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Pressed by the difficulty of writing asynchronous, event-driven code, mainstream languages have recently been

building in support for a variety of advanced control-flow features. Meanwhile, experimental language designs

have suggested effect handlers as a unifying solution to programmer-defined control effects, subsuming

exceptions, generators, and async–await. However, despite these trends, complex control flow—in particular,

control flow that exhibits a bidirectional pattern—remains challenging to manage.

We introduce bidirectional algebraic effects, a new programming abstraction that supports bidirectional

control transfer in a more natural way. Handlers of bidirectional effects can raise further effects to transfer

control back to the site where the initiating effect was raised, and can use themselves to handle their own

effects. We present applications of this expressive power, which falls out naturally as we push toward the

unification of effectful programming with object-oriented programming. We pin down the mechanism and the

unification formally using a core language that makes generalizations to effect operations and effect handlers.

The usual propagation semantics of control effects such as exceptions conflicts with modular reasoning

in the presence of effect polymorphism—it breaks parametricity. Bidirectionality exacerbates the problem.

Hence, we set out to show the core language, which builds on the existing tunneling semantics for algebraic

effects, is not only type-safe (no effects go unhandled), but also abstraction-safe (no effects are accidentally
handled). We devise a step-indexed logical-relations model, and construct its parametricity and soundness

proofs. These core results are fully mechanized in Coq. While a full-featured compiler is left to future work,

experiments show that as a first-class language feature, bidirectional handlers can be implemented efficiently.

1 INTRODUCTION
Modern software places new demands on programming languages. In particular, the need to interact

with high-latency external entities—users, file systems, databases, and geodistributed systems—has

led software to become increasingly event-driven. Callback functions are a conventional pattern

for event-driven programming, but unconstrained callbacks become complex and hard to reason

about as applications grow. Hence, it is currently in vogue for programming languages to build

in support for advanced control-flow transfer features like generators and async–await. These

features support more structured programming of asynchronous, event-driven code.

Meanwhile, algebraic effects [Plotkin and Power 2003; Plotkin and Pretnar 2013; Bauer and

Pretnar 2015] have emerged as a powerful alternative that allows programmers to define their

own control effects. They subsume a wide range of features including exceptions, generators, and

async–await. Compared to the monadic approach to effects, algebraic effects compose naturally

without requiring awkward monad transformers, and enjoy a nice separation between the syntax

(i.e., a set of effect operations) and the semantics (i.e., handling of those operations).

However, even with these advanced language features at hand, programmers today still find

certain complex control-flow patterns painful to manage. As we argue, features found in mainstream

languages are not expressive enough to capture bidirectional control transfer without losing the

desirable guarantee that all effects are handled, and existing language designs of algebraic effects

cannot readily express this bidirectionality without falling back to patterns that algebraic effects

are intended to help avoid.
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To resolve these challenges, we generalize the idea of algebraic effects. With algebraic effects,

effectful code initiates control transfer by raising effects that propagate up the dynamic call stack

to their handlers. With bidirectional algebraic effects, effect handlers can raise subsequent effects

that propagate in the opposite direction, to the site where the initiating effect was raised. This

bidirectionality makes it easy to transmit information and control, to and fro, between program

fragments. Accordingly, the type system requires the invocation site of an effect operation to handle

not only the initiating effect, but also the reverse-direction effects. All effects are guaranteed to
be handled.

The usual propagation semantics of control effects is known to interfere with abstraction bound-

aries in the presence of effect polymorphism, because higher-order functions can intercept effects

they are not supposed to handle [Zhang et al. 2016; Biernacki et al. 2018; Zhang and Myers 2019;

Convent et al. 2020]. A possible concern might be that bidirectional propagation would further

muddle the problem, leading to effect-polymorphic abstractions being violated in previously uniden-

tified ways. To address this concern, we provide bidirectional algebraic effects with a semantics

that respects abstraction boundaries, and we rigorously substantiate this strong abstraction claim.

All effects are guaranteed not to be accidentally handled.
Bidirectionality and the safety guarantees fall out naturally when a language designer views

algebraic effects through an object-oriented lens. In fact, the enabling and most visible language

change is a generalization of effect operations to make them appear like methods: the notion of an

effect operation is extended to allow it to declare further effects its handling code may raise—just

as methods in Java can declare exceptions their implementations may throw. Accordingly, handlers

of bidirectional effects, which we call bidirectional handlers, are generalized to make them appear

like objects. In particular, a self handler, analogous to the self reference found in object-oriented

languages, is brought into the context of a handler definition. Self-reference makes a bidirectional

effect handler a fixpoint definition—it can ask that its own effects be handled by itself.

The complexity of bidirectional control flow is innate to many modern software applications;

bidirectional algebraic effects do not simply make this complexity disappear. Instead, the static

guarantees afforded by the type system enable programmers to reason compositionally about

bidirectional control flow and therefore to manage complex control flow more easily.

Contributions. The dynamic behavior of bidirectionality is attainable in many languages in vari-

ous ways—this paper does not aim to rediscover bidirectional control flow. Rather, the contributions

consist in (i) a language-design recipe that allows integrating bidirectional control effects in a

sound, unified, and efficient way, addressing a variety of programming challenges, and in (ii) formal

developments that capture the essence of the mechanism and that establish strong guarantees

about it, putting the mechanism on a sound theoretical footing. We proceed as follows:

• Section 2 examines some control-flow features in mainstream languages and reviews algebraic

effects, identifying opportunities to improve support for bidirectional control transfer.

• Section 3 demonstrates the new programming abstraction informally (in the setting of a typical

object-oriented language) using its various applications, interspersed with discussions on

design issues.

• Section 4 shows that, importantly, an abstraction-safe mechanism for bidirectional effects

allows programmers to reason compositionally about correctness.

• Section 5 defines a core language, Olaf, capturing the informally introduced features and

unification from previous sections. It gives an operational semantics and a static semantics.

• Section 6 continues the formal developments with a logical-relations model for Olaf, culmi-

nating in proofs of coveted properties including type safety and parametricity. These formal

results are fully mechanized using the Coq proof assistant.
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• Section 7 discusses compilation issues. Experimental results on hand-translated examples

argue for supporting bidirectional handlers as a first-class language feature.

• Section 8 discusses related work in more detail, and Section 9 concludes.

2 BACKGROUND: ASYNC–AWAIT, GENERATORS, AND ALGEBRAIC EFFECTS
Complex, asynchronous, bidirectional control flow is already a reality for programmers today.

This section identifies real-world programming challenges involving bidirectional control flow and

shows how existing mechanisms fall short in addressing them.

Async–Await with Promises. An array of languages—for example, C# [Bierman et al. 2012],

JavaScript [ECMA International 2018], Rust [Rust language team 2018], and Swift [Lattner and Groff

2019]—have recently added, or are planning to add, support for async–await and the accompanying

promises abstraction [Liskov and Shrira 1988], also known as futures or tasks.
As an example, consider the C# program in Figure 1. Method HttpGetJson (lines 2–6) sends

an HTTP GET request to retrieve a web page by asynchronously running HttpGet (line 1), and

converts the raw bytes into JSON format. Because HttpGetJson is declared async, calling it (line 9)

1 static byte[] HttpGet(String url);
2 static async Task<Json> HttpGetJson(String url) {
3 Task<Json> t = Task.Run(() => HttpGet(url));
4 byte[] bytes = await t;
5 return JsonParse(bytes);
6 }
7 static async Task Main() {
8 string url = "xyz.org"
9 Task<Json> t = HttpGetJson(url);

10 ... // do things that do not depend on the query result
11 Json json = await t; // block execution until query terminates
12 ...

13 }

Figure 1. Using async–await in C#

does not block computations that do

not depend on the result of the request

(line 10). The programmer awaits the task
when they need the result to be ready.

Sending HTTP GET requests may raise

exceptions (e.g., due to connection is-

sues); the reasonable point for such an

exception to emerge is where the tasks

are awaited (lines 4 and 11). While await

sends a signal to a task scheduler on the

.NET runtime stack, the exceptions ap-

pear to propagate in the opposite direc-

tion, from the .NET runtime to the await sites.

However, existing languages that support async–await do not enforce at compile time that

exceptions raised by asynchronous computations are handled. The lack of this static assurance

makes asynchronous programming error-prone. For example, the C# compiler accepts the program

above without requiring that an exception handler be provided—if the asynchronous query does

result in an exception, the program crashes. The situation is worse in JavaScript: an exception

raised asynchronously is silently swallowed if not otherwise caught. Such unhandled exceptions

have been identified as a common vulnerability in JavaScript programs [Alimadadi et al. 2018].

It is no surprise that C# and JavaScript do not check asynchronously raised exceptions, since

neither statically checks exceptions in the first place, unlike Java [Gosling et al. 2018]—which is

unfortunate because in practice, most exceptions arising from C# code are undocumented [Cabral

and Marques 2007]. However, since asynchronously raised exceptions do not propagate through

the regular exception mechanism, it is not clear how to do this checking even in languages like

Java that do have checked exceptions.

Generators. Coroutine-style iterators, usually called generators, are a convenient construct avail-

able in many languages [Liskov et al. 1977; Griswold et al. 1981; Murer et al. 1996; van Rossum

2003; Hejlsberg et al. 2003; Thomas et al. 2004; ECMA International 2018]. They help avoid the

verbose, error-prone pattern of maintaining complex state machines inside iterator objects as seen
in Alphard [Shaw et al. 1977] and more recently in Java.
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try { node.iter() }
with yield(x) {

print(x)
resume()

}

(c) Client code handles Yield

effect Yield[X] {
def yield(X) : void

}

(a) Effect signature Yield

1 class Node[X] {
2 var head : X
3 var tail : Node[X]
4 ...

5 def iter() : void raises Yield[X] {
6 yield(head)
7 if (tail != null)
8 tail.iter()
9 }

10 }

(b) Iterator raises Yield

Figure 2. Yielding iterators via algebraic effects
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Figure 3. Stack snapshots of the program in Figure 2.

However, a weakness of generators is that they do not allow clients to concurrently modify

the underlying collections or streams being iterated over. A client iterating over a priority queue

might want to change the priority of a received element; similarly, a client iterating over a stream

of database records might want to remove one of those records from the database. Generators in

the mentioned languages lack the expressiveness to solve these programming challenges. In such

languages, the programmer either resorts to implementing iterators as even more complex state

machines, or simply shies away from defining powerful, reusable iterator abstractions.

Algebraic Effects. Algebraic effects [Plotkin and Power 2003; Plotkin and Pretnar 2013] are a

powerful unifying language feature that can express exceptions, generators, async–await, and

other related control-flow mechanisms including coroutines and delimited control [Kammar et al.

2013; Bauer and Pretnar 2015; Leijen 2017b; Dolan et al. 2017; Forster et al. 2017; Bračevac et al.

2018]. The hallmark of algebraic effects is adding support for signatures for control effects and for

handlers as implementations of these signatures.

An effect signature defines one or more operations. For example, the signature in Figure 2a,

named Yield and parameterized by a type variable X, contains exactly one operation, yield. The

operation takes as argument a value of type X.

Lines 5–9 of Figure 2b uses Yield to define a coroutine-style iterator for nodes in a linked list: it

recursively iterates over the tail after yielding the head. Invoking an effect operation raises the

corresponding effect: because iter invokes yield (line 6), calling iter can raise the Yield effect.

Static checking of effects requires this effect be part of the method’s type, in its raises clause

(line 5).

The client program in Figure 2c traverses a chain of nodes by calling iter and handling its Yield

effect. Effectful computations are enclosed by try ... with, followed by a handler that implements

the effect operations. Each time that the effect yield is raised, the recursive iterator computation
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in Figure 2b is suspended and control transferred to the handler in Figure 2c, which prints the

yielded element. Control then resumes in the iterator. The resulting execution is similar to using a

generator in C#, Python, or Ruby. The sequence of stack frames that result is shown in Figure 3.

Handlers can resume computations suspended by the raising of effects, by calling the resumption

denoted by the special resume function. This resume function is essentially a delimited continu-

ation [Felleisen 1988]. It takes as input the result of the effect operation. The call to resume in

Figure 2c takes no argument because the result type of yield is void.

Figure 3 visualizes the control flow in one iteration using stack diagrams, with each diagram

capturing the stack at a single point in time:

(1) The iterator has finished processing the first two elements of the list (hence the two iter

frames).

(2) A third iter frame is created; the iterator begins to process the third element.

(3) The iterator raises a Yield effect. The effect is then caught by the client’s handler.

(4) The client prints the yielded element.

(5) Printing finishes.

(6) Handling of Yield finishes. Control is returned to the iterator.

The handler in Figure 2c abbreviates the full signature of the effect operation. The expanded

form is shown below. We will write handlers mostly in the abbreviated syntax.

try { node.iter() }
with yield(x : X) : void { ... }

In many practical uses of algebraic effects, as in the example above, invoking resume is the

last action performed by an effect handler. We call this a tail resumption and call such handlers

tail-resumptive. Not all effect handlers are tail-resumptive; for example, exception handlers are

typically abortive: they do not resume the computation that raised the effect. Handlers that are

either tail-resumptive or abortive can be compiled to efficient code because there is no need to save

stack frames once resume is invoked or the handler aborts [Leijen 2017c].

Although algebraic effects subsume generators, they do not address the limitations of generators

outlined earlier: handler code cannot raise an effect transferring control back to the iterator code

to perform a concurrent modification to the data structure. Similarly, algebraic effects can express

async–await, but they are awkward when exceptions can be raised asynchronously: a handler

running asynchronous computations cannot propagate exceptions raised by those computations

back to the await site. Beyond generators and async–await, there are other interesting control-flow

applications that algebraic effects cannot yet readily support. What is needed is a unified mechanism

that can express all these programming challenges easily.

3 BIDIRECTIONAL ALGEBRAIC EFFECTS, INFORMALLY
We generalize algebraic effects to offer the missing flexibility: handlers of effect operations can

themselves raise effects that are handled by callers of the effect operations. Before defining a

formal semantics in Section 5, we first introduce the mechanism informally via examples written

in a syntax similar to that of Java, Scala or Kotlin, although the ideas could apply to many other

languages, especially those with an object-oriented flavor.

3.1 Generators with Concurrent Modification
We want to extend the iterator abstraction of Figure 2 so that iterator clients can issue interrupts

to request that the yielded element be replaced or removed. Note that implementing iterators that

support such concurrent modifications is awkward in standard OO languages [Liu et al. 2006].

We start by changing the signature of Yield, as shown in Figure 4a. Apart from being defined as
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17 var node : Node[int] = ...

18 try { node.iter() }
19 with yield(x) resume {
20 if (x < 0) behead() else replace(x * 2)
21 }
22 with behead() resume { // handle removal of the first
23 node = node.tail // element in node
24 }

(c) Client code raises interrupts

interface Yield[X] {
def yield(X) : void raises Replace[X] | Behead

}
interface Replace[X] { def replace(X) : void }
interface Behead { def behead() : void }

(a) Effect signatures

1 class Node[X] {
2 var head : X
3 var tail : Node[X]
4 ...

5 def iter() : void raises Yield[X] | Behead {
6 try { yield(head) }
7 with replace(x) resume { // handle replacement
8 head = x // of head
9 }

10 if (tail != null)
11 try { tail.iter() }
12 with behead() resume { // handle removal of the
13 tail = tail.tail // first element in tail
14 }
15 }
16 }

(b) Iterator handles interrupts

Figure 4. Yielding iterators with reverse-direction interrupts for replacing and removing yielded elements
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Figure 5. Stack snapshots of the program in Figure 4.

an interface (the reason for which will soon become clear), this signature differs from the one

in Figure 2a by declaring that yield may itself raise two additional effects, Replace and Behead,

corresponding to the two kinds of concurrent modifications that client code can request. (A raises

clause may include multiple effects, separated by vertical bars.) Allowing effect operations to declare

their own raises clauses is a key generalization we make to accommodate bidirectionality.

With the modified Yield effect, the client code in Figure 4c is able to remove negative integers

from a list and to double the non-negative ones even while iterating over the list: the handler

(lines 19–21) passes to the resumption a computation, which invokes either operation behead or

replace based on the integer yielded. Notice that resume takes as input a computation, rather than

a value, as signified by the use of curly braces instead of parentheses.

The resumption accepts a computation whose type and effects must match the result type and

effects of the effect operation. For example, in Figure 4c, the resumption to a yield call (line 19)

accepts a computation that may raise Replace[int] and Behead.

Meanwhile, the type system guarantees that the resumption—the suspended computation in

the iterator—contains handlers for both effects, so that invoking operations replace and behead

can cause control to safely transfer back to the handlers in the iterator. The new iterator code in

Figure 4b differs from Figure 2b in adding these two handlers.

To handle Replace, the handler (lines 7–9, Figure 4b) updates the head value of the list, and then

resumes what is left off by the raising of replace in the yield handler (line 19, Figure 4c). What is
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left to be done there is to resume what is left off by the raising of yield in the iterator code (line 6,

Figure 4b).

The stack diagrams in Figure 5 visualize the control flow:

(1) The iterator has finished processing the first two elements of the list.

(2) A third iter frame is created; the iterator begins to process the third element.

(3) The iterator raises a Yield effect. The effect is then caught by the client’s handler.

(4) The client issues a reverse-direction interrupt to ask that the third element of the list be

replaced. This Replace effect is caught by the iterator.

(5) Handling of Replace finishes. The iterator returns control to the client’s Yield handler.

(6) Handling of Yield finishes. The client returns control to the iterator.

Because effect Replace appears to propagate down the stack, in the reverse direction of Yield, we

call these bidirectional effects.

However, it is largely unnecessary to look at stack diagrams to understand control flow. A more

meaningful interpretation is to view both Yield and Replace as propagating outward through

evaluation contexts to callers. A Yield effect raised by iter propagates to the caller of iter; in the

context of the itermethod, this caller is represented by return, the return address of iter. Similarly,

a Replace effect raised by the yield handler propagates to the caller of yield; in the context of the

yield handler, this caller is represented by resume, the computation to be resumed after yield is

handled.

In each of the handlers in Figure 4, resume envelops the entire handler computation. In this

common case, we allow eliding the curly braces surrounding resume { ... }. For example, the handler

on lines 19–21 is desugarred to the following syntax:

try { node.iter() }
with yield(x) { resume { ... } }

The Behead interrupt must be handled differently than Replace, because removing a node from a

linked list is a nonlocal update—it is most appropriately done at a level that “owns” the current

list, that is, either the preceding node in the list (Figure 4b) or the client code (Figure 4c). Notice

that in this example, the client code, in addition to the iterator code, must be prepared to handle

Behead. The client code refers to a linked list by holding a reference to the first node of the list. So

when the first node is “beheaded”, it is only natural to expect the client code to handle this event

specially. If list nodes could be accessed only indirectly (as in Java, through a LinkedList object),

handling of Behead could be hidden from client code.

Instead of handling Behead immediately after it surfaces from the call site of yield (as we did

to Replace), Behead is propagated to the call site that triggers the iteration of the current list.

Hence, Behead occurs in the raises clause of iter (line 5, Figure 4b), as static checking of effects

entails. Accordingly, the type system requires the two call sites of iter to deal with Behead. Both

handle behead by replacing the reference to a list with its tail (line 12–14, Figure 4b and line 22–24,

Figure 4c).

Although the control flow is complex, reasoning about it remains tractable, especially because

the static checking of bidirectional effects offers guidance on how to program the control flow.

An economy of language constructs. As the syntax and the semantics suggest, bidirectionality

makes effect signatures and ordinary object interfaces become nearly indistinguishable: both effect

operations and object methods can raise effects, and effects always propagate to the caller. This

correspondence motivates their unification as a single language construct; throughout the paper, we

define effect signatures as interfaces. Moreover, as we introduce later, every bidirectional handler
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interface Exn[X] { def exn(X) : void }
interface Async {

def async[X,Y](Fun2[X,Y]) : Promise[X,Y]
def await[X,Y](Promise[X,Y]) : X raises Exn[Y]

}
type Fun2[X,Y] = () → X raises Exn[Y] | Async

(a) Effect signatures Exn and Async

class Promise[X,Y] {
var state : Sum[List[Awaiter[X,Y]],Fun1[X,Y]]
Promise() { this.state = inl([]) }

}
type Awaiter[X,Y] = Fun1[X,Y] → void
type Fun1[X,Y] = () → X raises Exn[Y]

(b) Definition of the Promise structure

Figure 6. Type-level definitions for expressing exceptional async–await

has access to a self handler that it can use to handle effects, analogous to how every object has

access to a self (receiver) object on which it can make method calls.

This unification is not merely a syntactic pun. We pin down this unification in the core language

(Section 5), which further allows methods and handlers to be defined using the same construct: an

ordinary method definition can be viewed as an effect handler where the entire method body is

passed to a tail resumption (cf., return).

Nevertheless, in the surface language we distinguish them to allow for a familiar programming

experience where return statements retain their idiomatic meaning in methods—that is, return

signifies the act of returning to the caller rather than the resumption per se, and method definitions

with a void return type need not have explicit return statements.

Raising effects within handlers. In existing languages, exceptions (and algebraic effects) raised

within handlers are propagated to the local context of the handler, rather than to the handler

resumption. Bidirectional algebraic effects are compatible with this semantics: so long as the

computation raising the effect is not passed to a handler resumption that, per the raises clause,

can handle the effect, the normal handling behavior is obtained.

Workarounds. One might think that an alternative to bidirectional effects would be to make

yield return a value of some algebraic data type (ADT) indicating the interrupt event and for the

client to pattern-match on the returned ADT value. Note that the try–with syntax is an entirely

cosmetic choice made to match the Java-like surface language; in fact, algebraic-effects designs

for functional languages often use a syntax similar to pattern-matching ADTs: a handler case-

analyzes the result of an effectful computation. Consequently, using ADTs as return types of effect

operations would not noticeably clarify the code, but it would reduce expressive power: control
could not be transferred back to the client code after Replace or Behead were handled. It would also

be syntactically heavier-weight: one would have to convert ADT values to algebraic effects. For

comparison, Figure 18 shows how the iter code would look if yield returned an ADT value.

A more general way is to make a yield handler resume with a callback value that is the thunked

handler computation. But it also means callers of yield must voluntarily comply with the contract

by remembering to force the thunk—control transfer via callbacks is a pattern algebraic effects are

intended to help avoid. Moreover, this approach can be rather inefficient; Section 7 explores the

performance implications when it is used to compile bidirectional effects.

3.2 Async–Await with Exceptions
We want to use algebraic effects to express both async–await and asynchronously raised exceptions,

while statically ensuring that all exceptions are handled.

Exceptions are expressed through the Exn effect, defined in Figure 6a. Its operation exn takes as

input a union of tags, which are instances of singleton classes indicating particular exceptional

conditions. For example, we use Exn[Http] for exceptions that occurred when processing HTTP
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56 def exec[X,Y](f2 : Fun2[X,Y],
57 p : Promise[X,Y]) : void raises Async {
58 val f1 : Fun1[X,Y]
59 try {
60 val x = f2()
61 f1 = fun() → x
62 } with exn(y) {
63 f1 = fun() → exn(y)
64 }
65 jobs.enqueue(fun() → {
66 match (p.state) {
67 | inl(awaiters) ⇒
68 p.state = inr(f1)
69 for (awaiter in awaiters)
70 jobs.enqueue(fun() → awaiter(f1))
71 | inr(_) ⇒ assert(false) // impossible
72 }
73 })
74 }

(e) Helper: executes f2; memoizes the result in p

14 val loop = new EventLoop()
15 loop.run(main)

(b) Running main in an event loop

1 def httpGet(String) : byte[] raises Exn[Http]
2 def httpGetJson(url : String) : Json raises
3 Async | Exn[Http] { // asynchronous method
4 val p = async(fun() → httpGet(s))
5 val bytes = await(p)
6 return jsonParse(bytes)
7 }

8 def main() : void raises Async {
9 val url = "xyz.org"

10 val p = async(fun()→ httpGetJson(url))
11 ... // do things that do not depend on the query result
12 try { val json = await(p); ... }
13 with exn(http) { ... }
14 }

(a) User program with effect Async

38 def handleAsync(f : () → void raises Async) : void {
39 try { f() }
40 with async[X,Y](f2 : Fun2[X,Y]) : Promise[X,Y] {
41 val p = new Promise[X,Y]()
42 __new_thread {
43 handleAsync(fun() → exec(f2, p))
44 }
45 resume { p }
46 }
47 with await[X,Y](p : Promise[X,Y]) : X raises Exn[Y] {
48 match (p.state) {
49 | inl(awaiters) ⇒
50 awaiters.add(fun(f1) → resume { f1() })
51 | inr(f1) ⇒
52 resume { f1() }
53 }
54 }
55 }

(d) Async handler

16 class EventLoop {
17 val jobs : Queue[() → void]
18
19 EventLoop() { this.jobs = new Queue() }
20
21 def run(f : () → void raises Async) : void {
22 handleAsync(f)
23 while (true) {
24 try {
25 jobs.dequeue().apply() // run next queued job
26 } with exn(nse) {
27 continue // queue is empty; keep polling it
28 }
29 }
30 }
31
32 def handleAsync(f : ()→void raises Async) :
33 void { ... } // Figure 7d
34
35 def exec[X,Y](f2 : Fun2[X,Y], p : Promise[X,Y]) :
36 void raises Async { ... } // Figure 7e
37 }

(c) Event loop

Figure 7. Using and handling exceptional async–await. Asynchronously raised exceptions are back-propagated
to await sites in the user program. Compared with the C# program in Figure 1, the added static checking

requires the user program in Figure 7a to handle asynchronously raised exceptions, but otherwise adds

no essential syntactic overhead compared to Figure 1. Figures 7b–7e implements the runtime that handles

asynchrony.

requests, Exn[NSE] for no-such-element exceptions raised when an empty queue is polled, and

Exn[Http|NSE] for the union of the two exceptional conditions.

The Async effect has two operations, async and await. Both operations are parameterized by two

type variables, one denoting the result type of the asynchronously running computation, and the

other the kind of exception it may raise. Operation async takes as input a computation and returns

a promise: the computation is scheduled to run by an Async handler, and when it finishes, its result,

which is either a value or an exception, is memoized by the promise. Awaiting the promise either

gives back the value or raises the exception.
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The Async signature is recursive in that operation async accepts a computation whose effects

can include not only Exn[Y] but also Async. This type-level recursion is useful because it allows for

promises that await other promises, a usage pattern found in many JavaScript and C# programs

(including the program in Figure 1).

Using exceptional async–await. TheC# program in Figure 1 can be ported to use this Async effect,

as Figure 7a shows. It has the same run-time behavior, but stronger static checking. Because method

httpGet may raise Exn[Http], the promises on lines 4 and 10 have types Promise[byte[],Http] and

Promise[Json,Http] respectively, and thus awaiting them may raise Exn[Http]. The type system

then requires a handler for this asynchronous exception to be provided—all exceptions, asyn-

chronously raised or not, are guaranteed to be handled.

The type-level recursion in Async allows invoking operation async with a computation that has

effect Async (line 10), capturing the fact that the resulting promise awaits another one (line 5).

We remark that in Figure 7, only Figure 7a is user-level code, showing that we add no essential

syntactic burden compared to Figure 1. The rest of Figure 7 implements the runtime that handles

asynchrony, with probably reasonable and excusable complexity.

The promises abstraction. Like JavaScript promises, promises are in one of three possible states,

expressed using a Sum type in Figure 6b. A promise is either (1) pending completion with a list of

awaiters that will run after the promise is complete, (2) is complete with a value, or (3) is complete

with an exception. Promises are initialized to pending completion with no awaiters. The two

completion states are expressed via a function of type () → X raises Exn[Y], or Fun1[X,Y] for short.

The awaiters are resumptions to calls to await; they are higher-order functions taking as input a

function of type Fun1[X,Y]. Whereas the Async handler in the language runtime can create and

inspect promises directly, user programs are supposed to introduce and eliminate promises only

indirectly via operations async and await.

Handling exceptional async–await. Typically a scheduler for asynchronous computations exists

in the language’s runtime, as is the case with JavaScript and C# (although an algebraic-effects

encodingmakes it possible for software components to handle their own Async effects).We present in

Figures 7c–7e a possible implementation of the runtime in a style similar to those of JavaScript (e.g.,

Node.js [Node]), which maintains a queue of jobs run by an event loop. Asynchronous computations

of the main program is run in this event loop, as Figure 7b suggests.

Initially, the queue is empty (line 19), and the main program is run inside an Async handler (line 22)

that handles all requests to start asynchronous computations and to await their results. New jobs

are enqueued on completion of asynchronous computations (lines 65–73). The queued jobs are

then run in the event loop (line 25). For simplicity, we use FIFO scheduling.

Figure 7d defines the Async handler. To handle async, the handler creates a new promise, creates

a thread using a __new_thread intrinsic, and returns the promise (lines 40–46). The new thread

executes the computation f2 asynchronously by calling a helper function exec, defined in Figure 7e.

It stores the result of f2 into a function f1 that represents a control-stuck computation—invoking f1

either immediately returns a value or immediately raises an exception (lines 59–64). Lines 65–

73 then schedule the events that should happen after the asynchronous computation’s result is

ready: they include transitioning the promise into one of the two completion states (line 68), and

scheduling all code awaiting the promise to run (lines 69–70). In the case that f1 is exceptional,

invoking an awaiter with f1 (line 70) effectively causes control to transfer to the exception handler

in the user program (line 13). While exec handles Exn[Y] for f2, it does not handle its Async effect.

So the call to exec is enclosed in the very Async handler being defined (line 43).
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15 try {
16 pinger(0, 50)
17 } with ping() resume {
18 ponger()
19 }

(c) Client code

interface Ping {
def ping() : void raises Pong

}
interface Pong {

def pong() : void raises Ping
}

(a) Effect signatures

1 def pinger(i, N : int) : void raises Ping {
2 try {
3 if (i < N)
4 ping()
5 } with pong() resume {
6 pinger(i + 1, N)
7 }
8 }

9 def ponger() : void raises Pong {
10 try { pong() }
11 with ping() resume {
12 ponger()
13 }
14 }

(b) Processes with effects Ping and Pong

6b

7

10b

ping

ping

4b

5

8b

pinger

ping
31 2a

2b

9 11

4a

8a

12a

6a

10a

ponger

ponger

pong

Client

pinger

pinger

pong

ponger

(d) Stack snapshot

Figure 8. Processes pinger and ponger send messages to each other in lockstep.

How to handle await depends on the promise’s state. To handle await for a promise that is still

pending completion (lines 49–50), the resumption to the await call is added to the awaiter list of

the promise. Otherwise (lines 51–52), the promise must be complete, and the resumption is invoked

with the result memoized by the promise.

Prior encodings. The ability to encode promise-based async–await [Leijen 2017a,b; Dolan et al.

2017] speaks to the expressive power of algebraic effects,
1
but encodings in existing language

designs compromise on how they accommodate exceptional computations. Koka [Leijen 2017a,b]

supports structured asynchrony via algebraic effects, but uses an either monad for possible excep-

tional outcomes of the await operation—but encoding exceptional outcomes into monadic values

is a pattern that algebraic effects in Koka are intended to help avoid! Unlike Koka, Multicore

OCaml [Dolan et al. 2017] does not check algebraic effects statically. To notify user programs about

asynchronously raised exceptions, the language adds a special discontinue construct. It is our

goal to treat async–await and asynchronous exceptions in a more unified way: both are statically

checked algebraic effects.

3.3 Communication Protocols
It has been shown before that algebraic effects can express interprocess communication, but not

without using a more exotic form of effect handlers that deviates from the original categorical

interpretation of effect handlers by Plotkin and Pretnar [2013]. In particular, prior work relies on

shallow handlers to keep the encoding syntactically light [Kammar et al. 2013; Lindley et al. 2017].

Bidirectional algebraic effects offer an alternative: since we allow all effect signatures to declare

further effects, a series of raised effects can, in general, bounce back and forth an arbitrary number

of times, turning effect signatures into statically checked communication protocols. We demonstrate

this capability using the effect signatures Ping and Pong (Figure 8a) to obtain a pair of functions

that send messages to (i.e., raise effects at) each other in lockstep.

Effects Ping and Pong are mutually recursive. While invoking ping (resp. pong) appears to one

process as sending a message, it appears to the other process as receiving the message, as that

other process must handle ping (resp. pong). Because ping (resp. pong) declares it may raise Pong

1
In JavaScript and C#, async functions implicitly wrap their return values in promises (e.g., line 5 in Figure 1). An algebraic-

effects encoding does not automatically support this behavior, but does not preclude it either. This eager wrapping possibly

encourages the anti-pattern of unnecessary promises [Okur et al. 2014; Alimadadi et al. 2018].
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(resp. Ping), a process typed with effect Ping (resp. Pong) should be prepared to receive a Pong (resp.

Ping) message after sending a Ping (resp. Pong). The same process is allowed to do more pings (resp.

pongs) on receiving the Pong (resp. Ping). The operations in this example do not carry a payload; a

more involved example can be found in Section 4.

Figure 8b shows two methods, pinger and ponger, typed with effects Ping and Pong, respectively.

They are glued together by the client code in Figure 8c. At each step, pinger does a ping (line 4),

and ponger reacts to it by doing a pong (line 10), upon receiving which, pinger recursively calls

itself (line 6). This interaction happens 50 times, after which the communication ceases. Figure 8d

visualizes the control flow. As in Figures 3 and 5, dashed arrows signal raising an effect to a stack

frame where its handler is found, while solid arrows signal handler invocations and ordinary

method calls.

Effects Ping and Pong can be viewed as specifying a communication protocol, where the effect

signatures choreograph the sending and receiving of messages. Processes statically typed with

these effects conform to the protocol dynamically. In this sense, bidirectional algebraic effects offer

an expressive behavioral-typing discipline resembling session types [Honda et al. 1999].

3.3.1 Deep versus Shallow. Previous work raises the distinction between deep handlers and shallow
handlers [Kammar et al. 2013]. They differ in the construction of handler resumptions: the resump-

tion to a deep handler contains the very handler at its outermost layer, so subsequent effects raised

in the resumption can be handled by the same handler. Handlers of algebraic effects, as originally

introduced by Plotkin and Pretnar [2013], are deep: an effect handler is a fold (in category-theoretic

terms, a catamorphism [Meijer et al. 1991]) over the algebra of effect operations. It has been argued

that deep handlers behave more regularly and admit easier reasoning [Kammar et al. 2013; Lindley

et al. 2017]. However, interprocess communication has been identified as the quintessential example

where shallow handlers lead to an easier encoding [Kammar et al. 2013; Hillerström and Lindley

2018]. By contrast, our encoding does not rely on shallow handlers, and has the added benefit of

capturing the sequencing of effects in the signatures. Nonetheless, we do not claim to settle the

debate over deep vs. shallow; it is not clear that the two encodings faithfully reflect each other, and

other applications of shallow handlers might emerge in the future.

3.3.2 Deep, Bidirectional Handlers Are Recursive Definitions. The deep-handling semantics hints

at recursion. However, before bidirectional handlers, handlers have been unable to exploit this

recursion to specify that they should handle their own effects, because handler resumptions can

only accept a value whose type matches the operation’s result type. By contrast, bidirectional

handlers allow passing to resume a computation that, in addition to the effects in the raises clause,

has the effect currently being handled.

We can use this feature to simplify the code of Figures 8b and 8c for a client that is privy to how

ponger is implemented. Notice there are two identical handlers for Ping—one on lines 11–13 in

ponger, and the other on lines 17–19 in the client—meaning all Ping effects are handled identically.

So we should be able to obtain the same bidirectional communication by keeping the Ping handler

in the client code but doing away with the one in ponger. The new ponger looks as follows:

def ponger() : void raises Pong | Ping { pong() }

It has an additional Ping effect because we got rid of the handler. Despite this change, the client code

in Figure 8c continues to type-check. The additional Ping effect raised by calling ponger (line 18) is

handled by the very handler being defined.

This recursion in handling makes deep, bidirectional handlers effectively fixpoint definitions.

While the binding structure of this fixpoint remains rather vague at this point, Section 4.3.2 makes

it precise.
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4 RETAINING PARAMETRICITY
The typical semantics for handling algebraic effects is to search for the dynamically closest enclosing

handler with a matching effect signature; in fact, this semantics works for the examples discussed

so far. However, this semantics is known to be in conflict with modular reasoning: higher-order,

effect-polymorphic abstractions can accidentally handle effects they are not designed to handle,

breaking abstraction boundaries [Zhang et al. 2016; Zhang and Myers 2019; Biernacki et al. 2018].

For example, the higher-order function map is declared to be polymorphic over an effect variable 𝛼

that ranges over the effects its argument function f may raise. The intended run-time behavior is

for these effects to be propagated to the caller of map.

def map[X,Y,𝛼](l : List[X], f : X → Y raises 𝛼) : List[Y] raises 𝛼

However, a problematic semantics could lead to map accidentally handling f’s effects if the imple-

mentation of map happens to contain an effect handler with a matching signature.

Previous work gives an alternative tunneling semantics to algebraic effects, addressing the

accidental handling problem without giving up the appeal of algebraic effects [Zhang and Myers

2019]. In this section, we show that bidirectional algebraic effects create new possibilities of

accidental handling, but that abstraction safety can be retained by adapting the tunneling semantics.

4.1 The Problem of Accidental Handling
We call the typical algebraic-effects semantics the signature-based semantics because it identifies
a propagating effect by its signature. We show that if a signature-based semantics were used,

resumptions to bidirectional handlers could handle effects by accident.

Suppose we want to use the ping-pong protocol to define two processes where one process

fetches webpages for HTTP URLs it receives from the other process. Both processes may make

asynchronous queries. To this end, effect signatures Ping and Pong are modified (Figure 9a) to carry

a payload and to be parameterized by an effect variable ranging over the extra effects the processes

may have. A pair of processes with these two effects are composed using method pingpong defined

in Figure 9b. It is effect-polymorphic, allowing the processes to have additional effects.

Whereas major platforms supporting async–await dispatch asynchronous jobs using a single

dispatcher in the runtime, the ability to treat async–await as a regular algebraic effect enables

software components to handle their own Async effects. This ability is useful, for example, when a

special event loop is wanted, or when Async effects must be monitored [Leijen 2017a].

The processes are defined in Figure 9c. Process pinger reads URLs asynchronously from an input

source (line 10) and handles its own Async effect (lines 15–16). Process ponger issues asynchronous

HTTP GET requests (line 21) but chooses to let an outer event loop to handle its Async effects;

hence Async appears in its raises clause. Underscores are placeholders for inferred effects. The

signature-based semantics would infer, via unification, the placeholder effect in the definition of

ponger to be Async|𝛼 .

Program pingpong(pinger, ponger) starts the bidirectional communication. The signature-based

semantics would instantiate the effect variable 𝛼 of pingpong to be Async, that of pinger to be Async,

and that of ponger to be the empty effect. The program as a whole would have effect Async—the

programmer expects an outer event loop to handle ponger’s Async effects.

However, under the signature-based semantics, the program would not execute in the expected

way. When ponger invokes either operation async or await, the dynamically closest enclosing

handler for Async would intercept and handle it: climbing up the call chain, ponger is called by ping

(lines 6 and 24), which is invoked on line 11, which is enveloped by the Async handler intended

only for the async and await calls on line 10. The programmer is in for a surprise.
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interface Ping[𝛼] {
def ping(String) : void raises Pong[𝛼]|𝛼

}

interface Pong[𝛼] {
def pong(String) : void raises Ping[𝛼]|𝛼

}

(a) Effect signatures

1 def pingpong[𝛼](
2 f1 : ()→void raises Ping[𝛼]|𝛼,
3 f2 : String→void raises Pong[𝛼]|𝛼) :
4 void raises 𝛼 {
5 try { f1() }
6 with ping(s) resume { f2(s) }
7 }

(b) Playing ping-pong

8 def pinger[𝛼]() : void raises Ping[𝛼] |𝛼 {
9 try {

10 val url = await(async(read))
11 ping(url)
12 } with pong(data) {
13 write(data)
14 resume { pinger() }
15 } with async(f) { ... // This Async handler is intended ONLY for
16 } with await(p) { ... // the async and await calls on line 10
17 } with exn(io) { ... }
18 }

19 def ponger[𝛼](url : String) : void raises Async | Pong[_] |𝛼 {
20 try {
21 val json = await(async(fun()→ httpGetJson(url)))
22 pong(json["data"])
23 } with ping(url) resume {
24 ponger(url)
25 } with exn(http) { ... }
26 }

(c) Processes Pinger and Ponger

Figure 9. Program pingpong(pinger,ponger) risks accidental handling under the signature-based semantics

This phenomenon of handler resumptions accidentally handling effects is new; key ingredients

of the example include bidirectionality and effect signatures parameterized over effects, which are

missing in previous work addressing accidental handling [Zhang and Myers 2019; Biernacki et al.

2018]. Still, we can rely on the prior work to help us understand the crux of the problem.

4.2 A Loss of Parametricity
An insight of prior work [Zhang and Myers 2019; Biernacki et al. 2018] is that accidental handling

reflects a loss of parametricity. Reynolds’ Abstraction Theorem for System F [Reynolds 1983]

implies that parametricity of type polymorphism relies on polymorphic functions not being able to

make decisions based on the types instantiating the type parameters. Analogously, parametricity of

effect polymorphism requires that effect-polymorphic functions not make decisions based on the

effects they are instantiated with. The signature-based semantics runs afoul of this requirement.

In the example above, pinger is a function polymorphic over an abstract effect 𝛼 . But under the

signature-based semantics, it would be able to inspect, at run time, the signatures of propagating

effects otherwise statically denoted by 𝛼 , causing accidental handling.

A loss of parametricity is a loss of modular reasoning. The signature-based semantics means, for

example, that one cannot reason modularly about the program context pingpong(pinger,•) by just

looking at the types and without knowing how pinger is implemented. The hole expects a function

of a type as shown on line 3 of Figure 9b, which does not speak of Async. Yet filling the hole with a

function with effect Async would lead to surprise.
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1 def pinger[𝛼][HPi : Ping[𝛼]]() : void raises HPi |𝛼 {
2 try {
3 val url = HA.await[HE](HA.async(read))
4 HPi.ping[HPo](url)
5 } with HPo : Pong[𝛼] = {
6 def pong[HPi : Ping[𝛼]](data : String) : void raises HPi |𝛼 {
7 write[HE](data)
8 resume { pinger[𝛼][HPi]() }
9 }

10 } with HA : Async = {
11 def async[X,Y](f : Fun2[X,Y]) : Promise[X,Y] { ... }
12 def await[X,Y][HE : Exn[Y]](p : Promise[X,Y]) : X raises HE { ... }
13 } with HE : Exn[IO] = { ... }
14 }

15 def ponger[𝛼][HA : Async][HPo : Pong[HA|𝛼]](url : String) : void raises HA |HPo |𝛼 { ... }

// Client code
pingpong[HA2](pinger[HA2], ponger[∅][HA2])

Figure 10. Desugaring pinger, ponger, and the client program

4.3 Tunneling via Lexically Scoped Handlers
To restore parametricity, we adapt the idea of tunneled algebraic effects [Zhang and Myers 2019].

Tunneling echoes the modular reasoning requirement that handlers should only handle effects

they are locally “aware” of; otherwise, effects tunnel through handlers. For example, the definition

of pinger is polymorphic over the effect variable 𝛼 it binds, so it ought to be “oblivious” to any

propagating effects that correspond to 𝛼 at run time—these effects tunnel through the handler

in pinger. By contrast, the call site pingpong(pinger,ponger) is “aware” that ponger may raise

Async—the call site is thus required to handle this effect.

This modular reasoning requirement suggests that the tunneling semantics choose handlers

lexically. This lexical scoping of handlers generalizes naturally to bidirectional algebraic effects,

with handler bindings brought into the lexical scope in three ways:

(1) a try–with statement binds an identifier, corresponding to the handler following with, for

use in the try-block computation,

(2) a raises clause binds a set of identifiers, each corresponding to an effect signature in the

clause, for use in the method body or handler body, and

(3) a handler definition binds an identifier named self, corresponding to the current handler, for

use in the handler body.

The first two ways are a straightforward adaptation of the tunneling semantics. The third way ex-

plains why a bidirectional handler can demand its own effects to be handled by itself (Section 3.3.2).

The approach of Zhang and Myers [2019] is that programs written in the usual syntax are

desugared to give handler bindings explicit names. Handlers for effectful computations are then

chosen by resolving an omitted handler to the lexically closest enclosing binding. Because handlers

are resolved lexically, effects appear to tunnel to handlers without allowing dynamically enclosing

handlers to intercept them, even if they have identical signatures.

As an example, Figure 10 shows the desugaring of pinger (Figure 9c). It makes explicit all

handler bindings and references to the bindings. Desugaring the raises Ping[𝛼] clause introduces

an identifier HPi into the pinger body; it denotes the handler used to handle Ping[𝛼] effects raised

by pinger. Invoking operation ping (line 4, in the try block) requires a Ping[𝛼] handler to be

provided. This handler is resolved to HPi, the lexically closest enclosing binding for the signature.
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The invocation also requires a handler for Pong[𝛼] to be provided, because operation ping is defined

to raise Pong[𝛼]. This handler is resolved to HPo, the binding introduced into the try block by one

of the surrounding handler definitions. The locally defined Async handler, denoted by HA, is used to

handle the invocations of async and await (line 3).

Figure 10 also shows the desugaring of the client program pingpong(pinger,ponger). Assuming

HA2 denotes a surrounding Async handler, it instantiates the effect variable of pingpong to be HA2,

that of pinger to be HA2, and that of ponger to be the empty effect. The client program as a whole

has effect HA2, indicating it uses the outer Async handler to handle Async effects raised by ponger.

4.3.1 Lifetimes as Effects. Effect handlers obey a stack discipline. A handler’s lifetime begins when

the corresponding try-block is entered, and ends when the try-block computation is done: the

handler cannot outlive the lexical structure binding it. The desugaring outlined above makes it

explicit that references to handlers are passed as lexically scoped arguments. But lexical scoping

alone does not prevent closures that outlive handlers from capturing them, making them dangling

references.

To prevent such dangling references, the type system follows prior work [Zhang and Myers

2019; Brachthäuser et al. 2020; Biernacki et al. 2020] in treating handler lifetimes as computational

effects, in a similar way to region-based type systems [Lucassen and Gifford 1988; Tofte and Talpin

1997; Grossman et al. 2002]. A computation that uses handlers to handle algebraic effects is typed

with the lifetimes of those handlers as its computational effects.

Such lifetime effects, denoted by handler identifiers, are written in raises clauses of desugared

types. For example, desugaring the raises Ping[𝛼] clause not only introduces the handler binding

HPi, but also means the method has lifetime effect HPi. Because the method body is typed with the

lifetime of HPi, it cannot outlive HPi; it is thus allowed to use the non-dangling reference HPi to

invoke ping.

The desugaring that introduces explicit handler bindings can thus be understood as also assigning

default lifetimes automatically as follows: an ordinary object is not lifetime-bounded, since its

lifetime is the same as the heap region; the lifetime of a handler is bounded by the try–with

stack region to which it is attached; and a method with a raises clause is lifetime-polymorphic.

Assigning default lifetimes is present in Cyclone (default regions [Grossman et al. 2002]) and Rust

(lifetime elision [Klabnik and Nichols 2019]). We do not require the complexity of these full-blown

region-based type systems, however, because only handlers are lifetime-bounded and because

handler lifetimes are restricted to stack regions.

try { pinger[HPi]() }
with HPi : Ping = {

def ping[HPo : Pong]() : void raises HPo {
resume { ponger[HPo][self]() }

}
}

4.3.2 Fixpoint Handlers. The availability of a self han-

dler makes it precise that bidirectional (deep) handlers

are fixpoint definitions: the fixpoint is taken of a handler

definition quantifying over self. Because the resump-

tion to a deep handler is enveloped by the same handler,

the computation passed to resume cannot outlive the

handler and can thus safely use it to handle its effects. The figure above shows how Figure 8c is

desugared using self, assuming ponger has the signature as shown in Section 3.3.2.

Since being self-referential is also a key characteristic of objects, it seems that objects and

handlers are almost unifiable. Section 5 makes this unification precise for a core language.

5 A CORE LANGUAGE
We study the formal foundation of bidirectional algebraic effects using a core language, Olaf, that

captures the key aspects of the language mechanism introduced in Sections 3 and 4.
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programs 𝑃 ::= 𝐼 ;
L
𝑡

interface definitions 𝐼 ::= interface F[𝛼] {𝑇 }
operation signatures 𝑇, 𝑆 ::= ∀𝛼.𝑇 | ∀Z .𝑇 | 𝜏→𝑇 | [𝜏]𝑐
types 𝜏, 𝜎 ::= 1 | aaaℓ F[𝑐] | aaaℓ 𝑇 | cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2
composite effects 𝑐 ::= ∅ | 𝑐, 𝑒
atomic effects 𝑒 ::= 𝛼 | ℓ
lifetimes ℓ ::= Z | L
operation implementations 𝐷 ::= Λ𝛼. 𝐷 | ΛZ . 𝐷 | _x. 𝐷 | _k. 𝑡
values 𝑣,𝑢 ::= x | () | fix self is aaaL 𝐷 | aaaL 𝐷 | cont 𝐾
terms 𝑡, 𝑠 ::= 𝑣 | 𝑡 .op | 𝑡 𝑐 | 𝑡 ℓ | 𝑡 𝑠 | L

𝑡 | 𝑡 | let x = 𝑡 in 𝑠 | throw 𝑡 𝑠

evaluation contexts 𝐾 ::= [·] | 𝐾.op | 𝐾 𝑐 | 𝐾 ℓ | 𝐾 𝑡 | 𝑣 𝐾 | 𝐾 | let x = 𝐾 in 𝑡 | throw 𝐾 𝑡

effect variables 𝛼 lifetime variables Z lifetime constants L value variables x, k,H, self, ... interface names F

Figure 11. Syntax of Olaf

Olaf is both functional and object-oriented. Like a lambda calculus, it does not support imperative

state. Like an object-oriented language, it supports the separation between objects and interfaces,

and objects in Olaf are self-referential. Olaf supports effect signatures and handlers using the same

constructs for object interfaces and objects. The effect-handling construct try–with is captured by

something that resembles delimited control [Gunter et al. 1995], following prior work [Zhang and

Myers 2019; Brachthäuser et al. 2020].

Olaf is intended to capture the essence of the language mechanism. It makes simplifications

similar to existing formalisms of algebraic effects with lexically scoped effect handlers [Zhang

and Myers 2019; Biernacki et al. 2020]: it is assumed that handlers are always given explicitly for

effectful computations (rather than resolving elided handlers to the closest lexically enclosing

binding) and that effect signatures contain exactly one effect operation. Lifting these restrictions is

straightforward but adds syntactic complexity that obscures the key issues. Because of its recursive

interface definitions and fixpoint handlers, Olaf is Turing-complete.

5.1 Syntax
Figure 11 presents the syntax of Olaf. Metavariables standing for identifiers have a lighter color.

An overline denotes a (possibly empty) sequence of syntactic objects. For instance, 𝑒 denotes a

sequence of effects; an empty sequence is ∅. Effect sequences, or composite effects, are denoted by 𝑐.

The notation •(𝑖)
denotes the 𝑖-th element in a sequence.

The type system tracks handler lifetimes as effects. An effect 𝑒 is either an effect variable 𝛼 or a

lifetime ℓ , which is either a lifetime variable Z or a lifetime constant L. Lifetime effects compose

easily, since effect sequences are essentially sets—the order and multiplicity of effects in a sequence

are irrelevant. Substituting an effect sequence 𝑒 for an effect variable 𝛼 in another effect sequence

works by flattening 𝑒 and replacing 𝛼 with the flattened effects. Substituting a lifetime ℓ for a

lifetime variable Z works in the usual way.

A value 𝑣 is either a variable x, the unit value (), a handler value fix self is aaaL 𝐷 , an operation value

aaaL 𝐷 , or a continuation cont 𝐾 . Continuations are represented by evaluation contexts 𝐾 . In a term

of form throw 𝑡 𝑠, term 𝑡 must evaluate to a continuation, after which 𝑠 is placed in the evaluation

context representing the continuation.
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While in Section 4.3 lifetimes are identified by handler bindings, in Olaf lifetimes are decoupled

from handlers and form a separate syntactic category: handler values (subsuming objects) are of

form fix self is aaaL 𝐷 , consisting of an operation implementation 𝐷 and the lifetime L of the value.
Handler values are fixpoints; the self variable is bound in 𝐷 . An operation value is of form aaaL 𝐷; it is

the result of unrolling the fixpoint definition of a handler value to extract the operation.

Lifetime constants L are declared by, and bound in, -terms. Olaf encodes the try–with construct

using -terms. The computation 𝑡 guarded by a
L
may have lifetime effect L. While -terms bind

and discharge lifetime effects, -terms invoke handlers and thus introduce lifetime effects.

A term has either the unit type 1, a handler type (a.k.a. an interface type) aaa ℓ F[𝑐], an operation

type aaa ℓ 𝑇 , or a continuation type cont [𝜏1]𝑒1⇝ [𝜏2]𝑒2 . Handler values have handler types, while

operation values have operation types. A term of form 𝑡 .op extracts the operation value from a

handler value, by unrolling the fixpoint handler definition. A continuation of type cont [𝜏1]𝑒1⇝ [𝜏2]𝑒2
can be applied to a computation of type [𝜏1]𝑒1 .
An operation implementation 𝐷 is possibly polymorphic over effect variables (Λ𝛼. 𝐷), lifetime

variables (ΛZ . 𝐷), and value variables (_x. 𝐷). Correspondingly, the operation signature𝑇 of a handler

can be effect-polymorphic (∀𝛼.𝑇 ), lifetime-polymorphic (∀Z .𝑇 ), and value-polymorphic (𝜏→𝑇 ). The

last parameter k of an operation implementation is a continuation—to wit, the handler resumption.

An operation has a result type [𝜏]𝑐 ; the handler resumption is able to discharge effects in 𝑐. Unlike

previous work that gives algebraic effects operational meanings [Leijen 2017b; Lindley et al. 2017;

Biernacki et al. 2019; Zhang and Myers 2019], handler resumptions in Olaf are evaluation contexts

taking as input (possibly effectful) computations, instead of functions that take only pure values.

An Olaf program consists of a set of interface definitions and a “main” term to be evaluated. The

interfaces are mutually recursive and can be parameterized by effect variables. The “main” term is

guarded by a , which binds a lifetime constant. This lifetime constant is used as the lifetime of

handler values that correspond to ordinary objects; they exist for the full lifetime of the program

and hence need not obey the usual stack discipline imposed on other handlers.

Example. Olaf is less removed from the informal surface language used in Sections 3 and 4 than

its syntax might suggest. Below we encode function pinger (Figure 10) in Olaf. This example

demonstrates how Olaf encodes various language constructs including handler bindings, the try–

with construct, functions and function calls, and handlers and handler invocations.

The (recursive) function pinger is encoded as a (self-referential) object, which is expressed as a

handler value that applies its resumption to its body 𝑡pinger:

fix pinger is aaaL0 Λ𝛼.ΛZPi . _HPi . _k. throw k 𝑡pinger

In the informal language of Section 4, a handler binding denotes both the handler and also its

lifetime. In Olaf, a handler binding is modeled with two bindings, one for a lifetime and the other

for a value variable: the value variable stands for a handler of the given lifetime. For example,

Pinger[𝛼] in the raises clause of pinger is modeled in Olaf by a handler binding HPi and a lifetime

binding ZPi, where HPi has lifetime ZPi.

Function pinger, encoded as an object, need not obey a stack discipline, so it has lifetime L0,
which is assumed to be the lifetime constant declared by the guarding the “main” program. Term

𝑡pinger, that is, the body of pinger, looks as follows, where the bindings 𝛼 , ZPi, HPi, k, and the self
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L1 ; 𝑡1−→L2 ; 𝑡2

[ktx]
L1 ; 𝑡1−→L2 ; 𝑡2

L1 ; 𝐾 [𝑡1] −→L2 ; 𝐾 [𝑡2]
[let] L ; let x = 𝑣 in 𝑡 −→L ; 𝑡 {𝑣/x}

[op] L ;
(
fix self is aaaL0 𝐷

)
.op−→L ; aaaL0 𝐷

{
fix self is aaaL0 𝐷

/
self

}
[eapp] L ;

(
aaaL0 Λ𝛼. 𝐷

)
𝑐 −→L ; aaaL0 𝐷 {𝑐/𝛼}

[lapp] L ;
(
aaaL0 ΛZ . 𝐷

)
L1−→L ; aaaL0 𝐷 {L1/Z }

[app] L ;
(
aaaL0 _x. 𝐷

)
𝑣 −→L ; aaaL0 𝐷 {𝑣/x}

[throw] L ; throw (cont 𝐾) 𝑡 −→L ; 𝐾 [𝑡]

[down] L ; L1 𝑡 −→L, L2 ;
L2 𝑡 {L2/L1}

(
L2 ∉ L

)
[downval] L ; L0 𝑣 −→L ; 𝑣

[downup] L ; L0 𝐾
[

aaaL0 _k. 𝑡
]
−→L ; 𝑡

{
cont L0𝐾

/
k
}
(L0 ↷ 𝐾)

L ↷ 𝐾

L ↷ [·]
L ↷ 𝐾

L ↷ 𝐾 𝑐

L ↷ 𝐾

L ↷ 𝐾 L′
L ↷ 𝐾

L ↷ 𝐾 𝑡

L ↷ 𝐾

L ↷ 𝑣 𝐾

L ↷ 𝐾

L ↷ 𝐾

L ↷ 𝐾

L ↷ let x = 𝐾 in 𝑡

L ↷ 𝐾

L ↷ throw 𝐾 𝑡

L ↷ 𝐾

L ↷ 𝐾.op

L ↷ 𝐾 L ≠ L0

L ↷ L0 𝐾

Figure 12. Operational semantics of Olaf

reference pinger, are in scope:

𝑡pinger
def
=

L let HE = fix self is aaaL ... in
let HA = fix self is aaaL ... in
let HPo = fix self is aaaL 𝐷pong in
let url = HA .op L HE read in (line 3)

HPi .op L HPo (url) (line 4)

𝐷pong
def
= ΛZPi . _HPi . _data. _k.
let _ = write.op L HE data in (line 7)

throw k
(

pinger.op 𝛼 ZPi HPi
)
(line 8)

The body of pinger is a try block followed by a series of handlers. A try–with statement is encoded

in Olaf as
L let H = fix self is aaaL 𝐷 in 𝑡 , where 𝐷 is the implementation of the effect operation, and 𝑡

is the try-block computation, which may invoke handler H. A handler should not outlive its try–

with statement, so the handler value has the same lifetime as declared by the -term. In term 𝑡pinger

above, all three handlers, HE, HA, and HPo, have the same lifetime L because there is only one try.

Operation invocations on handlers (subsuming method calls on objects) are encoded as -terms.

For example, the try-block computation HPi.ping[HPo](...) (line 4, Figure 10) invokes HPi, so it is

encoded in Olaf as HPi .op L HPo ..., where L is the lifetime of HPo. Similarly, the recursive call to

pinger (line 8) is also encoded as a -term. (For simplicity, in the encoding above we have assumed

the two operations of Async are combined into one.)

5.2 Operational Semantics
To give an operational semantics to Olaf, terms and evaluation contexts in Figure 11 are extended

with a -construct:

terms 𝑡, 𝑠 ::= ... | L
𝑡 evaluation contexts 𝐾 ::= ... | L

𝐾

Figure 12 defines the small-step operational semantics. Individual reduction steps take the form

L1 ; 𝑡1−→L2 ; 𝑡2 , meaning that term 𝑡1 steps to term 𝑡2 while the set of freshly created lifetime

constants possibly grows from L1 to L2. Per rule [down], a lifetime constant L1 declared by a -term

is replaced by a fresh copy L2 when the -term is reduced to a -term. While -terms lexically bind
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lifetime constants, -terms are non-binding constructs; evaluation contexts of form
L
𝐾 serve as

stack delimiters. This use of freshness is analogous to how calculi with reference cells allocate fresh

memory locations; closed terms can mention fresh identifiers. The distinction between and is

not apparent in Zhang and Myers [2019], albeit present in their Coq formalization; Biernacki et al.

[2020] clarify the distinction.

Rule [op] exposes the operation implementation of a handler by unrolling the fixpoint handler

value. Rule [downup] handles operation invocations. To execute the operation’s implementation, a

resumption must be found to substitute for the free variable k. Because the operation value aaaL0 _k. 𝑡
has lifetime L0, the surrounding evaluation context is searched for a stack delimiter

L0
. The part

of the evaluation context delimited by
L0
is then used as the resumption. In comparison, prior

formalisms of lexically scoped handlers would use the value _y. L0
𝐾 [y], rather than cont L0

𝐾 , as

the resumption. Because handlers are deep, the resumption has
L0
at its outermost layer. When

the operation value corresponds to an ordinary function, its lifetime L0 must have been introduced

by evaluating the
L0
guarding the “main” term. So what [downup] does in this case is essentially

calling the function with the “current continuation” (in Scheme parlance).

5.3 Static Semantics
Figure 13 presents the term-typing rules of Olaf. Term typing rules have form Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏]𝑒 ,
where Δ, Θ, Γ, and Ξ are binding contexts. The judgment form says that under these environments

term 𝑡 has type 𝜏 and effects 𝑒. Rule [t-up] types operation invocations. The effects of this term

include the operation value’s own lifetime and the effects in the operation’s result type.

Rule [t-down] shows that the lifetime constant L declared by a
L
𝑡 term can appear in the

effects of the computation guarded by
L
: to type-check 𝑡 , the environment Θ of lifetime constants

is augmented with L. The environment also tracks the type and effects [𝜏]𝑐 of the entire compu-

tation
L
𝑡 . Importantly, however, L must not occur free in [𝜏]𝑐 ; while 𝑡 has lifetime L, L

𝑡 lives

beyond L. Notice that we do not give a typing rule for the auxiliary -form, which only emerges

when evaluating a Olaf program.

Rule [t-fix] type-checks a handler value. The operation of the handler is type-checked with the

self reference in scope. The self reference has the same type aaaL F[𝑐] as the handler value. Using the

self reference triggers the lifetime effect L.
Rule [t-klam] type-checks an operation value whose parameters (except for the resumption) are

already in scope. A salient difference from previous work is that the type of the resumption, apart

from being a continuation type, does not have to exactly match the result type and effect [𝜏1]𝑐1 of
the operation: the continuation can be applied to a computation with the additional lifetime effect L
that is the lifetime of the current value. A consequence is that the computation the resumption is

applied to is allowed to use the self reference to handle its effects.

Rules for type-level well-formation and orderings can be found inAppendix A. Because composite

effects are sets, the subeffecting relation ⊢ 𝑐1 ≤ 𝑐2 simply says 𝑐1 is a subset of 𝑐2.

6 ESTABLISHING PARAMETRICITY FOR A LOGICAL-RELATIONS MODEL
As Section 4.2 argues, the key property to establish about Olaf should be parametricity. To this end,

this section develops a logical-relations model for Olaf, and shows it satisfies parametricity and is

sound with respect to contextual equivalence. These results, fully mechanized in Coq, provide a

rigorous account for abstraction safety and also imply type safety.
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Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏]𝑐 Δ ::= ∅ | Δ, 𝛼 Θ ::= ∅ | Θ, Z Γ ::= ∅ | Γ, x :𝜏 Ξ ::= ∅ | Ξ, L : [𝜏]𝑐

[t-unit]Δ |Θ | Γ | Ξ ⊢ () : [1]∅ [t-var]
Γ(x) = 𝜏

Δ |Θ | Γ | Ξ ⊢ x : [𝜏]∅
[t-up]

Δ |Θ | Γ | Ξ ⊢ 𝑡 :
[
aaaL [𝜏]𝑐1

]
𝑐2

Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏]𝑐1, 𝑐2, L

[t-op]

Δ, 𝛼 |Θ | Γ | Ξ ⊢ 𝑡 :
[
aaaL F[𝑐1]

]
𝑐2

signature(F) = interface F[𝛼] {𝑇 }

Δ |Θ | Γ | Ξ ⊢ 𝑡 .op :

[
aaaL𝑇 {𝑐1/𝛼}

]
𝑐2

[t-fix]

signature(F) = interface F[𝛼] {𝑇 }
Δ |Θ | Γ, self :aaaL F[𝑐] | Ξ ⊢ aaaL 𝐷 :

[
aaaL𝑇 {𝑐/𝛼}

]
∅

Δ |Θ | Γ | Ξ ⊢ fix self is aaaL 𝐷 :

[
aaaL F[𝑐]

]
∅

[t-elam]
Δ, 𝛼 |Θ | Γ | Ξ ⊢ aaaL 𝐷 :

[
aaaL𝑇

]
∅

Δ |Θ | Γ | Ξ ⊢ aaaL Λ𝛼. 𝐷 :

[
aaaL ∀𝛼.𝑇

]
∅

[t-llam]
Δ |Θ, Z | Γ | Ξ ⊢ aaaL 𝐷 :

[
aaaL𝑇

]
∅

Δ |Θ | Γ | Ξ ⊢ aaaL ΛZ . 𝐷 :

[
aaaL ∀Z .𝑇

]
∅

[t-lam]
Δ |Θ | Γ, x :𝜏 | Ξ ⊢ aaaL 𝐷 :

[
aaaL𝑇

]
∅

Δ |Θ | Γ | Ξ ⊢ aaaL _x. 𝐷 :

[
aaaL 𝜏→𝑇

]
∅

[t-klam]

Ξ(L) = [𝜏2]𝑐2
Δ |Θ | Γ, k :cont [𝜏1]𝑐1,L⇝ [𝜏2]𝑐2 | Ξ ⊢ 𝑡 : [𝜏2]𝑐2

Δ |Θ | Γ | Ξ ⊢ aaaL _k. 𝑡 :
[
aaaL [𝜏1]𝑐1

]
∅

[t-eapp]
Δ |Θ | Γ | Ξ ⊢ 𝑡 :

[
aaaL ∀𝛼.𝑇

]
𝑐2

Δ |Θ | Ξ ⊢ 𝑐1

Δ |Θ | Γ | Ξ ⊢ 𝑡 𝑐1 :
[
aaaL𝑇 {𝑐1/𝛼}

]
𝑐2

[t-lapp]
Δ |Θ | Γ | Ξ ⊢ 𝑡 :

[
aaaL ∀Z .𝑇

]
𝑐

Θ | Ξ ⊢ ℓ

Δ |Θ | Γ | Ξ ⊢ 𝑡 ℓ :
[
aaaL𝑇 {ℓ/Z }

]
𝑐

[t-app]

Δ |Θ | Γ | Ξ ⊢ 𝑡 :
[
aaaL 𝜏→𝑇

]
𝑐

Δ |Θ | Γ | Ξ ⊢ 𝑠 : [𝜏]𝑐
Δ |Θ | Γ | Ξ ⊢ 𝑡 𝑠 :

[
aaaL𝑇

]
𝑐

[t-down]

Δ |Θ | Γ | Ξ, L : [𝜏]𝑐 ⊢ 𝑡 : [𝜏]𝑐, L
Δ |Θ | Ξ ⊢ 𝜏 Δ |Θ | Ξ ⊢ 𝑐

Δ |Θ | Γ | Ξ ⊢ L
𝑡 : [𝜏]𝑐

[t-cont]
Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏1]𝑐1 ⇝ [𝜏2]𝑐2

Δ |Θ | Γ | Ξ ⊢ cont 𝐾 :

[
cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2

]
∅

[t-let]

Δ |Θ | Γ | Ξ ⊢ 𝑠 : [𝜎]𝑐
Δ |Θ | Γ, x :𝜎 | Ξ ⊢ 𝑡 : [𝜏]𝑐

Δ |Θ | Γ | Ξ ⊢ let x = 𝑠 in 𝑡 : [𝜏]𝑐

[t-throw]

Δ |Θ | Γ | Ξ ⊢ 𝑡 :
[
cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2

]
𝑐2

Δ |Θ | Γ | Ξ ⊢ 𝑠 : [𝜏1]𝑐1
Δ |Θ | Γ | Ξ ⊢ throw 𝑡 𝑠 : [𝜏2]𝑐2

[t-sub]

Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏1]𝑐1
⊢ 𝑐1 ≤ 𝑐2 ⊢ 𝜏1 ≤ 𝜏2
Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏2]𝑐2

Figure 13. Rules for typing Olaf terms

6.1 A Logical-Relations Model for Olaf
Technical devices used in the definition include step indexing [Appel and McAllester 2001; Ahmed

2006], possible worlds, and biorthogonality [Pitts and Stark 1998] to deal with challenges such as

Turing-completeness, freshly generated lifetimes, and delimited continuations. Figure 14 presents

the semantic interpretation of various type-level entities. Other definitions—including observa-

tional refinement, the relation on closed terms T J[𝜏]𝑐K𝛿\ (𝜔, 𝑡1, 𝑡2), and its lifting to open terms

Δ |Θ | Γ | Ξ ⊨ 𝑡1 ≼log 𝑡2 : [𝜏]𝑐—are largely standard and can be found in Appendix B.

A logical-relations model for a typed language interprets types as relations. As is standard, the

relational interpretations in Figure 14 are indexed by substitutions 𝛿 and \ that provides—in addition

to syntactic substitution functions (denoted by 𝛿𝑖 and \𝑖 where 𝑖 = 1, 2) for free effect variables and

lifetime variables in the type-level entity being interpreted—semantic interpretation of the free
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Semantic Types

J1K𝛿
\
(𝜔, 𝑣1, 𝑣2)

def
= 𝑣1 = () ∧ 𝑣2 = ()

Jaaa ℓ F[𝑐]K𝛿
\
(𝜔, 𝑣1, 𝑣2)

def
= ∃𝑇 . signature(F) = interface F[𝛼] {𝑇 } ∧

∃L1, 𝐷1, L2, 𝐷2 . 𝑣𝑖 = fix self is aaaLi 𝐷𝑖 (𝑖 = 1, 2) ∧
⊲ Jaaa ℓ 𝑇 {𝑐/𝛼}K𝛿

\

(
𝜔, aaaL1 𝐷1, aaa

L2 𝐷2

)
Jaaa ℓ 𝑇 K𝛿

\
(𝜔, 𝑣1, 𝑣2)

def
= ∃L1, 𝐷1, L2, 𝐷2 . \𝑖 ℓ = Li ∧ 𝑣𝑖 = aaa

Li 𝐷𝑖 (𝑖 = 1, 2) ∧
J𝑇 K𝛿

\
(𝜔, ℓ, 𝐷1, 𝐷2)

q
cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2

y
𝛿
\
(𝜔, 𝑣1, 𝑣2)

def
= ∃𝐾1, 𝐾2 . 𝑣𝑖 = cont 𝐾𝑖 (𝑖 = 1, 2) ∧ K

q
[𝜏1]𝑐1⇝ [𝜏2]𝑐2

y
𝛿
\
(𝜔, 𝐾1, 𝐾2)

Semantic Operation Signatures

J∀𝛼.𝑇 K𝛿
\
(𝜔, ℓ, 𝐷1, 𝐷2)

def
= ∃𝐷′

1
, 𝐷′

2
. 𝐷𝑖 = Λ𝛼. 𝐷′

𝑖 (𝑖 = 1, 2) ∧ ∀𝜔′, L1, L2,𝜓 . 𝜔 ⊆ 𝜔′ ⇒

𝜓 ⊆ 𝜔′ ⇒ J𝑇 K
𝛼 ↦→

〈
L1, L2,𝜓

〉
\

𝛿

(
𝜔′, ℓ, 𝐷′

1

{
L1
/
𝛼1

}
, 𝐷′

2

{
L2
/
𝛼2

})
J∀Z .𝑇 K𝛿

\
(𝜔, ℓ, 𝐷1, 𝐷2)

def
= ∃𝐷′

1
, 𝐷′

2
. 𝐷𝑖 = ΛZ . 𝐷′

𝑖 (𝑖 = 1, 2) ∧ ∀𝜔′, L1, L2, 𝜑′. 𝜔 ⊆ 𝜔′ ⇒
Li ∈ 𝜔′

𝑖 (𝑖 = 1, 2) ⇒ J𝑇 K𝛿
\, Z ↦→ ⟨L1, L2, 𝜑′ ⟩

(
𝜔′, ℓ, 𝐷′

1
{L1/Z1}, 𝐷′

2
{L2/Z2}

)
J𝜏→𝑇 K𝛿

\
(𝜔, ℓ, 𝐷1, 𝐷2)

def
= ∃𝐷′

1
, 𝐷′

2
. 𝐷𝑖 = _x. 𝐷′

𝑖 (𝑖 = 1, 2) ∧ ∀𝜔′, 𝑣1, 𝑣2 . 𝜔 ⊆ 𝜔′ ⇒
J𝜏K𝛿

\
(𝜔′, 𝑣1, 𝑣2) ⇒ J𝑇 K𝛿

\

(
𝜔′, ℓ, 𝐷′

1
{𝑣1/x}, 𝐷′

2
{𝑣2/x}

)
J[𝜏]𝑐K𝛿\ (𝜔, ℓ, 𝐷1, 𝐷2)

def
= ∃𝑡1, 𝑡2 . 𝐷𝑖 = _k. 𝑡𝑖 (𝑖 = 1, 2) ∧ ∀𝜔′, 𝐾1, 𝐾2 . 𝜔 ⊆ 𝜔′ ⇒

KTJ[𝜏 ]𝑐,ℓK𝛿\⇝LJℓK𝛿
\
(𝜔′, 𝐾1, 𝐾2) ⇒ LJℓK𝛿

\
(𝜔′, 𝑡1 {cont 𝐾1/k}, 𝑡2 {cont 𝐾2/k})

Semantic Effects

J𝛼K𝛿
\

(
𝜔, 𝑡1, 𝑡2, 𝜑, L1, L2

)
def
= ∃𝜓 . 𝛿 (𝛼) = 𝜓 ∧ 𝜓

(
𝜔, 𝑡1, 𝑡2, 𝜑, L1, L2

)
JℓK𝛿

\
(𝜔, 𝑡1, 𝑡2, 𝜑, L1, L2)

def
= ∃L1, L2, 𝑠1, 𝑠2 . \𝑖 ℓ = Li ∧ 𝑡𝑖 = aaaLi _k. 𝑠𝑖 (𝑖 = 1, 2) ∧

∀𝜔′, 𝐾1, 𝐾2 . 𝜔 ⊆ 𝜔′ ⇒ ⊲K
𝜑⇝LJℓK𝛿

\
(𝜔′, 𝐾1, 𝐾2) ⇒

⊲LJℓK𝛿
\
(𝜔′, 𝑠1 {cont 𝐾1/k}, 𝑠2 {cont 𝐾2/k})

J𝑐K𝛿
\

(
𝜔, 𝑡1, 𝑡2, 𝜑, L1, L2

)
def
= ∃𝑒 ∈ 𝑐. J𝑒K𝛿

\

(
𝜔, 𝑡1, 𝑡2, 𝜑, L1, L2

)
Auxiliary Relations

K𝜑1⇝𝜑2
(𝜔, 𝐾1, 𝐾2)

def
= ∀𝜔′, 𝑡1, 𝑡2 . 𝜔 ⊆ 𝜔′ ⇒ 𝜑1 (𝜔′, 𝑡1, 𝑡2) ⇒ 𝜑2 (𝜔′, 𝐾1 [𝑡1], 𝐾2 [𝑡2])

K
q
[𝜏1]𝑐1⇝ [𝜏2]𝑐2

y
𝛿
\
(𝜔, 𝐾1, 𝐾2)

def
= KTJ[𝜏1 ]𝑐

1
K𝛿
\
⇝TJ[𝜏2 ]𝑐

2
K𝛿
\

(𝜔, 𝐾1, 𝐾2)

LJZ K𝛿
\
(𝜔, 𝑡1, 𝑡2)

def
= ∃𝜑. \ (Z ) = 𝜑 ∧ 𝜑 (𝜔, 𝑡1, 𝑡2)

LJLK𝛿
\
(𝜔, 𝑡1, 𝑡2)

def
= ∃𝜏, 𝑐 . Ξ(L) = [𝜏]𝑐 ∧ T J[𝜏]𝑐K𝛿\ (𝜔, 𝑡1, 𝑡2)

𝜓 ⊆ 𝜔 def
= ∀𝜔′, 𝑡1, 𝑡2, 𝜑, L1, L2 . 𝜓

(
𝜔′, 𝑡1, 𝑡2, 𝜑, L1, L2

)
⇒ Li ⊆ 𝜔𝑖 (𝑖 = 1, 2)

Figure 14. Relational interpretations of types, operation signatures, and effects. (The definitions are implicitly

indexed by Δ, Θ, and Ξ.)
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variables. The logical relations are also indexed by a world 𝜔 of freshly created lifetime constants;

𝜔 ⊆ 𝜔′
means world 𝜔′

is a future world of (i.e., extends) 𝜔 .

Language features like recursion make it difficult to define these relations inductively on the

structure of types. Fixpoint handlers and mutually recursive interfaces in Olaf pose a similar

challenge. The technique of step indexing [Appel and McAllester 2001; Ahmed 2006] addresses

this challenge. Our logical relation is step-indexed; the logical relation is defined using a double

induction, first on a step index, and second on the structure of types. The definition is given in

terms of a logic equipped with the “later” modality ⊲, which offers a clean abstraction of step

indexing [Appel et al. 2007; Dreyer et al. 2009]. For example, the relational interpretation of an

interface type Jaaa ℓ F[𝑐]K𝛿
\
is defined as that of an operation type Jaaa ℓ 𝑇 {𝑐/𝛼}K𝛿

\
guarded by ⊲. Although

𝑇 may recursively mention F, the use of ⊲ ensures the definition remains well-founded.

The relational interpretation of continuation types

q
cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2

y
𝛿
\
is defined in terms

a relation on evaluation contexts K
q
[𝜏1]𝑐1⇝ [𝜏2]𝑐2

y
𝛿
\
. The latter relation is a standard auxiliary

definition in logical-relations proofs. Two evaluation contexts 𝐾1 and 𝐾2 are in this relation if

applying them to terms 𝑡1 and 𝑡2 related by T
q
[𝜏1]𝑐1

y
𝛿
\
implies the resulting terms 𝐾1 [𝑡1] and 𝐾2 [𝑡2]

are related by T
q
[𝜏2]𝑐2

y
𝛿
\
.

The interpretation of an operation type Jaaa ℓ 𝑇 K𝛿
\
is defined in terms of that of the operation

signature J𝑇 K𝛿
\
, indexed on the lifetime ℓ . Of particular interest is the interpretation J[𝜏]𝑐K𝛿\ . It

relates two operation implementations _k. 𝑡1 and _k. 𝑡2 in which 𝑡1 and 𝑡2 are related when the free

variables k standing for resumptions are replaced by related continuations. The continuations

are allowed to be related by KTJ[𝜏 ]𝑐,ℓK𝛿\⇝LJℓK𝛿
\
, where the occurrence of ℓ in addition to 𝑐 indicates

recursive handling by the fixpoint handler, corresponding to the premise of typing rule [t-klam].

The semantic interpretation of atomic or composite lifetime effects J𝑒K𝛿
\
or J𝑐K𝛿

\
follows techniques

developed in Biernacki et al. [2018] and Zhang and Myers [2019].

6.2 Results
Parametricity is a strong indicator that abstraction is preserved [Reynolds 1983; Dreyer 2018]. It

implies that effect-polymorphic functions behave uniformly, irrespective of the choice of effects

with which they are instantiated.

Theorem 1 (Parametricity, a.k.a. Abstraction Theorem, a.k.a. Fundamental Property). If Ξ and Γ

are well-formed, then Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏]𝑐 implies Δ |Θ | Γ | Ξ ⊨ 𝑡 ≼log 𝑡 : [𝜏]𝑐 .

Type safety means that well-typed Olaf programs do not get stuck—they either reduce to values

or diverge. Type safety follows from parametricity.

Theorem 2 (Type Safety). If ∅ |∅ |∅ |∅ ⊢ 𝑡 : [𝜏]∅ and ∅ ; 𝑡 −→∗ L′ ; 𝑡 ′ , then either there exists 𝑣

such that 𝑡 ′ = 𝑣 or there exists L′′ and 𝑡 ′′ such that L′ ; 𝑡 ′−→L′′ ; 𝑡 ′′ .

Abstraction is preserved when no clients can distinguish between implementations of the same

abstraction. The gold standard of indistinguishability is contextual equivalence [Morris 1968], whose

definition in the context of Olaf can be found in Appendix C. If the logical-relations model is sound,

in the sense that logically related terms are contextually equivalent, then indistinguishability can

be established through logical relatedness.

Theorem 3 (Soundness w.r.t. contextual equivalence).
Δ |Θ | Γ | Ξ ⊨ 𝑡1 ≼log 𝑡2 : [𝜏]𝑐 ⇒ Δ |Θ | Γ | Ξ ⊢ 𝑡1 ≼ctx 𝑡2 : [𝜏]𝑐 .

These results prove our claim that the type system of Olaf upholds strong abstraction boundaries.
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6.3 Formalization in Coq
The formal results above have been mechanized using the Coq proof assistant, in 17,800 lines of code

architected similarly to prior work [Zhang and Myers 2019; Biernacki et al. 2018]. We also wrote a

400-line extension of the IxFree library [Polesiuk 2017]—a shallow embedding of a logic with the

⊲ modality [Dreyer et al. 2009]—to implement the logical relations as dependently typed fixpoint

functions. Cofinite quantification [Aydemir et al. 2008] makes it easy to generate fresh lifetime

constants. This Coq implementation is available at https://github.com/yizhouzhang/olaf-coq.

7 IMPLEMENTATION ISSUES
While we leave a full-featured compiler to future work, we discuss two key compilation issues.

7.1 Tail-Resumption Optimization
Being able to apply the tail-resumption optimization is important because calling resumptions at

the tail position is probably the most common way handler resumptions are used in practice—in the

preceding examples, all handlers except those for exn or await are tail-resumptive. The optimization

avoids having to capture the handler resumption as a first-class value, which would otherwise

involve copying stack frames, a rather expensive operation.

Bidirectional handlers can benefit from this optimization too. Per rule [downup], a tail-resumptive

handler in Olaf is reduced as follows:

L ; L0
𝐾
[

aaaL0 _k. throw k 𝑡
]
−→ L ; throw

(
cont L0

𝐾

)
𝑡 −→ L ; L0

𝐾 [𝑡]

There is no need to reify the delimited continuation cont L0
𝐾 . It remains as the surrounding

evaluation context after two steps of reduction.

7.2 Translation into Unidirectional Effect Handlers
An obvious compilation target for bidirectional handlers is a language with deep, ordinary effect

handlers, and an obvious approach to this compilation is as follows: effect operations are translated

to return callbacks, and invocations of operations are translated to call the callbacks. For example,

effects Ping and Pong from Figure 8a are translated into these signatures:

effect Ping { def ping() : () → void raises Pong | Ping }
effect Pong { def pong() : () → void raises Ping | Pong }

The type of the returned callback additionally includes the effect being translated, so that the

callback computation can raise effects that are to be handled by the (deep) handler being defined.

Whether such a type-preserving translation is feasible in general should be examined per target

language—macro expressivity [Felleisen 1991] in the context of control-flow mechanisms is sensitive

to the precise set of cross-cutting features under consideration [Forster et al. 2017].

Importantly, the translation outlined above bears unpleasant performance implications: in a

tail-resumptive setting, the cost of communicating through callbacks could be avoided if a handler

computation were allowed to directly raise effects to the surrounding evaluation context.

To understand this cost empirically, we use a modified implementation of `C++ [Buhr 2019].

The `C++ language extends C++ [Stroustrup 1987] with effect handlers that are either abortive or

tail-resumptive. The modified version allows tail-resumptive effect handlers to directly raise effects

to their resumptions.

Historically, in the absence of a static effect system, bidirectional control flow has been banned

because it is considered too complex to reason about or use. For example, Mesa [Mitchell et al. 1979],

one of the few languages with resumable exceptions, forbids recursive handling. Similarly, `C++

does not check effects statically, and the original implementation uses an extra run-time check

https://github.com/yizhouzhang/olaf-coq
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to prevent effects raised by a handler from being handled by the handler resumption [Buhr 2019,

§5.5]. Our type system addresses this concern by offering reasoning principles for bidirectional,

recursive effect handling.

We performed two hand translations of the ping-pong communication example (Section 3.3,

with ponger implemented as in Section 3.3.2) into `C++, with one of the two using callbacks. This

program was chosen because it exercises high-frequency bidirectional control transfer. We ran

the hand-translated code using the modified `C++ implementation with the extra run-time check

disabled, and measured the running time on a 3.2GHz Intel Xeon Gold processor, averaging 500

runs. The translation relying on callbacks incurred a 2.1× slowdown: 42.6 ms vs. 19.8 ms. This

result argues for bidirectional handlers as a first-class language feature: obtaining bidirectionality

via a desugaring into callbacks is less efficient. (In the other way around, compiling callbacks away

into efficient bidirectionality would involve a complex interprocedural analysis.)

8 RELATEDWORK
Control effects. Effect handlers [Plotkin and Pretnar 2013; Bauer and Pretnar 2015] offer a form

of delimited control [Felleisen 1988; Danvy and Filinski 1990] (or coroutining [Haynes et al. 1986]),
together with a nice separation between the syntax of effects and their semantics. Whereas Forster

et al. [2017] show effect handlers and (a particular variant of) delimited-control operators fail to

macro-express [Felleisen 1991] one another while preserving typing, Piróg et al. [2019] show they

are equally expressive when their type systems support polymorphic operations and answer-type

polymorphism [Asai and Kameyama 2007], respectively. The core language Olaf further blurs the

boundaries: key elements of algebraic effects (i.e., effect signatures and handlers) and those of

delimited control (i.e., a pair of control operators) coexist and play complementary roles in Olaf.

Bidirectionality is possible with effect handlers or delimited-control operators using, for example,

callbacks (Section 7.2)—however, as we discuss later, Olaf is likely not macro-expressible by recent

formalisms that also lexically scope effect handlers [Zhang and Myers 2019; Biernacki et al. 2020].

Bidirectional handlers inherit the appeal of algebraic effects, and address bidirectional control

flow with a straightforward programming style, an economy of language constructs, efficient

compilation, and strong reasoning principles.

Applications of bidirectional handlers. Interruptible iterators [Liu et al. 2006] generalize the

expressive power of generators to allow concurrent updates to the underlying collection being

iterated over. The example in Section 3.1 shows that bidirectional algebraic effects capture the

expressive power of interruptible iterators but as part of a single unified effect mechanism with

formally defined semantics, rather than by introducing interrupts as a separate mechanism.

A key motivation for promises and async–await as language features was to enable better excep-

tion handling; the state of a promise indicates if an exception occurred asynchronously. However,

the lack of static checking on asynchronous exceptions makes software error-prone [Alimadadi

et al. 2018]. Previous encodings of async–await as algebraic effects are unsatisfactory: as discussed

in Section 3.2, they either do not express asynchronous exceptions as an algebraic effect [Leijen

2017a], or require ad hoc constructs and do not track exceptions statically [Dolan et al. 2017].

Session types [Honda et al. 1999] are a behavioral-typing discipline for communication pro-

tocols. The possibility of encoding session types using algebraic effects has been hypothesized

before [Fowler et al. 2019], and bidirectional effects make this connection more substantial. The

encoding does not yet offer the full power of session types, though; it enforces weaker session

fidelity and does not prevent deadlocks. Linear effect handlers are a promising future direction.

Preventing accidental handling. Accidental handling of algebraic effects in the presence of

effect polymorphism is a known problem. Tunneling (lexically scoped, lifetime-bounded handlers)
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as a way to avoid accidental handling of exceptions was introduced by Zhang et al. [2016]; follow-on

work adapted it to explicit effect polymorphism and proved parametricity [Zhang and Myers 2019].

Brachthäuser et al. [2018, 2020] implement tunneled algebraic effects in a Scala library, called Effekt,

that encodes lifetime effects through Scala’s intersection types and path-dependent types.

Biernacki et al. [2020] distinguish between an open and a generative semantics of lexically scoped

handlers; generativity is critical to ensuring parametricity when effect operations can be effect-

polymorphic. Olaf uses the generative semantics—its operational semantics creates fresh lifetimes.

Generativity is occasionally found in prior work on control effects (e.g., Gunter et al. [1995] and

Bauer and Pretnar [2015]), but without effects being statically tracked by a type-and-effect system.

We conjecture that Olaf cannot be macro-expressed by prior calculi of lexically scoped, generative

handlers (an inexpressivity proof like that of Forster et al. [2017] is beyond the scope of this

paper): the calculus of Zhang and Myers [2019] does not support effect-parameterized signatures

(Section 4.1) or effect-polymorphic operations [Biernacki et al. 2020], either of which could help

cause accidental handling; and Biernacki et al. [2020] do not support recursively defined signatures,

needed to mimic fixpoint handlers (Section 7.2). Previous parametricity results do not carry over.

Another way to avoid accidental handling—in languages where composite effects are rows [Wand

1991] rather than sets—is directives to signal that effects should bypass the dynamically closest

enclosing handler. These directives include the inject function of Leijen [2014], lift and coercions of
Biernacki et al. [2018, 2019], and adaptors of Convent et al. [2020]. For example, the semantics of

applying the lift construct [·]A to a computation whose effect is a polymorphic row 𝛼 is as follows:

statically, the lifted computation has effects A|𝛼 ; dynamically, an A effect raised by the original

computation is handled by the dynamically second closest enclosing A handler. An enclosing handler

for A thus cannot intercept A effects raised by the computation, because its effect 𝛼 is not considered

as a subeffect of the row A|𝛼 ; an explicit lift is needed to please the type checker.

Generalizing algebraic effects. Lindley et al. [2017] treat Frank’s handling construct as a higher-
order function that pattern-matches on the effects of its computation-typed arguments. This design

decision is orthogonal to ours: while we generalize effect signatures and handlers, Frank generalizes

the try–with construct. It is plausible that either idea can be adapted to the other’s setting, though

Frank’s shallow-handling semantics is incompatible with handlers being fixpoints.

9 CONCLUSION
This paper proposes a new design for effect handlers, in which a handler can raise effects and have

its resumption—including the handler itself—handle the effects. As our examples show, these ideas

address a need common to assorted programming challenges for better bidirectional communication

between software components. The expressive power falls out naturally when effect operations

and handlers are unified with methods and objects; however, the ideas also generalize to non-

object-oriented languages. We captured the essence of the new mechanism in a core language with

some distinctive features such as fixpoint handlers and the ability to treat handler resumptions as

evaluation contexts. Bidirectionality exposes previously unidentified ways to accidentally handle

effects that propagate per the usual, signature-based semantics; hence, we make bidirectional

handlers lexically scoped and focused on a convincing proof that they are compatible with strong

abstraction boundaries. While a complete implementation is left to future work, experiments

suggest bidirectional handlers can be compiled efficiently.

The recent flurry of language designs for advanced control-flow features show that modern

software needs language-based support for complex control flow. Bidirectional algebraic effects

address this challenge in two important ways. First, they unify various previously separately

proposed language features (interruptible iterators, exceptional async/await, etc.) via a natural
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generalization of effect handlers. This unification should help increase confidence in language

metatheories and lower the hurdle for use of powerful control-flow features. Second, the guarantees

that no effects are unhandled or accidentally handled are critical to writing safer code. They help the

programmer manage the control-flow complexity via a type system; static typing offers guidance

on where to apply effect handling, and the parametricity guarantee enables truly compositional

reasoning. While these consequences are entirely anticipated, future software-engineering studies

could assess the empirical effectiveness of bidirectional algebraic effects in achieving these goals.

Together, these contributions offer an appealing way to support complex control flow in main-

stream programming languages.
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A STATIC SEMANTICS: A SUPPLEMENT TO SECTION 5.3
Figures 15 and 16 complement Figure 13 by presenting the rest of the static semantics of Olaf.

Δ |Θ | Ξ ⊢ 𝑇

Δ, 𝛼 |Θ | Ξ ⊢ 𝑇
Δ |Θ | Ξ ⊢ ∀𝛼.𝑇

Δ |Θ, Z | Ξ ⊢ 𝑇
Δ |Θ | Ξ ⊢ ∀Z .𝑇

Δ |Θ | Ξ ⊢ 𝜏 Δ |Θ | Ξ ⊢ 𝑇
Δ |Θ | Ξ ⊢ 𝜏→𝑇

Δ |Θ | Ξ ⊢ 𝜏 Δ |Θ | Ξ ⊢ 𝑐
Δ |Θ | Ξ ⊢ [𝜏]𝑐

Δ |Θ | Ξ ⊢ 𝜏

Δ |Θ | Ξ ⊢ 1

Θ | Ξ ⊢ ℓ
∀𝑐0 ∈ 𝑐, Δ |Θ | Ξ ⊢ 𝑐0
Δ |Θ | Ξ ⊢ aaa ℓ F[𝑐]

Δ |Θ | Ξ ⊢ 𝑇
Θ | Ξ ⊢ ℓ

Δ |Θ | Ξ ⊢ aaa ℓ 𝑇

Δ |Θ | Ξ ⊢ 𝜏1 Δ |Θ | Ξ ⊢ 𝑐1
Δ |Θ | Ξ ⊢ 𝜏2 Δ |Θ | Ξ ⊢ 𝑐2
Δ |Θ | Ξ ⊢ cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2

Δ |Θ | Ξ ⊢ 𝑐

Δ |Θ | Ξ ⊢ ∅
Δ |Θ | Ξ ⊢ 𝑐 𝛼 ∈ Δ

Δ |Θ | Ξ ⊢ 𝑐, 𝛼
Δ |Θ | Ξ ⊢ 𝑐 Θ | Ξ ⊢ ℓ

Δ |Θ | Ξ ⊢ 𝑐, ℓ

Θ | Ξ ⊢ ℓ

Z ∈ Θ

Θ | Ξ ⊢ Z
L ∈ domain(Ξ)

Θ | Ξ ⊢ L

Δ |Θ ⊢ Ξ

Δ |Θ ⊢ ∅
Δ |Θ ⊢ Ξ Δ |Θ | Ξ ⊢ 𝜏 Δ |Θ | Ξ ⊢ 𝑐

Δ |Θ ⊢ Ξ, L : [𝜏]𝑐
Δ |Θ | Ξ ⊢ Γ

Δ |Θ | Ξ ⊢ ∅
Δ |Θ | Ξ ⊢ Γ Δ |Θ | Ξ ⊢ 𝜏

Δ |Θ | Ξ ⊢ Γ, x :𝜏

⊢ 𝜏1 ≤ 𝜏2

⊢ 1 ≤ 1 ⊢ aaa ℓ F[𝑐] ≤ aaa ℓ F[𝑐]
⊢ 𝑇1 ≤ 𝑇2

⊢ aaa ℓ 𝑇1 ≤ aaa ℓ 𝑇2

⊢ 𝜏21 ≤ 𝜏11 ⊢ 𝑐21 ≤ 𝑐11 ⊢ 𝜏12 ≤ 𝜏22 ⊢ 𝑐12 ≤ 𝑐22
⊢ cont [𝜏11]𝑐11⇝ [𝜏12]𝑐12 ≤ cont [𝜏21]𝑐21⇝ [𝜏22]𝑐22

⊢ 𝜏1 ≤ 𝜏2 ⊢ 𝜏2 ≤ 𝜏3
⊢ 𝜏1 ≤ 𝜏3

⊢ 𝑇1 ≤ 𝑇2
⊢ 𝑇1 ≤ 𝑇2

⊢ ∀𝛼.𝑇1 ≤ ∀𝛼.𝑇2

⊢ 𝑇1 ≤ 𝑇2
⊢ ∀Z .𝑇1 ≤ ∀Z .𝑇2

⊢ 𝜏2 ≤ 𝜏1 ⊢ 𝑇1 ≤ 𝑇2
⊢ 𝜏1→𝑇1 ≤ 𝜏2→𝑇2

⊢ 𝜏1 ≤ 𝜏2 ⊢ 𝑒1 ≤ 𝑒2
⊢ [𝜏1]𝑒1 ≤ [𝜏2]𝑒2

⊢ 𝑇1 ≤ 𝑇2 ⊢ 𝑇2 ≤ 𝑇3
⊢ 𝑇1 ≤ 𝑇3

⊢ 𝑐1 ≤ 𝑐2
∀𝑒 ∈ 𝑐1, 𝑒 ∈ 𝑐2

⊢ 𝑐1 ≤ 𝑐2

Figure 15. Type-level well-formedness and orderings
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Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏1]𝑐1 ⇝ [𝜏2]𝑐2

Δ |Θ | Γ | Ξ ⊢ [·] : [𝜏]𝑐 ⇝ [𝜏]𝑐

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝
[
aaaL F[𝑐]

]
𝑐′′

signature(F) = interface F[𝛼] {𝑇 }
Δ |Θ | Γ | Ξ ⊢ 𝐾.op : [𝜏 ′]𝑐′ ⇝

[
aaaL𝑇 {𝑐/𝛼}

]
𝑐′′

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝
[
aaaL ∀𝛼.𝑇

]
𝑐2

Δ |Θ | Ξ ⊢ 𝑐1
Δ |Θ | Γ | Ξ ⊢ 𝐾 𝑐1 : [𝜏 ′]𝑐′ ⇝

[
aaaL𝑇 {𝑐1/𝛼}

]
𝑐2

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝
[
aaaL ∀Z .𝑇

]
𝑐

Θ | Ξ ⊢ ℓ
Δ |Θ | Γ | Ξ ⊢ 𝐾 ℓ : [𝜏 ′]𝑐′ ⇝

[
aaaL𝑇 {ℓ/Z }

]
𝑐

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝
[
aaaL 𝜏→𝑇

]
𝑐

Δ |Θ | Γ | Ξ ⊢ 𝑠 : [𝜏]𝑐
Δ |Θ | Γ | Ξ ⊢ 𝐾 𝑠 : [𝜏 ′]𝑐′ ⇝

[
aaaL𝑇

]
𝑐

Δ |Θ | Γ | Ξ ⊢ 𝑣 :
[
aaaL 𝜏→𝑇

]
∅

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝ [𝜏]𝑐
Δ |Θ | Γ | Ξ ⊢ 𝑣 𝐾 : [𝜏 ′]𝑐′ ⇝

[
aaaL𝑇

]
𝑐

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝
[
aaaL [𝜏]𝑐1

]
𝑐2

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝ [𝜏]𝑐1, 𝑐2, L

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝ [𝜎]𝑐
Δ |Θ | Γ, x :𝜎 | Ξ ⊢ 𝑡 : [𝜏]𝑐

Δ |Θ | Γ | Ξ ⊢ let x = 𝐾 in 𝑡 : [𝜏 ′]𝑐′ ⇝ [𝜏]𝑐

Δ |Θ | Γ | Ξ ⊢ 𝐾 : [𝜏 ′]𝑐′ ⇝
[
cont [𝜏1]𝑐1⇝ [𝜏2]𝑐2

]
𝑐2

Δ |Θ | Γ | Ξ ⊢ 𝑠 : [𝜏1]𝑐1
Δ |Θ | Γ | Ξ ⊢ throw 𝐾 𝑠 : [𝜏 ′]𝑐′ ⇝ [𝜏2]𝑐2

Figure 16.Well-formed evaluation contexts in Olaf
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B LOGICAL-RELATIONS MODEL: A SUPPLEMENT TO SECTION 6.1
Figure 17 complements Figure 14 by presenting the rest of the logical-relations definitions.

Observational Refinement

O (𝜔, 𝑡1, 𝑡2)
def
=

(
∃𝜔′, 𝑣1, 𝑣2 . 𝜔

′
1
= 𝜔1 ∧ 𝑡1 = 𝑣1 ∧ 𝜔2 ; 𝑡2−→∗𝜔′

2
; 𝑣2

)
∨(

∃𝜔′, 𝑡 ′
1
. 𝜔′

2
= 𝜔2 ∧ 𝜔1 ; 𝑡1−→𝜔′

1
; 𝑡 ′

1
∧ ⊲O

(
𝜔′, 𝑡 ′

1
, 𝑡2

) )
Logical Relation on Closed Terms (via Biorthogonality)

T J[𝜏]𝑐K𝛿\ (𝜔, 𝑡1, 𝑡2)
def
= ∀𝐾1, 𝐾2 . CCJ[𝜏]𝑐K𝛿\ (𝜔, 𝐾1, 𝐾2) ⇒ O (𝜔, 𝐾1 [𝑡1], 𝐾2 [𝑡2])

CCJ[𝜏]𝑐K𝛿\ (𝜔, 𝐾1, 𝐾2)
def
= ∀𝜔′. 𝜔 ⊆ 𝜔′ ⇒(

∀𝑣1, 𝑣2 . J𝜏K𝛿\ (𝜔
′, 𝑣1, 𝑣2) ⇒ O (𝜔′, 𝐾1 [𝑣1], 𝐾2 [𝑣2])

)
∧(

∀𝑡1, 𝑡2 . SJ[𝜏]𝑐K𝛿\ (𝜔
′, 𝑡1, 𝑡2) ⇒ O (𝜔′, 𝐾1 [𝑡1], 𝐾2 [𝑡2])

)
SJ[𝜏]𝑐K𝛿\ (𝜔, 𝐾1 [𝑡1], 𝐾2 [𝑡2])

def
= ∃𝜑, L1, L2 . J𝑐K𝛿\

(
𝜔, 𝑡1, 𝑡2, 𝜑, L1, L2

)
∧

(
∀𝑗 . Li (𝑗) ↷ 𝐾𝑖

)
(𝑖 = 1, 2) ∧

∀𝜔′, 𝑡 ′
1
, 𝑡 ′

2
. 𝜔 ⊆ 𝜔′ ⇒ 𝜑

(
𝜔′, 𝑡 ′

1
, 𝑡 ′

2

)
⇒ ⊲T J[𝜏]𝑐K𝛿\

(
𝜔′, 𝐾1

[
𝑡 ′
1

]
, 𝐾2

[
𝑡 ′
2

] )
Logical Relation on Open Terms

Δ |Θ | Γ | Ξ ⊨ 𝑡1 ≼log 𝑡2 : [𝜏]𝑐
def
= ∀𝜔, 𝛿, \,𝛾 . domain(Ξ) ⊆ 𝜔𝑖 (𝑖 = 1, 2) ⇒

JΔK (𝜔, 𝛿) ⇒ JΘK (𝜔, \ ) ⇒ JΓK𝛿
\
(𝜔, 𝛾) ⇒

T J[𝜏]𝑐K𝛿\ (𝜔, 𝛿1\1𝛾1𝑡1, 𝛿2\2𝛾2𝑡2)

Δ |Θ | Γ | Ξ ⊨ 𝐾1 ≼log 𝐾2 : [𝜏]𝑐 ⇝ [𝜏 ′]𝑐′
def
= ∀𝜔, 𝛿, \,𝛾 . domain(Ξ) ⊆ 𝜔𝑖 (𝑖 = 1, 2) ⇒

JΔK (𝜔, 𝛿) ⇒ JΘK (𝜔, \ ) ⇒ JΓK𝛿
\
(𝜔, 𝛾) ⇒

KJ[𝜏]𝑐⇝ [𝜏 ′]𝑐′K𝛿\ (𝜔, 𝛿1\1𝛾1𝐾1, 𝛿2\2𝛾2𝐾2)

J∅K (𝜔, 𝛿) def
= 𝛿 = ∅ JΔ, 𝛼K (𝜔, 𝛿) def

= 𝛿 = 𝛿′,𝛼 ↦→
〈
L1, L2,𝜓

〉
∧ 𝜓 ⊆ 𝜔 ∧ JΔK (𝜔, 𝛿′)

J∅K (𝜔, \ ) def
= \ = ∅ JΘ, Z K (𝜔, \ ) def

= \ = \ ′,Z ↦→ ⟨L1, L2, 𝜑⟩ ∧ Li ∈ 𝜔 (𝑖 = 1, 2) ∧ JΘK (𝜔, \ ′)

J∅K𝛿
\
(𝜔, 𝛾) def

= 𝛾 = ∅ JΓ, x :𝜏K𝛿
\
(𝜔, 𝛾) def

= 𝛾 = 𝛾 ′,x ↦→ ⟨𝑣1, 𝑣2⟩ ∧ J𝜏K𝛿
\
(𝜔, 𝑣1, 𝑣2) ∧ JΓK𝛿

\
(𝜔, 𝛾 ′)

Figure 17. Observational refinement, biorthogonal term relation, and its lifting to open terms
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C CONTEXTUAL EQUIVALENCE: A SUPPLEMENT TO SECTION 6.2
This section defines contextual equivalence precisely.

A program context is a term with a hole in it. In Olaf, they are defined as follows:

𝐶 ::= [·] | 𝐶 [[·] 𝑐] | 𝐶 [[·] ℓ] | 𝐶 [[·] 𝑡] | 𝐶 [𝑡 [·]] | 𝐵 [_k. [·]] | 𝐶
[

[·]
]

| 𝐶
[

L [·]
]

𝐶 [let x = [·] in 𝑡] | 𝐶 [let x = 𝑡 in [·]] | 𝐶 [throw 𝑡 [·]] | 𝐶 [throw [·] 𝑡] |

𝐵 ::= 𝐶
[
aaaL fix self is [·]

]
| 𝐶

[
aaaL [·]

]
| 𝐵 [_𝛼. [·]] | 𝐵 [_Z . [·]] | 𝐵 [_x. [·]]

Judgments of context well-formedness have form ⊢ 𝐶 : Δ |Θ | Γ | Ξ | [𝜏]𝑐 ⇝ 𝜎 , meaning that filling

the hole in𝐶 with a term 𝑡 which has a typing judgment Δ |Θ | Γ | Ξ ⊢ 𝑡 : [𝜏]𝑐 results in a program𝐶 [𝑡]
which has typing judgment ∅ |∅ |∅ |∅ ⊢ 𝐶 [𝑡] : [𝜎]∅.

Contextual equivalence ≈ctx is defined in terms of contextual refinement ≼ctx , as follows:

Δ |Θ | Γ | Ξ ⊢ 𝑡1 ≼ctx 𝑡2 : [𝜏]𝑐
def
= ∀𝐶, 𝜎. ⊢ 𝐶 : Δ |Θ | Γ | Ξ | [𝜏]𝑐 ⇝ 𝜎 ⇒

∀L1, 𝑣1 . ∅ ; 𝐶 [𝑡1] −→∗ L1 ; 𝑣1 ⇒ ∃L2, 𝑣2 . ∅ ; 𝐶 [𝑡2] −→∗ L2 ; 𝑣2

Δ |Θ | Γ | Ξ ⊢ 𝑡1 ≈ctx 𝑡2 : [𝜏]𝑐
def
= Δ |Θ | Γ | Ξ ⊢ 𝑡1 ≼ctx 𝑡2 : [𝜏]𝑐 ∧ Δ |Θ | Γ | Ξ ⊢ 𝑡2 ≼ctx 𝑡1 : [𝜏]𝑐

In this definition, the observable behavior is whether a computation terminates. This seemingly

weak observation power does not weaken the discriminating power of the definition. Because Olaf

is Turing-complete, when two terminating computations step to different values, one can always

construct a program context that exhibits different termination behaviors when plugged with these

computations.

Contextual equivalence is hard to establish directly because of the universal quantification

over contexts. Theorem 3 makes it possible to establish contextual equivalence through logical

relatedness.

D ADT EXAMPLE

// The algebraic data type
data YieldResult[X] =
| ToContinue
| ToReplace(X)
| ToBehead

effect Yield[X] {
def yield(X) : YieldResult[X]

}

// The need for a Behead effect cannot be
// easily dismissed: the itercode has to raise
// it to the caller and wait for control to
// come back.
effect Behead {

def behead() : void
}

(a) ADT definition and effect signatures

class Node[X] {
var head : X
var tail : Node[X]
...

def iter() : void raises Yield[X] | Behead {
match yield(head) {
| ToContinue ⇒ skip
| ToReplace(x) ⇒ head = x
| ToBehead ⇒ behead() // convert ADT value to algebraic effect
}
if (tail != null)

try { tail.iter() }
with behead() {

tail = tail.tail
resume()

}
}

}

(b) Iterator pattern-matches the result of yield (cf. Figure 4b)

Figure 18. Using an ADT to encode iterator interrupts. By comparison, bidirectional algebraic effects allow for

more concise code.
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