IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2020 1

Path Planning under Malicious Injections and
Removals of Perceived Obstacles: a Probabilistic
Programming Approach

Jacopo Banfi'*, Yizhou Zhang?*, G. Edward Suh', Andrew C. Myers!, and Mark Campbell®

Abstract—An autonomous mobile robot may encounter adver-
sarial environments in which an attacker tries to influence its
decisions. Through physical or software-level attacks, some of
the robot’s sensors might be compromised—a special concern
for self-driving vehicles. Motivated by this scenario, this letter
introduces and studies the problem of planning kinematically
feasible (and possibly efficient) paths with bounded collision prob-
ability in adversarial settings where the obstacles perceived online
by the robot display two layers of uncertainty. The first is the
‘“usual” Gaussian uncertainty one would obtain from a standard
object tracker (e.g., an Extended Kalman Filter); the second is
an additional layer of uncertainty that captures possible sensor
attacks and describes the actual existence of groups of obstacles
in the environment. We study the complexity of the problem
and propose a general sampling-based solution framework that
uses the Sequential Probability Ratio Test (SPRT) to check
collision probability constraints along the computed trajectory.
We also show how probabilistic programming languages (PPLs)
can simplify programming common algorithms (such as RRT
and Hybrid A*) for mixed uncertainty. In addition to providing
an easy-to-use programming framework, our approach is shown
to plan safer paths compared to a Naive Monte Carlo baseline
when both approaches are allowed to use at most the same given
number of samples to perform collision checks.

Index Terms—Motion and Path Planning; Robot Safety; Con-
trol Architectures and Programming

I. INTRODUCTION

INCE the dawn of mobile robotics, much research has
aimed to increase robot autonomy. Classically, it is as-
sumed that all the sensors the robot has at its disposal are
not malicious, and that the only source of uncertainty for the
robot is random noise in the sensor readings. Motivated by
safety issues arising in autonomous vehicles applications—
above all, self-driving cars—recent research has shown that
an attacker might easily tamper with the robots’ perception
pipeline [1]]. For example, attackers might make the robot
collide with obstacles by setting all its lidar readings to very
large values. Or they might trap the robot at its current spot
by surrounding it with fake obstacles.
A principled planning method is needed to allow mobile
robots to behave safely despite such adversarial compromise.

Manuscript received April 9, 2020; accepted August 15, 2020.

This letter was recommended for publication by Associate Editor Jyh-Ming
Lien and Editor Nancy Amato upon evaluation of the Reviewers’ comments.
This work was supported by NASA under Grant NNX16AB09G.

1Cornell University, Ithaca NY, USA (e-mail: jb2639@cornell.edu;
suh@ece.cornell.edu; andru@cs.cornell.edu; mc288 @cornell.edu).

2Harvard University, Cambridge MA, USA and University of Waterloo,
Waterloo ON, Canada (e-mail: yizhou.zhang @uwaterloo.ca).

*Equal contribution.

Path cost: 14.4

Example RRT path

Path cost: 17.76

Example Hybrid A* path

Fig. 1: Map containing two possible scenarios shown with
the corresponding samples: the red obstacle exists with p =
0.15, the blue one with p = 0.85. Gaussian uncertainty is also
present. The proposed sampling-based planning framework is
able to plan paths willing to pass through the red obstacle to
reach the goal.

Motivated by this scenario, this letter introduces and studies
the problem of planning kinematically feasible, reasonably
efficient paths with bounded collision probability in adversarial
settings where the obstacles perceived online by the robot
display two layers of uncertainty. The first is the “usual”
Gaussian uncertainty one would obtain from a standard object
tracker (e.g., an Extended Kalman Filter [2])); the second is an
additional layer of uncertainty describing the actual existence
of groups of obstacles in the environment. In this initial work,
all the obstacles are assumed to be static.

This letter contains a number of novel contributions. First,
we formalize this new path planning problem and show that
even the simplest path-planning task (planning a safe feasible
path for a holonomic robot on a 4-connected grid) becomes
NP-complete. Then, we propose a general sampling-based
solution framework that uses the Sequential Probability Ratio
Test (SPRT) [3]] to check satisfaction of collision probability
constraints. Finally, we show how probabilistic programming
languages (PPLs) can help in dealing with such resolution
approach. In particular we show how, by leveraging a cus-
tomized PPL, it is possible to present variants of common
planning algorithms—here we consider Rapidly Exploring
Random Trees (RRTs) [4] and Hybrid A* [S]—that are not
only effective in these contexts but can be written with min-
imal programmer effort. In a nutshell, our framework allows

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2020

programmers to implement their favorite planning algorithms
as if these algorithms were operating in a trusted, completely
deterministic setting—while obtaining from the framework
a planning implementation that safely handles probabilistic
collision checks and adversarial uncertainty about the environ-
ment. We show that our approach provides a principled way
of planning without leveraging the simplifying assumption
of treating all the obstacles as real, which could prevent
the planner from even finding a feasible path (see Fig. [I).
Moreover, our results show that our approach allows planning
safer paths compared to a Naive Monte Carlo baseline when
both approaches are allowed to use at most the same given
number of samples to perform collision checks.

II. RELATED WORK
A. Planning Under Uncertainty

The planning problems introduced in this paper can be
framed in a more general context: planning in presence
of uncertainty. Following the taxonomy outlined by Agha-
Mohammadi et al. [6], uncertainty in planning stems from
three sources: motion, sensing (also called imperfect state
information), and map. We briefly discuss their differences, as
related to the concepts presented in the paper.

Motion uncertainty refers to the noise affecting the dynam-
ics of the system. Because the problem is so complex, planning
is often simplified by focusing on techniques for tracking a
nominal trajectory (obtained in a previous stage) with bounded
collision probability [7]]. In our work, we also decouple the
problem of planning a nominal trajectory from the tracking
problem, but focus on devising a method that bounds collision
probability even in the presence of adversarial compromise.

Sensing uncertainty, also known as imperfect state informa-
tion, refers to the noise affecting the sensor measurements that
are fed to the robot’s state estimation algorithm. As previously
observed [6], this kind of uncertainty in planning is often
considered along with motion uncertainty. Planning in this
context is often referred to as planning in belief space, and in
general amounts to solving a complicated Partially Observable
Markov Decision Process via some reasonable approxima-
tion [6]], [8]. The term “sensing uncertainty”, however, is
actually misleading in the context of this paper, as we assume
that the robot can rely on a robust and precise state estimation
procedure (such as the one that can be obtained outdoor with
the help of GPS): what we consider is map uncertainty.

In the literature, map uncertainty has been studied under the
assumption that the static map of the environment (obtained,
for example, using the SLAM algorithm [9]) is subject to
uncertainty [10]. In this work, instead, we assume that the
static map of the environment contains negligible noise and
is trusted as if provided by a trusted map server; our novelty
consists in focusing instead on the uncertainty in the obstacles
discovered at run time, considering both their existence and
their precise location to be uncertain.

B. Collision Probability Estimation

The major challenge in tackling the problems introduced in
this paper is to devise an efficient technique for estimating

the collision probability—CP from now on—for any potential
trajectory, as no closed form exists. Some work facing this
issue (in problems involving “standard” uncertainties) prefers
to enforce CP constraints at each step along the planned
trajectory (with a given discretization), and to reason about
approximations [11]]. This approach works well when one
would like to enforce an extremely small CP at each step along
a short trajectory, because the CP along the entire trajectory
will also likely be small. In our case, however, the robot may
have to plan against a relatively high CP along a potentially
long trajectory in order to find a feasible plan. Focusing on the
computation of the CP of the entire trajectory, some work tries
to simplify the problem by leveraging simplifying assump-
tions (like considering collision events as independent [12]).
However, as discussed in [7]], these methods might result in
CPs that are off by a large margin. Other work resorts to
Monte Carlo techniques [7]]. In this work, we observe that it
is not necessary to precisely compute CPs, as long as there
is high confidence in the satisfaction of the corresponding
constraint. Hence, we propose to leverage another sampling-
based method, the Sequential Probability Ratio Test, to detect
with high confidence whether the CP constraint is satisfied
along the entire trajectory. To the best of our knowledge, ours
is the first work to leverage the SPRT in path planning.

C. Probabilistic Programming

Several probabilistic programming languages have been
developed with the aim of simplifying statistical modeling
and reasoning. They allow for describing statistical models
as programs and provide support for automated statistical
inference. Languages like Pyro [13] are especially popular
because, unlike in others, statistical models can be expressed
directly in a general-purpose language like Python, inheriting
expressive power from the host language and also making
it convenient to use probabilistic programming within larger
software projects.

However, languages like Pyro currently lack support for
hypothesis testing. Hypothesis testing is important for cyber-
physical systems in particular, because they need not only
operate on uncertain data, but also do it in a calibrated
way. Uncertain<T> [[14] supports hypothesis testing, but unlike
Pyro, it does not support automated Bayesian inference. As a
domain-specific language (embedded in C#), it is also more
limited in the kind of probabilistic models it can express.

III. PROBLEM FORMULATION
A. Environment Model

We consider a mobile robot operating in a 2-D environment
specified by a bounded region X C R2. W.Lo.g., it is assumed
that X is partitioned into a (static) untraversable region X5 C
X and free space Xj., C X. The region X is provided by a
map server, which is assumed to be trusted. For example, X
can be the map obtained by means of a SLAM algorithm, or
can be the map provided by an external entity.

We assume that the robot is equipped with sensors able
to detect the presence of obstacles in the environment at run
time. Furthermore, we assume that the robot is equipped with

BANFI et al.: PATH PLANNING UNDER MALICIOUS INJECTIONS AND REMOVALS OF PERCEIVED OBSTACLES 3

an inference engine that receives raw input data coming from
the sensors, and outputs a set of additional independent maps
M = {M,} representing a probabilistic description of some
obstacles that are detected and tracked at run time by one
or more sensors. Each map can describe the environment as
seen by some non-overlapping sensors (e.g., front and back
lidars/cameras), or can contain group of obstacles consistently
detected by all sensors. More specifically, each map M, spec-
ifies a categorical distribution defined over a set of possible
scenarios. We use S; = {s;;} to denote the set of scenarios of
map M;. Each scenario is completely specified by a (possibly
uncertain) description of a set of obstacles that are located in
the environment, plus the probability that those obstacles are
actually in the environment.

In particular, each scenario s;; is defined as a pair s;; =

(Oij, pij):

e O = {ofj} represents a set of independent obsta-
cles (possibly empty). Each obstacle ofj is completely
described by a tuple (pf;, N'(uf;,F;)) where pj; is
the obstacle’s 2-D polygonal shape, and N (,ufj,Efj)
is a multivariate Gaussian distribution which specifies
the (xfj,yfj) coordinates in R? of the centroid of pfj,
along with its rotation ij w.r.t. a given reference frame.
(In this work it is assumed that the obstacle’s shape
is known without uncertainty, but this can be easily
generalized [15]]). This uncertain specification of obstacle
ofj holds assuming that it is actually present in the
environment (see the next point).

e pij € [0,1] is the probability that, in map M;, scenario
j is “the true one”, while all the others are false. In
other words, if a scenario is true, all the corresponding
obstacles are actuallel [‘)resent in the environment, and vice

versa. Note that EJS: 1pij = L.

This model is completely agnostic about how these maps
are actually obtained. As an example of a simple yet effec-
tive heuristic way of building such maps, consider a robot
equipped with two completely identical and equally trusted
sensors on the front. Under this setup, it is possible to run
two independent standard object trackers, each one having
as input the data coming from a different sensor. Given the
two sets of detected objects, the inference engine can first
filter out obstacles not having a close counterpart in the other
object tracker. Then, the engine can try to match pairs of the
remaining obstacles while minimizing a given distance metric
(by solving an assignment problem [16])). The inference engine
can finally use a decision table to handle situations where
the result of the above procedure shows large discrepancies
between the two sets of perceived obstacles, likely the result
of adversarial attacks. For example, a situation related to the
detection of an obstacle according to only one of the sensors
could be dealt with by creating two scenarios in the same
map M; with 0.5 probability each (recall that the sensors are
identical), under the assumption that at least one sensor has
not been compromised. If both sensors agree on the presence
of other obstacles, whose estimated positions are very close
(within a given small tolerance), one can create an additional
map M, with a single scenario having probability 1. A slightly

more complicated situation involving the presence of two
identical sensors on the robot’s back can simply be dealt with
by adding other (independent) maps.

An interesting direction to explore, which we leave for
future work, is related to devising a complete Bayesian frame-
work in which the sensors’ trustworthiness could be updated
in a principled probabilistic way.

B. Path Planning Problems

We now present a formulation of the considered path
planning problems based on the search of (feasible or optimal)
paths that can be obtained by subsequent applications of
suitable motion primitives chosen from a finite set. Although
these problems could be defined more generally (for example,
by extending Formulation 14.1 in [17]), we believe that the
formulation given below is representative of most cases that
may be of practical interest while, at the same time, capturing
well the novelty introduced by this work.

Let us start from the feasibility version of the problem. The
problem input is a tuple (X, M, r,qr,Qa, A, Pmax) Where:

e X and M are the planning region and obstacles’ maps
defined in Section [[II-Al

e r is a polygon representing the robot’s footprint.

e qr and Qg are, respectively, the robot’s initial configu-
ration and goal configuration set. A robot configuration
is a tuple ¢ = (x,y,0) which fully specifies the space
occupied by r in X w.rt a given reference frame. A
configuration ¢ is said to be legal if the footprint r,
positioned as specified by ¢, does not overlap with X,s.

o A is a discrete set of motion primitives available to the
robot. Each motion primitive a € A moves the robot from
a configuration ¢ to a new configuration ¢’ following a
(continuous) trajectory qq’.

e Pmax € [0, 1] is the maximum CP that the mission planner
can tolerate for the robot.

Given a generic problem input as specified above, the set
of feasible paths P can be defined as follows. Each 7 € P
specifies a sequence of n motion primitives

T =lay,a9,...,a,]

leading the robot from the initial configuration ¢; to any
configuration ¢ € (¢ via consecutive legal configurations.
We introduce the notation peon(m) to denote the CP of m,
which is defined as the probability of obtaining a non-empty
intersection in Xj.. between the planar region spanned by
the subsequent robots’ configurations (obtained by iteratively
applying the motion primitives specified by 7) and any of
the random obstacles described by the set of maps M. Note
that this definition implicitly assumes that the robot does
not collide against any obstacle during the motion primitive
execution; peon(7m) is hence an approximation of peon(7),
where 7 C X denotes the set of points of X spanned by
the robot’s footprint r when the corresponding centroid and
orientation evolve along the continuous trajectory associated
with 7. Let also peoir ;(m) be the CP of m when only map M;
is considered, and let pf, ;. (7) be the CP of 7 restricted to

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2020

obstacle ofj in scenario s;;, assuming that scenario s;; is true.
The following relations hold:

Peotl(m) =1 — H [1 — pcoll,i(ﬂ')] (D
M;eM
Peoit,i (1) = Z pij - [1— H (1 — Pl ij (m))] 2)
si; €S of'jeoij

Eq. follows from the mutual independence of the maps
in M, while Eq. @]) follows from the fact that —in a
single map— scenarios are mutually exclusive, coped with
the independence assumption on the obstacles belonging to
the same scenario (which is rather standard [|10]).

We define the Mixed-Uncertainty Feasible Path Problem as
follows:

Problem 1 (Mixed-Uncertainty Feasible Path Problem —
MUFPP): Given the tuple (X, M,r,qr,Qc, A, Pmax), cOM-
pute a path € P such that peon(7) < pmax, or determine that
no such path exists.

In practice, one might also be interested in computing a
feasible path that optimizes a given performance metric. To
this aim, we enrich the previous formulation with a cost
function ¢ : A — Qf describing the cost the robot accrues
when executing a given motion primitive (e.g., time, distance).
The Mixed-Uncertainty Minimum Cost Path Problem is the
following:

Problem 2 (Mixed-Uncertainty Minimum Cost Path Problem
— MUMCPP): Given the tuple (X, M,r,qr,Qc, A, Pmax;),
compute a path 7 € P such that peo;(m) < pmax minimizing
>, ¢(a;), or determine that no such path exists.

C. Complexity

To get an idea of the additional challenges offered by
MUFPP and MUMCPP compared to a “standard” path plan-
ning problem, let us consider a simplified version where:

« Planning takes place on a 4-connected grid.

o The robot is holonomic, and its footprint r can be
expressed as the union of a finite number of neighboring
grid cells. The initial configuration gy is simply specified
by a set of cells initially spanned by r. The available
motion primitives A correspond to moving the footprint’s
cells in one of the four cardinal directions.

o In each scenario S;; of each map M, all obstacles of'j
are simply expressed as the union of a finite number of
neighboring grid cells, with no Gaussian uncertainty (in
Eq. @), pkyi;(7) can be either 0 or 1).

The above simplification leads to a legitimate way of tack-
ling the MUFPP and MUMCPP in presence of a holonomic
robot and negligible Gaussian uncertainty on the obstacles.
Let us focus on the MUFPP, and call MUFPP-S its simpli-
fied variant. The theorem below shows that the presence of
uncertainty in the obstacles’ existence turns a problem widely
known to be in P into a likely intractable one.

Theorem 1: MUFPP-S is NP-complete[[]

A proof sketch is reported in the Appendix. We now turn
our attention on the more general (and interesting) problems,
leaving the development of ad hoc algorithms for MUFPP-S
for future works.

IV. A SAMPLING-BASED, PPL-AIDED FRAMEWORK FOR
PROGRAMMING SEARCH ALGORITHMS

As discussed in Section [lI} the first and biggest challenge
in developing algorithms for the MUFPP and MUMCPP is
represented by the need of checking the satisfaction of the
given collision-probability constraint along the trajectory that
is being constructed. On top of that, Theorem 1 shows that
the additional layer of uncertainty likely precludes the exis-
tence of polynomial-time algorithms even when no Gaussian
uncertainty is present. Therefore, an approach decoupling
the computation of pf ;. () from the closed-form part of
Eq. (2) would have to simultaneously deal with two intractable
problems. For this reason, we focus our attention on sampling-
based methods, where one sample represents one of the many
possible “true” worlds (as defined in Section note that
the obstacle region X,;s must be present in each world sam-
ple). However, because collision checking is computationally
expensive, a naive Monte Carlo approach offering a guaranteed
bounded error rate (by performing collision checking against a
fixed, usually large number of samples) would be too slow (see
Section [VI). Luckily, this performance penalty can be reduced
significantly using a sequential approach. In particular, the one
we propose is based on the usage of a hypothesis test called
Sequential Probability Ratio Test (SPRT) [3]].

A. Sequential Probability Ratio Test

The SPRT is a sequential hypothesis test. As such, the
samples needed to confirm/reject the hypothesis do not need to
be drawn all in advance; instead, they should be collected on-
demand, until enough evidence to confirm/reject the hypoth-
esis is collected. In particular, the SPRT starts as usual with
a null hypothesis Hy, an alternative hypothesis H;, and the
desired type-I and type-II error rates « and (. The test statistic
is the log-likelihood ratio, computed over all the samples seen
so far. As new samples become available, the cumulative log-
likelihood ratio A; is simply computed as

A=A+ A\,

with Ag = 0 and); the log-likelihood ratio of observing the
i-th sample under the hypotheses.
Once A; is computed, there are three possible outcomes:

(01) A; <log %: Accept Hy.
(02) A; > log %: Accept H;.

(03) log% < A; < log %: The test statistic is not
significant enough yet; keep drawing samples.

'Under the customary assumption that all the probabilities given in input
are rational numbers [[18].

2As an immediate corollary, we have that the simplified version of
MUMCPP—a combinatorial optimization problem—does not belong to the
exp-APX complexity class unless P=NP (see [[19], Chapter 8)

BANFI et al.: PATH PLANNING UNDER MALICIOUS INJECTIONS AND REMOVALS OF PERCEIVED OBSTACLES 5

Outcome O3 means the samples drawn so far do not pro-
vide enough evidence either for or against rejecting the null
hypothesis Hy. So the SPRT goes on to draw more samples,
compute A, 11, and check the conditions of O1-O3 again. The
SPRT does not guarantee an upper bound on the number of
samples needed; in order to retain the guarantees on error rates,
the above process must be repeated until a conclusion can be
reached.

B. SPRT for Probabilistic Collision Checks

In the setting of an MUFPP or MUMCPP instance, we are
given a path m € P, and we want to decide whether peop(7) <
Pmax- Define the Bernoulli random variable 7, as follows:

Ly~ BernOulli(pcou(W))- @)

The hypotheses to test are then predicates on the parameter
of this distribution: the null hypothesis is peon(7) > Pmaxs
and the alternative peon(m) < pmax. Type-I errors occur when
collision-inducing paths are mistakenly accepted, while type-
IT errors occur when collision-avoiding paths are mistakenly
rejected. Because this test makes Bernoulli trials, it is standard
to approximate the composite hypotheses above using the
following simple hypotheses [3|:

def

Hy = Peott () = po
Hl = pcoll(ﬂ_):pl

‘ [

where py > pmax > p1 and the small interval (p1, po) is called
the indifference region—we are okay with accepting either
Hy or Hy when the true value of p.y is in the indifference
region. The log-likelihood ratio for the Bernoulli trials can be
computed as follows:

A =
LLR(n,N) =

Ai,1 —|— LLR (ni, Nz)
P _ 1-p

nlog B 4+ (N —n)log =Lt
where N; is the total number of samples {z,}; drawn since
last observing outcome O3, and n; is the number of those
samples that take the value true.

The samples {z }; are not drawn directly from the Bernoulli
distribution (3) because p.o;(7) is unknown. Instead, they are
drawn from the nondeterministic function f:

£(n) a true, T collifies with obstacles, @
false, otherwise.
The nondeterminism comes from obstacles’ being probabilis-
tic. Function f is our generative probabilistic model for the
random variable Z,. Drawing samples from this probabilistic
model requires drawing samples from the underlying proba-
bilistic distribution describing the world.

Algorithm (1| shows the pseudocode of the hypothesis test
described above. A typical implementation of the SPRT either
runs indefinitely before reaching a conclusion, or returns a
default value when all sampling resources have been used up.
Instead, our implementation balances this trade-off by allowing
the programmer to specify an error type to be conservative
about (lines 18-23): when the guarantee on type-I (or type-II)
error rates is desired, the algorithm terminates early if there

Algorithm 1 Testing hypothesis Pr(f () = true) < pmax

Input: probabilistic model f of path w, CPs pg and p1 where pg > pmax >
p1, error rates « and 3, maximum number of samples Ny, qz, number of
samples between checks Nstep, type of error to be conservative about ¢
(I or II).

Output: true (resp. false) if it can be concluded that, with an error rate at
most « (resp. B), the chance of 7 colliding with the probabilistic obstacles
is at most (resp. at least) pmax.

1: A < 0 // cumulative log-likelihood

2: Nyotal < 0 /] total number of samples drawn
3: nyye < 0 // number of samples testing true
4: while true do

5: Mirue <— 0 // number of samples testing true since last check
6: for k where 0 < k < Ngiep do

7: if f(7) then

8: Mirue < Mirye + 1

9: end if

10: end for

11: Nirue < Nirue + Mirye

12: Niotal < Ntotal + Nstep
13: A+~ A+ LLR (mtvuey Nstep)
14: if A <log B then

1—a
15: return false // Condition Ol met; accept Ho
16: else if A > log 1= then
17: return true // Condition O2 met; accept H;

18: else if t =1 and LLR(nirue, Nmaz) < log % then

19: /I Unable to accept Hy even if all remaining samples tested false

20: return false

21: elseif t = and LLR(ntrue + Nmas — Notat, Nmaz) > log 122
then

22: /I Unable to accept Hg even if all remaining samples tested true

23: return true

24: end if

25: end while

would not be enough evidence to support accepting H; (or
Hjp) even when all remaining samples tested false (or true).
Safety is concerned with controlling the first type of errors,
so we invoke the algorithm with the parameter ¢ being 1.

Remark 1: As the reader might have noticed, the use of the
SPRT introduces an additional dimension in the definition of
the MUFPP and MUMCPP, namely, the choice of the param-
eters «, [3, po and p;. However, we argue that the complexity
of the problem justifies solution approaches dealing with such
a slightly relaxed form.

Remark 2: The log-likelihood ratio thresholds log % and
log % are approximations primarily designed for situations
where o and (8 are small [33|]. This approximation ensures that
the “true” type-I and type-II errors o’ and /3’ are bounded as
o < a/(1-p)and 8 < 3/(1 — a). Moreover, it can be
shown that at least one of the inequalities o < o and 8’ < 8
must hold. Preliminary experiments showed that setting both
« and (8 small (< 0.05) requires a number of samples too large
for our Python-based prototype implementation. We found a
good trade-off in setting o = 0.05 and 8 = 0.2: although this
might result in an actual type-I error of 0.0625, our validation
campaign shows that this might have a significant impact only
for small pna.x (0.01, where the actual CP might be around

0.012 in our most challenging planning scenario).

Remark 3: The usage of the SPRT is not limited to the
particular probability distribution defined in Sec. For that
distribution, however, we show that SPRT works better than a
Naive Monte Carlo baseline (see Sec. [V1})

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2020

C. Searching for a Plan Using SPRT

The development in section [IV-B| can be integrated easily
into a generic search algorithm that constructs a path itera-
tively. The key idea of virtually any search algorithm for a
path-planning problem based on the use of a set of motion
primitives A is to build a start-goal trajectory in an iterative
fashion. This is accomplished by “extending” a suitably chosen
partial trajectory 7 (generated in a previous iteration) to a new
partial trajectory 7’ obtained by applying the primitive a € A
on 7. In a typical deterministic setting, one only has to make
sure that ' does not overlap with X,ps. In our setting, we
also need to make sure that 7/, with high probability, does
not break the constraint on the CP. To this end, we simply
apply the test in Algorithm |1|to ’. Note that the same partial
trajectory 7’ should not be checked for collisions more than
once during the search, since this could bias the result.

D. Further Speeding up the Search

Although the use of the SPRT helps reduce the number of
samples needed, a naive implementation would still result in
more computations than necessary. Notice that the hypothesis
test is performed in each iteration of the search algorithm (i.e.,
every time the current configuration is extended). Also notice
that 7’ collides with a specific sample of the probabilistic
obstacles when 7 collides with the obstacles or when the
extension from 7 to 7" collides with the obstacles. So it is
possible to speed up search by reusing the result of collision
checkings on 7 in a previous iteration for collision checkings
on 7'. This optimization can be implemented by modifying
only the probabilistic model f in {@); Algorithm [T]is transpar-
ent to the implementation of the probabilistic model.

We pre-generate a pool of world samples. Each time f
requests a world sample, a uniformly random draw from the
pool is made, and the result of computing f with that sample
memoized to speed up search later.

E. Programming Support

We have extended the popular probabilistic programming
language Pyro [13] with support for SPRTEL Thanks to this
clean interface to the SPRT as well as to Pyro’s programming
support for writing probabilistic models, it is straightforward—
as sections and shows—to integrate the reason-
ing about highly uncertain probabilistic worlds into common
search algorithms for path-planning problems.

V. EXAMPLE: RRT AND HYBRID-A* IMPLEMENTATION

The proposed framework is used to implement two well-
known planners, RRT [4] and Hybrid-A* [5]. Due to space
constraints, the reader is referred to the original papers for the
description of the standard versions of these algorithms.

We use RRT, a sampling-based planner designed to find
feasible solutions quickly, to tackle the MUFPP. Our frame-
work implicitly augments each configuration ¢ in the RRT
that is being constructed with a set of world samples that are

3The source code is available at https:/github.com/jacoban/mu_planner
with detailed instructions to replicate our results.

0 2 6 8 10 0 2

Pmax = 0.01 Pmax = 0.25
Fig. 2: Example Hybrid A* paths for MG-HU.

HG-HU, ppax = 0.1
Fig. 3: Example RRT paths for MG-SU and HG-HU.

Path cost: 14.4

MG-SU, pmax = 0.1

used to determine whether the trajectory leading from g to ¢
satisfies the given CP constraint. The programmer, after having
defined a suitable world sampling scheme, can implement a
collision check function pretending that the world is com-
pletely deterministic—i.e., as if she/he were only dealing with
a fixed, deterministic obstacle region X,;s. The programmer
could also be given access to the samples associated with
each configuration, to implement more elaborate configuration
sampling strategies. This is left for future work.

We use Hybrid-A* to tackle a MUMCPP where the accrued
cost is the traveled distance. As with the RRT implementation,
our framework implicitly augments each configuration ¢ with
a set of world samples. Configurations are associated to grid
cells as in the original Hybrid-A* algorithm, regardless of how
close they are to the violation of the CP constraint. It could
also be possible to modify Hybrid-A* into variants able to
leverage an estimate of configurations’ CPs (obtained from
SPRT samples drawn so far) in heuristic ways. This direction
is left for future work.

VI. RESULTS

We consider a differential drive robot with a set of
motion primitives A built as follows: apply a constant
forward speed of 0.8 m/s and an angular speed in
{0.0, £7/8,£m/4,+7/8n, £7/2} rad/s for 0.6 s. We test the
proposed framework in four representative planning problems,
labeled MG-HU, MG-SU, HG-HU, and BL. MG-HU (mod-
erate Gaussian uncertainty with high scenario uncertainty, see
Fig. 2) contains two independent probabilistic maps, where the

https://github.com/jacoban/mu_planner

BANFI et al.: PATH PLANNING UNDER MALICIOUS INJECTIONS AND REMOVALS OF PERCEIVED OBSTACLES 7

first has a single square obstacle existing with probability 1
(blue), and the second has two scenarios, each one containing
a square obstacle of a different size; the scenario with the
red obstacle has probability 0.7 (the orange has 0.3). MG-
SU (moderate Gaussian uncertainty with small scenario uncer-
tainty, see Fig. 3 left) contains a single map with two scenarios
having two rectangular obstacles each. The upper red ones are
associated with a scenario with probability 0.99 (the orange
ones to a scenario with probability 0.01). In both MG-HU and
MG-SU, the Gaussian uncertainty on the obstacles is described
by a diagonal matrix diag(0.05,0.05,0.03) (the last element
refers to the rotation). HG-HU (high Gaussian and scenario
uncertainty, see Fig. 3 right) contains a single map with two
equally probable scenarios with one obstacle each. The lower
obstacle has the same Gaussian uncertainty of MG-HU and
MG-SU, while the upper one has a larger uncertainty described
by the diagonal matrix diag(0.25,0.25,0.1). BL (“blocking”
scenario) contains again a single map with two scenarios as
explained in Fig. (I} The upper obstacle has larger Gaussian
uncertainty, as in HG-HU. This scenario can only be planned
in for values of pn.x > 0.15. In all cases, X,ps delimits a
planning region confined to a square with side length 10 m,
and goals are 1m x 1m regions located in the upper part of the
environment. We set @ = 0.05 and 5 = 0.2 for the SPRT (see
Remark 2). The maximum number of samples checked at each
new configuration is set to 300 for py.x = 0.01 and 250 for
Pmax = 0.1, 0.25. The planners are run on a computer equipped
with an i7-6850K processor and 32 GB RAM. Figs [I}{3] show
some example paths obtained with RRT and Hybrid A*. Each
path is shown with the obstacle samples pool (1000) used to
check the satisfaction of the corresponding CP constraint.

We also compared our SPRT based approach against an
alternative one that computes CP estimates with a Naive Monte
Carlo (MC) approach, and performs a z-test to check if it can
be concluded, with 95% confidence, that the trajectory leading
to the current configuration satisfies the given CP constraint
(we followed [20]], Chapter 2). As in the SPRT, the z-test is
iteratively performed on an increasing number of samples until
(a) the trajectory is proved to satisfy the CP constraint, (b) the
trajectory is proved to violate the CP constraint or (c) the
procedure hits the maximum number of samples. To make the
comparison fair, we use as maximum number of samples the
same used by the SPRT. The number of initial MC samples is
set to 300 for ppax = 0.01 (the minimum number of samples
needed by MC to declare “no collision” when none of the
samples collides), and to 128 and 110 for pp,x = 0.1 and
Pmax = 0.25, resp. (the minimum number of samples needed
by the SPRT to declare “no collision”). We run 200 planning
instances for each scenario. The results are shown in Table I,
where values are reported as average + standard deviation.

For pmax = 0.01, the SPRT always allows planning safer
paths compared to MC, with a CP constraint violation of at
most 0.002 in average (in HG-HU with RRT). However, in one
case (MG-HU with Hybrid A*) MC provides an interesting
performance: the CP is in the indifference region (although
higher than the SPRT one), but 14% more instances are solved.
Collision checks and computation times are always lower with
the SPRT, sometimes by around 50%.

Pmax = 0.01 % Checks (x 10%) Time (s) Deon ()

MG-HU

RRT |_SPRT | 39 122 £ 0.52 64.7 £ 26.8 0.011 £ 0.005
MC 16 207 £ 0.77 1045 £ 423 | 0.014 £ 0.007

HA+ | SPRT | 58 3.65 £ 0.89 1152 £ 295
MC 72 396 £ 1.14 126.7 £ 388

MG-SU

RRT |SPRT | 82 0.75 £ 0.38 314 £ 209
MC 38 131 £ 0.65 58.6 £ 34.2 0.010 £ 0.006

HA+ | SPRT | 100 | 1.57 £ 021 427 £538 0.005 £ 0.003
MC 100 | 2.01 £022 589 £ 65

HG-HU

RRT |SPRT | 45 0.52 £ 0.18 304 £ 143 0.012 £ 0.005
MC a8 1.25 £ 0.50 622 £ 28.7 0.017 £ 0.007

HA+ | _SPRT | oI 0.84 £ 0.20 207 £ 5.0
MC o4 136 £ 024 380 £ 74 0.013 £ 0.004

Pmax = 0.1 % Checks (x10%) | Time (s) Deotl (T7)

MG-HU

RRT |_SPRT | 61 125 £ 0.57 612 £ 31.6 0.069 £ 0.015
MC 59 .15 £ 0.50 547 £ 27.7 0.095 £ 0.025

HA+ | SPRT | 96 1.98 £ 0.63 532 £ 17.7 0.059 £ 0.014
MC 99 1.78 £ 0.50 453 £ 132

MG-SU

RRT |_SPRT | 96 0.63 £ 0.34 239 £ 16.8 0.054 £ 0.023
MC 96 0.65 £ 034 261 £ 178

HA+ | SPRT | 100 | 145 £0.13 36.0 £ 3.1 0.053 £ 0.013
MC 100 | 1.39 £ 0.09 352 £22 0.079 £ 0.016

HG-HU

RRT |_SPRT | 67 0.73 £ 0.33 34.0 £ 209 0.069 £ 0.015
MC 72 0.72 £ 034 342 £ 215 0.102 £ 0.021

HA® | SPRT | 99 136 £ 0.17 325 £ 45 0.062 £ 0.010
MC 100 | 1.35 £0.14 305 £ 3.6

Pmax = 0.25 % Checks (x10%) | Time (s) Peoit (70)

MG-HU

RRT |_SPRT | 65 1.23 £ 0.61 61.7 £ 36.1 0.159 + 0.036
MC 74 T.00 £ 0.52 470 £ 30.2 0.240 £ 0.038

Ha+ | _SPRT | 96 2.03 £ 0.67 583 £ 19.8 0.159 £ 0.019
MC 97 1.56 £ 0.54 409 £ 14.6

MG-SU

RRT |_SPRT | 95 0.69 £ 0.40 28.6 £ 20.9 0.129 + 0.057
MC 98 0.56 £ 0.30 230 L 15.8 0.177 £ 0.084

HA+ | SPRT | 100 | T.42£0.13 373 £ 32 0.138 £ 0.029
MC 100 | 133 £0.13 345 £ 3.1 0.201 £ 0.036

HG-HU

RRT |SPRT | 77 0.76 £ 0.42 35.6 £ 253 0.168 £ 0.030
MC 32 0.68 £ 0.33 324 £213 0.238 £ 0.046

HA+ | SPRT | 100 | T.48 £0.18 372 £ 54 0.160 £ 0.014
MC 100 | 147 £ 020 359 £55

BL

RRT |_SPRT | 85 0.94 £ 0.45 393 £ 245 0.164 £ 0.013
MC 99 0.60 £ 031 212 £ 14.0 0.212 £ 0.035

HA+ | _SPRT | oI 2.18 £ 0.34 56.5 £ 9.3 0.160 £ 0.010
MC 100 | 1.57 £ 0.18 367 £ 42 0.224 £ 0.021

TABLE I: SPRT vs Naive MC. Green: peon(m) avg. + std.
dev. < CP constraint. : peon(m) avg. + std. dev. in
indifference region. Red: peon(w) avg. + std. dev. outside
indifference region. “%” is the percentage of instances solved
within 5000 iterations.

For pmsx = 0.1, the SPRT always provides a superior
performance in the satisfaction of the CP constraint. Com-
putation times and collision checks are essentially equivalent.
For pmax = 0.25, the results are similar to those obtained with
Pmax = 0.1, with the SPRT still superior overall. However,
in the BL scenario, MC is always able to respect the CP
constraint (although with a higher CP), solves almost all
the instances, and provides lower computation times. This is
related to the fact that the SPRT might run out of samples
and declare that a configuration is unsafe while in the middle
of traversing the red obstacle. A slightly larger number of
samples would make this situation less likely. In general we
noticed, as expected, that Hybrid A* is able to generate shorter

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2020

2 X X3 Xy X1

> %| [®] [~ Hk
x| | % X3 X3| |x3
Variabjle Gadget Clause Gadget

Fig. 4: Reduction example. The 3-SAT instance has two
clauses ¢y = 1 VT V T3 and ¢co = X1 V Iy V x3. Start and
goal cells are denoted by the triangle and the star, respectively.
Gray cells denote X5, colored cells probabilistic obstacles.

paths compared to RRT.

With respect to memory usage, the planning instance re-
quiring the largest number of collision checks (MG-HU with
Hybrid A*) takes up to 500 MiB, which should not be a
problem for most robotic platforms.

VII. CONCLUSIONS

This paper introduces and studies two path-planning prob-
lems arising in adversarial scenarios where an attacker has
tampered with robot sensor readings in order to create fake
obstacles or to remove real ones. To ease the programming
task, we proposed a general programming framework based
on SPRT and implemented it as an extension of Pyro, a
well-known probabilistic programming language. Although it
performs better overall than Naive MC, our current pipeline is
not fast enough to be used in real time. Python is only part of
the problem; code may spend a quarter of its computation
time in the collision-checking library, which is written in
C. Therefore, we envision future research directed toward
(a) allowing the user to specify how often the SPRT should
be performed, (b) implementing this pipeline in a lower-
level probabilistic programming language, (c) leveraging the
Gaussian part of the distribution by introducing a hierarchical
2-D grid structure for grouping samples, and (d) implementing
collision checks on specialized hardware, such as GPUs and
FPGAs.

APPENDIX
PROOF OF THE NP-COMPLETENESS OF THE MUFPP-S

NP membership follows from the fact that the robot’s
footprint never needs to occupy the same cells twice along a
feasible path. NP-hardness is proved with a polynomial-time
reduction from the NP-complete problem 3-Satisfiability [21]:
3-SAT
INSTANCE: set U of Boolean variables, set C' of disjunctive
clauses defined on them with exactly three literals each.
QUESTION: does there exist a truth assignment for U that
satisfies all the clauses in C'?

From a generic instance of 3-SAT, one can construct in
polynomial time a particular instance of MUFPP-S following
the scheme shown in Fig. @] in which the robot’s footprint
covers a single cell. The MUFPP-S instance contains |U]
maps, one for each variable x;, with two scenarios each
having probability 0.5. Each scenario is associated with the
appearance of x; as a positive or negative literal in C, and
contains 1 4+ N(I;) obstacles spanning one single cell, where

N(l;) denotes the number of times literal [; appears in C.
For each scenario, the first obstacle appears in the variable
gadget, while the remaining N (I;) in the clause gadget. To
pass the variable gadget, the robot has to make a choice about
a scenario to traverse for each map. The clause gadget contains
|C| “barriers”, one for each clause, containing the remaining
obstacles of each scenario. The reduction is completed by
setting pmax = 1 — 0.5U1, 1t is easy to see that the 3-SAT
instance is satisfiable iff the robot is able to reach the goal
while respecting pmax (an unsatisfiable SAT instance would
lead to collision with probability 1). B

ACKNOWLEDGMENTS

The authors would like to thank Mulong Luo for useful
discussions.

REFERENCES

[1] J. Liu, J. Corbett-Davies, A. Ferraiuolo, A. Ivanov, M. Luo, G. E. Suh,
A. C. Myers, and M. Campbell, “Secure autonomous cyber-physical
systems through verifiable information flow control,” in Proc. CPS-SPC,
2018.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Applica-
tions to Tracking and Navigation, Wiley, Ed., 2001.

[3] A. Wald, “Sequential tests of statistical hypotheses,” Ann Math Stat,
vol. 16, no. 2, 1945.

[4] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[5] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” in Proc. STAIR,
2008.

[6] A. Agha-Mohammadi, S. Chakravorty, and N. Amato, “Firm: Sampling-
based feedback motion-planning under motion uncertainty and imperfect
measurements,” Int J Robot Res, vol. 33, no. 2, pp. 268-304, 2014.

[7]1 E. Schmerling and M. Pavone, “Evaluating trajectory collision proba-
bility through adaptive importance sampling for safe motion planning,”
in Proc. RSS, 2017.

[8] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Proc. ICRA, 2011, pp. 723-730.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press,

2005.

P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle

uncertain maps,” in Proc. ICRA, 2006, pp. 1261-1267.

[11] J. Hardy and M. Campbell, “Contingency planning over probabilistic

obstacle predictions for autonomous road vehicles,” IEEE Trans. Robot.,

vol. 29, no. 4, pp. 913-929, 2013.

C. Park, J. Park, and D. Manocha, “Fast and bounded probabilistic

collision detection in dynamic environments for high-dof trajectory

planning,” in Proc. WAFR, 2016.

[13] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep universal probabilistic programming,” J Mach Learn Res,
vol. 20, no. 1, 2019.

[14] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: A first-

order type for uncertain data,” in Proc. ASPLOS, 2014.

K. Wyffels and M. Campbell, “Precision tracking via joint detailed shape

estimation of arbitrary extended objects,” IEEE Trans. Robot., vol. 33,

no. 2, pp. 313-332, 2016.

R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.

Society for Industrial and Applied Mathematics, 2009.

S. LaValle, Planning algorithms. Cambridge University Press, 2006.

0. Madani, S. Hanks, and A. Condon, “On the undecidability of

probabilistic planning and related stochastic optimization problems,”

Artif Intell, vol. 147, no. 1-2, pp. 5-34, 2003.

G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi,

P. Crescenzi, and V. Kann, Complexity and approximation. Springer-

Verlag, 1999.

A. B. Owen, Monte Carlo theory, methods and examples, 2013.

M. Garey and D. Johnson, Computers and intractability: A guide to the

theory of NP-completeness. W.H. Freeman, 1979.

[10]

[12]

[15]
(16]
[17]
(18]

[19]

[20]
[21]

	Introduction
	Related Work
	Planning Under Uncertainty
	Collision Probability Estimation
	Probabilistic Programming

	Problem Formulation
	Environment Model
	Path Planning Problems
	Complexity

	A Sampling-Based, PPL-Aided Framework for Programming Search Algorithms
	Sequential Probability Ratio Test
	SPRT for Probabilistic Collision Checks
	Searching for a Plan Using SPRT
	Further Speeding up the Search
	Programming Support

	Example: RRT and Hybrid-A* Implementation
	Results
	Conclusions
	Appendix: Proof of the NP-completeness of the MUFPP-S
	References

