

idioms.

The key question is how to expose the operations of type parameters in a

type-safe, intuitive, and flexible manner within the OO paradigm. The following

somewhat daunting Java signature for method Collections::sort illustrates the

problem:

<T extends Comparable<? super T>> void sort(List<T> l)

The subtyping constraint constrains a type parameter T using the Comparable

interface, ensuring that type T is comparable to itself or to one of its supertypes.

However, sort can only be used on a type T if that type argument is explicitly

declared to implement the Comparable interface. This restriction of nominal

subtyping is alleviated by structural constraints as introduced by CLU [108, 110]

and applied elsewhere (e.g., [43, 54]), but a more fundamental limitation remains:

items of type T cannot be sorted unless T has a compareTo operation to define

the sort order. That limitation is addressed by type classes in Haskell [176].
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Inspired by Haskell, efforts have been made to incorporate type classes into

OO languages with language-level support [154, 160, 169, 182] and the Concept

design pattern [137]. However, as we argue, these designs do not fully exploit

what type classes and OO languages have to offer when united.

This chapter introduces a new genericity mechanism, embodied in a new

extension of Java called Genus. The genericity mechanism enhances expressive

power, code reuse, and static type safety, while remaining lightweight and intu-

itive for the programmer in common use cases. Genus supports models as named

constructs that can be defined and selected explicitly to witness constraints, even

for primitive type arguments; however, in common uses of genericity, types

implicitly witness constraints without additional programmer effort. The key

novelty of models in Genus is their deep integration into the OO style, with

features like model generics, model-dependent types, model enrichment, model

multimethods, constraint entailment, model inheritance, and existential quantifi-

cation further extending expressive power in an OO setting.

The chapter compares Genus to other language designs; describes its im-

plementation; shows that Genus enables safer, more concise code through ex-

periments that use it to reimplement existing generic libraries; and presents

performance measurements that show that a naive translation from Genus to

Java yields acceptable performance and that with simple optimizations, Genus

can offer very good performance. A formal static semantics for a core version of
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class AbstractVertex

<EdgeType extends AbstractEdge<EdgeType, ActualVertexType>,

ActualVertexType extends AbstractVertex<EdgeType, ActualVertexType>>

{ ... }

class AbstractEdge

<ActualEdgeType extends AbstractEdge<ActualEdgeType, VertexType>,

VertexType extends AbstractVertex<ActualEdgeType, VertexType>>

{ ... }

Figure 4.1. Parameter clutter in generic code

Genus is available in the technical report [191]; there we show that termination

of default model resolution holds under reasonable syntactic restrictions.

4.1 The Need for Better Genericity

Prior work has explored various approaches to constrained genericity: subtyping

constraints, structural matching, type classes, and design patterns. Each of these

approaches has significant weaknesses.

The trouble with subtyping. Subtyping constraints are used in Java [22], C# [63,

100], and other OO languages. In the presence of nominal subtyping, subtyping

constraints are too inflexible: they can only be satisfied by classes explicitly

declared to implement the constraint. Structural subtyping and matching mech-

anisms (e.g., [43, 54, 110, 126]) do not require an explicit declaration that a

constraint is satisfied, but still require that the relevant operations exist, with

conformant signatures. Instead, we want retroactive modeling, in which a model

(such as a type class instance [176]) can define how an existing type satisfies a

constraint that it was not planned to satisfy ahead of time.
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class TreeSet<T> implements Set<T> {

TreeSet(Comparator<? super T> comparator) { ... }

...
}

interface Comparator<T> { int compare(T o1, T o2); }

Figure 4.2. Concept design pattern

Subtyping constraints, especially when F-bounded [38], also tend to lead

to complex code when multiple type parameters are needed. For example,

Figure 4.1 shows a simplification of the signatures of the classes AbstractVertex

and AbstractEdge in the FindBugs project [71]. The vertex and the edge types

of a graph have a mutual dependency that is reflected in the signatures in an

unpleasantly complex way (see Figure 4.3 for our approach).

Concept design pattern. Presumably because of these limitations, the standard

Java libraries mostly do not use constraints on the parameters of generic classes

in the manner originally envisioned [22]. Instead, they use a version of the

Concept design pattern [127] in which operations needed by parameter types are

provided as arguments to constructors. For instance, a constructor of TreeSet, a

class in the Java collections framework, accepts an object of the Comparator class

(Figure 4.2). The compare operation is provided by this object rather than by T

itself.

This design pattern provides missing flexibility, but adds new problems.

First, a comparator object must be created even when the underlying type has a

comparison operation. Second, because the model for Comparator is an ordinary

(first-class) object, it is hard to specialize or optimize particular instantiations of

generic code. Third, there is no static checking that two TreeSets use the same
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ordering; if an algorithm relies on the element ordering in two TreeSets being

the same, the programmer may be in for a shock.

In another variant of the design pattern, used in the C++ STL [125], an extra

parameter for the class of the comparator distinguishes instantiations that use

different models. However, this approach is more awkward than the Comparator

object approach. Even the common case, in which the parameter type has exactly

the needed operations, is just as heavyweight as when an arbitrary, different

operation is substituted.

Type classes and concepts. The limitations of subtyping constraints have led

to recent research on adapting type classes to OO languages to achieve retroac-

tive modeling [160]. However, type classes have limitations: first, constraint

satisfaction must be uniquely witnessed, and second, their models define how to

adapt a single type, whereas in a language with subtyping, each adapted type in

general represents all of its subtypes.

No existing approach addresses the first limitation, but an attempt is made

by JavaGI [182] to fit subtyping polymorphism and dynamic dispatch into con-

strained genericity. As we will argue (Section 4.4.1), JavaGI’s limited dynamic

dispatch makes certain constraints hard to express, and interactions between sub-

typing and constraint handling make type checking subject to nontermination.

Beyond dynamic dispatch, it is important for OO programming that exten-

sibility applies to models as well. The essence of OO programming is that new

behavior can be added later in a modular way; we consider this post-factum

enrichment of models to be a requirement.

Goals. What is wanted is a genericity mechanism with multiple features:

retroactive modeling, a lightweight implicit approach for the common case,
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multiparameter type constraints, non-unique constraint satisfaction with dy-

namic, extensible models, and model-dependent types. The mechanism should

support modular compilation. It should be possible to implement the mecha-

nism efficiently; in particular, an efficient implementation should limit the use

of wrapper objects and should be able to specialize generic code to particular

type arguments—especially, to primitive types. Genus meets all of these goals.

We have tried not only to address the immediate problems with generics seen

in current OO languages, but also to take further steps, adding features that

support the style of programming that we expect will evolve when generics are

easier to use than they are now.

4.2 Type Constraints in Genus

4.2.1 Type Constraints as Predicates

Instead of constraining types with subtyping, Genus uses explicit type constraints

similar to type classes. For example, the constraint

constraint Eq[T] {

boolean equals(T other);

}

requires that type T have an equals method.1 Although this constraint looks like

a Java interface, it is really a predicate on types, like a (multiparameter) type

class in Haskell [98]. We do not call constraints “type classes” because there are

differences and because the name “class” is already taken in the OO setting.

Generic code can require that actual type parameters satisfy constraints. For

example, here is the Set interface in Genus (simplified):

1We denote Genus type parameters using square brackets, to distinguish Genus examples
from those written in other languages (especially, Java).
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constraint GraphLike[V,E] {

Iterable[E] V.outgoingEdges();

Iterable[E] V.incomingEdges();

V E.source();

V E.sink();

}

Figure 4.3. GraphLike is a multiparameter constraint

interface Set[T where Eq[T]] { ... }

The where clause “where Eq[T]” establishes the ability to test equality on type T

within the scope of Set. Consequently, an instantiation of Set needs a witness

that Eq is satisfied by the type argument. In Genus, such witnesses come in the

form of models. Models are either implicitly chosen by the compiler or explicitly

supplied by the programmer.

Multiparameter constraints. A constraint may be a predicate over multiple

types. Figure 4.3 contains an example in which a constraint GraphLike[V,E]

declares graph operations that should be satisfied by any pair of types [V,E] rep-

resenting vertices and edges of a graph. In a multiparameter constraint, methods

must explicitly declare receiver types (V or E in this case). Every operation in

this constraint mentions both V and E; none of the operations really belongs to

any single type. The ability to group related types and operations into a single

constraint leads to code that is more modular and more readable than that in

Figure 4.1.

Prerequisite constraints. A constraint can have other constraints as its prereq-

uisites. For example, Eq[T] is a prerequisite constraint of Comparable[T]:
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constraint OrdRing[T] extends Comparable[T] {

static T T.zero();

static T T.one();

T T.plus(T that);

T T.times(T that);

}

Figure 4.4. Constraint OrdRing contains static methods

constraint Comparable[T] extends Eq[T] {

int compareTo(T other);

}

To satisfy a constraint, its prerequisite constraints must also be satisfied. There-

fore, the satisfaction of a constraint entails the satisfaction of its prerequisites. For

example, the Genus version of the TreeSet class from Figure 4.2 looks as follows:

class TreeSet[T where Comparable[T]] implements Set[T] { ... }

The type Set[T] in the definition of TreeSet is well-formed because its constraint

Eq[T] is entailed by the constraint Comparable[T].

Static constraint members. Constraints can require that a type provide static

methods, indicated by using the keyword static in the method declaration. In

Figure 4.4, constraint OrdRing specifies a static method (zero) that returns the

identity of the operation plus.

All types T are also automatically equipped with a static method T.default()

that produces the default value for type T. This method is called, for instance, to

initialize the elements of an array of type T[], as in the following example:
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Map[V,W] SSSP[V,E,W](V s)

where GraphLike[V,E], Weighted[E,W], OrdRing[W], Hashable[V] {

TreeMap[W,V] frontier = new TreeMap[W,V]();

Map[V,W] distances = new HashMap[V,W]();

distances.put(s, W.one()); frontier.put(W.one(), s);

while (frontier.size() > 0) {

V v = frontier.pollFirstEntry().getValue();

for (E vu : v.outgoingEdges()) {

V u = vu.sink();

W weight = distances.get(v).times(vu.weight());

if (!distances.containsKey(u) ||

weight.compareTo(distance.get(u)) < 0) {

frontier.put(weight, u);

distances.put(u, weight);

}

}

}

return distances;

}

Figure 4.5. A highly generic method for Dijkstra’s single-source shortest-path
algorithm. Definitions of Weighted and Hashable are omitted. Ordering and
composition of distances are generalized to an ordered ring. (A more robust
implementation might consider using a priority queue instead of TreeMap.)

class ArrayList[T] implements List[T] {

T[] arr;

ArrayList() { arr = new T[INITIAL_SIZE]; } // Calls T.default()
...

}

The ability to create an array of type T[] is often missed in Java.
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4.2.2 Prescribing Constraints Using Where Clauses

Where-clause constraints enable generic algorithms, such as the version of Dijk-

stra’s shortest-path algorithm in Figure 4.5, generalized to ordered rings. (The

usual behavior is achieved if plus is min, times is +, and one is 0.) The where

clause of SSSP requires only that the type arguments satisfy their respective

constraints—no subtype relationship is needed.

Where-clause constraints endow typing contexts with assumptions that the

constraints are satisfied. So the code of SSSP can make method calls like vu.sink()

and W.one(). Note that the where clause may be placed after the formal param-

eters as in CLU; this notation is just syntactic sugar for placing it between the

brackets.

Unlike Java extends clauses, a where clause is not attached to a particular

parameter. It can include multiple constraints, separated by commas. Each

constraint requires a corresponding model to be provided when the generic is

instantiated. To allow models to be identified unambiguously in generic code,

each such constraint in the where clause may be explicitly named as a model

variable.

Another difference from Java extends clauses is that a where clause may be

used without introducing a type parameter. For example, consider the remove

method of List. Expressive power is gained if its caller can specify the notion of

equality to be used, rather than requiring List itself to have an intrinsic notion

of equality. Genus supports this genericity by allowing a constraint Eq[E] to be

attached to remove:

interface List[E] {

boolean remove(E e) where Eq[E];

...
}
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We call this feature model genericity.

4.2.3 Witnessing Constraints Using Models

As mentioned, generic instantiations require witnesses that their constraints are

satisfied. In Genus, witnesses are provided by models. Models can be inferred—

a process we call default model resolution—or specified explicitly, offering both

convenience in common cases and expressivity when needed. We start with the

use of models and leave the definition of models until Section 4.3.

Using default models. It is often clear from the context which models should

be used to instantiate a generic. For instance, the Set[T] interface in the TreeSet

example (Section 4.2.1) requires no further annotation to specify a model for

Eq[T], because the model can be uniquely resolved to the one promised by

Comparable[T].

Another common case is that the underlying type already has the required

operations. This case is especially likely when classes are designed to support

popular operations; having to supply models explicitly in this case would be a

nuisance. Therefore, Genus allows types to structurally conform to constraints.

When the methods of a type have the same names as the operations required by a

constraint, and also have conformant signatures, the type automatically generates

a natural model that witnesses the constraint. For example,2 the type Set[String]

means a Set that distinguishes strings using String’s built-in equals method.

Thus, the common case in which types provide exactly the operations required

by constraints is simple and intuitive. In turn, programmers have an incentive to

standardize the names and signatures of popular operations.

2We assume throughout that the type String has methods “boolean equals(String)” and
“int compareTo(String).”
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Genus supports using primitive types as type arguments, and provides natu-

ral models for them that contain common methods. For example, a natural model

for Comparable[int] exists, so types like TreeSet[int] that need that model can

be used directly.

Default models can be used to instantiate any generic—not just generic classes.

For example, consider this sort method:

void sort[T](List[T] l) where Comparable[T] { ... }

The call sort(x), where x is a List[int], infers int both as the type argument

and as the default model. Default model resolution, and more generally, type

and model inference, are discussed further in Section 4.3.4 and Section 4.3.7.

Using named models. It is also possible to explicitly supply models to witness

constraints. To do so, programmers use the with keyword followed by models

for each of the where-clause constraints in the generic. These models can come

from programmer-defined models (Section 4.3) or from model variables declared

in where clauses (Section 4.2.2). For example, suppose model CIEq tests String

equality in a case-insensitive manner. The type Set[String with CIEq] then

describes a Set in which all strings are distinct without case-sensitivity. In

fact, the type Set[String] is syntactic sugar for Set[String with String], in

which the with clause is used to explicitly specify the natural model that String

automatically generates for Eq[String].

A differentiating feature of our mechanism is that different models for Eq[String]

can coexist in the same scope, allowing a generic class like Set, or a generic

method, to be instantiated in more than one way in a scope:

Set[String] s0 = ...;
Set[String with CIEq] s1 = ...;
s1 = s0; // illegal assignment: different types.
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The ordering that an instantiation of Set uses for its elements is part of the type,

rather than a purely dynamic argument passed to a constructor as in the Concept

pattern. Therefore, the final assignment statement is a static type error. The

type checker catches the error because the different models used in the two Set

instantiations allow Sets using different notions of equality to be distinguished.

The use of models in types is discussed further in Section 4.3.5.

It is also possible to express types using wildcard models. For example, the type

Set[String with ?] is a supertype of both Set[String] and Set[String with

CIEq]. Wildcard models are actually syntactic sugar for existential quantification

(Section 4.5).

4.3 Models

Models can be defined explicitly to allow a type to satisfy a constraint when the

natural model is nonexistent or undesirable. For example, the case-insensitive

string equality model CIEq can be defined concisely:

model CIEq for Eq[String] {

bool equals(String str) { return equalsIgnoreCase(str); }

}

Furthermore, a model for case-insensitive String ordering might be defined

by reusing CIEq via model inheritance, to witness the prerequisite constraint

Eq[String]:

model CICmp for Comparable[String] extends CIEq {

int compareTo(String str) { return compareToIgnoreCase(str); }

}

It is also possible for CICmp to satisfy Eq by defining its own equals method.

Model inheritance is revisited in Section 4.4.3.
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Models are immutable: they provide method implementations but do not

have any instance variables. Models need not have global scope; modularity

is achieved through the Java namespace mechanism. Similarly, models can be

nested inside classes and are subject to the usual visibility rules.

4.3.1 Models as Expanders

Operations provided by models can be invoked directly, providing the func-

tionality of expanders [181]. For example, the call "x".(CIEq.equals)("X") uses

CIEq as the expander to test equality of two strings while ignoring case. Natural

models can similarly be selected explicitly using the type name:

"x".(String.equals)("X")

Using models as expanders is an integral part of our genericity mechanism:

the operations promised by where-clause constraints are invoked using ex-

panders. In Figure 4.5, if we named the where-clause constraint GraphLike[V,E]

with model variable g, the call vu.sink() would be sugar for vu.(g.sink)() with

g being the expander. In this case, the expander can be elided because it can be

inferred via default model resolution (Section 4.3.4).

4.3.2 Parameterized Models

Model definitions can be generic: they can be parameterized with type param-

eters and where-clause constraints. For example, model ArrayListDeepCopy

(Figure 4.6) gives a naive implementation of deep-copying ArrayLists. It is

generic with respect to the element type E, but requires E to be cloneable.

As another example, we can exploit model parameterization to implement

the transpose of any graph. In Figure 4.7, the DualGraph model is itself a model
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constraint Cloneable[T] { T clone(); }

model ArrayListDeepCopy[E] for Cloneable[ArrayList[E]] where Cloneable[E] {

ArrayList[E] clone() {

ArrayList[E] l = new ArrayList[E]();

for (E e : this) { l.add(e.clone()); }

return l;

}

}

Figure 4.6. A parameterized model

for GraphLike[V,E], and is parameterized by another model for GraphLike[V,E]

(named g). It represents the transpose of graph g by reversing its edge orienta-

tions.

4.3.3 Non-Uniquely Witnessing Constraints

Previous languages with flexible type constraints, such as Haskell, JavaGI, and

G, require that witnesses be unique at generic instantiations, whether witnesses

are scoped globally or lexically. By contrast, Genus allows multiple models

witnessing a given constraint instantiation to coexist in the same context. This

flexibility increases expressive power.

For example, consider Kosaraju’s algorithm for finding strongly connected

components in a directed graph [6]. It performs two depth-first searches, one

following edges forward, and the other on the transposed graph, following edges

backward. We would like to reuse the same generic depth-first-search algorithm

on the same graph data structure for both traversals.

In Figure 4.7, the where clause of SCC introduces into the context a model

for GraphLike[V,E], denoted by model variable g. Using the DualGraph model,
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model DualGraph[V,E] for GraphLike[V,E] where GraphLike[V,E] g {

V E.source() { return this.(g.sink)(); }

V E.sink() { return this.(g.source)(); }

Iterable[E] V.incomingEdges() { return this.(g.outgoingEdges)(); }

Iterable[E] V.outgoingEdges() { return this.(g.incomingEdges)(); }

}

void SCC[V,E](V[] vs) where GraphLike[V,E] g {

... new DFIterator[V,E with g]() ...

... new DFIterator[V,E with DualGraph[V,E with g]]() ...
}

class DFIterator[V,E] where GraphLike[V,E] { ... }

Figure 4.7. Kosaraju’s algorithm. Highlighted code is inferred if omitted.

the algorithm code can then perform both forward and backward traversals. It

instantiates DFIterator, an iterator class for depth-first traversal, twice, with

the original graph model g and with the transposed one. Being able to use two

different models to witness the same constraint instantiation in SCC enables more

code reuse. The highlighted with clauses can be safely elided, which brings us to

default model resolution.

4.3.4 Resolving Default Models

In Genus, the omission of a with clause triggers default model resolution. Default

model resolution is based on the following four ways in which models are enabled

as potential default choices. First, types automatically generate natural models

when they structurally conform to constraints. Natural models, when they exist,

are always enabled as default candidates. Second, a where-clause constraint

enables a model within the scope of the generic to which the where clause is
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attached. For example, in method SCC in Figure 4.7 the where clause enables

a model as a default candidate for GraphLike[V,E] within SCC. Third, a use

declaration, e.g.,

use ArrayListDeepCopy;

enables the specified model as a potential default way to clone ArrayLists in

the compilation unit in which the declaration resides. Fourth, a model itself is

enabled as a potential default model within its definition.

Default model resolution works as follows:

1. If just one model for the constraint is enabled, it becomes the default model.

2. If more than one model is enabled, programmer intent is ambiguous. In

this case, Genus requires that programmers make their intent explicit using

a with clause. Omitting the with clause is a static error in this case.

3. If no model is explicitly enabled, but there is in scope a single model for the

constraint, that model becomes the default model for the constraint.

Resolution for an elided expander in a method call works similarly. The only

difference is that instead of searching for a model that witnesses a constraint, the

compiler searches for a model that contains a method applicable to the given call.

In typical use, this would be the natural model.

These rules for default models make generics and expanders easy to use in

the common cases; in the less common cases where there is some ambiguity

about which model to use, they force the programmer to be explicit and thereby

help prevent hard-to-debug selection of the wrong model.

Letting each compilation unit choose its own default models is more flexible

and concise than using Scala implicits, where a type-class instance can only be

designated as implicit at the place where it is defined, and implicit definitions
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class TreeSet[T] implements Set[T with c] where Comparable[T] c {

TreeSet() { ... }

void addAll(Collection[? extends T] src) {

if (src instanceof TreeSet[? extends T with c]) {

addFromSorted((TreeSet[? extends T with c]) src);

} else { ... }

}

void addFromSorted(TreeSet[? extends T with c] src) {

... // specialized code in virtue of the same ordering in src and this

}

...
}

Figure 4.8. TreeSet in Genus. Highlighted code is inferred if omitted.

are then imported into the scope, with a complex process used to find the most

specific implicit among those imported [133]. We aim for simpler rules.

Genus also achieves the conciseness of Haskell type classes because uniquely

satisfying models are allowed to witness constraints without being enabled, just

as a unique type class instance in Haskell satisfies its type class without further

declarations. But natural models make the mechanism lighter-weight than in

Haskell, and the ability to have multiple models adds expressive power (as in

the SCC example in Figure 4.7).

4.3.5 Models in Types

Section 4.2.3 introduced the ability to instantiate generic types with models,

which become part of the type (i.e., model-dependent types). Type safety benefits

from being able to distinguish instantiations that use different models.

The addFromSorted method in TreeSet (Figure 4.8) adds all elements in the

source TreeSet to this one. Its signature requires that the source TreeSet and
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this one use the same ordering. So a TreeSet with a different ordering cannot

be accidentally passed to this method, avoiding a run-time exception.

Including the choice of model as part of the type is unusual, perhaps because

it could increase annotation burden. Models are not part of types in the Concept

design pattern (e.g., as realized in Scala [137]), because type class instances are

not part of instantiated types. G [160] allows multiple models for the same

constraint to be defined in one program (albeit only one in any lexical scope), yet

neither at compile time nor at run time does it distinguish generic instantiations

with distinct models. This raises potential safety issues when different modules

interoperate.

In Genus, the concern about annotation burden is addressed by default

models. For example, the type TreeSet[? extends T] in Figure 4.8 is implicitly

instantiated with the model introduced by the where clause (via constraint en-

tailment, Section 4.4.2). By contrast, Scala implicits work for method parameters,

but not for type parameters of generic classes.

4.3.6 Models at Run Time

Unlike Java, whose type system is designed to support implementing generics

via erasure, Genus makes models and type arguments available at run time.

Genus allows testing the type of an object from a parameterized class at run time,

like the instanceof test and the type cast in Figure 4.8.

Reifiability creates opportunities for optimization. For example, consider

TreeSet’s implementation of the addAll method required by the Collection

interface. In general, an implementation cannot rely on seeing the elements

in the order expected by the destination collection, so for each element in the

source collection, it must traverse the destination TreeSet to find the correct
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position. However, if both collections use the same ordering, the merge can be

done in a more asymptotically efficient way by calling the specialized method

addFromSorted.

4.3.7 Default Model Resolution: Algorithmic Issues

Recursive resolution of default models. Default model resolution is especially

powerful because it supports recursive reasoning. For example, the use declara-

tion in Section 4.3.4 is syntactic sugar for the following parameterized declara-

tion:

use [E where Cloneable[E] c] ArrayListDeepCopy[E with c]

for Cloneable[ArrayList[E]];

The default model candidacy of ArrayListDeepCopy is valid for cloning objects

of any instantiated ArrayList type, provided that the element type satisfies

Cloneable too. Indeed, when the compiler investigates the use of ArrayListDeepCopy

to clone ArrayList[Foo], it creates a subgoal to resolve the default model for

Cloneable[Foo]. If this subgoal fails to be resolved, ArrayListDeepCopy is not

considered as a candidate.

Recursive resolution may not terminate without additional restrictions. As

an example, the declaration “use DualGraph;” is illegal because its recursive

quest for a model of the same constraint causes resolution to cycle. The issue

is addressed in Section 4.8 and the technical report [191] by imposing syntactic

restrictions.

When a use declaration is rejected by the compiler for violating the restric-

tions, the programmer always has the workaround of explicitly selecting the

model. By contrast, the inability to do so in Haskell or JavaGI makes it impossible

to have a model like DualGraph in these languages.
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Unification vs. default model resolution. Since Genus uses models in types,

it is possible for models to be inferred via unification when they are elided. This

inference potentially raises confusion with default model resolution.

Genus distinguishes between two kinds of where-clause constraints. Con-

straints for which the model is required by a parameterized type, such as Eq[T]

in the declaration void f[T where Eq[T]](Set[T] x), are called intrinsic con-

straints, because the Set must itself hold the corresponding model. By contrast, a

constraint like Printable[T] in the declaration

void g[T where Printable[T]](List[T] x)

is extrinsic because List[T] has no such constraint on T.

Inference in Genus works by first solving for type parameters and intrinsic

constraints via unification, and only then resolving default models for extrinsic

constraints. To keep the semantics simple, Genus does not use default model

availability to guide unification, and it requires extrinsic where-clause constraints

to be written to the right of intrinsic ones. Nevertheless, it is always possible for

programmers to explicitly specify intent.

4.3.8 Constraints/Models vs. Interfaces/Objects

The relationship between models and constraints is similar to that between

objects and interfaces. Indeed, the Concept pattern can be viewed as using objects

to implement models, and JavaGI extends interfaces to encode constraints. In

contrast, Genus draws a distinction between the two, treating models as second-

class values that cannot be stored in ordinary variables. This design choice has

the following basis:
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• Constraints are used in practice very differently from “ordinary” types, as

evidenced by the nearly complete separation between shapes and materials

seen in an analysis of a very large software base [83]. In their parlance, in-

terfaces or classes that encode multiparameter constraints (e.g., GraphLike)

or constraints requiring binary operations (e.g., Comparable) are shapes,

while ordinary types (e.g., Set) are materials. Muddling the two may give

rise to nontermination (Section 4.8).

• Because models are not full-fledged objects, generic code can easily be

specialized to particular using contexts.

• Because model expressions can be used in types, Genus has dependent

types; however, making models second-class and immutable simplifies the

type system and avoids undecidability.

4.4 Making Models Object-Oriented

4.4.1 Dynamic Dispatching and Enrichment

In OO programs, subclasses are introduced to specialize the behavior offered

by their superclasses. In Genus, models define part of the behavior of objects,

so models too should support specialization. Therefore, a model in Genus may

include not only method definitions for the base type, but also methods defining

more specific behavior for subtypes. These methods can be dispatched dynami-

cally by code both inside and outside model declarations. Dynamic dispatch takes

place not only on the receiver, but also on method arguments of the manipulated

types. The expressive power of dynamic dispatch is key to OO programming [8],

and multiple dispatch is particularly important for binary operations, which are
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typically encoded as constraints. Our approach differs in this way from G and

Scala, which do not support dynamic dispatch on model operations.

For example, model ShapeIntersect in Figure 4.9 gives multiple definitions

of intersect, varying in their expected argument types. In a context where the

model is selected, a call to intersect on two objects statically typed as Shape

will resolve at run time to the most specific method definition in the model. In

JavaGI, multiple dispatch on intersect is impossible, because its dispatch is

based on “self” types [32], while the argument types (including receiver) as well

as the return type of an intersect implementation do not necessarily have to be

the same.

Existing OO type hierarchies are often extended with new subclasses in ways

not predicted by their designers. Genus provides model enrichment to allow

models to be extended in a modular way, in sync with how class hierarchies are

extended; here we apply the idea of open classes [45] to models. For example,

if Triangle is later introduced to the Shape hierarchy, the model can then be

separately enriched, as shown in the enrich declaration in Figure 4.9.

Model multimethods and model enrichment create the same challenge for

modular type checking that is seen with other extensible OO mechanisms. For

instance, if two modules separately enrich ShapeIntersect, these enrichments

may conflict. Like Relaxed MultiJava [119], Genus can prevent such errors

with a load-time check that there is a unique best method definition for every

method invocation, obtaining mostly modular type checking and fully modular

compilation. The check can be performed soundly, assuming load-time access to

the entire program. If a program loads new code dynamically, the check must be

performed at the time of dynamic loading.
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constraint Intersectable[T] { T T.intersect(T that); }

model ShapeIntersect for Intersectable[Shape] {

Shape Shape.intersect(Shape s) { ... }

// Rectangle and Circle are subclasses of Shape:
Rectangle Rectangle.intersect(Rectangle r) { ... }

Shape Circle.intersect(Rectangle r) { ... }

...
}

enrich ShapeIntersect {

Shape Triangle.intersect(Circle c) { ... }

...
}

Figure 4.9. An extensible model with multiple dispatch

4.4.2 Constraint Entailment

As seen earlier (Section 4.2.1), a constraint entails its prerequisite constraints. In

general, a model may be used as a witness not just for the constraint it is declared

for, but also for any constraints entailed by the declared constraint. For example,

a model for Comparable[Shape] can be used to witness Eq[Shape].

A second way that one constraint can entail another is through variance on con-

straint parameters. For example, since in constraint Eq the type parameter only

occurs in contravariant positions, a model for Eq[Shape] may also be soundly

used as a model for Eq[Circle]. It is also possible, though less common, to use a

model to witness constraints for supertypes, via covariance. Variance is inferred

automatically by the compiler, with bivariance downgraded to contravariance.

A model enabled for some constraint in one of the four ways discussed in

Section 4.3.4 is also enabled for its prerequisite constraints and constraints that

can be entailed via contravariance. Accommodating subtyping extends the
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expressivity of default model resolution, but poses new challenges for termina-

tion. The technical report [191] shows that encoding “shape” types (in the sense

of Greenman et al. [83]) as constraints helps ensure termination.

4.4.3 Model Inheritance

Code reuse among models can be achieved through model inheritance, signified

by an extends clause (e.g., model CICmp in Section 4.3). Unlike an extends clause

in a class or constraint definition, which creates an is-a relationship between a sub-

class and its superclass or a constraint and its prerequisite constraint, an extends

clause in a model definition is merely for code reuse. The inheriting model in-

herits all method definitions with compatible signatures available in the inherited

model. The inheriting model can also override these inherited definitions.

Model inheritance provides a means to derive models that are otherwise

rejected by constraint entailment. For example, the model ShapeIntersect (Fig-

ure 4.9) soundly witnesses the same constraint for Rectangle, because the se-

lected method definitions have compatible signatures, even though constraint

Intersectable is invariant with respect to its type parameter. The specialization

to Rectangle can be performed succinctly using model inheritance, with the

benefit of a more precise result type when two rectangles are intersected:

model RectangleIntersect for Intersectable[Rectangle]

extends ShapeIntersect { }

4.5 Use-Site Genericity

Java’s wildcard mechanism [173] is in essence a limited form of existential quan-

tification. Existentials enable genericity at use sites. For example, a Java method
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with return type List<? extends Printable> can be used by generic calling code

that is able to print list elements even when the type of the elements is unknown

to the calling code. The use-site genericity mechanism of Genus generalizes this

idea while escaping some limitations of Java wildcards. Below we sketch the

mechanism.

4.5.1 Existential Types

Using subtype-bounded existential quantification, the Java type List<? extends

Printable> might be written more type-theoretically as ∃U≤Printable.List[U].

Genus extends this idea to constraints. An existential type in Genus is signified

by prefixing a quantified type with type parameters and/or where-clause con-

straints. For example, if Printable is a constraint, the Genus type corresponding

to the Java type above is

[some U where Printable[U]]List[U]

The initial brackets introduce a use-site type parameter U and a model for the

given constraint, which are in scope in the quantified type; the syntax emphasizes

the connection between existential and universal quantification.

The presence of prefixed parameters in existential types gives the programmer

control over the existential binding point, in contrast to Java wildcard types

where binding is always at the generic type in which the wildcard is used as

a type argument. For example, no Java type can express ∃U.List[List[U]],

meaning a homogeneous collection of lists in which each list is parameterized by

the same unknown type. This type is easily expressed in Genus as

[some U]List[List[U]]
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[some T where Comparable[T]]List[T] f () {

return new ArrayList[String]();

}

1 sort(f());

2 [U] (List[U] l) where Comparable[U] = f(); // bind U

3 l.first().compareTo(l.last()); // U is comparable
4 U[] a = new U[64]; // use run-time info about U
5 l = new ArrayList[U](); // new list, same U

Figure 4.10. Working with existential quantification

Genus also offers convenient syntactic sugar for common uses of existential

types. A single-parameter constraint can be used as sugar for an existential type:

e.g., Printable, used as a type, is sugar for

[some U where Printable[U]]U

allowing a value of any printable type. The wildcard syntax List[?] represents

an existential type, with the binding point the same as in the Java equivalent.

The type with a wildcard model Set[String with ?] is sugar for

[some Eq[String] m]Set[String with m]

Subtyping and coercion. Genus draws a distinction between subtyping and

coercion involving existential types. Coercion may induce extra computation (i.e.,

existential packing) and can be context-dependent (i.e., default model resolution),

while subtyping cannot. For example, the return expression in Figure 4.10 type-

checks not because ArrayList[String] is a subtype of the existential return

type, but because of coercion, which works by packing together a value of

type ArrayList[String] with a model for Comparable[String] (in this case, the

natural model) into a single value. The semantics of subtyping involving where-
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clause-quantified existential types is designed in a way that makes it easy for

programmers to reason about subtyping and joining types.

Capture conversion. In Java, wildcards in the type of an expression are instan-

tiated as fresh identifiers when the expression is type-checked, a process called

capture conversion [82]. Genus extends this idea to constraints: in addition to

fresh type variables, capture conversion generates fresh models for where-clause

constraints, and enables them in the current scope.

For example, at line 1 in Figure 4.10, when the call to sort (defined in

Section 4.2.3) is type-checked, the type of the call f() is capture-converted to

List[#T], where #T is the fresh type variable that capture conversion generates

for T, and a model for Comparable[#T] becomes enabled in the current context.

Subsequently, the type argument to sort is inferred as #T, and the default model

for Comparable[#T] resolves to the freshly generated model.

4.5.2 Explicit Local Binding

Capture conversion is convenient but not expressive enough. Consider a Java

object typed as List<? extends Comparable>. The programmer might intend

the elements of this homogeneous list to be comparable to one another, but

comparisons to anything other than null do not type-check.

The awkwardness is addressed in Genus by explicit local binding of existentially

quantified type variables and where-clause constraints, giving them names that

can be used directly in the local context. An example of this mechanism is found

at line 2 in Figure 4.10. The type variable U can be used as a full-fledged type in

the remainder of the scope.
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As its syntax suggests, explicit local binding can be viewed as introducing

an inlined generic method encompassing subsequent code. Indeed, it operates

under the same rules as universally quantified code. For example, the where

clause at line 2 enables a new model so that values of type U can be compared at

line 3. Also, locally bound type variables are likewise reifiable (line 4). Moreover,

the binding at line 2 is type-checked using the usual inference algorithm to

solve for U and for the model for Comparable[U]: per Section 4.3.7, the former

is inferred via unification and the latter via default model resolution—it is an

extrinsic constraint. Soundness is maintained by ensuring that l is initialized

upon declaration and that assignments to the variable preserve the meaning of U.

4.6 Implementation

We have built a partial implementation of the Genus language in Java. The

implementation consists of about 39,000 lines of code, extending the Polyglot

compiler framework [130]. Code generation works by translating to Java 5 code,

relying on a Java compiler as a back end. The current compiler implementation

does not yet specialize instantiations to particular type arguments.

4.6.1 Implementing Constraints and Models

Constraints and models in Genus code are translated to parameterized interfaces

and classes in Java. For example, the constraint Comparable[T] is translated to a

parameterized Java interface Comparable<T> providing a method compareTo with

the appropriate signature: int compareTo(T,T). Models are translated to Java

classes that implement these constraint interfaces.
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// Source code in Genus
class ArrayList[T] implements List[T] {

T[] arr;

ArrayList() { arr = new T[INITIAL_SIZE]; }

...
}

// Target code in Java
class ArrayList<T> implements List<T> {

Object arr; // an array of run-time type int[] when T is instantiated on int

RTT<T> rtt$T; // run-time type information about T
ArrayList(RTT<T> rtt$T) {

this.rtt$T = rtt$T;

arr = rtt$T.newArray(INITIAL_SIZE);

}

...
}

Figure 4.11. Translating the Genus class ArrayList into Java

4.6.2 Implementing Generics

Parameterized Genus classes are translated to correspondingly parameterized

Java classes. However, type arguments and models must be represented at run

time. So extra arguments carrying this information are required by class construc-

tors, and constructor bodies are extended to store these arguments as fields. For

example, class ArrayList has a translated constructor with the signature shown

in Figure 4.11. Parameterized methods and models are translated in a similar

way by adding extra arguments representing type and model information.
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4.6.3 Supporting Primitive Type Arguments

A challenge for efficient generics, especially with a JVM-based implementation,

is how to avoid uniformly wrapping all primitives inside objects when primitive

types are used as type arguments. Some wrapping is unavoidable, but from the

standpoint of efficiency, the key is that when code parameterized on a type T

is instantiated on a primitive type (e.g., int), the array type T[] should be

represented exactly as an array of the primitive type (e.g., int[]), rather than

a type like Integer[] in which every array element incurs the overhead of

individualized memory management.

Our current implementation uses a homogeneous translation to support this

efficiency. The run-time type information object (e.g., rtt$T in Figure 4.11) for a

type parameter T provides all operations about T[]. It has type RTT<T>, which

provides the operations for creating and accessing arrays of (unboxed) T.

A more efficient approach to supporting primitive type arguments is to

generate specialized code for primitive instantiations, as is done in C#. The

design of Genus makes it straightforward to implement particular instantiations

with specialized code.

4.7 Evaluation

4.7.1 Porting Java Collections Framework to Genus

To evaluate how well the language design works in practice, we ported all 10

general-purpose implementations in the Java collections framework (JCF) as well

as relevant interfaces and abstract implementations, to Genus. The result is a
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safer, more precise encoding and more code reuse with little extra programmer

effort.

The single most interesting constrained generic in JCF is probably TreeSet

(and TreeMap, which backs it). In its Java implementation, elements are ordered

using either the element type’s implementation of Comparable or a comparator

object passed as a constructor argument, depending on which constructor is used

to create the set. This ad hoc choice results in error-prone client code. In Genus,

by contrast, the ordering is part of the TreeSet type, eliminating 35 occurrences

of ClassCastException in TreeSet’s and TreeMap’s specs.

Genus collection classes are also more faithful to the semantics of the ab-

stractions. Unlike a Set[E], a List[E] should not necessarily be able to test the

equality of its elements. In Genus, collection methods like contains and remove

are instead parameterized by the definition of equality (Section 4.2.2). These

methods cannot be called unless a model for Eq[E] is provided.

More powerful genericity also enables increased code reuse. For example,

the NavigableMap interface allows extracting a descending view of the original

map. In JCF, TreeMap implements this view by defining separate classes for

each of the ascending and descending views. In contrast, Genus expresses both

views concisely in a single class parameterized by a model that defines how to

navigate the tree, eliminating 160 lines of code. This change is made possible by

retroactive, non-unique modeling of compareTo().

Thanks to default models—in particular, implicit natural models, for popular

operations including toString, equals, hashCode and compareTo—client and

library code ordinarily type-check without using with clauses. When with clauses

are used, extra expressive power is obtained. In fact, the descending views are

the only place where with clauses are needed in the Genus collection classes.
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4.7.2 Porting the Findbugs Graph Library to Genus

We ported to Genus the highly generic Findbugs [71] graph library (∼1000 non-

comment LoC), which provides graph algorithms used for the intermediate

representation of static analyses. In Findbugs, the entities associated with the

graph (e.g., Graph, Vertex, Edge) are represented as Java interfaces; F-bounded

polymorphism is used to constrain parameters. As we saw earlier (Section 4.1),

the resulting code is typically more cumbersome than the Genus version.

We quantified this effect by counting the number of parameter types, concrete

types and keywords (extends, where) in each type declaration, ignoring modifiers

and the name of the type. Across the library, Genus reduces annotation burden by

32% yet increases expressive power. The key is that constraints can be expressed

directly without encoding them into subtyping and parametric polymorphism;

further, prerequisite constraints avoid redundancy.

4.7.3 Performance

The current Genus implementation targets Java 5. To explore the overhead of

this translation compared to similar Java code, we implemented a small Genus

benchmark whose performance depends heavily on the efficiency of the under-

lying genericity mechanism, and hence probably exaggerates the performance

impact of generics. The benchmark performs insertion sort over a large array

or other ordered collection; the actual algorithm is the same in all cases, but

different versions have different degrees of genericity with respect to the ele-

ment type and even to the collection being sorted. Element type T is required to

satisfy a constraint Comparable[T] and type A is required to satisfy a constraint

ArrayLike[A,T], which requires A to act like an array of T’s. Both primitive values

(double) and ordinary object types (Double) are sorted.
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Table 4.1: Comparing performance of Java and Genus

data structure Java (s) Genus (s)

[spec.]

Non-generic sort

double[] 1.3

Double[] 3.8

ArrayList[double] — 5.4 [4.0]

ArrayList[Double] 9.6 14.5 [8.3]

Generic sort:
Comparable[T]

double[] — 19.3 [1.3]

Double[] 7.7 10.0 [3.8]

ArrayList[double] — 6.7 [4.0]

ArrayList[Double] 9.8 17.9 [8.3]

Generic sort:
ArrayLike[A,T],
Comparable[T]

double[] — 17.0 [1.3]

Double[] 12.8 12.4 [3.8]

ArrayList[double] — 24.6 [4.0]

ArrayList[Double] 12.8 24.8 [8.3]

The results from sorting collections of 100k elements are summarized in

Table 4.1. Results were collected using Java 7 on a MacBook Pro with a 2.6GHz

Intel Core i7 processor. All measurements are the average of 10 runs, with an

estimated relative error always within 2%. For comparison, the same (non-

generic) algorithm takes 1.1s in C (with gcc -O3). The Java column leaves some

entries blank because Java does not allow primitive type arguments.

To understand the performance improvement that is possible by specializing

individual instantiations of generic code, we used hand translation; as mentioned

above, the design of Genus makes such specialization easy to do. The expected

performance improvement is shown in the bracketed table entries. Specialization

to primitive types is particularly useful for avoiding the high cost of boxing and

unboxing primitive values, but the measurements suggest use of primitive type

arguments can improve performance even without specialization (e.g., Genus

ArrayList[double] is usually faster than Java ArrayList<Double>).
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4.8 Formalization and Decidability

We have formalized the key aspects of the Genus type system, in the style of

Featherweight Java [94]. Importantly, inference rules for subtyping, constraint

entailment, and well-formedness (including model–constraint conformance in

the presence of multimethods) are given. The formalization is provided in the

technical report [191]. We are not aware of any unsoundness in the type system,

but leave proving soundness to future work.

Default model resolution is an integral part of the formalization, matching

the description in Sections 4.3.4, 4.3.7, and 4.4.2. It is formalized as a translation

from one calculus into another—the source calculus allows default models while

the target is default-model-free.

Syntactic restrictions for decidable resolution of type class instances [166]

and decidable subtyping with variance [83] have been separately proposed. We

formulate our termination condition for default model resolution by synthesizing

these restrictions, and to the best of our knowledge, give the first termination

proof for such resolution when coupled with variance.

4.9 Related Work

Much prior work on parametric genericity mechanisms (e.g., [4, 22, 40, 43, 100,

110, 126, 157]) relies on constraint mechanisms that do not support retroactive

modeling. We focus here on more recent work that follows Haskell’s type classes

in supporting retroactive modeling, complementing the discussion in previous

sections.

The C++ community developed the Concept design pattern, based on tem-

plates, as a way to achieve retroactive modeling [13]. This pattern is used
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extensively in the STL and Boost libraries. Templates are not checked until in-

stantiation, so developers see confusing error messages, and the lack of separate

compilation makes compilation time depend on the amount of generic library

code. The OO language G [160], based on System FG [159], supports separate

compilation but limits the power of concept-based overloading. By contrast,

C++ Concepts [84] abandon separate compilation to fully support concept-based

overloading. It was not adopted by the C++11 standard [158], however. Concept-

based overloading is orthogonal to the other Genus features; it is not currently

implemented but could be fully supported by Genus along with separate compi-

lation, because models are chosen modularly at compile time.

In Scala, genericity is achieved with the Concept design pattern and im-

plicits [137]. This approach is expressive enough to encode advanced features

including associated types [42] and generalized constraints [63]. Implicits make

using generics less heavyweight, but add complexity. Importantly, Scala does

not address the problems with the Concept pattern (Section 4.1). In particular,

it lacks model-dependent types and also precludes the dynamic dispatch that

contributes significantly to the success of object-oriented programming [8].

JavaGI [182] generalizes Java interfaces by reusing them as type classes. Like

a type class instance, a JavaGI implementation is globally scoped, must uniquely

witness its interface, and may only contain methods for the type(s) it is declared

with. Unlike in Haskell, a call to an interface method is dynamically dispatched

across all implementations. Although dispatch is not based entirely on the

receiver type, within an implementation all occurrences of an implementing type

for T must coincide, preventing multiply dispatching intersect across the Shape

class hierarchy (cf. Section 4.4.1).
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Approaches to generic programming in recent languages including Rust [154]

and Swift [169] are also influenced by Haskell type classes, but do not escape

their limitations.

Type classes call for a mechanism for implicitly and recursively resolving

evidence of constraint satisfaction. The implicit calculus [138] formalizes this

idea and extends it to work for all types. However, the calculus does not have

subtyping. Factoring subtyping into resolution is not trivial, as evidenced by the

reported stack overflow of the JavaGI compiler [83].

No prior work brings type constraints to use sites. The use of type constraints

as types [169, 182] is realized as existentials in Genus. “Material–Shape Separa-

tion” [83] prohibits types such as List<Comparable>, which do find some usage

in practice. Existentials in Genus help express such types in a type-safe way.

Associated types [42, 127] are type definitions required by type constraints.

Encoding functionally dependent type parameters as associated types helps

make certain type class headers less verbose [76]. Genus does not support

associated types because they do not arise naturally as in other languages with

traits [137, 154] or module systems [57] and because Genus code does not tend

to need as many type parameters as in generic C++ code.

Finally, in Table 4.2, we compare how Genus and other languages perform

with respect to the desiderata identified by prior work [77, 137, 160] and us.

Not all prior desiderata are reflected in the table. Since we consider support

for associated types to be an orthogonal issue, our desiderata do not include

constraints on associated types and equality constraints. Also due to orthogonality,

we omit type aliases and first-class functions.
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Table 4.2: Comparing various generics approaches

C++11 SML/OCaml Haskell Java C# Cecil C++ Concepts Rust Swift Scala G JavaGI Genus

Multiparameter constraints (Section 4.2.1) #   a # # G#  # #     

Multiple constraints (Section 4.2.2) # G#            

Associated types access (Section 4.9)    # # G#      # #

Retroactive modeling (Section 4.3) #   # #         

Modular compilation (Section 4.4.1) #     G# # #      

Implicit argument deduction (Section 4.5.2)      G#        

Modular type checking (Section 4.4.1) #     G# G#     G# G#

Lexically scoped models (Section 4.3) #  # # # #  # #   #  

Concept-based overloading (Section 4.9) # # # # #   #  G# G# # #

Model generics (Section 4.2.2) # # # # # # # # #  # #  

Natural models (Section 4.2.3, Section 4.3.4)  # # # #   # G# # # G#  

Non-unique modeling (Section 4.3.3) # # # # # # # # #  # #  

Model-dependent types (Section 4.2.3, Section 4.3.5) # # # # # # # # # # # #  

Run-time type/model info (Section 4.3.6, Section 4.6)  # # #      G#  #  

Model enrichment (Section 4.4.1) # # # # # # # # # # #   

Multiple dispatch (Section 4.4.1) # # # # #  # # # # # G#  

Constraint variance (Section 4.4.2) # # # # # # # # G#  # G#  

Model inheritance (Section 4.4.3) # # # # # # # # # # # #  

Use-site generics (Section 4.5) # # G#b G# # # # # # G# # G#  

aUsing MultiParamTypeClasses

bUsing ExistentialQuantification
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CHAPTER 5

FAMILIA: UNIFYING INTERFACES, TYPE CLASSES, AND FAMILY

POLYMORPHISM

It is futile to do with more things that which can be done with fewer.

—William of Ockham

Types help programmers write correct code, but they also introduce rigidity

that can interfere with reuse. In statically typed languages, mechanisms for

polymorphism recover needed flexibility about the types that code operates over.

Subtype polymorphism [39] and inheritance [48] are polymorphism mechanisms

that have contributed to the wide adoption of modern object-oriented (OO)

languages like Java. They make types and implementations open to future

type-safe extensions, and thus increase code extensibility and reuse.

Parametric polymorphism offers a quite different approach: explicitly param-

eterizing code over types and modules it mentions [108, 112, 120]. It has dom-

inated in functional languages but is also present in modern OO languages.

Parametric polymorphism becomes even more powerful with the addition of

type classes [176], which allow existing types to be retroactively adapted to the

requirements of generic code.

Harmoniously integrating these two kinds of polymorphism has proved chal-

lenging. The success of type classes in Haskell, together with the awkwardness of

using F-bounded constraints [38] for generic programming, has inspired recent

efforts to integrate type classes into OO languages [160, 182, 190]. However, type

classes and instances for those type classes burden already feature-rich languages

with entirely new kinds of interfaces and implementations. The difficulty of
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adopting concepts in C++ [165] suggests that the resulting languages may seem

too complex.

Meanwhile, work on object-oriented inheritance has increased expressive

power by allowing inheritance to operate at the level of families of related classes

and types [12, 44, 64, 66, 114, 115, 131, 132, 150, 170]. Such family polymorphism,

including virtual types and virtual classes, supports coordinated, type-safe ex-

tensions to related types and classes contained within a larger module. These

features have also inspired [144] the addition of associated types [42] to type

classes. Associated types are adopted by recent languages such as Rust [154] and

Swift [169]. However, the lack of family-level inheritance limits the expressive

power of associated types in these languages.

Combining all these desirable features in one programming language has not

been done previously, perhaps because it threatens to confront programmers

with a high degree of surface complexity. Our contribution is a lightweight unifi-

cation of these different forms of polymorphism, offering increased expressive

power with low apparent complexity. This unified polymorphism mechanism is

embodied in a proposed Java-like language that we call Familia.

The key insight is that a lightweight presentation of the increased expressive

power can be achieved by using a single interface mechanism to express both

data abstraction and type constraints, by using classes as their implementations,

and by using classes (and interfaces) as modules. Both interfaces and classes

can be extended. The expressive power offered by previous polymorphism

mechanisms, including flexible adaptation and family polymorphism, falls out

naturally. Specifically, this chapter makes the following contributions:

• We show how to unite object-oriented polymorphism and parametric

polymorphism by generalizing existing notions of interfaces, classes, and
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method calls (Sections 5.2 and 5.3). The extensibility of objects and the

adaptive power of type classes both follow from this reinterpretation.

• We further show how to naturally integrate an expressive form of family

polymorphism. The design accommodates features found in previous

family-polymorphism mechanisms (including associated types and nested

inheritance) in the above setting of generalized classes and interfaces, and

goes beyond them by offering new expressive power. We present a case

study of using Familia to implement a highly reusable program analysis

framework (Section 5.4).

• We capture the new language mechanisms formally by introducing a core

language, Featherweight Familia, and we establish the soundness of its

type system (Section 5.5).

• We show the power of the unified polymorphism mechanism by comparing

Familia with various prior languages designed for software extensibility

(Section 5.6).

5.1 Background

Our goal is a lightweight, expressive unification of the state of the art in genericity

mechanisms. A variety of complementary genericity mechanisms have been

developed, with seemingly quite different characteristics.

Genericity via inheritance. Object-oriented languages permit a given interface

to be implemented in multiple ways, making clients of that interface generic

with respect to future implementations. Hence, we call this a form of implementa-

tion genericity. Inheritance extends the power of implementation genericity by
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allowing the code of a class to be generic with respect to implementation changes

in future subclasses; method definitions are late-bound. While the type-theoretic

essence of class inheritance is parameterization [46], encoding inheritance in this

way is more verbose and less intuitive [20].

Family polymorphism [65] extends the expressive power of inheritance by

allowing late binding of the meaning of types and classes declared within a

containing class, supporting the design of highly extensible and composable

software [132]. Virtual types [135, 170] and associated types [42, 95] allow the

meaning of a type identifier to be provided by subclasses; with virtual classes

as introduced by Beta [65, 115], the code of a nested class is also generic with

respect to classes it is nested within. The outer class can then be subclassed to

override the behavior and structure of the entire family of related classes and

types in a coordinated and type-safe way. Classes and types become members of

an object of the family class. The late binding of type names means that all type

names implicitly become hooks for later extension, without cluttering the code

with a possibly large number of explicit type parameters.

There are two approaches to family polymorphism; in the nomenclature of

Clarke et al. [44], the original object family approach of Beta treats nested classes

as attributes of objects of the family class [12, 65, 115], whereas in the class family

approach of Concord [97], Jx and J& [131, 132], and ˆFJ [93] nested classes and

types are attributes of the family classes directly. The approaches have even

been combined by work on Tribe [44]. Familia follows Jx by providing nested

inheritance [131], a class family mechanism that allows both further binding

(specialization of nested classes) at arbitrary depth in the class nesting structure,

and also inheritance across families.
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Figure 5.1. Applying family polymorphism to compiler construction

To see how support for coordinated changes can be useful, suppose we are

building a compiler for a programming language called Saladx, which extends a

previous language called Salad. The Salad compiler defines data structures (that

is, types) and algorithms that operate on these types. We would like to reuse the

Salad compiler code in a modular way, without modification. Figure 5.1 sketches

how this can be done in a modular, type-safe way using nested inheritance.

The original compiler defines abstract syntax tree (AST) nodes such as Node

and Stmt. The extended compiler defines a new module Saladx that inherits as

a family from the original Salad module. The new module adds support for

a new type of AST node, UnaryExpr, by adding a new class definition. Saladx

also further binds the class Node to add a new method constFold that performs

constant folding. Importantly, the rest of Salad.Node does not need to be restated.

Nor does any code need to be written for Saladx.Stmt; this class implicitly exists

in the Saladx module and inherits constFold from the new version of Node.

References in the original Salad code to names like Node and Stmt now refer in

the Saladx compiler to the Saladx versions of these classes. The Salad code is

highly extensible without being explicitly parameterized.

By contrast, the conventional OO approach could extend individual classes

and types from Salad with new behavior. However, each individually extended

class could not access the others’ extended behavior (such as constFold) in a
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type-safe way. Alternatively, extensibility could be implemented for Salad by

cluttering the code with many explicit type parameters.

Genericity via parametric polymorphism. Parametric polymorphism, often

simply called generics, provides a more widely known and complementary form

of genericity in which code is explicitly parameterized with respect to the types

or modules of data it manipulates. Whereas implementation genericity makes

client code and superclass code generic with respect to future implementations,

parametric polymorphism makes implementations generic with respect to future

clients. Constrained parametric polymorphism [108] ensures that generic code

can be instantiated only on types meeting a constraint. These constraints act

effectively as a second kind of interface.

Haskell’s type classes [176] manifest these interfaces as named constraints

to which programmers can explicitly adapt existing types. By contrast, most

OO languages (e.g., Java and C#) use subtyping to express constraints on type

parameters. Subtyping constraints are rigid: they express binary methods in an

awkward manner, and more crucially, it is typically impossible to retroactively

adapt types to satisfy the subtyping requirement. The rigidity of subtyping

constraints has led to new OO languages that support type classes [160, 182, 190].

Combining genericity mechanisms. Genericity mechanisms are motivated by

a real need for expressive power. Both family polymorphism and type classes can

be viewed as reactions to the classic expression problem [179] on the well-known

difficulty of extending both data types and the operations on them in a modular,

type-safe way [151]. However, the approaches are complementary: type classes

do not also provide the scalable extensibility [131] offered by family polymor-

phism, whereas family polymorphism lacks the flexible adaptation offered by type
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classes. Despite becoming popular among recent languages that incorporate

type classes [154, 169], associated types do not provide the degree of extensibility

offered by an expressive family-polymorphism mechanism.

On the other hand, data abstraction is concerned with separating public inter-

faces from how they are implemented so that the implementation can be changed

freely without affecting the using code. Implementations are defined in terms of

a representation that is hidden from clients of the interface. Abstract data types,

object interfaces, and type classes can all provide data abstraction [47]. Genericity

mechanisms such as inheritance and parametric polymorphism are not essential

to data abstraction. However, they add significant expressive power to data

abstraction.

Languages that combine multiple forms of polymorphism tend to duplicate

data abstraction mechanisms. For example, recent OO languages incorporate

the expressive power of type classes by adding new language structures above

and beyond the standard OO concepts like interfaces and classes [160, 182, 190].

Unfortunately, a programming language that provides data abstraction in more

than one way is likely to introduce feature redundancy and threatens to confront

the programmer with added surface complexity. Even for Haskell, it has been

argued that type classes introduced duplication of functionality [55], and that the

possibility of approaching the same task in multiple ways created confusion [142].

Our contribution is a clean way to combine data abstraction and these dis-

parate and powerful polymorphism mechanisms in a compact package. As a

result, programmers obtain the expressive power they need for a wide range of

software design challenges, without confronting the linguistic complexity that

would result from a naive combination of all the mechanisms.
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5.2 Unifying object-oriented interfaces and type classes

Both object-oriented interfaces and type classes are important, but having both

in a language can lead to confusion and duplication. Fortunately, both can be

supported by a single, unified interface mechanism, offering an economy of

concepts.

We unify interfaces with type classes by decoupling the representation type

of an object-oriented interface from its object type. A representation type is

an underlying type used to implement the interface; the implementations of

interface methods operate on these representation types. An object type, on

the other hand, specifies the externally visible operations on an object of the

interface.

For example, an interface Eq describing the ability of a type T to be compared

for equality can be written as shown in Figure 5.2.1 This interface declares a single

representation type T (in parentheses after the interface name Eq); the receiver of

method equals hence has this representation type. Each implementation of this

interface chooses some concrete type as the representation type.

As convenient syntactic sugar, an interface with a single representation type

may omit its declaration, implicitly declaring a single representation type named

This. In this usage, all non-static methods declared by the interface have implicit

receiver type This. In Figure 5.2, the other three interfaces all exploit this sugar.

An interface may also declare ordinary type parameters for generic program-

ming, grouped in square brackets to distinguish them from representation type

parameters. For example, a generic set interface might be declared as shown in

Figure 5.3a, where the interface Set has an explicit type parameter E representing

its elements. In the figure, the omitted representation type of Set (i.e., This)

1Except as noted, Familia follows the syntactic and semantic conventions of Java [81].
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interface Eq(T) {

boolean T.equals(T);

}

interface Hashable extends Eq {

int hashCode();

}

interface PartialOrd extends Eq {

boolean leq(This);

}

interface Ord extends PartialOrd {

int compare(This);

}

Figure 5.2. Four interfaces with single representation types. Eq explicitly names
its representation type T; the others leave it implicit as This. The receiver types
of the interface methods are the representation types.

interface Set[E where Eq(E)]

extends Collection[E] {

int size();

boolean contains(E);

Self add(E);

Self remove(E);

Self addAll(Set[E]);

...
}

(a) Interface Set is parameterized by a
type parameter and a where-clause con-
straint.

1 interface SortedSet[E]

2 extends Set[E] where Ord(E) {

3 E max() throws SetEmpty;

4 E min() throws SetEmpty;

5 Self subset(E, E);

6 ...
7 }

(b) Interface SortedSet extends Set. Its
where-clause constraint Ord(E) entails
Eq(E).

Figure 5.3. Interfaces Set and SortedSet

is also the implicit representation type of Collection[E], the interface being

extended.

Using interfaces to constrain types. Interfaces can be used as type classes: that

is, as constraints on types. In Figure 5.3a, Set has a where-clause where Eq(E),

which constrains the choice of types for E to those which satisfy the interface

Eq and that therefore support equality. A where-clause may have several such

155



constraints, each constraining a type parameter by instantiating an interface

using that type (E in this example) as the representation type. Hence, we also

refer to representation types as constraint parameters.

As syntactic sugar, a where-clause may be placed outside the brackets contain-

ing type parameters (e.g., line 2 of Figure 5.3b). If kept inside the brackets, the

parameters to the constraint may be omitted, defaulting to the preceding type

parameter(s), as in line 1 of Figures 5.6a and 5.6b. A where-clause constraint can

optionally be named (e.g., line 18 of Figure 5.5).

Using the object type. Each interface also defines an object type that has the

same name as the interface. Using an interface as an object type corresponds

to the typical use of interfaces in OO languages. In this case, the interface

hides its representation type from the client. For example, in the variable dec-

laration “Hashable x;”, the representation type is an unknown type T on which

the constraint Hashable(T) holds. The programmer can make the method call

x.hashCode() in the standard, object-oriented way. Thus, the interface Hashable

serves both as a type class that is a constraint on types and as an ordinary object

type.

From a type-theoretic viewpoint, object types are existential types, as in some

prior object encodings [28]. A method call on an object (e.g., x.hashCode())

implicitly unpacks the existentially typed receiver. This unpacking is made

explicit in the core language of Section 5.5.

Subtype polymorphism and constraint entailment. Subtype polymorphism

is an essential feature of statically typed OO languages. As Figures 5.2 and 5.3

show, interfaces can be extended in Familia. The declaration extends Collection[E]

in the definition of interface Set introduces a subtype relationship between

156



Set[E] and Collection[E]. An interface definition can extend multiple inter-

faces.

Such subtype relationships are higher-order [145], in the sense that interfaces

in Familia can be viewed as type operators that accept a representation type.

When the interfaces are used as object types, this higher-order subtyping relation

becomes the familiar, first-order subtyping relation between object types. When

the interfaces are used to constrain types, this higher-order subtyping relation

manifests in constraint entailment, a relation between constraints on types [182,

190]. For example, consider the instantiation of Set on line 2 of SortedSet in

Figure 5.3b. The type Set can only be instantiated on a type T that satisfies the

constraint Eq(T); here, because Ord (transitively) extends Eq, constraint Ord(E)

being satisfied entails Eq(E) being satisfied.

A second form of constraint entailment concerns varying the representation

type, rather than the interface, when the interface is contravariant in its represen-

tation type. For example, all interfaces in Figures 5.2 and 5.3 are contravariant,

because they do not use their representation types in covariant or invariant

positions. Because Eq is contravariant, it is safe to use a class that implements

Eq(Set[E]) to satisfy the constraint Eq(SortedSet[E]). Figure 5.4 shows an ex-

ample of an invariant interface, LowerLattice, which uses This on line 2 both

covariantly (as a return type) and contravariantly (as receiver and argument

types). Familia infers interfaces to be either contravariant or invariant in their

constraint parameters, with most interfaces being contravariant. A constraint

parameter that is inferred contravariant may also be explicitly annotated as in-

variant. Covariance and bivariance in constraint parameters are not supported

because these forms of variance do not seem useful.
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1 interface LowerLattice extends PartialOrd {

2 This This.meet(This); // covariant and contravariant uses of This

3 static This top(); // a static method
4 static This meetAll(Iterable[This] c) {

5 This glb = top();

6 for (This elem : c) { glb = glb.meet(elem); }

7 return glb;

8 } // a static method with a default implementation
9 }

Figure 5.4. An invariant interface for a lower semilattice

Static and default methods in interfaces. Interfaces may also declare static

methods that do not expect a receiver. For example, consider the interface

LowerLattice in Figure 5.4. It describes a bounded lower semilattice, with its rep-

resentation type This as the carrier set of the semilattice. Therefore, LowerLattice

extends PartialOrd and additionally declares a binary method meet() and a

static method top() that returns the greatest element.

Interfaces can also provide default implementations for methods. Method

meetAll in LowerLattice computes the greatest lower bound of a collection of

elements. However, an implementation of LowerLattice can override this default

with its own code for meetAll.

The current interface Self. In Familia, all interfaces have access to a Self

interface that precisely characterizes the current interface in the presence of

inheritance. For example, in interface Set (Figure 5.3a), Self is used as the return

type of the addAll method, meaning that the return type varies with the interface

the method is enclosed within: in interface Set, the return type is understood

as Set[E]; when method addAll is inherited into interface SortedSet, the return
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type is understood as SortedSet[E]. Hence, adding all elements of a (possibly

unsorted) set into a sorted set is known statically to produce a sorted set:

SortedSet[E] ss1 = ...;
Set[E] s = ...;
SortedSet[E] ss2 = ss1.addAll(s);

This and Self are implicit parameters of an interface, playing different roles.

The parameter This stands for the representation type, which is instantiated by

the implementation of an interface with the type of its representation. On the

other hand, the parameter Self stands for the current interface, and its meaning is

refined by interfaces that inherit from the current interface. Section 5.3.4 further

explores the roles of This and Self.

Interfaces with multiple representation types. An interface can act as a multi-

parameter type class if it declares multiple representation types—that is, if it has

multiple constraint parameters. As an example, the Graph interface (lines 6–11

in Figure 5.5) constrains both Vertex and Edge types. Note that the implicit

constraint parameter of the superinterface Hashable is used explicitly here. As

seen on lines 7–10, when there are multiple constrained types, the receiver type

of each defined operation must be given explicitly. Unlike interfaces with a single

representation type, interfaces with multiple representation types do not define

an object type.

5.3 Unifying OO classes and type-class implementations

All previous languages that integrate type classes into the OO setting draw a dis-

tinction between classes and implementations of type classes. Confusingly, differ-

ent languages use different terminology to describe type-class implementations.
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0graphs

1 module graphs;

2 static List[List[V]] findSCCs[V,E](List[V] vertices) where Graph(V,E) {

3 ... new postOrdIter[V,E](v) ...
4 ... new postOrdIter[V,E with transpose[V,E]](v) ...
5 } // Implements Kosaraju’s algorithm for finding strongly connected components

5graphs.Graph

6 interface Graph(Vertex,Edge) extends Hashable(Vertex) {

7 Vertex Edge.source();

8 Vertex Edge.sink();

9 Iterable[Edge] Vertex.outgoingEdges();

10 Iterable[Edge] Vertex.outgoingEdges();

11 }

11graphs.postOrdIter

12 class postOrdIter[V,E] for Iterator[V] where Graph(V,E) {

13 postOrdIter(V root) { ... }

14 V next() throws NoSuchElement { ... }

15 ...
16 }

16graphs.transpose

17 class transpose[Vertex,Edge] for Graph(Vertex,Edge)

18 where Graph(Vertex,Edge) g {

19 Vertex Edge.source() { return this.(g.sink)(); }

20 Vertex Edge.sink() { return this.(g.source)(); }

21 Iterable[Edge] Vertex.outgoingEdges() { ... }

22 Iterable[Edge] Vertex.incomingEdges() { ... }

23 int Vertex.hashCode() { return this.(g.hashCode)(); }

24 }

Figure 5.5. A generic graph module. Interface Graph has two constraint parame-
ters, so the method receiver types in interface Graph (and also its implementing
class transpose) cannot be omitted. The code in this graph is discussed in
Section 5.3.
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1 class hashset[E where Hashable] for Set[E] {

2 E[] table;

3 int size;

4 hashset() { table = new E[10]; size = 0; }

5 int size() { return this.size; }

6 boolean contains(E e) { ... e.hashCode() ... }

7 ...
8 }

(a) The representation of hashset is its fields.

1 class mapset[E where Eq] for Set[E](Map[E,?]) {

2 boolean contains(E e) { return this.containsKey(e); }

3 int size() { return this.(Map[E,?].size)(); }

4 ...
5 }

(b) The representation of mapset is a Map object.

Figure 5.6. Two implementations of the Set interface using different representa-
tions

Haskell has “instances”, the various C++ proposals have “concept maps” [165],

JavaGI [182] has “implementations”, and Genus [190] has “models”.

Familia avoids unnecessary duplication and terminology by unifying classes

with type-class implementations. Classes establish the ability of an underlying

representation to satisfy the requirements of an interface. The representation

may be a collection of fields, in the usual OO style. Alternatively, unlike in OO

style, the representation can be any other type that is to be retroactively adapted

to the desired interface.

For example, to implement the interface Set (Section 5.2), we can define the

class hashset shown in Figure 5.6a. Class hashset implicitly instantiates the

representation type This of its interface Set[E] as a record type comprising its

field types (i.e., {E[] table; int size}). Since this denotes the receiver and

the receiver has this representation type, the field access on line 5 type-checks.
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The receiver type of a class method is usually omitted when the class has a single

representation type.

Classes are not types. If classes were types, code using classes would be less

extensible because any extension would be forced to choose the representation

type in a compatible way. We give classes lowercase names to emphasize that

they are more like terms. A class can be used via its constructors; for example,

new hashset[E]() produces a new object of type Set[E].

A distinguishing feature of Familia is that a class can also instantiate its rep-

resentation type explicitly, effectively adapting an existing type or types to an

interface. Suppose we already had an interface Map and wanted to implement

Set in terms of Map. As shown in Figure 5.6b, this adaptation can be achieved by

defining a class that instantiates the representation type of Set[E] as Map[E,?].

Class mapset implements the Set operations by redirecting them to correspond-

ing methods of Map. Note that the value type of the map does not matter, hence

the wildcard ?. Because expression this has type Map[E,?] in class mapset, the

method call this.containsKey(e) on line 2 type-checks, assuming Map defines

such a method.

A class like mapset has by default a single-argument constructor that expects

an argument of the representation type. So an object x of type Map[K,V] can be

used to construct a set through the expression new mapset[K](x), an expression

with type Set[K]. It is also possible to define other constructors to initialize the

class’ representation.

Classes can be extended via inheritance. A subclass can choose to implement

an interface that is a subtype of the superclass interface, but cannot alter the

representation type to be a subtype, which would be unsound. The fact that a
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subclass can add extra fields is justified by treating the representation type of a

class with fields as a nested type (Section 5.4.2).

5.3.1 Classes as Witnesses to Constraint Satisfaction

The ability of classes to adapt types to interfaces makes generic programming

more expressive and improves checking that it is being used correctly. In particu-

lar, the Familia type system keeps track of which class is used to satisfy each type

constraint. For example, suppose we want sets of strings that are unique up to

case-insensitivity; we would like a Set[String] where string equality is defined

in a case-insensitive way. Because interface String has an equals method

interface String { boolean equals(String); ... }

it automatically structurally satisfies the constraint Eq(String) that is required

to instantiate Set. However, it satisfies that interface in the wrong, case-sensitive

way. We solve this problem in Familia by defining a class that rebinds the

necessary methods:

class cihash for Hashable(String) {

boolean equals(String s) { return equalsIgnoreCase(s); }

int hashCode() { return toLowercase().hashCode(); }

}

Set[String with cihash] s1 = new hashset[String with cihash]();

Set[String] s2 = s1; // illegal

Notice that the types in this example keep track of the class being used to satisfy

the constraint, a feature adopted from Genus [190]: a Set[String], which uses

String to define equality, cannot be confused with a Set[String with cihash].

Such a confusion might be dangerous because the implementation of Set might

rely on the property that two sets use the same notion of equality.
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The type Set[String] does not explicitly specify a class, so to witness the

constraint Eq(String) for it, Familia infers a default class, which in this case is

a natural class that Familia automatically generates because String structurally

conforms to the constraint Eq. The natural class has an equals method that

conforms to that required by Eq(String), and its implementation simply calls

through to the underlying method String.equals. We call these “natural classes”

by analogy with natural models [190].

The natural class can also be named explicitly using the name String, so

Set[String] is actually a shorthand for Set[String with String]. However,

the natural class denoted by String is different from the String type.

We’ve seen that a class can be used both to construct objects and to witness

satisfaction of where-clause constraints. In fact, even object construction is really

another case of using a class to witness satisfaction of a constraint. For example,

creating a Set[E] object needs both a value of some representation type T and a

class that satisfies the constraint Set[E](T). The job of a class constructor is to

use its arguments to create a value of the representation type.

5.3.2 Classes as Dispatchers

Like other OO languages, Familia uses classes to obtain dispatch information.

Unlike previous OO languages, Familia allows methods to be dispatched using

classes that are not the receiver object’s class.

The general form of a method call is

e0.(d .m)(e1, ..., en)

where e0 is the receiver, class d is the dispatcher, and e1, ..., en are the ordinary

method arguments. Dispatcher d provides the method m being invoked; the

receiver e0 must have the same type as the representation type of d .
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This generalized notion of method invocation adds valuable expressive power.

For an example, return to class transpose in Figure 5.5. On line 18, its where-

clause constraint, named g, denotes some class for Graph(Vertex,Edge). Class

transpose implements the transpose of the graph defined by g by reversing

all edge orientations in g; for example, method call this.(g.sink)() on line

19 uses class g to find the sink of a vertex and returns it as the source. Note

that the transposed graph is implemented without creating a new data structure.

On lines 2–5, the method findSCCs() demonstrates one use for the transposed

graph. It finds strongly connected components via Kosaraju’s algorithm [6],

which performs two postorder traversals, one on the original graph and one on

the transposed graph.

Dispatcher classes can usually be elided in method calls—Familia infers the

dispatcher for an ordinary method call of form e0.m(e1, ..., en)—offering conve-

nience in the common cases where there is no ambiguity about which dispatcher

to use. This inference process handles method invocation for both object-oriented

polymorphism and constrained parametric polymorphism.

In the common case corresponding to object-oriented polymorphism, this

ordinary method call represents finding a method in the dispatch information

from e0’s own class. For example, assuming s1 and s2 have type String, the

method call s1.equals(s2) is syntactic sugar for using the natural class implicitly

generated for String as the dispatcher: it means s1.(String.equals)(s2). The

natural class generated for an interface I actually implements the constraint

I(I). So the equals method in the natural class for String must have receiver

type String and argument type String. Hence the expanded method call above

type-checks.
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In another common case corresponding to constrained parametric polymor-

phism, ordinary method call syntax may be employed by generic code to invoke

operations promised by constraints on type parameters. For example, consider

the method call e.hashCode() on line 6 in class hashset (Figure 5.6a). Familia

infers the dispatcher to be the class passed in to satisfy the where-clause con-

straint Hashable(E). So if the programmer named the constraint as in “where

Hashable(E) h”, the desugared method call would be e.(h.hashCode)().

The generalized form of method calls provides both static and dynamic

dispatch. While the dispatcher class is chosen statically, the actual method code

to run is chosen dynamically from the dispatcher class. It is easy to see this when

the dispatcher is a natural class; the natural class uses the receiver’s own class to

dispatch the method call. An explicit class can also provide specialized behavior

for subtypes of the declared representation type; all such methods are dispatched

dynamically based on the run-time type of the receiver.

In fact, class methods are actually multimethods that dispatch on all argu-

ments whose corresponding types in the interface signature are This. Since

Familia unifies classes with type-class implementations, the semantics of mul-

timethods in Familia is the same as model multimethods in Genus [190]. For

example, class setPO in Figure 5.7 implements a partial ordering for Set based

on set containment. It has two leq methods, one for the base case, and the other

for two sorted sets. Notice that in the second leq method, the receiver and the

parameter are guaranteed to have the same ordering, because both occurrences

of SortedSet indicate a subtype of the same Set[E with eq] type, assuming

the where-clause constraint is named eq. Hence, the second leq method can be

implemented in an asymptotically more efficient way. When class setPO is used
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1 class setPO[E where Eq] for PartialOrd(Set[E]) {

2 boolean Set[E].leq(Set[E] that) { // base implementation
3 return this.containsAll(that);

4 }

5 boolean SortedSet.leq(SortedSet that) { ... } // specialization
6 ...
7 }

Figure 5.7. The leq methods in class setPO are multimethods. The second leq
method offers an asymptotically more efficient implementation for two sets
sorted using the same order.

to dispatch a method call to leq, the most specific version is chosen based on the

run-time types of the receiver and the argument.

5.3.3 Inferring Default Classes

As mentioned in Sections 5.3.1 and 5.3.2, Familia can infer default classes both for

elided with clauses and for elided dispatchers. It does so based on how classes

are enabled as potential default choices, similarly to how models are enabled

in Genus [190]. If only one enabled class works in the with clause or as the

dispatcher, that class is chosen as the default class. Otherwise, Familia requires

the class to be specified explicitly.

Classes can be enabled in four ways: 1. Types automatically generate and

enable natural classes. 2. A where-clause constraint enables a class within its

scope. 3. A use-statement enables a class in the scope where the use-statement

resides; for example, the statement “use mapset;” enables this class as a way to

adapt Map[E,?] to Set[E]. 4. A class is enabled within its own definition; this

enclosing class can be accessed via the keyword self.
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For example, consider the method call on line 3 in class mapset (Figure 5.6b).

If the dispatcher were elided, two classes would be enabled as potential dis-

patcher choices—one, the natural class generated for the receiver’s type (i.e.,

Map[E,?], which has a size() method), and the other, the enclosing class mapset,

which defines a size() method with a compatible receiver type. Because of this

ambiguity, Familia requires the dispatcher to be specified explicitly.

As another example, consider the method call glb.meet(elem) on line 6 in

Figure 5.4. An enclosing class in this case is the class that implements the

LowerLattice interface (this class inherits the method definition that contains

this method call), and only this class is enabled as a potential dispatcher for the

call. So Familia desugars the method call as glb.(self.meet)(elem).

5.3.4 Self, This, self, and this

As discussed in Section 5.2, an interface definition has access to both the Self

interface and the This type: Self is the current interface, while This is the type

of the underlying representation of the current interface. Analogously, a class

definition (as well as a non-static default method in an interface) has access to

both the self class and the this term: self denotes the current class, while this

denotes the underlying representation of the current class (or equivalently, the

receiver). A class definition also has access to a Self interface that denotes the

interface of the current class self. Hence, class self witnesses the constraint

Self(T) where T is the type of this.

Although they sound similar, Self (or self) and This (or this) serve different

purposes. Both Self and self are late-bound: in the presence of inheritance,

their interpretation varies with the current interface or class. In this sense, Self

and self provide a typed account of interface and class extensibility. Section 5.4
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shows how the self class is further generalized to support type-safe extensi-

bility at larger scale. On the other hand, the representation type This and the

representation this provide encapsulation—objects hide their representations and

object types hide their representation types—and adaptation—classes adapt their

representations to interfaces.

Ignoring nesting (Section 5.4), objects in Familia are closest from a type-

theoretic viewpoint to the denotational interpretation of objects by Bruce [29],

who gives a denotation of an object type using two special type variables: the

first represents the type of an object as viewed from the inside, and the second,

the type of the object once it has been packed into an existential. These type

variables roughly correspond to This and Self in Familia. This denotational

semantics is intended as a formal model for OO languages, but no later language

distinguishes between these two types. Familia shows that by embracing this

distinction in the surface language, the same underlying model can express both

object types and type classes.

5.3.5 Adaptive Use-Site Genericity

Familia further extends the adaptive power of interfaces to express use-site

genericity ala Genus [190]. The adaptive power arises from the duality between

use-site genericity and definition-site genericity (i.e., parametric polymorphism),

which respectively correspond to existential and universal type quantification.

Because of this adaptive power, we call this “use-site genericity” rather than

“use-site variance”, which only concerns subtyping [173].

Java uses wildcards and subtyping constraints to express use-site variance.

For example, the type List<? extends Set<E>> describes all lists whose element

type is a subtype of Set<E>. The corresponding type in Familia is
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List[out Set[E]]

which is sugar for the explicit existential type

[some T where Set[E](T)]List[T]

where Set[E] is used to constrain the unknown type T, and the leading brack-

ets denote constrained existential quantification. Therefore, one can assign

a List[SortedSet[E]] to a List[out Set[E]] because the natural class gener-

ated for SortedSet[E] satisfies the constraint Set[E](SortedSet[E]). More in-

terestingly, one can assign a List[Map[E,?]] to a List[out Set[E]] in a context

in which class mapset (Figure 5.6b) is enabled. Note that this adaptation is

asymptotically more efficient than with the Adapter pattern: when assigning

a List[Map[E,?]] into a List[out Set[E]], the resulting list is represented by

a list of maps and a class that adapts Map to Set, rather than by wrappers that

inefficiently wrap each individual map into a set.

5.4 Evolving families of classes and interfaces

Thus far we have seen how to unify OO classes and interfaces with type classes

and their implementations. However, the real payoff comes from further unifying

these mechanisms with family polymorphism, to support coordinated changes to

related classes and types contained within a larger module.

5.4.1 Overview

As in many OO languages, Familia’s module mechanism is based on nesting:

classes and interfaces are modules that can contain classes, interfaces, and types.

Familia has nesting both via classes and via a pure module construct that is
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analogous to packages in Java or namespaces in C++. Apart from being able to

span multiple compilation units, such a module is essentially a degenerate class

that has no instances and does not implement an interface. Hence, both classes

and modules define families containing their components. Familia interfaces can

also contain nested components; a class inherits the nested components from its

interfaces. Since nesting is allowed to arbitrary depth, a nested component may

be part of multiple families at various levels.

Unlike most OO languages, Familia allows not only classes but all modules to

be extended via inheritance. Following C++ convention [164], we call the module

being extended the base module and the extending module, the derived module.

Hence, superclass and base class are synonyms, as are subclass and derived class.

We also slightly abuse the terminology “module” to mean not only the module

construct but all families that contain nested components.

When a module is inherited, all components of the base module—including

nested modules, classes, interfaces, types,2 and methods—are inherited into the

derived module; the inherited code is polymorphic with respect to a family it is

nested within. Further, the derived module may override the nested components.

In this sense, names of components nested inside a module are implicit parameters

declared by their families.

Example: dataflow analysis. As an example where coordinated changes to a

module are useful, consider the problem of developing an extensible framework

for dataflow analysis. A dataflow analysis can be characterized as a four-tuple

(G, I , L, Fn) [7]: the direction G that items flow on the control-flow graph (CFG),

the set I of items being propagated, the operations u and > of the semilattice L

2Nested interfaces are similar to nested types except that nested interfaces can be used to
constrain types and that nested types need not necessarily be bound to interfaces.
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dataflow.base

abstract module dataflow.base {

class cfg for Graph(Peer,Edge);

type Item;

class itemlat for LowerLattice(Item);

}

dataflow.base.transfer

class transfer for Function[Item,Item](Node) {

Item Node.apply(Item item) { return item; }

}

dataflow.base.worker

1 use cfg, itemlat;

2 class worker for Worker {

3 Map[Peer,Item] items; // analysis result
4 ...
5 void worklist(List[Peer] src) {
6 List[List[Peer]] sccs = graphs.findSCCs[Peer,Edge](src);

7 for (List[Peer] scc : sccs) {

8 boolean change = false;

9 do { // Iteratively computes result
10 for (Peer p : scc) {

11 Item newf = outflow(p);

12 Item oldf = items.get(p);

13 change |= !oldf.equals(newf);

14 items.put(p,newf);

15 }

16 } while (change);

17 }

18 }

19 Item outflow(Peer p) {

20 Item conf = itemlat.meetAll(inFlows(p));

21 return p.node().(transfer.apply)(conf);

22 }

23 List[Item] inFlows(Peer p) { ... }

24 }

Figure 5.8. Excerpt from an extensible dataflow analysis framework. (A Peer is a
vertex in the CFG, and has access to an AST node, Node.)
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dataflow.liveness

module dataflow.liveness extends dataflow.base {

// Backward analysis
class cfg extends transpose[Peer,Edge with flowGraph];

// Liveness analysis propagates sets of variables
type Item = Set[Var];

}

dataflow.liveness.transfer

// Def-Use
class transfer for Function[Item,Item](Node) {

Item LocalVar.apply(Item item) {

return item.add(this.var());

}

Item LocalAssign.apply(Item item) {

LocalVar n = this.left();

return item.remove(n.var());

}

}

dataflow.liveness.itemlat

1 class itemlat for LowerLattice(Item) {

2 static Item top() fixes Item { return new hashset[Var](); }

3 Item meet(Item that) { return this.addAll(that); }

4 boolean leq(Item that) { return this.(setPO[Var].leq)(that); }

5 boolean equals(Item that) { return this.(setPO[Var].equals)(that); }

6 }

Figure 5.9. An extension of the base dataflow framework: live variable analysis

formed by the items, and the transfer functions Fn associated with each type of

AST node.

We would like to be able to define a generic dataflow analysis framework that

leaves the four parameters either unspecified or partially specified, so that a spe-

cific analysis task (such as live variable analysis) can be obtained by instantiating

or specializing the parameters. This can be achieved using family polymorphism,
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but does not work with conventional OO languages since they do not support

coordinated changes, as discussed in Section 5.1.

Figure 5.8 shows the code of the module base, which is nested inside the mod-

ule dataflow. It provides a base implementation of the extensible dataflow anal-

ysis framework discussed earlier. The four parameters (G, I , L, Fn) of a dataflow

analysis framework correspond to class cfg, type Item, class itemlat, and class

transfer, respectively. The rest of the module—especially class worker, which im-

plements the worklist algorithm (lines 5–23)—is generic with respect to the choice

of these parameters. Therefore, writing a specific dataflow analysis amounts

to instantiating these four parameters in a derived module. Crucially, this in-

stantiation can be done in a lightweight, type-safe way by either binding or

further-binding the four nested components.

To illustrate such an extension, Figure 5.9 shows a module that inherits from

the base dataflow module and implements live variable analysis. Recall that

live variable analysis is a backward analysis where the items are sets of local

variables, the meet operator u takes the union of two sets, the greatest element >

is the empty set, and the transfer functions are defined in terms of the variables

each CFG node defines and uses. The module definition (liveness) declares

that it extends the base module. It provides the definitions of exactly these four

implicit parameters.

The combined power of family inheritance and retroactive adaptation is

apparent: with roughly 20 lines of straightforward code, we are able to implement

a new program analysis. And this analysis is itself extensible; for example, it can

be further extended to report unused variables. Implementing this example with

the same extensibility in any previous language would require more boilerplate

code or design patterns.
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5.4.2 Further Binding

In Familia, all nested names are points of extensibility that can be further-bound

in derived modules. In addition, base modules, superclasses, superinterfaces,

supertypes, and interfaces of classes can be further-bound in derived modules.

Binding nested, unbound names. A derived module can bind the nested com-

ponents left unbound in its base module. In the example, derived module

liveness binds three components unbound in module base: it binds nested

class cfg by using the transpose of flowGraph (we assume flowGraph is a class

for constraint Graph(Peer,Edge)) as its superclass, it binds nested type Item to

type Set[Var], and it binds nested class itemlat to a nested class definition. A

module can nest unbound methods, classes, or types if it is abstract or one of its

families is abstract;3 module base is declared abstract.

Unbound classes are not to be confused with abstract classes. An unbound

class is one that a non-abstract, derived module of one of its enclosing families

must provide a binding for. So unlike abstract classes, unbound classes can

be used to satisfy constraints (including creating objects) and dispatch method

calls. For example, consider the worklist() method in the base module, which

computes the strongly connected components of the CFG (line 6) to achieve faster

convergence [129]. Class cfg, though unbound, is used (as the default class) to

satisfy the constraint required by the generic findSCCs() method from Figure 5.5.

As another example, unbound class itemlat is used as the (inferred) dispatcher

in the method call on line 13.

It is perfectly okay to give partial definitions to nested classes cfg and itemlat

without declaring them abstract, because a non-abstract, derived module of their

3“Abstract methods” in previous OO languages actually mean unbound methods in Familia,
while “abstract classes” retain their meaning.
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family is required to complete the definitions. (Class itemlat is indeed partially

defined because it inherits a default method implementation from its interface

defined in Figure 5.4.) It follows that the above discussion about unbound

classes applies to partially bound classes as well. Previous languages with family

polymorphism do not support non-abstract classes that are unbound or partially

bound.

Nested type Item is essentially an associated type of its family. Associated types

are unbound type members of interfaces and superclasses [42, 95].4 Associated

types were introduced to reduce the number of type parameters, a rationale that

applies here as well. However, unlike languages like Scala and Haskell that

support associated types, it is possible in Familia to further-bind a previously

bound nested name in a derived module.

Further-binding nested names. In Familia, a derived module can further-bind

nested interface and class definitions, specializing and enriching the behavior of

the corresponding definition in the base module. Further binding was intro-

duced by Beta [113]. Languages that support virtual types but not full family

polymorphism, such as Scala, can only simulate further binding through design

patterns [134, 183].

In the dataflow example, class transfer in the derived module further-binds

its counterpart in the base module. Recall from Section 5.3.2 that a class can

provide specialized behavior for subtypes of the representation type and that all

such methods are dynamically dispatched. The implementation of the transfer

functions demonstrates how family inheritance interacts with this feature. The

transfer class in the base module provides a default implementation of a transfer

4Associated types take different forms in different languages: typedef in C++, abstract type
members in Scala, associatedtype in Swift, to name a few.
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function through the method apply. The transfer class in the derived module

liveness inherits this default implementation, and refines it by specializing the

implementation of apply to handle the particular types of AST nodes that play

an interesting role in live variable analysis. Dispatching on the receiver object is

used to allow choosing the most specific method among all of the three apply

methods at run time.

In addition to specialization, a further-bound interface or class definition can

also enrich the corresponding definition in the base module. This enrichment

was seen in the example from Section 5.1, in which the class Node and implicitly,

all of its derived classes, were extended with a new method constFold. This

example works in Familia as well. If Node were an interface rather than a class,

Familia would check that every class implementing it in the derived module

provides a definition for method constFold.

A nested type can also be further-bound to a subtype. In fact, further-binding

is what allows subclasses to add new fields. Recall from Section 5.3 that the

representation type of a class with fields is a record type containing the field

types. We take this unification a step further with nested types: field types are

essentially a nested record type that can be further-bound to a subtype. For

example, consider classes c1 and c2 in Figure 5.10, whose representation types

are a nested type. Class c2 adds a new field g by further-binding the nested type

Fields to a subtype. Since this has type Fields in class c2, the nested fields can

be accessed via this.f and this.g.

Further-binding base modules. In Familia, not only can nested names be

further-bound, but base modules, superclasses, superinterfaces, and interfaces

that classes implement can also be further-bound. The utility of further-binding
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interface I { int This.m(); }

1 class c1 for I(Fields) {

2 type Fields = { int f }

3 int Fields.m() { return this.(self.n)(); }

4 int Fields.n() { return this.f; }

5 }

class c2 for I(Fields) extends c1 {

type Fields = { int f; int g }

int Fields.n() { return this.f + this.g; }

}

// Testing code
{ int f } t1 = { f = 1 };

{ int f; int g } t2 = { f = 0; g = 2 }

I i = new c2(t2);

i.(I.m)(); // dispatcher is the natural class
t2.(c2.m)(); // dispatcher is c2
t1.(c2.m)(); // illegal

Figure 5.10. Classes c1 and c2 have fields as their representations (Section 5.4.2).
The testing code illustrates how late binding ensures type safety (Section 5.4.3).
Receiver types in method signatures and dispatcher classes in method calls are
written out in this example.

base modules can be demonstrated by the new opportunity in Familia to co-

evolve related, non-nested families of classes and interfaces.

For example, suppose the dataflow framework in Figures 5.8 and 5.9 was

developed for the Salad programming language from Section 5.1. Because the

Saladx extension in Figure 5.1 adds unary expressions to Salad, we cannot ex-

pect the dataflow framework to automatically work correctly for Saladx. If the

dataflow module happened to be nested within the salad module, family poly-

morphism with further binding would allow us to add a transfer function for

unary expressions in class saladx.dataflow.liveness.transfer (which would
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further-bind class salad.dataflow.liveness.transfer). This approach is illus-

trated in Figure 5.11a. Suppose, however, that the dataflow framework were

implemented separately by a third party, and thus had to import the module

salad rather than residing within it. The extensibility strategy just outlined

would not work.

This need to co-evolve related families is addressed by further-binding a

base module. Figure 5.11b illustrates how to co-evolve the dataflow framework

and the Salad implementation, and Figure 5.12 shows the code. In Figure 5.12a,

module dataflow, the dataflow framework for the base Salad language, declares a

nested name lang and binds it by using salad as its base module. In Figure 5.12b,

derived module dataflowx, the dataflow framework for Saladx, further-binds the

base module of lang to saladx, and updates the transfer function to account for

unary expressions. (For brevity, we also say that module dataflow binds nested

name lang to salad and that module dataflowx further-binds it to saladx.) As we

soon see in Section 5.4.3, the dataflow and dataflowx modules interpret names

imported from the salad and saladx modules (e.g., Node) relative to their own

nested component lang. This relativity ensures that the relationships between

the related components in modules salad and dataflow are preserved when

inherited into derived modules saladx and dataflowx; components of module

salad cannot be mixed with components of module dataflowx, which work with

saladx.

Familia supports this kind of further binding for other kinds of nested com-

ponents than modules. For example, when a derived module further-binds the

superclass of a nested class, Familia checks that the new superclass extends—up

to transitivity and reflexivity—the original superclass. This check ensures that

inherited code is type-safe with respect to the new binding.
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dataflow dataflow

liveness

base

liveness

saladx

base

salad

(a) Module dataflow is nested within module salad, and is further-
bound by the dataflow module in saladx. This approach requires
module dataflow to be nested within module salad.

salad saladx

langdataflow dataflowx

liveness

base

liveness

lang

base

(b) Module dataflow imports salad by binding the base module of
nested module lang to it. Derived module dataflowx further-binds the
base module to saladx.

subclassing

further 
binding

Figure 5.11. Two approaches to co-evolving modules dataflow and salad

5.4.3 Late Binding of Nested Names via self

A key to making family polymorphism sound is that relationships between

nested components within a larger module are preserved when inherited into

a derived module. Familia statically ensures that relationships between nested

components are preserved through late binding of all nested names. To see what

would go wrong without late binding, consider the using code in Figure 5.10.

Without late binding of the nested name Fields, the last method call would

type-check because the m() in c2 is inherited from c1 and its receiver type would
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dataflow

module dataflow {

module lang extends salad;

}
(a) Dataflow analysis for Salad

dataflowx

module dataflowx extends dataflow {

module lang

extends saladx;

}

dataflowx.liveness.transfer

class transfer for Function[Item,Item](Node) {

Item UnaryExpr.apply(Item item) {

return item.remove(this.var());

}

}
(b) Dataflow analysis for extended Salad.

Figure 5.12. Evolving the dataflow module in accordance with the extension to
Salad, using the approach illustrated by Figure 5.11b

be { int f } instead of the late-bound Fields. This would result in a run-time

error as t1 does not have the g field.

Recall from Section 5.3.3 that Familia uses the keyword self to represent the

current class or module. By adding a qualifier, self can also be used to refer to

any enclosing class or module. Names that are not fully qualified are interpreted

in terms of an enclosing class or module denoted by a self-prefix. For example,

consider the mentions of the unqualified name Fields in class c1 of Figure 5.10.

Here Fields is syntactic sugar for the qualified name self[c1].Fields, where

the prefix self[c1] refers to the enclosing class that is, or inherits from c1. When

the code is inherited into class c2, the inferred self-prefix becomes self[c2],

a class that is, or inherits from c2. The unqualified name Fields then has a
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new meaning in class c2: self[c2].Fields. In the using code in Figure 5.10,

when class c2 is used to invoke method m, the method signature is obtained by

substituting the dispatcher for the self parameter in int self[c2].Fields.m().

This substitution suggests that the receiver should have type { int f; int g }, so

the last method call t1.(c2.m)() is rejected statically.

The further binding of the base module of nested name lang offers another

example. The transfer class of the base dataflow module (Figure 5.8) mentions

Node, defined by module salad.ast. Because the enclosing module dataflow

binds lang to salad (Figure 5.12a), Node is expanded to lang.ast.Node. Further

desugaring the mention of lang yields self[dataflow].lang.ast.Node. Hence,

in the derived module dataflowx (Figure 5.12b), the unqualified name Node is

reinterpreted as self[dataflowx].lang.ast.Node. Similarly, module dataflowx

interprets the unqualified name Stmt as self[dataflowx].lang.ast.Stmt, so the

subtyping relationship between Stmt and Node is preserved.

Importantly, late binding in Familia supports separate compilation with

modular type checking—existing code need not be rechecked or recompiled

when inherited into derived modules. For example, derived module liveness

inherits method outflow() (lines 19–22 of Figure 5.8), which takes the meet

of all incoming flows of a node and computes the outgoing flow by applying

the transfer function. The call to apply() on line 21 in the base module need

not be rechecked in a derived module, say dataflowx.liveness, which inter-

prets the receiver type as self[dataflowx].lang.ast.Node, the formal parameter

type self[dataflowx.liveness].Item, and the dispatcher class self[dataflowx.

liveness].transfer. This guarantees that the method can only be invoked using

arguments and dispatcher that are compatible.
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It is occasionally useful to locally turn off late binding. Consider imple-

menting the static top() method in class liveness.itemlat (Figure 5.9). We

would like to create a new hashset[Var] and return it. However, it would not

type-check because the return value would have type Set[Var], which is dif-

ferent from the expected, late-bound return type Item. This issue is addressed

in a type-safe and modular way by the fixes-clause in the method signature

(line 2). A fixes-clause is followed by a late-bound name. In this case, the

clause fixes Item allows the method to equate types Item and Set[Var] so that

the return statement type-checks. To ensure type safety, the fixes-clause also

forces a derived module of liveness (or a family thereof) to override top() if it

further-binds its nested type Item to a different type than Set[Var].

Because self-qualifiers can be omitted and inferred, family polymorphism

becomes transparent to the novice programmer. And code written without family

polymorphism in mind can be extended later without modification.

5.5 A core language

To make the semantics of the unified polymorphism mechanism more precise, we

define a core language called Featherweight Familia(abbreviated F2), capturing

the key aspects of Familia.

5.5.1 Syntax and Notation

F2 follows the style of Featherweight Java [94], and makes similar assumptions

and simplifications. F2 omits a few convenient features of Familia: uses of nested

names are fully expanded, the class used by a method call or a with-clause is

always explicit, and natural classes are encoded explicitly rather than generated
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programs P ::= �{I C e }

class definitions C ::= class c[φ] for Q(T) extends P {I C M }

interface definitions I ::= interface Iν[φ] extends Q {m :S }

method definitions M ::= m : S (x) {e }

parameterization [φ] ::= [ X where p for H(T) ]

instantiation [ω] ::= [T with d ]

interface variance ν ::= − | 0

method signatures S ::= [φ] T1 → T2

types T ::= int | X | H

interface paths H ::= Q | Q !

inexact class paths P ::= P !.c[ω]

inexact interface paths Q ::= P !.I[ω]

exact class paths P ! ::= � | P !.c![ω] | self[P]

exact interface paths Q ! ::= P !.I![ω] | Self[Q] | d .itf

dispatchers d ::= P ! | p

expressions e ::= n | x | pack (e,d) | unpack e1 as (x, p) in e2 |

e0.(d .m[ω])(e1)

class names c
interface names I
method names m
class variables p
type variables X
term variables x

Figure 5.13. Featherweight Familia: Syntax

implicitly. For simplicity, F2 does not model certain features of Familia whose

formalization would be similar to that in Featherweight Genus [191]: interfaces

with multiple constraint parameters, multimethods, and use-site genericity.

Figure 5.13 presents the syntax of F2. An overline denotes a (possibly empty)

sequence or mapping. For example, X denotes a sequence of type variables,
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m :S denotes an (unordered) mapping that maps method names m to method

signatures S , and � denotes an empty sequence or mapping. The i-th element

in • is denoted by •(i). To avoid clutter, we write [φ] to denote a bracketed list of

type variables and where-clause constraints, and [ω] to denote the arguments

to these parameters. A where-clause constraint in [φ] is explicitly named by

a class variable p. Substitution takes the form •{•/•}, and is defined in the

usual way. We introduce an abbreviated notation for instantiating parameterized

abstractions: •{ω/φ} substitutes the types and classes in [ω] for their respective

parameters in [φ]. Type variables, term variables, and class variables are all

assumed distinct in any environment. Type variables X include This, the implicit

constraint parameter of all interfaces. Term variables x include this. We use R∗

to mean the reflexive, transitive closure of binary relation R.

A program P comprises interface and class definitions (I and C) and a “main”

expression. A class definition can contain its own nested classes, interfaces,

and methods. An interface definition has the implicit representation type This,

and its variance with respect to This is signified by ν . All classes implement

some interface in F2, although they do not have to in Familia. Familia supports

multiple interface inheritance and nested type declarations, permits interfaces to

contain components other than nested methods, and infers interface variance.

For simplicity, F2 does not model these features. In F2, classes do not have explicit

fields because field types are essentially a nested record type (Section 5.4.2) and

because record types can be simulated by interface types.

A class path represents the use of a class. Class paths have exactness, a notion

that is also seen in previous approaches to type-safe extensibility (e.g., Bruce and

Foster [30], Bruce et al. [31], Nystrom et al. [131, 132], Ryu [156]). An exact class

path P ! denotes a particular class, while an inexact class path P abstracts over all
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of its subclasses (including itself). Inexact class paths are of the form P !.c[ω]

and can be used in extends-clauses in class headers as superclasses. Similar to

Featherweight Java, F2 assumes the well-foundedness condition that there are no

cycles in inheritance chains, as well as the existence of a distinguished, universal

superclass empty.

An exact class path P ! may take one of the following forms:

(1) �, denoting the program P that nests everything;

(2) P !.c![ω], denoting class c[ω]—not including a subclass thereof—nested

within P !; or

(3) self[P], denoting an enclosing class that must either be P , extend P , or

further-bind P .

For example, in a class definition named c2 nested within class definition c1 which

is nested within P, the current class c2 is referred to as self[self[�.c1].c2]. Fa-

milia uses the lighter syntax self[c1.c2] to denote this path, or even just self if c2

is the immediately enclosing class, but the heavier syntax in F2 makes it straight-

forward to perform substitution for outer self-parameters like self[�.c1]. Some

paths with valid syntax cannot appear in F2 programs: for example, the path

self[�.c!
1.c2]. Nevertheless, the static semantics may create such paths to facili-

tate type checking. Given an inexact class path P1 = P !
2.c[ω], we use P !

1 to mean

the exact class path P !
2.c

![ω].

Although F2 requires explicit exactness annotations (i.e., !), they are usually

not needed in Familia. The exactness of certain uses of classes is obvious and

thus inferred: class paths used in extends-clauses are inexact, but class paths

used in with-clauses, pack-expressions, and as dispatchers in method calls are all

exact.
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An interface pathH represents the use of an interface. Like class paths, interface

paths can be exact (Q !) or inexact (P !.I[ω]). Inexact paths can be used in extends-

clauses in interface headers and for-clauses in class headers. The distinguished

interface Any is the universal superinterface.5

An exact interface path Q ! may take one of the following forms:

(1) P !.I![ω], denoting interface I[ω]—not including a subinterface thereof—

nested within P !;

(2) Self[Q], an enclosing interface that must either be Q , extend Q , or further-

bind Q ; or

(3) d .itf, the interface implemented by dispatcher d .

For example, in the class definition of c2 nested within c1 which is nested

within P, the interface implemented by the current class is denoted by the

path self[self[�.c1].c2].itf. In Familia, this interface is denoted by the lighter

syntax Self[c1.c2]. Familia also supports interface paths with inexact prefixes

(i.e., P !.c[ω1].I[ω2]); they are not modeled in F2 for simplicity.

A typeT is either the integer type, a type variable X, or an object type denoted

by an interface path, which can be either exact or inexact. Inexactly typed values

may have a run-time type that is a subtype, while exactly typed values cannot.

A dispatcher d is either an exact class path or a class variable. Dispatchers are

used in method calls e0.(d .m[ω])(e1), object-creation expressions pack (e,d), and

with-clauses. Function FTV(•) returns the type variables occurring free in •.

Function FCV(•) returns free class variables.
5Class empty and interface Any are nested directly within the program P. Class empty is

parameterized by a type variable X and implements the constraint �.Any(X). A class extending
�.empty instantiates X as its representation type.
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values v ::= n | pack (v, P !)

evaluation contexts E ::= [·] | E .(P !.m[ω])(e) | v0.(P !.m[ω])(v1, E, e) |
pack (E, P !) | unpack E as (x, p) in e2

�;P! ` e1 −→ e2

[UNPACK] �;P! ` unpack (pack (v, P !)) as (x, p) in e −→ e{v/x}
{
P !

/
p
}

[CALL]
�;P!

prog ` P
! ; P!

disp P!
disp(m) = [φ]T1 → T2 (x) {e }

�;P!
prog ` v0.(P !.m[ω])(v1) −→ e{v0/this}{ω/φ}{v1/x}

Figure 5.14. Featherweight Familia: Operational semantics

type environments ∆ ::= � | ∆, Self[Q] | ∆, X
class environments K ::= �;P! | K, self[P] | K, p for H(T)

term environments Γ ::= � | Γ, x :T

Figure 5.15. Featherweight Familia: Environment syntax

5.5.2 Dynamic Semantics

Figure 5.14 presents the operational semantics of Featherweight Familia, includ-

ing its values, evaluation contexts, and reduction rules. Object values take the

form pack (v, P !). Reduction rule [UNPACK] unpacks an object. Rule [CALL]

reduces a method call. The method body to evaluate is retrieved from P!
disp, the

linkage of the dispatcher P !. A linkage provides a dispatch table indexed by

method names, as discussed in more detail in Section 5.5.3.
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5.5.3 Static Semantics

The complete static semantics of Featherweight Familiacan be found in the

accompanying technical report [187]. Below we explain the judgment forms and

discuss selected judgment rules shown in Figures 5.16 and 5.18.

Environments. The syntax of environments is shown in Figure 5.15. A type

environment ∆ contains Self[Q] parameters as well as type variables. A class

environment K always contains the linkage of the entire program (� ; P!).

It may also contain self-parameters as well as class variables. For example,

checking program P adds the program linkage into K , checking class c (nested

within P) adds self[�.c] into K , and checking interface I (nested within c) adds

Self[self[�.c].I] into ∆.

Constrained parametric polymorphism. As shown in Figure 5.13, all nested

components (C, I, and M) can be parameterized, so their well-formedness

rules require the well-formedness of the parameters [φ], which is expressed

using ∆; K ` [φ] OK. Subsequent checks in these well-formedness rules are

performed under the environments ∆, ∆φ and K, Kφ , where ∆φ and Kφ consist of

the type parameters and class parameters of [φ]. The well-formedness rules of

class paths, interface paths, and method-call expressions correspondingly check

the validity of the substitution of arguments [ω] for parameters [φ]. These

checks use the judgment form ∆; K ` {ω/φ} OK, and its rule is given by [INST] in

Figure 5.16. In addition to the well-formedness of the arguments, it requires the

constraints implemented by the dispatchers to entail the corresponding where-

clause constraints. Constraint entailment is expressed using the judgment form

K ` H1(T1) ≤ H2(T2).
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∆; K ` {ω/φ} OK

[INST]

(∀i) ∆; K ` T (i)1 OK (∀i) ∆; K ` d (i) OK (∀i) K ` d (i) dispatches T (i)3

(∀i) K ` d (i).itf(T (i)3 ) ≤ H (i)(T (i)2 )
{
T1

/
X
}

∆; K `
{
T1 with d

/
X where p for H(T2)

}
OK

∆; K ; Γ ` e : T

[E-PACK]
∆; K ` d OK K ` d dispatches T ∆; K ; Γ ` e : T

∆; K ; Γ ` pack (e,d) : d .itf

[E-UNPACK]

∆; K ; Γ ` e1 : H ∆, X; K, p for H(X); Γ, x :X ` e2 : T
X < FTV(T ) p < FCV(T )

∆; K ; Γ ` unpack e1 as (x, p) in e2 : T

[E-CALL]

∆; K ` d OK K ` d dispatches T0 ∆; K ; Γ ` e0 : T0

K ` d .itf ; Q! Q!{T0/This}(m) = [φ]T1 → T2

∆; K ` {ω/φ} OK (∀i) ∆; K ; Γ ` e(i)1 : T (i)1 {ω/φ}

∆; K ; Γ ` e0.(d .m[ω])(e1) : T2{ω/φ}

` P OK

[PROG]

flatten
(
�{I C e }

)
= P! K

def
= �;P!

K ` P! I-Conform K ` P! FB-Conform
(∀i) �; K ; � ` I(i) OK (∀i) �; K ; � ` C(i) OK �; K ; � ` e : T

` �{I C e } OK

Figure 5.16. Featherweight Familia: Selected well-formedness rules

Object-oriented polymorphism. The typing of pack- and unpack-expressions

is given by rules [E-PACK] and [E-UNPACK] in Figure 5.16. The expression

pack (e,d) packs e and the dispatcher d into an object, where e is the underlying

representation and d is the class implementing the object type d .itf. The expres-

sion unpack e1 as (x, p) in e2 unpacks object e1 into its representation and class

(bound to x and p, respectively) and evaluates e2, in which x and p may occur

free. The standard existential-unpacking rule requires the freshly generated
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type variable not to occur free in the resulting type; likewise, rule [E-UNPACK]

requires the same of the freshly generated class variable.

While Familia automatically generates natural classes for interfaces, F2 gives

a concrete encoding of natural classes via unpack-expressions. For example,

suppose variable x0 has object type �.I, an interface that requires a single method

m:int→int. Then invoking m on x0 can be written as x0.(�.natural_I!.m)(8),

where the natural class natural_I is defined as follows:

class natural_I for �.I(�.I) extends �.empty[�.I]{

m : int→int (x1) { unpack this as (x2,p) in x2.(p.m)(x1) }

}

The natural class implements the method by unpacking the receiver and subse-

quently calling the method with the unpacked class as the dispatcher and the

unpacked representation as the receiver. Some prior object encodings formalize

objects as explicit existentials [2, 29]. The unpacking of receiver objects in natural

classes is akin to the way these encodings unpack existentially typed objects

before sending messages to them.

The way that natural classes are encoded suggests that not all interfaces

have natural classes. In fact, an interface such as Eq that uses its constraint

parameter in contravariant or invariant positions other than the receiver type

does not have a natural class. The reason is that the encoding of such natural

classes would involve unpacking objects of the representation type every time

the representation type appears in the method signature, including one for the

receiver, and that the unpacked receiver does not necessarily have the same

representation type as the other occurrences. The lack of natural classes for

interfaces like Eq means these interfaces cannot be used as object types as other

interfaces (e.g., Set[E]) can. This restriction is not a limitation, though; a survey
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P !-linkages P-linkages Q !-linkages Q-linkages

P! ::=



�

•

•

�

I :[φ1]Q

c :[φ2]P



!

|



P !

Q(T)

Psup | •

m :S(x){e}
I :[φ1]Q

c :[φ2]P



!

P ::=



self[P]

Q(T)

Psup | •

m :S(x){e}
I :[φ1]Q

c :[φ2]P


Q! ::=


Q !

ν

Qsup | •

m :S


!

Q ::=


Self[Q]

ν

Qsup | •

m :S


Figure 5.17. Featherweight Familia: Linkage syntax

of a large corpus of open-source Java code finds that in practice, programmers

never use interfaces like Eq as types of objects [83].

Method calls. Rule [E-CALL] in Figure 5.16 type-checks a method call. The

method signature that the call is checked against is retrieved from the linkage

of the dispatcher’s interface; this linkage contains signatures for the methods

the interface requires. When the dispatcher d is a natural class, we get a typical

object-oriented method call; when d is a class variable, we have a method call

enabled by a type-class constraint; and when d is any other class, we have an

“expander call” [181] that endows the receiver with new behavior. Rule [E-CALL]

unifies these cases.

Family polymorphism. Central to the semantics is the notion of linkages. A

class linkage P (or P!) collects information about a class path of the form P (or P !).

As shown in Figure 5.17, a class linkage is a tuple comprising (1) the path, (2) the

constraint being implemented, (3) the superclass, (4) nested method definitions,

(5) linkages of nested interfaces, and (6) linkages of nested classes. The linkage

of an inexact class path P is parameterized by a self[P] parameter; substitution

for self[P] in that linkage is thus capture-avoiding. We emphasize this fact by
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K ` P ; P K ` P ! ; P!

[P]

K ` P ! ; P!
fam P!

fam(c) = [φ]Pnest

parent(Pnest{ω/φ}) = Psup

K ` Psup ; Psup Psup ⊕ Pnest{ω/φ} = P

K ` P !.c[ω] ; P
[P!-PROG]

�;P! ∈ K

K ` �; P!

[P!-SELF]
K ` P ; P

K ` self[P] ; P!
[P!-NEST]

K ` P !.c[ω] ; P

K ` P !.c![ω] ; P!
{
P !.c![ω]

/
self[P !.c[ω]]

}
P1 ⊕ P2 = P3

[CONCAT-P]

m1 :S1(x1){e1}{self[P2]/self[P1]} ⊕ m2 :S2(x2){e2} = m3 :S3(x3){e3}

I1 :[φ11]Q1{self[P2]/self[P1]} ⊕ I2 :[φ21]Q2 = I3 :[φ31]Q3

c1 :[φ12]P1{self[P2]/self[P1]} ⊕ c2 :[φ22]P2 = c3 :[φ32]P3

self[P1]

...

...

m1 :S1(x1){e1}

I1 :[φ11]Q1

c1 :[φ12]P1


⊕



self[P2]

Q2(T2)

Psup2

m2 :S2(x2){e2}

I2 :[φ21]Q2

c2 :[φ22]P2


=



self[P2]

Q2(T2)

Psup2

m3 :S3(x3){e3}

I3 :[φ31]Q3

c3 :[φ32]P3


K ` Q ; Q K ` Q ! ; Q!

[Q]

K ` P ! ; P! P!(I) = [φ]Qnest parent(Qnest{ω/φ}) = Qsup

K ` Qsup ; Qsup Qsup ⊕ Qnest{ω/φ} = Q

K ` P !.I[ω] ; Q
[Q!-NORM]

K ` Q !
1 ≡→ Q !

2
K ` Q !

2 ; Q!

K ` Q !
1 ; Q!

[Q!-SELF]
K ` Q ; Q

K ` Self[Q] ; Q!
[Q!-NEST]

K ` P !.I[ω] ; Q

K ` P !.I![ω] ; Q!
{
P !.I![ω]

/
Self[P !.I[ω]]

}
[Q!-I-P]

K ` P ! ; P!

interface
(
P!

)
= Q K ` Q ; Q

K ` P !.itf ; Q!
{
P !.itf

/
Self[Q]

} [Q!-I-CV]
p for Q(T) ∈ K K ` Q ; Q

K ` p.itf ; Q!{p.itf/Self[Q]}

K ` Q !
1 ≡→ Q !

2

[NORM-ABS]
K ` �.c![ω] ; P! interface

(
P!

)
= Q

K ` �.c![ω].itf ≡→ Q !
[NORM-CV]

p for Q !(T) ∈ K

K ` p.itf ≡→ Q !

Figure 5.18. Featherweight Familia: Selected rules for computing linkages
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putting this self-path, instead of the inexact path, as the first element of the

tuple. Given the linkage P of an inexact class path P , we use P! to mean the

linkage of the exact class path self[P]. Interface linkages (Q! and Q) contain

fewer components. In the linkage of an inexact interface path Q , Self[Q] may

occur free. Looking up an (exact) linkage for a nested component named id is

denoted by P!(id) or Q!(id).

The well-formedness rules for paths can be found in the technical report,

but here Figure 5.18 presents the rules that compute linkages for paths. The

corresponding judgment forms are K ` P ! ; P!, K ` P ; P, K ` Q ! ; Q!, and

K ` Q ; Q.

Linkages are computed in an outside-in manner. As shown in rule [PROG]

in Figure 5.16, the linkage of a program is obtained via the helper function

flatten(•) and added to the environment. Rule [P!-PROG] in Figure 5.18 retrieves

this linkage from the environment. The helper function flatten(•) is defined in

the technical report; it does not do anything interesting except converting the

program text into a tree of linkages. Importantly, linkages nested within an outer

linkage do not contain components that are inherited. Thus all nested linkages

are incomplete.

Rule [P] in Figure 5.18 computes the linkage of an inexact class path P !.c[ω]. It

first computes the linkage P!
fam of the family P !, from which the nested linkage Pnest

corresponding to nested class c is obtained. The helper function parent(•) finds

the superclass, whose linkage is Psup. While Pnest is incomplete, the superclass

linkage Psup is complete. The complete linkage of P !.c[ω] is then obtained by

concatenating Psup with Pnest{ω/φ}, using the linkage concatenation operator ⊕

defined by rule [CONCAT-P] in Figure 5.18. Operator ⊕ is defined recursively; a

nested linkage is concatenated with the corresponding linkage it further-binds
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to produce a new nested linkage (see other ⊕ -rules in the technical report).

Importantly, ⊕ replaces the self-parameter of the first linkage with that of the

second linkage; this substitution is key to late binding of nested names. Linkage

concatenation is also what enables dynamic dispatch for object-oriented method

calls (i.e., calls using a natural class as the dispatcher), because a method in a

linkage P overrides less specific methods of the same name in linkages to which P

is concatenated.

Rule [P!-NEST] shows that the linkage of an exact path P !.c![ω] is obtained

by substituting P !.c![ω] for self[P !.c[ω]] in the linkage of P !.c[ω].

Some interface paths are equivalent. For example, interface path p.itf, where

p is declared to witness constraint Q !(T), is equivalent to Q !. This equiva-

lence relation is captured by path normalization (≡→). Rules [NORM-ABS] and

[NORM-CV] in Figure 5.18 simplify interface paths of form d .itf. A path is

simplified to its normal form after finite steps of simplification (≡→∗). Other nor-

malization rules are purely structural; they and the normal forms can be found

in the technical report. The linkage computation rules in Figure 5.18—except for

[Q!-NORM]—are defined for paths of normal forms. Rule [Q!-NORM] suggests

that the linkage of a path is the same as that of its normal form. The equivalence

relation ≡ (shown in the technical report) is then the symmetric closure of ≡→∗.

Because of this path equivalence, substitution for self[P] (resp. Self[Q]) also

replaces other self-paths (resp. Self-paths) that are equivalent with self[P]

(resp. Self[Q]).

Soundness of family polymorphism hinges on a few conformance checks. For

example, if a nested interface definition adds new methods in a derived module,

classes implementing the interface in the base module should also be augmented
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in the derived module to define the new methods. This conformance of classes

to interfaces is expressed by the judgment form K ` P! I-Conform.

Another conformance condition, K ` P! FB-Conform, requires that nested

classes and interfaces conform to classes and interfaces they further-bind. In

particular, the superclass (or interface) of a nested class in a derived module

should be a subclass (or subinterface) of that of the further-bound class (or

interface) in the base module. Also, a nested, further-binding interface should

not change its variance with respect to the representation type. These checks

ensure that inherited code still type-checks in derived modules.

The rules performing the conformance checks above are given in the technical

report. They work by recursively invoking the checks on nested classes. At the

top level, they are invoked from rule [PROG] in Figure 5.16.

Decidability. Because F2 does not infer default classes, decidability of its static

semantics is trivial: the well-formedness rules and the linkage-computation

rules are syntax-directed (the subsumption rule can be easily factored into the

other expression-typing rules, and the path normalization rules are defined al-

gorithmically), and a subtyping algorithm works by climbing the subtyping

hierarchy. Inference of default classes in Familia could potentially introduce

nontermination, similar to how default model inference in Genus could lead to

nontermination [191]. We expect that termination can be guaranteed by enforcing

syntactic restrictions in the same fashion as in Genus. In particular, the restric-

tions include Material–Shape separation [83], which, in the context of Familia,

prevents the supertype of an interface definition from mentioning the interface

being defined; for example, an interface like Double cannot be declared to imple-

ment Comparable[Double]. Java allows such supertypes so that types like Double

can satisfy F-bounded constraints [38] like <T extends Comparable<? super T>>.
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Familia would use a where-clause instead (i.e., [T where Ord(T)]), eliminating

possible nontermination when checking subtyping [85] while adding the flexibil-

ity of retroactively adapting types to constraints.

5.5.4 Soundness

We establish the soundness of Featherweight Familiathrough the standard ap-

proach of progress and preservation [185]. The key lemmas and their proofs can

be found in the technical report.

Lemma 9 (PROGRESS).

If (i) ` P OK, (ii) flatten(P)=P!
prog, and (iii) �; �;P!

prog; � ` e : T , then either e is

a value or there exists e′ such that �;P!
prog ` e −→ e′.

Lemma 10 (PRESERVATION).

If (i) ` P OK, (ii) flatten(P) = P!
prog, (iii) �; � ; P!

prog; � ` e : T , and also

(iv) �;P!
prog ` e −→ e′, then �; �;P!

prog; � ` e′ : T .

Theorem 5 (SOUNDNESS).

If (i) ` �{I C e } OK, (ii) flatten
(
�{I C e }

)
=P!

prog, and (iii) �;P!
prog ` e −→

∗ e′,

then either e′ is a value or there exists e′′ such that �;P!
prog ` e

′ −→ e′′.

5.6 Related work

One way to evaluate programming language designs is by comparison with

prior work, and indeed decades of prior work on language support for extensible

and composable software has developed many mechanisms for extensibility and
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genericity. However, we argue that no prior work integrates the different forms

of polymorphism as successfully.

Constrained parametric polymorphism. Central to a parametric-polymorphism

mechanism is a way to specify and satisfy constraints on type parameters. Many

prior languages have experimented with either nominal subtyping constraints

(e.g., Java and C#) or structural matching constraints (e.g., CLU [110] and Ce-

cil [43]). Both approaches are too inflexible: types must be preplanned to either

explicitly declare they implement the constraint or include the required methods

with conformant signatures. At the same time, typing is made difficult by the

interaction between inheritance and constraints that require binary methods.

F-bounded polymorphism [38] and match-bounded polymorphism [1, 31, 33]

are proposed to address this typing problem. However, they do not address the

more urgent need to allow types to retroactively satisfy constraints they are not

prepared to satisfy; this inflexibility is an inherent limitation of subtyping-based

approaches.

To allow retroactive adaptation, recent work follows Haskell type classes [176].

JavaGI [182] supports generalized interfaces that can act as type classes. A

special implementation construct is used as a type-class instance. Genus [190]

introduces constraints and models on top of interfaces and classes. It avoids the

global uniqueness limitation of Haskell and JavaGI—that type-class instances are

globally scoped and that a given constraint can only be satisfied in one way.

To avoid complicating the easy case, Genus allows constraints to be satisfied

structurally via natural models. Genus also supports model-dependent types that

strengthen static checking and model multimethods that offer convenience and

extensibility. Familia incorporates all these Genus features without requiring
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extra constructs for constraints or models. Unlike Familia, neither JavaGI nor

Genus supports associated types.

Generic programming in Rust [154] and Swift [169] is inspired by type classes

as well. In Rust, objects and generics are expressed using the same constructs

(trait and impl), but Rust lacks support for implementation inheritance. These

languages also have the limitation of global uniqueness. Dreyer et al. [57] and

Devriese and Piessens [55] integrate type classes into ML and Agda, respectively,

with a goal of not complicating the host language with duplicate functionality.

Although not intended for generic programming, expanders [181] and CaesarJ

wrappers [12] support statically scoped adaptation of classes to interfaces.

In Scala, generics are supported by using the Concept design pattern, made

more convenient by implicits [137]: traits act as constraints, and trait objects

are implicitly resolved arguments to generic abstractions. This approach does

not distinguish types instantiated with different trait objects (cf. Familia types

that keep track of the classes used to satisfy constraints), and does not allow

specializing behavior for subtypes of the constrained type (cf. class multimethods

in Familia). Scala also supports higher-order polymorphism by allowing higher-

kinded type parameters and virtual types [123]. Familia supports higher-order

polymorphism via nested, parameterized types and interfaces. Because nested

components can be further-bound, higher-order polymorphism in Familia goes

beyond Scala’s higher-kinded virtual types.

Family polymorphism. Prior work on family polymorphism has been largely

disjoint from work on parametric polymorphism. Virtual types [92, 170, 172] are

unbound type members of an interface or class. They support family polymor-

phism [65], with families identified by an instance of the enclosing class. Virtual

types inspired Haskell to add associated types to type classes [41, 42]. Virtual
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types are not really “virtual”: once they are bound in a class, their bindings

cannot be refined as can those of virtual methods and virtual classes. In this

sense, they act more like type parameters; in fact, virtual types are considered an

alternative approach to parametric polymorphism [170]. It is understood that

virtual types are good at expressing mutually recursive bounds [32]; this use

of virtual types in generic programming is largely subsumed by the more flexi-

ble approach of multi-parameter type classes [98] available in Haskell, JavaGI,

Genus, and Familia.

Virtual classes, both based on object families [12, 23, 64, 113, 115], and class

families [44, 131, 132, 150], offer a more powerful form of family polymorphism

than virtual types do: a subclass can specialize and enrich nested classes via

further binding. Path-dependent types are used to ensure type safety for virtual

types and virtual classes (e.g., Ernst et al. [66], Nystrom et al. [131]). A variety

of other mechanisms support further binding, including virtual classes, mixin

layers [162], delegation layers [140], and variant path types [93]. The family-

polymorphism mechanism in Familia is closest to that in Jx [131]. Our use of

prefix types is adapted from Jx; the fact that self-prefixes can be inferred makes

family polymorphism lightweight in Familia.

Unlike the class-family approach taken in Familia, the object-family approach

(virtual classes) does not readily support cross-family inheritance. For example,

with virtual classes, class a.b.c cannot extend class a.d.e because class a.b.c

has no enclosing instance of a.d. Tribe [44] and Scala support cross-family

inheritance for virtual classes and virtual types, respectively, but by adding extra

complexity to virtual classes or by resorting to verbose design patterns. Few

prior languages support coordinated evolution of related, non-nested families.

Cross-family inheritance and cross-family coevolution are crucial to deploying
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family polymorphism at large scale, where we expect components from different

modules to be frequently reused and composed.

Scala supports virtual types but not virtual classes, simulating the latter

with a design pattern [134]. While this pattern seems effective at a small scale

for tasks like the Observer pattern, it does not scale to a larger setting where

cross-family inheritance is needed, where entire frameworks are extended, and

where further binding is therefore needed at arbitrary depth. The effort required

to encode virtual classes in Scala appears to be significant [183]. Scala also

supports mixin composition. A mixin has an unbound superclass that is bound

in classes that incorporate the mixin. Familia is expressive enough to encode

mixin composition via late binding of superclasses, rather than requiring a

separate language mechanism for mixins.

Familia extends the expressivity and practicality of family polymorphism. It

allows classes to be unbound yet non-abstract. It also allows externally imported

names to coevolve with the current module by further-binding base modules.

Prior languages that support family polymorphism beyond virtual types have

omitted support for parametric polymorphism. We believe support for paramet-

ric polymorphism is still important, because applicative instantiation of generic

abstractions is often more convenient and interoperable [32].
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CHAPTER 6

CONCLUSION

This dissertation looks at key abstraction mechanisms for organizing software.

In particular, it explores new linguistic abstractions for dealing with non-local

control behavior (such as exception handling), and for code reuse and extensibil-

ity. We have designed these linguistic abstractions with the guidelines (a) that

they make it easier for the programmer to express what we thought they needed

to express, (b) that they provide the guarantees which we considered are impor-

tant to provide, and (c) that the resulting language as a whole is as simple and

coherent as we could make it.

Accepting blame for tunneled exceptions. The new exception mechanism

presented in Chapter 2 combines the benefits of static checking with the flexibility

of unchecked exceptions. We were guided in the design of this mechanism by

thinking carefully about the goals of an exception mechanism, by much previous

work, and by many discussions found online. Our formal results and experience

suggest that our approach improves assurance that exceptions are handled. The

evaluation shows that the mechanism works well on real code. It adds negligible

cost when exceptions are not being used; exception tunneling comes with a

small performance penalty that appears to be more than offset in practice by

avoiding the run-time overhead of wrapping exceptions. We hope this work

helps programmers use exceptions in a principled way and gives language

implementers an incentive to make exceptions more efficient.

Abstraction-safe effect handlers via tunneling. Chapter 3 argues that tunnel-

ing is also the right semantics for algebraic effects. As we have shown formally,
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it makes them abstraction-safe, preserving modular reasoning. Because algebraic

effects generalize other mechanisms such as exceptions, dynamically scoped

variables, and coroutines, the tunneling semantics fixes not only algebraic effects

generically, but also the design of several specific language features. We have

provided a strong foundation for the design of algebraic-effect mechanisms that

are not only type-safe, but also abstraction-safe. Our new semantics should be a

useful guide for future language designs and also motivate support for algebraic

effects in mainstream languages.

Lightweight, flexible object-oriented generics. The Genus design presented

in Chapter 4 is a novel and harmonious combination of language ideas that

achieves a high degree of expressive power for generic programming while

handling common usage patterns simply. Our experiments with using Genus

to reimplement real software suggests that it offers an effective way to inte-

grate generics into object-oriented languages, decreasing annotation burden

while increasing type safety. Our benchmarks suggest the mechanism can be

implemented with good performance.

Unifying interfaces, type classes, and family polymorphism. The Familia de-

sign presented in Chapter 5 achieves a high degree of expressive power by

unifying multiple powerful mechanisms for type-safe polymorphism. The re-

sulting language has low surface complexity—it can be used as an ordinary

Java-like object-oriented language that supports inheritance, encapsulation, and

subtyping. With little added syntax, several powerful features become available:

parametric polymorphism with flexible type classes, wrapper-free adaptation,

and deep family polymorphism with cross-family inheritance and cross-family

coevolution. We have described the language intuitively with examples that
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illustrate its expressive power. Its operational and static semantics are captured

by a core language that we have proved type-safe. Comparisons with previous

mechanisms for generic programming show that Familia improves expressive

power in a lightweight way.
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