
Compiling Probabilistic Programs for Variable Elimination
with Information Flow
JIANLIN LI, University of Waterloo, Canada

ERIC WANG, University of Waterloo, Canada

YIZHOU ZHANG, University of Waterloo, Canada

A key promise of probabilistic programming is the ability to specify rich models using an expressive program-

ming language. However, the expressive power that makes probabilistic programming languages enticing

also poses challenges to inference, so much so that specialized approaches to inference ban language features

such as recursion. We present an approach to variable elimination and marginal inference for probabilistic

programs featuring bounded recursion, discrete distributions, and sometimes continuous distributions. A

compiler eliminates probabilistic side effects, using a novel information-flow type system to factorize proba-

bilistic computations and hoist independent subcomputations out of sums or integrals. For a broad class of

recursive programs with dynamically recurring substructure, the compiler effectively decomposes a global

marginal-inference problem, which may otherwise be intractable, into tractable subproblems. We prove the

compilation correct by showing that it preserves denotational semantics. Experiments show that the compiled

programs subsume widely used PTIME algorithms for recursive models and that the compilation time scales

with the size of the inference problems. As a separate contribution, we develop a denotational, logical-relations

model of information-flow types in the novel measure-theoretic setting of probabilistic programming; we use

it to prove noninterference and consequently the correctness of variable elimination.

CCS Concepts: • Theory of computation→ Probabilistic computation; Program semantics; Program reasoning;
Type theory; • Mathematics of computing → Bayesian computation; Statistical software; • Computing
methodologies→ Machine learning; • Software and its engineering→ Compilers; Functional languages;
Language features; Formal language definitions.

Additional Key Words and Phrases: Probabilistic programming, probabilistic inference, information flow.

ACM Reference Format:
Jianlin Li, Eric Wang, and Yizhou Zhang. 2024. Compiling Probabilistic Programs for Variable Elimination

with Information Flow. Proc. ACM Program. Lang. 8, PLDI, Article 218 (June 2024), 26 pages. https://doi.org/10.
1145/3656448

1 INTRODUCTION
A probabilistic model describes a joint distribution 𝑝 (𝑥, 𝑧) over latent variables 𝑧 and observations 𝑥 .
Bayesian inference is concerned with computing 𝑝 (𝑧 |𝑥) = 𝑝 (𝑥, 𝑧)/𝑝 (𝑥), the posterior distribution
of 𝑧 conditioned on 𝑥 . Typically, the hard work is in computing the marginal likelihood 𝑝 (𝑥), also
known as the model evidence. Computing the marginal may be intractable, as it generally requires

integration over all possible values of the latent variables: 𝑝 (𝑥) =
∫
𝑝 (𝑥, 𝑧)d𝑧.

Probabilistic programming languages (PPLs) are powerful means to specify probabilistic models

and solve inference problems. A PPL allows for harnessing the expressivity of a high-level program-

ming language to specify rich Bayesian models, as opposed to using more limiting formalisms such

Authors’ addresses: Jianlin Li, jianlin.li@uwaterloo.ca, University of Waterloo, Canada; Eric Wang, e224wang@uwaterloo.ca,

University of Waterloo, Canada; Yizhou Zhang, yizhou@uwaterloo.ca, University of Waterloo, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART218

https://doi.org/10.1145/3656448

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-7371-3034
HTTPS://ORCID.ORG/0009-0000-0865-8964
HTTPS://ORCID.ORG/0000-0002-8206-4694
https://doi.org/10.1145/3656448
https://doi.org/10.1145/3656448
https://orcid.org/0000-0001-7371-3034
https://orcid.org/0009-0000-0865-8964
https://orcid.org/0000-0002-8206-4694
https://doi.org/10.1145/3656448


218:2 Jianlin Li, Eric Wang, and Yizhou Zhang

as Bayesian networks. However, the expressive power that makes PPLs enticing makes inference

even harder. Recent advances in PPL inference often specialize to a particular class of models and

impose restrictions on expressible models, prohibiting useful features such as recursion.

Variable elimination (VE) is an effective approach to inference for probabilistic models with

discrete random variables (r.v.s) [68]. It works by marginalizing out (i.e., eliminating) discrete r.v.s

from a joint distribution, thus producing the marginal likelihood or reducing the inference problem

to ones involving only continuous r.v.s.

VE has been generalized to PPLs, but the support for VE does not meet the desired level generality

and scalability. For example, Factorie [42] is an interpreted PPL that supports VE for factor graphs,

but its VE algorithms make specific, rigid assumptions on the factor-graph structure. SlicStan [29]

and PERPL [15] are more recent, compiled approaches to VE and are designed to support broader

classes of models. Unfortunately, SlicStan lacks support for recursion—recursion is a natural means

to specify models in domains such as language modeling and computational biology. Another

issue is that the time SlicStan takes to compile a program does not scale well with the size of the

inference problem. PERPL, while supporting (unbounded) recursion, is designed to work in the

absence of continuous r.v.s. For exact inference on certain recursive models involving only discrete

r.v.s, PERPL does not empirically scale as well as the best algorithms known for the same models.

This paper presents a novel approach to VE for an expressive PPL. While acknowledging that

it is an elusive, likely impossible goal for any single inference method to excel at all expressible

programs, we aim to achieve good efficiency and scalability across a wide range of programs

featuring bounded recursion, discrete distributions, and occasionally continuous distributions, all

the while with provable correctness guarantees. We embody this approach in a PPL called Mappl.

VE as compilation. In Mappl, a probabilistic computation is compiled into a pure computation of

the marginal likelihood. A discrete r.v. is eliminated by summing (over the variable’s finite support)

the product of all factors dependent on that variable. Control flow, namely branching and function

calls, are compiled in continuation-passing style: the compiled branch or function takes as input a

continuation representing the product of all factors dependent on the return value.

Decomposition, memoization, and amortization. We observe that many recursive probabilistic

programs of interest enjoy the property that the exponentially many possible executions share

substructure. For these programs, the VE compilation effectively decomposes, in a recursive manner,

a global marginal inference problem into subproblems amenable to dynamic programming [9]. The

same subproblem instance may be queried multiple times during inference, so the solution to the

inference subproblem can be memoized and thus the cost of solving the subproblem amortized.
The subproblems are likely easier to solve than the global problem, because they have reduced

dimensionality and are free of language constructs such as recursion that are difficult for inference.

Some of these subproblems may be solved easily if they happen to contain no continuous r.v.s, some

may be solved by existing approximate inference methods that specialize in straight-line programs

with continuous r.v.s, and some may sometimes even be solved analytically by capitalizing on

advances in symbolic integration. The upshot is that the VE compilation may render an otherwise

intractable inference problem solvable in polynomial time.

Factorization by information-flow typing. It is well understood that the effectiveness of VE

critically depends on exploiting independence to factorize joint distributions. With recursion, there

is more reason for a VE compiler to exploit independence, as decomposition and memoization just

would not be as effective if subproblem definitions were too coarse-grained.

To reason about independence, we design an information-flow type system for Mappl. To elim-

inate a variable x from a computation, the Mappl compiler consults information-flow typing to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:3

factorize the computation into two parts, the probabilistic side effects of which are respectively

dependent and independent of x. The idea of using information-flow typing [21] to reason about

independence is similar to that in SlicStan [29], but Mappl’s type-system design and formal develop-

ment differ substantially from SlicStan’s. SlicStan is an imperative while-language where variables

must be global and programs must have deterministic support, whereas Mappl is an expressive

functional language allowing recursion and stochastic support. SlicStan is defined with an opera-

tional semantics, whereas we adopt a compositional, denotational treatment suited for reasoning

about independence—and thus for factorizing computations—for open terms under binders.

Generality and scalability. Mappl generalizes VE compilation and information-flow typing to

recursive probabilistic programs—for example, those expressing hidden Markov models (HMMs)

and probabilistic context-free grammars (PCFGs).
1
Experiments show that Mappl’s VE compiler

can generate code that recovers widely used polynomial-time inference algorithms: the forward

algorithm for HMMs [55] and the inside algorithm for PCFGs [5].

We consider it important to achieve good scalability of not only inference but also compilation.

Notably, compared with SlicStan, the increased generality of Mappl to support recursion has

implications for the scalability of compilation. In SlicStan, HMMs have to be expressed by unrolling

recursion into a fixed number of iterations. For such models, SlicStan’s compilation time does

not scale well with the problem size (e.g., the length of the observed sequence). In Mappl, by

contrast, compilation time stays constant as the problem size increases for such models, because

Mappl can express them as probabilistic recursive functions and compile them to pure recursive

functions, without unrolling. In addition, SlicStan uses a semilattice—as opposed to a lattice—of

information-flow labels for factorization, which is considered to impede efficient label inference.

By contrast, Mappl uses a simpler, better-behaved two-level lattice.

Correctness guarantees. We want to show that Mappl’s VE compilation is correct by proving that

the compiled program computes the marginal likelihood as defined by the denotational semantics.

Since compilation uses information-flow typing to factorize computations, we need to show that

our information-flow type system is sound with respect to the denotational semantics. To that end,

we contribute a logical-relations model of information-flow types for proving noninterference in

the novel, measure-theoretic setting of probabilistic programming.

2 KEY FEATURES, MAIN IDEAS, AND EXAMPLES
We use a simple hidden Markov model as a starting point to illustrate the key features and the

main ideas of our approach. Figure 1a models a sequence of observations as being generated by a

sequence of hidden states. The recursive function hmm takes as input the initial hidden state z0 and

a data sequence, which is assumed to be gathered by prepending newer observations to the front

of the sequence. The return value of hmm is the next hidden state. The probability of transitioning

from a state to the next state is given by a pure function step : B → dist(B). The probability of

observing a data point in a state is given by an emission function emit : B → dist(R). The HMM is

conditioned on observing the data sequence.

The inference problem is, given any given data sequence, to compute the marginal likelihood of

observing it. The Mappl compiler translates the recursive, probabilistic hmm in Figure 1a into the

recursive, pure hmm in Figure 1b. When the compiled hmm is called with the top-level continuation

𝜆_. 0 for the parameter k, it computes the desired marginal likelihood. This procedure for exact

inference runs in time linear in the length of data, recovering the forward algorithm for HMMs.

1
As a caveat, this paper does not address VE for almost surely terminating programs, which use unbounded recursion; we

consider the restriction to deterministically bounded recursion to be a reasonable trade-off (Section 8).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:4 Jianlin Li, Eric Wang, and Yizhou Zhang

source program: recursive and probabilistic compiled program: recursive and pure

def hmm (z0, data) = (a)-

case data of

| nil⇒ ret(z0)

| cons x xs ⇒
z = hmm(z0, xs) // recursive call returns current state
observe(emit(z); x) // Bayesian conditioning
sample(step(z)) // sample next state and return it
end

def hmm (k, z0, data) = (b)-

case data of

| nil⇒ k(z0 )
| cons x xs ⇒ hmm(

𝜆z. logPr(emit(z); x) +

logsumexpB(𝜆y. logPr(step(z); y) + k(y)),
z0, xs)

end // recovers linear-time forward algorithm

def pcfg (words) = (c)-

z = sample(Bern(0.5))

case z, words of

| true, cons "a" nil⇒ factor(0) // production S → a
| false, cons _ _ ⇒ // production S → SS
sp = choose(len(words))

// split words at a randomly chosen point
let left, right = split(words, sp) in

pcfg(left) // recursive call
pcfg(right) // recursive call
| _, _ ⇒ factor(−∞)

end

def pcfg (k, words) = (d)-

logsumexpB(

𝜆z. logPr(Bern(0.5); z) +

case z, words of

| true, cons "a" nil ⇒ 0 + k(unit)
| false, cons _ _⇒
logsumexpN (len(words),
𝜆sp. let left, right = split(words, sp) in

pcfg(𝜆_. 0, left) +
pcfg(k, right))

| _, _⇒ −∞ + k(unit)
end) // recovers cubic-time inside algorithm

// a hybrid discrete–continuous HMM (e)-

def hmm
′
(z0, data) =

case data of

| nil⇒ ret(z0)

| cons x xs ⇒
z = hmm

′
(z0, xs)

w = sample(Normal(0,1)) // sample a continuous r.v.
observe(emit

′
(w,z); x)

sample(step(z))

end

def hmm
′
(k, z0, data) = (f)-

case data of

| nil⇒ k(z0 )
| cons x xs ⇒ hmm

′
(

𝜆z. logML(
w = sample(Normal(0,1))

factor(logPr(emit
′
(w,z); x))

) + logsumexpB (𝜆y. logPr(step(z); y) + k(y)),
z0, xs)

end

Figure 1. Examples of VE-compiling probabilistic programs in Mappl. The return value of a multi-line block

of terms is that of the last term. The construct ret(𝑒) is the monadic return that lifts a pure expression to a

probabilistic term. The primitive logPr (𝑑 ; ·) is the log-probability density or mass function of the distribution 𝑑 .

logsumexpB : (B→R) →R and logsumexpN : N→ (N→R) →R are the usual log-sum-exp functions for

log-domain sums. The choose primitive randomly selects a natural number in a given range, but unlike the

sample primitive, choose does not otherwise incur any probabilistic side effects.

Handling expressive language features. The hmm example uses recursion, which violates the

assumptions of many existing approaches to PPL inference. Instead of using recursion to define the

HMM, one could perform exact inference by unfolding the model into a fixed number of iterations

and then applying existing inference methods good at nonrecursive programs. But this approach is

awkward when the number of iterations is not known statically—namely, when data is dynamically

sized. A key design goal of Mappl is to support a broad class of models definable with bounded

recursion where the bound may not be known statically.

Unrolling recursion is even more awkward for models that are not iterative but properly recursive

and for models where control flow is stochastic. A prime example is PCFGs. Figure 1c shows a

PCFG model in Mappl that samples parse trees for the simple grammar 𝑆 → a (0.5) | 𝑆𝑆 (0.5).
The program is conditioned on it generating a parse tree for a sequence of words. The recursion

pattern of pcfg is more complex than the HMMs. First, it is tree-structured rather than linear.

Second, control flow is stochastic—which branch of case is taken depends on the sampled variable z

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:5

in each recursive call. Yet, the Mappl compiler can still compile the program into a pure one

that computes the marginal likelihood of observing words. The compilation applies to mutually
recursive functions, too, which are useful for expressing more complex PCFGs in practice. The

pure pcfg in Figure 1d recovers the cubic-time inside algorithm.

An information-flow type system. VE for Bayesian networks has a worst-case exponential

running time, but tractable inference is possible for certain models by exploiting independence in

the model structure: factors independent of a variable can be factored out of the summation that

marginalizes out the variable.

Similarly, VE for recursive programs requires analyzing dependence and independence, for which

we use a static information-flow analysis. In particular, we design an information-flow type system.

Information-flow typing is a compositional, automatable means to reason about dependence, with

applications in many different contexts [1], among which the most well-known is language-based

security [60]. We repurpose the idea to our expressive PPL.

While information-flow typing for the pure fragment of Mappl is mostly standard, it is less

obvious how to design typing rules for the probabilistic fragment. A principle is that the design of

the type system should be guided by the denotational semantics. The denotational semantics of a

probabilistic computation in Mappl is a measure over the space of its possible outcomes, which

can be roughly thought of as a function that, given a set of values, produces the unnormalized

probability that the computation returns a value in that set. Accordingly, our type system assigns

to a probabilistic computation a labeled type 𝐴ℓ
: 𝐴 types the return value of the computation, and

the label ℓ classifies the level of information contained in the measure denoting the computation.

∆; Ψ; Ξ; C; Γ ⊢ 𝑡 : 𝐴ℓ1

∆; Ψ; Ξ; C; Γ, x : 𝐴ℓ2 ⊢ 𝑚 : 𝐵ℓ3

∆; Ψ; Ξ; C; Γ ⊢ x = 𝑡 ; 𝑚 : 𝐵ℓ1⊔ℓ3

For example, consider typing variable bindings in the probabilistic

fragment. As expected, the rule requires the composed computation

x = 𝑡 ; 𝑚 to have a label no lower than the labels of the computations

𝑡 and𝑚 being composed. However, it does not explicitly constrain

the label ℓ2 of the variable x being bound. In particular, it is not required that the label of x be at

least as high as the label of 𝑡 . This is in keeping with the denotation of x = 𝑡 ; 𝑚, which is defined

by composing the measures that denote 𝑡 and𝑚 and marginalizing over the entire support of x.

Factorizing computations using information-flow typing. To eliminate a variable from a

probabilistic computation, Mappl’s VE compiler infers labels for the subcomputations, constraining

that the variable being eliminated be labeled H (high). As many subcomputations are inferred to be

labeled L (low) as possible. The larger computation can thus be factorized into a H partition and a L
partition, and the L partition need not be involved in the elimination of the variable.

For example, in Figure 1a, to eliminate sample(step(z)) from the cons branch, the sampled variable

is labeled H, and the information-flow analysis deduces that the probabilistic side effects of the

recursive call hmm(z0, xs) and the conditioning observe(emit(z); x) can be labeled L, while the side
effects of sample(step(z)) and any computations in the caller that depend on the return value z must

be labeled H. This factorization indicates that in the compiled program, only the H partition needs

to be nested under the logsumexpB that marginalizes out sample(step(z)).

Compiling with continuations. Continuation-passing style (CPS) transformations [19] are an

effective way to eliminate various forms of effects away from a program. It has found applications

in the implementation of PPLs [28] and in the cost analysis of randomized algorithms [4, 35]. The

Mappl compiler uses CPS to capture dependence in the presence of functions calls and branching.

For example, in the compiled hmm, a continuation of type B → R represents the dependencies

of the recursive call’s return value z: the continuation takes z as input and returns a log-likelihood

that is the transformation of those caller terms whose probabilistic side effects depend on z. In the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:6 Jianlin Li, Eric Wang, and Yizhou Zhang

compiled pcfg, the continuations passed to recursive calls are less involved, as the information-flow

analysis deduces that the return value has no nontrivial dependencies.

Decomposition into subproblems with memoization. The compiled hmm and pcfg run in

polynomial time, despite the exponentially many possible executions of the input programs. This

algorithmic efficiency is because the recursive programs have dynamically recurring substructure,

on which the VE compilation capitalizes to generate recurring subproblems and memoize their

solutions. For example, the compiled hmm corresponds to the following recursive equations for

computing, in log domain, the marginal likelihood L(k, z0, data) of observing data:

L(k, z0,nil) = k(z0 )

L(k, z0, cons x xs) = L
(
𝜆z.

𝜙1︷                 ︸︸                 ︷
log Pr

(
emit(z) ; x

)
+

𝜙2 : nested inference subproblem (summing out y)︷                                              ︸︸                                              ︷
log

∑︁
y

exp

(
log Pr

(
step(z) ; y

)
+ k(y)

)
, z0, xs

)
The generated inference subproblem 𝜙2 eliminates the discrete r.v. sample(step(z)), denoted by y, by

summing over its finite support. Although the subproblem is nested inside a continuation, inference

time is linear in the length of data: the subproblem needs to be solved at most once for each of

the two possible values of z and for each continuation k created—there can only be as many as

the length of data. The solution to a subproblem instance, once computed, can be memoized and

reused whenever the same subproblem instance is encountered again. This decomposition and

memoization is what recovers the dynamic-programming algorithms for HMMs and PCFGs [55, 5].

Contrast this with solving the global problem directly (say, with an enumeration-based approach to

exact inference) without first compiling the recursive program to decompose it into subproblems:

L(z0, x1, ..., xn ) = log

∑︁
z1

∑︁
z2

...
∑︁
zn

𝑛−1∏
𝑖=0

Pr

(
emit(zi ) ; xi+1

)
Pr

(
step(zi ) ; zi+1

)
The sums over the Boolean variables z1, z2, ..., zn enumerate all possible execution traces of the

program. Hence, the inner product has to be computed 𝑂 (2𝑛) times, where 𝑛 is the length of data.

Continuous parameters. Consider hmm
′
in Figure 1e, a hybrid discrete–continuous HMM. It is

largely the same as hmm except that the emission function takes as input an additional, freshly

sampled Gaussian variable w. Directly solving the marginal-inference problem using a general-

purpose inference method such as importance sampling would be intractable. Instead, Figure 1f

shows that hmm
′
is compiled similarly to hmm, with the factor 𝜙1 replaced by a nested inference

problem marginalizing out w. Marginal inference with the compiled hmm
′
is efficient, even when

the inference subproblem logML(...) is solved using general-purpose Monte Carlo methods. The

key is that with memoization, this subproblem generated by Mappl’s compiler needs to be solved

only 𝑂 (𝑛) times, once for each of the two values of z and for each of the at most 𝑛 values of x:

L(k, z0, cons x xs) = L
(
𝜆z.

𝜙 ′
1
: nested inference subproblem (integrating out w)︷                                                                                   ︸︸                                                                                   ︷

log

∫
w

exp

(
log Pr

(
Normal(0, 1) ; w

)
+ log Pr

(
emit

′ (w, z) ; x

)
dw

)
+

𝜙2︷                ︸︸                ︷
log

∑︁
y

exp

(
· · ·

)
, z0, xs

)
A semantic model of information-flow types. Factoring out independent factors is akin to loop-
invariant code motion, a compiler optimization that moves code outside a loop if it is independent

of the loop index. The dependence analysis VE entails is more sophisticated, though, due to the

measure-theoretic nature of the semantics of probabilistic programs. Fortunately, information-flow

typing provides a syntactic, principled means to reason about independence.

How can we argue that the syntactic approach of information-flow typing to reasoning about

independence is semantically sound in this probabilistic setting? For an information-flow type

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:7

system, the usual notion of soundness is noninterference [27]. In our novel setting, we take non-

interference to mean that the measure denoting a probabilistic computation of a type labeled low

behaves irrespective of substitutions for its high-labeled free variables. To prove noninterference,

we adapt the semantic, logical-relations proof technique [61, 1], interpreting labeled types as partial

equivalence relations on measures indistinguishable to an observer. We believe that our semantic

model and its metatheories are the first to introduce observer-sensitive equational reasoning to a

measure-theoretic setting and thus are of independent interest.

3 SYNTAX, TYPE SYSTEM, AND DENOTATIONAL SEMANTICS
Syntax. Figure 2 defines the syntax of Mappl programs. Local variables and global variables are

notated in blue. An overline denotes a sequence of zero or more elements.

Mappl has a pure, deterministic fragment and a monadic, probabilistic fragment, similar to some

prior PPL formalisms [67, 37, 36]. Pure computations take the form of expressions. The pure fragment

is a simply typed 𝜆-calculus equipped with real numbers, pairs, sums, iso-recursive types, 𝑛-ary

operations, and two primitive distributions (Bernoulli and normal, representative of discrete and

continuous distributions). A special binary operation logPr (𝑑 ; 𝑒) gives the log-probability density

or mass of a distribution 𝑑 at a point 𝑒 .

Recursive types, sum types, and product types together enable the expression of algebraic

data types, including Booleans and lists: B
def

== U + U, list𝜏
def

== 𝜇𝛼.U + (𝜏 × 𝛼). Distributions have type
dist(𝜎), where 𝜎 = B for a Bernoulli distribution and 𝜎 = R for a normal distribution.

Probabilistic computations are in the forms of terms and commands. A command sequences

terms. The return value of a command is that of its last term. We will write 𝑡 for 𝑡 $ when it is

clear from context that 𝑡 is being used as the last term of a command. Terms have the following

forms: ret(𝑒) returns the value of a pure expression 𝑒 , sample (𝑑) samples from a distribution 𝑑 ,

factor(𝑒) conditions the program using a log-domain expression 𝑒 , case(𝑒; x.𝑚1; x.𝑚2) branches
on a sum-typed expression 𝑒 , and f (𝑒) invokes a global function f with arguments 𝑒 . The factor

form supports soft constraints, which subsume conditioning on continuous observations—that

is, observe(𝑑 ; 𝑒) can be encoded as factor(logPr (𝑑 ; 𝑒)). For brevity of presentation, we omit hard

constraints (i.e., factor(−∞)), but they are straightforward to incorporate in both the syntax and

the semantics. We sometimes write sample𝜎 (𝑑) and logPr𝜎 (𝑑 ; 𝑒), where 𝜎 is B or R, to indicate the

type of the support of the distribution 𝑑 .

The pure fragment supports nested marginal inference via the form logML(𝑚). While the

command𝑚 is probabilistic, logML(𝑚) is a pure expression, since inference handles the probabilistic
effects of𝑚. It returns the log-marginal likelihood of the probabilistic computation𝑚.

A program in Mappl is composed of a set of global definitions and a main command. The global
definitions can be either pure (G) or probabilistic (F ). Importantly, Mappl allows mutual recursion

among pure globals and among probabilistic globals.

Recursion leaves open the possibility of nontermination, but for VE in this paper, we do not

concern ourselves with programs that have possibility of not terminating.

Type system. The base type system for Mappl is standard. Figure 2 shows selected rules. Expression

typing judgments have the form ∆; Γ ⊢ 𝑒 : 𝜏 , where ∆ is a context mapping names of pure global

definitions to their types, and Γ is a context mapping local variables to their types. Term and

command typing judgments have the forms ∆; Ψ ; Γ ⊢ 𝑡 : 𝜏 and ∆; Ψ ; Γ ⊢ 𝑚 : 𝜏 . Computations in the

probabilistic fragment can use probabilistic globals, whose types are provided by the context Ψ .

Denotational semantics. We use 𝜔-quasi Borel spaces (𝜔qbses) [64] as the semantic domain.

𝜔qbses are as a drop-in replacement for measurable spaces. They enable carrying out measure

theory in the presence of higher-order types and recursive types, by providing well-behaved

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:8 Jianlin Li, Eric Wang, and Yizhou Zhang

expressions 𝑒, 𝑑 F x | unit | 𝑟 | 𝜆x. 𝑒 | 𝑒1 𝑒2 | ⟨𝑒1, 𝑒2⟩ | 𝜋1 (𝑒) | 𝜋2 (𝑒)
| inl 𝑒 | inr 𝑒 | case(𝑒; x.𝑒1; x.𝑒2) | let(𝑒1; x.𝑒2)
| roll(𝑒) | unroll(𝑒1; x.𝑒2) | op (𝑒1, ..., 𝑒𝑛)
| 𝐷 (𝑒1, ..., 𝑒𝑛) | logPr (𝑑 ; 𝑒) | logML(𝑚)

distributions 𝐷 F Bern | Normal
terms 𝑡 F ret(𝑒) | sample (𝑑) | factor(𝑒) | f (𝑒1, ..., 𝑒𝑛)

| case(𝑒; x.𝑚1; x.𝑚2)
commands 𝑚 F 𝑡 $ | x = 𝑡 ; 𝑚

pure globals G F def x = 𝑒

prob. globals F F def f (x1, ..., xn) =𝑚

programs P F G; F ;𝑚

types

𝜏, 𝜎 F U | R | 𝛼 | dist(𝜏) | 𝜇𝛼. 𝜏
| 𝜏1 → 𝜏2 | 𝜏1 + 𝜏2 | 𝜏1 × 𝜏2

contexts of locals

Γ F ∅ | Γ , x : 𝜏

contexts of pure globals

∆ F ∅ | ∆, x : 𝜏

types of probabilistic globals

F F (𝜏1, . . . , 𝜏𝑛) → 𝜏

contexts of probabilistic globals

Ψ F ∅ | Ψ, f : F

Γ (x) = 𝜏

∆; Γ ⊢ x : 𝜏

x ∉ dom(Γ ) ∆(x) = 𝜏

∆; Γ ⊢ x : 𝜏

∆; Γ ⊢ 𝑒 : R

∆; Γ ⊢ Bern(𝑒) : dist(B)
∆; Γ ⊢ 𝑒1 : R ∆; Γ ⊢ 𝑒2 : R

∆; Γ ⊢ Normal(𝑒1, 𝑒2) : dist(R)
∆; Γ ⊢ 𝑑 : dist(𝜏) ∆; Γ ⊢ 𝑒 : 𝜏

∆; Γ ⊢ logPr (𝑑 ; 𝑒) : R

∆;∅; Γ ⊢ 𝑚 : U

∆; Γ ⊢ logML(𝑚) : R

∆; Γ ⊢ 𝑒 : 𝜏

∆; Ψ ; Γ ⊢ ret(𝑒) : 𝜏

∆; Γ ⊢ 𝑒 : R

∆; Ψ ; Γ ⊢ factor(𝑒) : U

∆; Γ ⊢ 𝑒 : 𝜏1 + 𝜏2 ∆; Ψ ; Γ , x : 𝜏𝑖 ⊢ 𝑚𝑖 : 𝜏 for 𝑖 ∈ {1, 2}
∆; Ψ ; Γ ⊢ case(𝑒; x.𝑚1; x.𝑚2) : 𝜏

Ψ (f) = (𝜏1, ..., 𝜏𝑛) → 𝜏 ∆; Γ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 ∈ {1, ..., 𝑛}
∆; Ψ ; Γ ⊢ f (𝑒1, ..., 𝑒𝑛) : 𝜏

∆; Γ ⊢ 𝑑 : dist(𝜎)
∆; Ψ ; Γ ⊢ sample (𝑑) : 𝜎

∆; Ψ ; Γ ⊢ 𝑡 : 𝜏

∆; Ψ ; Γ ⊢ 𝑡 $ : 𝜏

∆; Ψ ; Γ ⊢ 𝑡 : 𝜏 ∆; Ψ ; Γ , x : 𝜏 ⊢ 𝑚 : 𝜏 ′

∆; Ψ ; Γ ⊢ x = 𝑡 ; 𝑚 : 𝜏 ′

Ψ (f) = (𝜏1, ..., 𝜏𝑛) → 𝜏

∆; Ψ ; x1 : 𝜏1, . . . , xn : 𝜏𝑛 ⊢ 𝑚 : 𝜏

∆; Ψ ⊢ def f (x1, . . . , xn) =𝑚 : Ψ (f)

dom(Ψ) = {fi | F𝑖 ∈ F ∧ name(F𝑖 ) = fi}
∆; Ψ ⊢ F𝑖 : Ψ (fi) for F𝑖 ∈ F s.t. name(F𝑖 ) = fi

∆; Ψ ⊢ F : Ψ

∆ ⊢ G : ∆ ∆; Ψ ⊢ F : Ψ
∆; Ψ ;∅ ⊢ 𝑚 : 𝜏

⊢ G; F ;𝑚

Figure 2. Syntax of Mappl and selected typing rules.

function spaces and 𝜔cpos. Thus, in this paper, we use standard measure-theory notations with

the understanding that we are working with 𝜔qbses. For a measurable function 𝑓 : 𝑋 → R+
, the

Lebesgue integral of 𝑓 with respect to a measure 𝜇 on 𝑋 is denoted

∫
𝑓 d𝜇 or

∫
𝑓 (𝑥)𝜇 (d𝑥).

The semantic interpretation J𝜏K of each type 𝜏 is an 𝜔qbs. Types in Mappl are similar to those

in the SFPC calculus of Vákár et al. [64], which has function types and iso-recursive types; we

refer the reader to their paper for detailed constructions of the 𝜔qbses. For an 𝜔qbs 𝑋 , we write

𝑋⊥ for the lifting of J𝜏K to another 𝜔qbs with an extra element ⊥ signifying partiality. There is a

commutative strong monad of measures on 𝜔qbses [64]; for an 𝜔qbs 𝑋 , we write Meas𝑋 for the

𝜔qbs of measures on 𝑋 .

Figure 3 shows selected interpretations of expressions, terms, and commands. The definitions use

the operator >>= to handle partiality. In addition to >>= : J𝜏1K⊥ → (J𝜏1K → J𝜏2K⊥) → J𝜏2K⊥, we overload
>>= on J𝜏1K⊥ → (J𝜏1K → Meas J𝜏2K⊥) → Meas J𝜏2K⊥ such that 𝑣 >>= 𝑓

def

== if 𝑣 = ⊥ then 𝜆𝐸. 1𝐸 (⊥) else 𝑓 (𝑣).
Here, 1𝐸 (𝑣) is the indicator function that is 1 if 𝑣 ∈ 𝐸 and 0 otherwise.

The contract for interpreting expressions is that an expression of type 𝜏 is interpreted as an

element of J𝜏K⊥. The denotation J𝑒K𝛿 ;𝛾 of an expression 𝑒 typed in contexts ∆ and Γ is interpreted

under substitutions 𝛿 ∈ J∆K and 𝛾 ∈ JΓK for the bindings in ∆ and Γ . That is, 𝛿 and 𝛾 provide

semantic interpretations for the bound global and local variables. The denotation of a primitive

distribution is its probability density or mass function.

The contract for interpreting terms and commands is that a term or command of type 𝜏 is

interpreted as a measure on J𝜏K⊥—i.e., an element of Meas J𝜏K⊥. The interpretations J𝑡K𝛿 ;𝜓 ;𝛾 and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:9

JxK𝛿 ;𝛾

def

== 𝛾 (x) if x ∈ dom(𝛾 )

JxK𝛿 ;𝛾

def

== 𝛿 (x) if x ∉ dom(𝛾 ) ∧ x ∈ dom(𝛿)

Jinl 𝑒K𝛿 ;𝛾

def

== inl J𝑒K𝛿 ;𝛾

JBern(𝑒)K𝛿 ;𝛾

def

== J𝑒K𝛿 ;𝛾 >>= 𝜆𝑝. if 0 ≤ 𝑝 ≤ 1

then (𝜆𝑣. if 𝑣 then 𝑝 else 1 − 𝑝) else ⊥
JlogPr (𝑑 ; 𝑒)K𝛿 ;𝛾

def

== J𝑑K𝛿 ;𝛾 >>= 𝜆𝑓 . J𝑒K𝛿 ;𝛾 >>= 𝜆𝑣. log 𝑓 (𝑣)
JlogML(𝑚)K𝛿 ;𝛾

def

== let 𝑟 = J𝑚K𝛿 ;∅;𝛾 (JUK) in
if 0 < 𝑟 < ∞ then log 𝑟 else ⊥

Jret(𝑒)K𝛿 ;𝜓 ;𝛾

def

== 𝜆𝐸. 1𝐸 (J𝑒K𝛿 ;𝛾 )
Jcase(𝑒; x.𝑚1; x.𝑚2)K𝛿 ;𝜓 ;𝛾

def

== J𝑒K𝛿 ;𝛾 >>= 𝜆𝑣. case 𝑣 of

inl 𝑢 ⇒ J𝑚1K𝛿 ;𝜓 ;𝛾 [x ↦→𝑢 ] | inr 𝑢 ⇒ J𝑚2K𝛿 ;𝜓 ;𝛾 [x ↦→𝑢 ] end

Jfactor(𝑒)K𝛿 ;𝜓 ;𝛾

def

== J𝑒K𝛿 ;𝛾 >>= 𝜆𝑟 . 𝜆𝐸. exp(𝑟 ) · 1𝐸 (unit)

Jsample𝜎 (𝑑)K𝛿 ;𝜓 ;𝛾

def

== J𝑑K𝛿 ;𝛾 >>= 𝜆𝑓 . 𝜆𝐸.
∫
𝐸
𝑓 d𝜈𝜎

where 𝜈𝜎 is the reference measure over J𝜎K
Jf (𝑒1, . . . , 𝑒𝑛)K𝛿 ;𝜓 ;𝛾

def

== J𝑒1K𝛿 ;𝛾 >>= 𝜆𝑣1 . ...

J𝑒𝑛K𝛿 ;𝛾 >>= 𝜆𝑣𝑛 .𝜓 (f) (𝑣1, . . . , 𝑣𝑛)
J𝑡 $K𝛿 ;𝜓 ;𝛾

def

== J𝑡K𝛿 ;𝜓 ;𝛾

Jx = 𝑡 ; 𝑚K𝛿 ;𝜓 ;𝛾

def

== 𝜆𝐸.∫
𝑢

(
𝑢 >>= 𝜆𝑣. J𝑚K𝛿 ;𝜓 ;𝛾 [x ↦→𝑣 ]

)
(𝐸)J𝑡K𝛿 ;𝜓 ;𝛾 (d𝑢)

Jdef x = 𝑒K𝛿
def

== J𝑒K𝛿 ;∅
Jdef f (x) =𝑚K𝛿 ;𝜓

def

== 𝜆𝑣 . J𝑚K𝛿 ;𝜓 ;{x ↦→𝑣}

JG1 ...G𝑛K𝛿
def

== {g1 ↦→ JG1K𝛿 , ..., gn ↦→ JG𝑛K𝛿 }
where name(G𝑖 ) = gi for 𝑖 ∈ {1, ..., 𝑛}

JF1 ... F𝑛K𝛿 ;𝜓

def

== {f1 ↦→ JF1K𝛿 ;𝜓 , ..., fn ↦→ JF𝑛K𝛿 ;𝜓 }
where name(F𝑖 ) = fi for 𝑖 ∈ {1, ..., 𝑛}

Figure 3. Selected definitions of the denotational semantics for Mappl.

J𝑚K𝛿 ;𝜓 ;𝛾 are additionally indexed by a semantic substitution 𝜓 ∈ JΨK for the global variables

bound in Ψ . The denotation of sample𝜎 (𝑑) is a measure over J𝜎K, obtained by integrating the

density function denoting 𝑑 with respect to either the Lebesgue measure or the counting measure,

depending on whether 𝜎 is R or B. The denotation of x = 𝑡 ; 𝑚 composes the denotations of 𝑡 and𝑚,

integrating the measure denoting𝑚 with respect to the measure denoting 𝑡 . The pure expression

logML(𝑚) is denoted by the logarithm of the measure denoting the U-typed𝑚 on JUK.
Global definitions are mutually recursive and thus are interpreted under semantic substitutions

too. For a programG; F ;𝑚, the index-free denotations are given by the fixpoints JGK = 𝛿∗
def

== fix𝛿. JGK𝛿
and JF K = 𝜓∗

def

== fix𝜓 . JF K𝛿∗;𝜓 We shall write J𝑚K𝛾 for J𝑚K𝛿∗;𝜓∗;𝛾 ; similarly for J𝑡K𝛾 and J𝑒K𝛾 .

4 INFORMATION-FLOW TYPE SYSTEM
Syntax. Figure 4 shows the syntax of labels, types, and contexts of the information-flow type

system. The type system is parameterized by a join semilattice L of labels, although in this work,

we will need only the two-level lattice {L, H} with L ⊑ H.
Types are of the form 𝐴ℓ

, where 𝐴 is an unlabeled type that is further constructed from labeled

types. Metavariables τ range over (labeled) types. We differentiate them from types 𝜏 in the base

type system by typesetting labeled types in upright font and in purple. Similarly, we typeset

metavariables ∆, Ψ, and Γ differently than ∆, Ψ , and Γ , as ∆, Ψ, and Γ now contain labeled types.

The type system supports label polymorphism, as well as ordering constraints on labels, for

functions—that is, the type of a function can be parameterized by label variables 𝜂 and ordering

constraints of the form ℓ1 ⊑ ℓ2. Label polymorphism allows more reusable code [45, 44].

Typing the pure fragment. Typing judgments for expressions have the form ∆; Ξ; C; Γ ⊢ 𝑒 : τ,
where Ξ records the label variables in scope and C the label ordering constraints. These rules

are largely standard. In particular, introduction rules (e.g., those for unit, lambdas, pairs, and

distributions) do not constrain the label of the expression—the label can be arbitrarily low. A

subsumption rule exists to allow weakening (i.e., increasing) the label of an expression. Subtyping

rules are standard and thus omitted. For a labeled type 𝐴ℓ
, subtyping ≤ is covariant in both 𝐴 and ℓ .

The type system uses fine-grained labeling, in that every type, top-level or nested, is labeled [56].

For example, the type of a pair takes the form (𝐴ℓ1
1
×𝐴

ℓ2
2
)ℓ3 . The nested labels ℓ1 and ℓ2 classify the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:10 Jianlin Li, Eric Wang, and Yizhou Zhang

labels ℓ, O F 𝜂 | 𝑙 ∈ L | ℓ1 ⊔ ℓ2

unlabeled types 𝐴, 𝐵 F U | R | 𝛼 | dist(τ) | 𝜇𝛼. τ
| ∀[Ξ |C] .τ1 → τ2 | τ1 + τ2 | τ1 × τ2

labeled types τ F 𝐴ℓ

types of prob. globals F F ∀[Ξ |C] .(τ1, ..., τ𝑛 ) → τ0

contexts of label variables Ξ F ∅ | Ξ, 𝜂

label constraints C F ∅ | C, ℓ1 ⊑ ℓ2

contexts of locals Γ F ∅ | Γ, x : τ

contexts of pure globals ∆ F ∅ | ∆, x : τ

contexts of prob. globals Ψ F ∅ | Ψ, f : F

∆; Ξ; C; Γ ⊢ 𝑒 : τ Ξ; C; L ⊢ τ ≤ τ′

∆; Ξ; C; Γ ⊢ 𝑒 : τ′
∆; Ψ; Ξ; C; Γ ⊢ 𝑡 : τ Ξ; C; L ⊢ τ ≤ τ′

∆; Ψ; Ξ; C; Γ ⊢ 𝑡 : τ′
∆; Ψ; Ξ; C; Γ ⊢ 𝑚 : τ Ξ; C; L ⊢ τ ≤ τ′

∆; Ψ; Ξ; C; Γ ⊢ 𝑚 : τ′

∆; Ξ; C; Γ ⊢ unit : Uℓ

Γ(x) = τ

∆; Ξ; C; Γ ⊢ x : τ

x ∉ dom(Γ) ∆(x) = τ

∆; Ξ; C; Γ ⊢ x : τ

∆; Ξ; C; Γ ⊢ 𝑑 : dist(𝐴ℓ )ℓ ∆; Ξ; C; Γ ⊢ 𝑒 : 𝐴ℓ

∆; Ξ; C; Γ ⊢ logPr (𝑑 ;𝑒 ) : Rℓ

∆; Ξ; C; Γ ⊢ 𝑒 : Rℓ1

∆; Ξ; C; Γ ⊢ Bern(𝑒 ) : dist(Bℓ1 )ℓ2

∆; Ξ; C; Γ ⊢ 𝑒1 : Rℓ1
∆; Ξ; C; Γ ⊢ 𝑒2 : Rℓ1

∆; Ξ; C; Γ ⊢ Normal(𝑒1, 𝑒2 ) : dist(Rℓ1 )ℓ2

∆;∅; Ξ; C; Γ ⊢ 𝑚 : Uℓ

∆; Ξ; C; Γ ⊢ logML(𝑚) : Rℓ

∆; Ξ; C; Γ ⊢ 𝑒 : τ

∆; Ψ; Ξ; C; Γ ⊢ ret(𝑒 ) : τ

∆; Ξ; C; Γ ⊢ 𝑒 : Rℓ

∆; Ψ; Ξ; C; Γ ⊢ factor(𝑒 ) : Uℓ

∆; Ξ; C; Γ ⊢ 𝑑 : dist(𝐴ℓ )ℓ

∆; Ψ; Ξ; C; Γ ⊢ sample (𝑑 ) : 𝐴ℓ

∆; Ξ; C; Γ ⊢ 𝑒 : (τ1 + τ2 )ℓ
∆; Ψ; Ξ; C; Γ, x : τ𝑖 ⊢ 𝑚𝑖 : 𝐴ℓ for 𝑖 ∈ {1, 2}

∆; Ψ; Ξ; C; Γ ⊢ case(𝑒 ; x.𝑚1; x.𝑚2 ) : 𝐴ℓ

Ψ(f ) = ∀[𝜂 |C𝑓 ] .(τ1, ..., τ𝑛 ) → τ0 Ξ; C; L ⊢ C𝑓 {ℓ/𝜂}
∆; Ξ; C; Γ ⊢ 𝑒𝑖 : τ𝑖 {ℓ/𝜂} for 𝑖 ∈ {1, ..., 𝑛}

∆; Ψ; Ξ; C; Γ ⊢ f (𝑒1, ..., 𝑒𝑛 ) : τ0{ℓ/𝜂}

∆; Ψ; Ξ; C; Γ ⊢ 𝑡 : τ

∆; Ψ; Ξ; C; Γ ⊢ 𝑡 $ : τ

∆; Ψ; Ξ; C; Γ ⊢ 𝑡 : 𝐴ℓ

∆; Ψ; Ξ; C; Γ, x : 𝐴ℓ ′ ⊢ 𝑚 : 𝐵ℓ

∆; Ψ; Ξ; C; Γ ⊢ x = 𝑡 ; 𝑚 : 𝐵ℓ

Ψ(f ) = ∀[Ξ |C] .(τ1, ..., τ𝑛 ) → τ
∆; Ψ; Ξ; C; x1 : τ1, . . . , xn : τ𝑛 ⊢ 𝑚 : τ

∆; Ψ ⊢ def f (x1, . . . , xn ) =𝑚 : Ψ(f )

Figure 4. Syntax of information-flow types and selected rules of the information-flow type system.

contents of the pair, while the top-level label ℓ3 classifies the reference to the pair. The distinction

enables fine-grained control over the flow of information.

The introduction rules for primitive distributions use the type dist(𝐴ℓ1 )ℓ2 , where 𝐴 is either B
or R, ℓ1 classifies the contents of the distribution (i.e., how the r.v. is distributed), and ℓ2 classifies the

reference to the distribution. For instance, given x : BH
, the expression Bern(case(x; _.0.7; _.0.1))

can be typed at dist(BH)L. This fine-grained labeling allows the distribution to be stored in a data

structure that can only hold L references, while controlling that when the distribution is eventually

retrieved and sampled, the probabilistic effects are classified at H. Whereas coarser-grained type

systems trade fine-grained control for reduced label annotation burden, label annotation is not a

concern in our setting, because programmers do not specify security policies through labels as they

would in a security-typed language. Instead, labels are automatically inferred.

Typing the probabilistic fragment. The design of the type system is guided by the denotational

semantics: while the label of an expression 𝑒 is designed to classify the information the semantic

value J𝑒K𝛿 ;𝛾 contains, the label of a term 𝑡 or a command𝑚 should classify the information the

measure J𝑡K𝛿 ;𝜓 ;𝛾 or J𝑚K𝛿 ;𝜓 ;𝛾 contains.

Consider typing sample (𝑑), where 𝑑 has type dist(𝐴ℓ1 )ℓ2 . Since the contents of the distribution 𝑑 ,
as well as the identity of it, determine the measure denoting sample (𝑑), the term should be typed at

a level no lower than ℓ1⊔ ℓ2. In Figure 4, the typing rule for sample (𝑑) handles distributions that can
be typed at dist(𝐴ℓ )ℓ . This rule suffices, as the type dist(𝐴ℓ1 )ℓ2 is covariant in both ℓ1 and ℓ2: both

labels can be weakened to a label ℓ ⊒ ℓ1 ⊔ ℓ2 by subsumption. Consider typing case(𝑒; x.𝑚1; x.𝑚2),
where 𝑒 has type (τ1+τ2)ℓ . Information flows, via a control structure, from 𝑒 to the measure over the

possible outcomes of evaluating the term. So the term should be classified at a level no lower than ℓ .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:11

Typing a call to a probabilistic global function checks, with Ξ; C;L ⊢ C𝑓 {ℓ/𝜂}, that the constraints
specified in the function’s type (after substitution) are satisfied under the current context.

Now consider typing x = 𝑡 ; 𝑚. Since the denotation is defined by composing the two measures

J𝑡K and J𝑚K, the label of x = 𝑡 ; 𝑚 is required to be no lower than the labels of 𝑡 and𝑚. It is perhaps

surprising that in the typing rule, the label ℓ ′ of 𝑥 is not required to be at least as high as the label ℓ

of 𝑡 . An explanation is that denotationally, 𝑡 merely defines a measure on the possible values x can

take; it does not determine the value of x in any given run.

This wrinkle has implications for the precision of the information-flow analysis. Consider the ex-

ample below. The unnormalized joint density of x and y consists of three factors: 𝜙1 (x)𝜙2 (x, y)𝜙3 (y).

x = sample(Bern(.5))
y = sample(Bern(case(x; _.0.7; _.0.1)))
factor(case(y; _.8; _.2))

Suppose that we want to marginalize out x. Labeling x at H, we
hope to type the third term at L, to justify that it need not be

involved in the marginalization of x:

∑
x
𝜙1 (x)𝜙2 (x, y)𝜙3 (y) =

𝜙3 (y)
∑

x
𝜙1 (x)𝜙2 (x, y). The typing rule for x = 𝑡 ; 𝑚 allows y

to be labeled L, despite that its right-hand side term needs to be typed at H. In contrast, if the typing

rule required y to be labeled H, then the third term would also have to be typed at H, which would

disallow the third term to be factored out of the sum.

Finally, the expression logML(𝑚) is typed at a label no lower than the command𝑚’s label, since

the measure denoting𝑚 determines the model evidence of the probabilistic computation𝑚.

Remarks. In the presence of side effects such as mutable state, information-flow type systems often

use a program-counter label [22] to lower-bound information leaked through side effects. Indeed,

in the imperative while-language of SlicStan [29], typing judgments of commands do use a label to

lower-bound the write effects of commands. In Mappl, however, the label of a command is an upper
bound that directly classifies the information that can flow into the command’s measure denotation,

just as an expression’s label upper-bounds the information that can flow into the expression’s

denotation. In SlicStan, by contrast, factorization must first produce an upper bound by joining the

labels of its subexpressions.

5 NONINTERFERENCE VIA A LOGICAL-RELATIONS MODEL
Semantic types. We now establish the soundness of the information-flow type system, by con-

structing a semantic model of the types. Figure 5 defines our logical-relations model.

The definition uses a function ⌊·⌋ that strips a type of all labels occurring in it; ⌊·⌋ sends a type
in the information-flow type system (Section 4) to a type in the base type system (Section 3). The

function is overloaded on labeled types τ, unlabeled types 𝐴, and contexts ∆, Ψ, Γ.

The main idea behind our model is to interpret each type τ as two binary relations: a value relation
VVτUO

𝜉
for semantic typing of pure expressions, and a measure relationMVτUO

𝜉
for semantic typing

of probabilistic computations. Both relations are parameterized by a label O that stands for the

“security clearance” of an observer, and by a substitution 𝜉 for the label variables occurring free

in τ. The model is constructed by first defining, by induction on types, the interpretations VV𝐴UO
𝜉 ;𝜃

,

VVτUO
𝜉 ;𝜃
, and MVτUO

𝜉 ;𝜃
parameterized by a semantic substitution 𝜃 for free type variables, with

fixpoints taken in the case of recursive types. The relations VV𝐴UO
𝜉
, VVτUO

𝜉
, and MVτUO

𝜉
are then

defined on those types without free type variables.

The value relation VV𝐴UO
𝜉
relates two semantic values in the semantic domain J⌊𝐴⌋K if they

are indistinguishable to the observer. What is considered indistinguishable is determined by the

observer’s label O and the type 𝐴. At a ground type U or R, only identical values are related. At a

function type, two functions are related if they send related inputs to related outputs. The relations

at product, sum, and recursive types are standard as well. The relation at a distribution type dist(𝐴ℓ )
relates two density functions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:12 Jianlin Li, Eric Wang, and Yizhou Zhang

VVUUO
𝜉 ;𝜃

(𝑢1,𝑢2 )
def

== 𝑢1 = 𝑢2 ∈ JUK

VVRUO
𝜉 ;𝜃

(𝑟1, 𝑟2 )
def

== 𝑟1 = 𝑟2 ∈ JRK

VVdist(𝐴ℓ )UO
𝜉 ;𝜃

(𝑓1, 𝑓2 )
def

== ∀𝑣 ∈ J⌊𝐴⌋K.
VVRℓUO

𝜉 ;𝜃
(𝑓1 (𝑣), 𝑓2 (𝑣) ) where 𝐴 = R or B

VV∀[Ξ |C] .τ → τ′UO
𝜉 ;𝜃

(𝑓1, 𝑓2 )
def

== ∀𝜉 ′ ∈ VΞ |𝜉 CU.

∀(𝑣1, 𝑣2 ) ∈ VVτUO
𝜉,𝜉 ′

;𝜃
. V⊥Vτ′UO

𝜉,𝜉 ′
;𝜃
(𝑓1 (𝑣1 ), 𝑓2 (𝑣2 ) )

VVτ + τ′UO
𝜉 ;𝜃

(𝑣1, 𝑣2 )
def

==(
𝑣1 = inl 𝑢1 ∧ 𝑣2 = inl 𝑢2 ∧ VVτUO

𝜉 ;𝜃
(𝑢1,𝑢2 )

)
∨(

𝑣1 = inr 𝑢1 ∧ 𝑣2 = inr 𝑢2 ∧ VVτ′UO
𝜉 ;𝜃

(𝑢1,𝑢2 )
)

VVτ × τ′UO
𝜉 ;𝜃

(𝑣1, 𝑣2 )
def

== 𝑣1 = (𝑢1,𝑢
′
1
) ∧ 𝑣2 = (𝑢2,𝑢

′
2
)∧

VVτUO
𝜉 ;𝜃

(𝑢1,𝑢
′
1
) ∧ VVτ′UO

𝜉 ;𝜃
(𝑢2,𝑢

′
2
)

VV𝛼UO
𝜉 ;𝜃

(𝑣1, 𝑣2 )
def

== 𝜃 (𝛼 ) (𝑣1, 𝑣2 )
VV𝜇𝛼. τUO

𝜉 ;𝜃
(𝑣1, 𝑣2 )

def

== 𝜇𝑅.VVτUO
𝜉 ;𝜃 [𝛼 ↦→𝑅 ] (𝑣1, 𝑣2 )

VV𝐴ℓUO
𝜉 ;𝜃

(𝑣1, 𝑣2 )
def

==

{
VV𝐴UO

𝜉 ;𝜃
(𝑣1, 𝑣2 ) if 𝜉 ℓ ⊑ O,

𝑣1, 𝑣2 ∈ J⌊𝐴⌋K otherwise

EV𝐴UO
𝜉 ;𝜃

(𝐸1, 𝐸2 )
def

== 𝐸1, 𝐸2 ∈ ΣJ⌊𝐴⌋K∧
∀(𝑣1, 𝑣2 ) ∈ VV𝐴UO

𝜉 ;𝜃
. 𝑣1 ∈ 𝐸1 ⇔ 𝑣2 ∈ 𝐸2

MV𝐴ℓUO
𝜉 ;𝜃

(𝜇1, 𝜇2 )
def

=={
∀(𝐸1, 𝐸2 ) ∈ EV𝐴UO

𝜉 ;𝜃
. 𝜇1 (𝐸1 ) = 𝜇2 (𝐸2 ) if 𝜉 ℓ ⊑ O,

𝜇1, 𝜇2 ∈ Meas J⌊𝐴⌋K otherwise

VV𝐴UO
𝜉

def

== VV𝐴UO
𝜉 ;∅ EV𝐴UO

𝜉

def

== EV𝐴UO
𝜉 ;∅

VVτUO
𝜉

def

== VVτUO
𝜉 ;∅ MVτUO

𝜉

def

== MVτUO
𝜉 ;∅

V⊥V𝐴UO
𝜉
(𝑣1, 𝑣2 )

def

== (𝑣1 = 𝑣2 = ⊥) ∨ (𝑣1, 𝑣2 ) ∈ VV𝐴UO
𝜉

V⊥V𝐴ℓUO
𝜉
(𝑣1, 𝑣2 )

def

==

{
V⊥V𝐴UO

𝜉
(𝑣1, 𝑣2 ) if 𝜉 ℓ ⊑ O,

𝑣1, 𝑣2 ∈ J⌊𝐴⌋K⊥ otherwise

E⊥V𝐴UO
𝜉
(𝐸1, 𝐸2 )

def

== 𝐸1, 𝐸2 ∈ ΣJ⌊𝐴⌋K⊥∧
∀(𝑣1, 𝑣2 ) ∈ V⊥V𝐴UO

𝜉
. 𝑣1 ∈ 𝐸1 ⇔ 𝑣2 ∈ 𝐸2

M⊥V𝐴ℓUO
𝜉
(𝜇1, 𝜇2 )

def

=={
∀(𝐸1, 𝐸2 ) ∈ E⊥V𝐴UO

𝜉
. 𝜇1 (𝐸1 ) = 𝜇2 (𝐸2 ) if 𝜉 ℓ ⊑ O,

𝜇1, 𝜇2 ∈ Meas J⌊𝐴⌋K⊥ otherwise

VΞ |CU(𝜉 ) def

== dom(Ξ) ⊆ dom(𝜉 ) ∧ ∅;∅; L ⊢ 𝜉 C

V∀[Ξ |C] . (τ1, ..., τ𝑛 ) → τUO (𝑓1, 𝑓2 )
def

== ∀𝜉 ∈ VΞ |CU.

∀(𝑣11, 𝑣12 ) ∈ VVτ1UO
𝜉
. ... . ∀(𝑣𝑛1, 𝑣𝑛2 ) ∈ VVτ𝑛UO

𝜉
.

M⊥VτUO
𝜉
(𝑓1 (𝑣11, ..., 𝑣𝑛1 ), 𝑓2 (𝑣12, ..., 𝑣𝑛2 ) )

V∆UO (𝛿1, 𝛿2 )
def

== ∀x ∈ dom(∆). V⊥V∆(x)UO
∅ (𝛿1 (x), 𝛿2 (x) )

VΨUO (𝜓1,𝜓2 )
def

== ∀f ∈ dom(Ψ). VΨ(f )UO (𝜓1 (f ),𝜓2 (f ) )
VΓUO

𝜉
(𝛾1, 𝛾2 )

def

== ∀x ∈ dom(Γ). VVΓ(x)UO
𝜉
(𝛾1 (x), 𝛾2 (x) )

∆; Ξ; C; Γ ⊨ 𝑒1 ≈ 𝑒2 : τ
def

== ∀O ∈ L.

∀(𝛿1, 𝛿2 ) ∈ V∆UO . ∀𝜉 ∈ VΞ |CU.

∀(𝛾1, 𝛾2 ) ∈ VΓUO
𝜉
. V⊥VτUO

𝜉
(J𝑒1K𝛿1 ;𝛾1

, J𝑒2K𝛿2 ;𝛾2

)
∆; Ψ; Ξ; C; Γ ⊨ 𝑡1 ≈ 𝑡2 : τ

def

== ∀O ∈ L.

∀(𝛿1, 𝛿2 ) ∈ V∆UO . ∀(𝜓1,𝜓2 ) ∈ VΨUO . ∀𝜉 ∈ VΞ |CU.

∀(𝛾1, 𝛾2 ) ∈ VΓUO
𝜉
. M⊥VτUO

𝜉
(J𝑡1K𝛿1 ;𝜓1 ;𝛾1

, J𝑡2K𝛿2 ;𝜓2 ;𝛾2

)
∆; Ψ; Ξ; C; Γ ⊨ 𝑚1 ≈𝑚2 : τ

def

== ∀O ∈ L.

∀(𝛿1, 𝛿2 ) ∈ V∆UO . ∀(𝜓1,𝜓2 ) ∈ VΨUO . ∀𝜉 ∈ VΞ |CU.

∀(𝛾1, 𝛾2 ) ∈ VΓUO
𝜉
. M⊥VτUO

𝜉
(J𝑚1K𝛿1 ;𝜓1 ;𝛾1

, J𝑚2K𝛿2 ;𝜓2 ;𝛾2

)

Figure 5. Semantic information-flow types VU and semantic information-flow typing ⊨.

Having defined the value relation at unlabeled types 𝐴, we can define the relation VV𝐴ℓUO
𝜉
at a

labeled type𝐴ℓ
, which depends on the labels ℓ and O. If 𝜉 ℓ ⊑ O (𝜉 ℓ means applying the substitution

function 𝜉 to the label ℓ), the observer is cleared to see values at label 𝜉 ℓ , so VV𝐴ℓUO
𝜉
contains

exactly those values related by VV𝐴UO
𝜉
. Otherwise, 𝜉 ℓ ̸⊑ O and thus the observer does not have

the clearance to see values at 𝜉 ℓ , so VV𝐴ℓUO
𝜉
is the full relation J⌊𝐴⌋K × J⌊𝐴⌋K.

The measure relation MV𝐴ℓUO
𝜉
relates two measures in the semantic domain Meas J⌊𝐴⌋K if

they are indistinguishable to the observer. Recall that for a probabilistic computation, its label ℓ

represents the information contained in the measure denoting it. Hence the following two cases:

• If 𝜉 ℓ ̸⊑ O, the observer is not classified at a high enough level to differentiate between two

measures at 𝜉 ℓ . So MV𝐴ℓUO
𝜉
is the full relation Meas J⌊𝐴⌋K × Meas J⌊𝐴⌋K.

• Indistinguishability is subtler to define for the case 𝜉 ℓ ⊑ O. Here, we consider two measures

indistinguishable if they agree on related measurable sets. The relation EV𝐴UO
𝜉
defines the notion

of relatedness for measurable sets. Two measurable sets 𝐸1 and 𝐸2 are related when they are

closed to one another under the value relation VV𝐴UO
𝜉
—that is, 𝑣1 ∈ 𝐸1 ⇔ 𝑣2 ∈ 𝐸2 for all

(𝑣1, 𝑣2) ∈ VV𝐴UO
𝜉
.

The relations V⊥V𝐴UO
𝜉
, V⊥VτUO

𝜉
, E⊥V𝐴UO

𝜉
, and M⊥VτUO

𝜉
then lift VV𝐴UO

𝜉
, VVτUO

𝜉
, EV𝐴UO

𝜉
, and

MVτUO
𝜉
to account for partiality.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:13

Semantic typing. To define semantic typing, we first define the semantic interpretation of contexts.

In particular, two substitutions 𝛾1 and 𝛾2 are related at context Γ when for every variable in the

domain of Γ, 𝛾1 and 𝛾2 map them to related values. And similarly for the interpretation of ∆ and Ψ.

Semantic typing judgments have the forms ∆; Ξ; C; Γ ⊢ 𝑒1 ≈ 𝑒2 : τ, ∆; Ψ; Ξ; C; Γ ⊢ 𝑡1 ≈ 𝑡2 : τ, and
∆; Ψ; Ξ; C; Γ ⊢ 𝑚1 ≈𝑚2 : τ. Intuitively, they are defined to hold when the denotations are related

under any observer and any related substitutions.

We prove the fundamental property of logical relations, which states that syntactically well-typed

expressions, terms, and commands are semantically well-typed.

Theorem 5.1 (fundamental property).

(1) ∆; Ξ; C; Γ ⊢ 𝑒 : τ implies ∆; Ξ; C; Γ ⊨ 𝑒 ≈ 𝑒 : τ.
(2) ∆; Ψ; Ξ; C; Γ ⊢ 𝑡 : τ implies ∆; Ψ; Ξ; C; Γ ⊨ 𝑡 ≈ 𝑡 : τ.
(3) ∆; Ψ; Ξ; C; Γ ⊢ 𝑚 : τ implies ∆; Ψ; Ξ; C; Γ ⊨ 𝑚 ≈𝑚 : τ.

The proof is by induction on the (syntactic) typing derivations, with each case proving that semantic

typing is compatible with some syntactic typing rule. As with a typical logical-relations proof, the

challenge is in setting up the logical-relations model (think of them as induction hypotheses) and

the proof is routine. Of special note about the proof is that it involves showing that two integrals

are equal

∫
𝑓1 (𝑥) 𝜇1 (d𝑥) =

∫
𝑓2 (𝑥) 𝜇2 (d𝑥) when the integrands and the measures are not equal

point-wise. Lemma 5.2 is a convenient result [18] that enables proving equivalence using a coarser
structure than point-wise equality.

Lemma 5.2 (Coarsening). Let (𝑋, Σ𝑋 ) be a measurable space, 𝜇1, 𝜇2 be measures on 𝑋 , and
𝑓1, 𝑓2 : 𝑋 → R+ be measurable functions. Let 𝑅 ⊆ Σ𝑋 × Σ𝑋 be a binary relation on measurable sets. If
(1) 𝜇1 and 𝜇2 agree on 𝑅-related sets, i.e., 𝜇1 (𝐸1) = 𝜇2 (𝐸2) for all (𝐸1, 𝐸2) ∈ 𝑅, and (2) if 𝑓1 and 𝑓2 have
𝑅-related preimages, i.e.,

(
𝑓 −1

1
(𝑆), 𝑓 −1

2
(𝑆)

)
∈ 𝑅 for all 𝑆 ∈ ΣR, then

∫
𝑓1 (𝑥) 𝜇1 (d𝑥) =

∫
𝑓2 (𝑥) 𝜇2 (d𝑥).

The lemma allows proving integrals equal by picking a suitable relation 𝑅 on measurable sets, for

which the relations E⊥V𝐴UO
𝜉
on measurable sets will fit the bill.

Noninterference. Noninterference follows from the fundamental property. It guarantees that the

measure denoting a L-typed term behaves irrespective of the H-labeled variables in the context.

Theorem 5.3 (Noninterference). Let ΓH be a context that binds only H-labeled variables—that
is, for all x ∈ dom(ΓH), there is some 𝐴 such that ΓH (x) = 𝐴H. Let 𝑓 : J⌊τ⌋K⊥ → R+ be a measurable
function. If ⊢ τ : L, ⊢ ΓL : L, and ∆; Ψ;∅;∅; ΓH, ΓL ⊢ 𝑡 : τ, then for all 𝛾1, 𝛾2 ∈ J⌊ΓH⌋K and 𝛾L ∈ J⌊ΓL⌋K,∫

𝑓 (𝑥) J𝑡K𝛾1,𝛾L
(d𝑥) =

∫
𝑓 (𝑥) J𝑡K𝛾2,𝛾L

(d𝑥).

Here, ⊢ τ : L is defined to mean that all labels occurring in τ, including those nested labels, are L.
And ⊢ Γ : Lmeans that ⊢ Γ(z) : L for all z ∈ dom(Γ). It is not a sufficient condition that the outermost
label of τ and those in Γ are L. For example, the typing Ψ; ∆;∅;∅; x : RH ⊢ ret(⟨x, x⟩) : (RH ×RH)L is
valid, but it would be absurd if it implied that ⟨x, x⟩ behaved irrespective of x. Similarly, x : RH, y :

(RH → RL)L ⊢ ret(y x) : RL
is valid typing, but it would be absurd if it implied that the application

of y to x behaved irrespective of x for a 𝛾L such that 𝛾L (y) = 𝜆𝑥 . 𝑥 ∈ J⌊(RH → RL)L⌋K. Theorem 5.3

is a corollary of a more general version of noninterference (given in an appendix [39]) that relaxes

the condition ⊢ ΓL : L and allows the integrands on the two sides of the equation to be different.

6 VARIABLE-ELIMINATION TRANSFORMATION
Main idea. To generate a pure program, the transformation must compile away all probabilistic-

fragment constructs. In particular, (1) it eliminates random variables (r.v.s) by summation or

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:14 Jianlin Li, Eric Wang, and Yizhou Zhang

TJPK == P′ CPS-translate a probabilistic program to a pure program

KJ𝑚K (𝜆x. 0) == 𝑒 TJF K == G′
for F ∈ F def logsumexp = 𝜆x. log(exp(x true) + exp(x false)) ∈ G

T
r
G; F ;𝑚

z
== G,G′

;∅; ret(𝑒)

TJF K == G CPS-translate a probabilistic global
function to a pure one

KJ𝑚K k == 𝑒

TJdef f (x1, ..., xn) =𝑚K == def f = 𝜆k. 𝜆x1 . ... . 𝜆xn . 𝑒

KJ𝑚K 𝑒𝑘 == 𝑒
CPS-translate a command to

a pure expression

D+J∅ ⊢ x1 = 𝑡1; ...; xn = 𝑡𝑛 ; factor(𝑒𝑘 xn)K == 𝑒

KJx1 = 𝑡1; ...; xn−1 = 𝑡𝑛−1; 𝑡𝑛K 𝑒𝑘 == 𝑒

D+Jz ⊢𝑚K == 𝑒 Accumulate discrete r.v.s into
worklist z

D+q
z, y ⊢ x = 𝑡 ; factor(logPrB (𝑑 ; y)); 𝑚

y
== 𝑒

D+q
z ⊢ x = 𝑡 ; y = sampleB (𝑑); 𝑚

y
== 𝑒

∀𝑖 ∈ {1, ..., 𝑛}. 𝑡𝑖 ≠ sampleB (𝑑)
D−Jz ⊢ x1 = 𝑡1; ...; xn = 𝑡𝑛 ; 𝑡𝑛+1K == 𝑒

D+Jz ⊢ x1 = 𝑡1; ...; xn = 𝑡𝑛 ; 𝑡𝑛+1K == 𝑒

D−Jz ⊢𝑚K == 𝑒 Eliminate discrete r.v.s in worklist z

∆; Ψ; y : BH
; Γ ⊢𝑚 ⇝Γ

′ 𝑚H ∗𝑚L

⊢ Γ : L CJ𝑚HK == 𝑒H

D−Jz ⊢𝑚L; factor(logsumexp (𝜆y. 𝑒H))K == 𝑒

D−Jz, y ⊢𝑚K == 𝑒

CJ𝑚K == 𝑒

D−J∅ ⊢𝑚K == 𝑒

CJ𝑚K == 𝑒
Eliminate probabilistic-level control
flow (calls & branching) with CPS

∆; Ψ; y : 𝐴H
; Γ ⊢𝑚 ⇝Γ

′ 𝑚H ∗𝑚L

⊢ Γ : L CJ𝑚HK == 𝑒H

C
q

x = 𝑡 ; 𝑚L; factor(f (𝜆y. 𝑒H) 𝑒)
y
== 𝑒′

C
q

x = 𝑡 ; y = f (𝑒); 𝑚
y
== 𝑒′

∆; Ψ; y : 𝐴H
; Γ ⊢𝑚 ⇝Γ

′ 𝑚H ∗𝑚L

⊢ Γ : L CJ𝑚HK == 𝑒H

KJ𝑚𝑖K (𝜆y. 𝑒H) = 𝑒𝑖 for 𝑖 ∈ {1, 2}
C
q

x = 𝑡 ; 𝑚L; factor(case(𝑒; z.𝑒1; z.𝑒2))
y
== 𝑒′

C
q

x = 𝑡 ; y = case(𝑒; z.𝑚1; z.𝑚2); 𝑚
y
== 𝑒′

∀𝑖 ∈ {1, ..., 𝑛}. 𝑡𝑖 ≠ f (...) ∧ 𝑡𝑖 ≠ case(...)
RJx1 = 𝑡1; ...; xn−1 = 𝑡𝑛−1; 𝑡𝑛K == 𝑒

CJx1 = 𝑡1; ...; xn−1 = 𝑡𝑛−1; 𝑡𝑛K == 𝑒

RJ𝑚K == 𝑒
Transform away any remaining

probabilistic-level terms

RJret(𝑒)K == let(𝑒; _.0)
RJ𝑚K == 𝑒′

RJx = ret(𝑒); 𝑚K == let(𝑒; x.𝑒′)

RJfactor(𝑒)K == 𝑒
RJ𝑚{unit/x}K == 𝑒′

RJx = factor(𝑒); 𝑚K == 𝑒 + 𝑒′

∆; Ψ; y : RH
; Γ ⊢𝑚 ⇝Γ

′ 𝑚H ∗𝑚L ⊢ Γ : L
RJ𝑚L; factor(logML(y = sampleR (𝑑); 𝑚H))K == 𝑒

RJy = sampleR (𝑑); 𝑚K == 𝑒

∆; Ψ; ΓH; ΓL ⊢𝑚 ⇝Γ
′ 𝑚H ∗𝑚L

Factorize𝑚 into𝑚H and𝑚L with information-flow typing
Invariants: ∆; Ψ;∅;∅; ΓH, ΓL, Γ

′ ⊢𝑚H : UH and ∆; Ψ;∅;∅; ΓL ⊢𝑚L : UL

∆; Ψ;∅;∅; ΓH, ΓL ⊢ 𝑡 : UL Canonicalize(𝑡, ΓH) = 𝑡 ′

∆; Ψ; ΓH; ΓL ⊢ 𝑡 ⇝∅ ret(unit) ∗ 𝑡 ′
∆; Ψ;∅;∅; ΓH, ΓL ⊢ 𝑡 : UH

∆; Ψ; ΓH; ΓL ⊢ 𝑡 ⇝∅ 𝑡 ∗ ret(unit)

∆; Ψ;∅;∅; ΓH, ΓL ⊢ 𝑡 : 𝐴L ⊢ 𝐴 : L Canonicalize(𝑡, ΓH) = 𝑡 ′

∆; Ψ; ΓH; ΓL, x : 𝐴L ⊢𝑚 ⇝Γ
′ 𝑚H ∗𝑚L

𝑡 = sampleR (𝑑) ⇒ x ∉ FV (𝑚H)
∆; Ψ; ΓH; ΓL ⊢ x = 𝑡 ; 𝑚 ⇝

Γ
′,x:𝐴L 𝑚H ∗ (x = 𝑡 ′; 𝑚L)

∆; Ψ;∅;∅; ΓH, ΓL ⊢ 𝑡 : 𝐴ℓ

∆; Ψ; ΓH, x : 𝐴H
; ΓL ⊢𝑚 ⇝Γ

′ 𝑚H ∗𝑚L

∆; Ψ; ΓH; ΓL ⊢ x = 𝑡 ; 𝑚 ⇝Γ
′ (x = 𝑡 ; 𝑚H) ∗𝑚L

Figure 6. Variable-elimination transformation. Typing contexts are omitted for brevity (except in factorization

judgments). A version of the transformation with complete context information is given in an appendix.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:15

T
q
def hmm(z0, data) =𝑚

y 1

== def hmm = 𝜆k. 𝜆z0 . 𝜆data.KJ𝑚K k

KJ𝑚K k == KJcase data ...K k

2

== D+
s
∅ ⊢ y = case data ...

factor(k(y) )

{
3

== D−
s
∅ ⊢ y = case data ...

factor(k(y) )

{
4

== C
s

y = case data ...

factor(k(y) )

{

5

== C

u

ww
v

factor(case data of

| nil ⇒ KJ𝑚nil
K (𝜆y.CJfactor(k(y) )K)

| cons x xs ⇒ KJ𝑚consK (𝜆y.CJfactor(k(y) )K)
end)

}

��
~

6

==

case data of

| nil ⇒ KJ𝑚nil
K k

| cons x xs ⇒ KJ𝑚consK k

end

KJ𝑚nil
K k == KJret(z0 )K k

7

== D+J∅ ⊢ factor(k(z0 ) )K
8

== D−J∅ ⊢ factor(k(z0 ) )K
9

== CJfactor(k(z0 ) )K
10

== k(z0 )

KJ𝑚consK k == K

u

v
z = hmm(z0, xs)
observe(emit(z) ; x)
sample(step(z) )

}

~ k

11

== D+

u

ww
v∅ ⊢

z = hmm(z0, xs)
observe(emit(z) ; x)
y = sample(step(z) )
factor(k(y) )

}

��
~

12

== D+

u

ww
vy ⊢

z = hmm(z0, xs)
observe(emit(z) ; x)
factor(logPr(step(z) ; y) )
factor(k(y) )

}

��
~

13

== D−

u

ww
vy ⊢

z = hmm(z0, xs)
observe(emit(z) ; x)
factor(logPr(step(z) ; y) )
factor(k(y) )

}

��
~

14

== D−

u

wwwww
v
∅ ⊢

z = hmm(z0, xs)
observe(emit(z) ; x)
factor(logsumexp(𝜆y.

C
s
factor(logPr(step(z) ; y) )
factor(k(y) )

{

) )

}

�����
~

15

== C

u

wwwww
v

z = hmm(z0, xs)
observe(emit(z) ; x)
factor(logsumexp(𝜆y.

logPr(step(z) ; y) +
k(y)

) )

}

�����
~

16

== C

u

ww
v

factor(hmm(
𝜆z.C

s
observe(emit(z) ; x)
factor(logsumexp(𝜆y. logPr(step(z) ; y) + k(y) ) )

{
,

z0, xs) )

}

��
~

17

==

hmm(
𝜆z. logPr(emit(z) ; x) +

logsumexp(𝜆y. logPr(step(z) ; y) + k(y) ),
z0, xs)

Figure 7. Compiling the hmm function in Figure 1a to that in Figure 1b. The calculation largely follows the

rules in Figure 6. To simplify presentation, we use the equality CJfactor(𝑒1); ...; factor(𝑒𝑛)K == 𝑒1 + ... + 𝑒𝑛 and

standard 𝜆-calculus conversions without detailing the intermediate steps.

integration, creating inference subproblems as a result, and (2) it compiles stochastic control flow

to deterministic control flow in continuation-passing style. In both cases, the transformation uses

information-flow typing to factorize a command into a H partition and a L partition. The measure

denotation of the L partition is guaranteed to be independent of the H-labeled variable—be it bound

to a sample, case, or a call term—being eliminated. So the L partition can be factored out of the

summation, integration, or continuation indexed by the H-labeled variable.

Program transformation. Figure 6 formalizes the VE transformation as a set of mutually recursive

translation functions. The translation is defined for well typed programs (with respect to the base

type system in Section 3), so it additionally takes typing contexts as input, but for brevity, we omit

them in Figure 6; a version with complete context information can be found in an appendix. As a

running example, the step-by-step translation of hmm is shown in Figure 7. We now describe the

translation rules in Figure 6, referring to steps in Figure 7 as concrete instantiations of the rules.

TJF K translates a probabilistic function F to a pure function additionally parameterized by a

continuation k, with the body𝑚 of F translated as KJ𝑚K k ( 1 ).

KJ𝑚K 𝑒𝑘 translates a command𝑚 given a continuation 𝑒𝑘 , which is the log-factor dependent

on the return value of𝑚. At the top level, the main command𝑚 is translated with the top-level

continuation 𝜆x. 0. KJ𝑚K 𝑒𝑘 works by applying 𝑒𝑘 to 𝑚’s return value, appending the resulting

factor to𝑚, and then uses D+
to further translate the resulting U-typed command ( 2 7 11).

While K can be applied to any well typed command, going forward, the other translations (D+
,

D−
, C, and R) are only defined on commands of the unit type U, as the commands will already

have been CPS-translated.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:16 Jianlin Li, Eric Wang, and Yizhou Zhang

D+
does preparatory work for eliminating discrete r.v.s, of which the real work is done by D−

.

D+
accumulates bindings of discrete r.v.s into a worklist, turning all sampleB terms into factor

terms (12), so that D−
can eliminate the discrete r.v.s in the worklist in one go without having to

worry about factorization possibly creating unbound references to the variables.

D−Jz ⊢𝑚K eliminates from𝑚 the discrete r.v.s stored in the worklist z, one at a time, until the

worklist is empty (14). Elimination of a variable y from a command𝑚 involves factorizing𝑚 into𝑚H

and 𝑚L, using the ⇝ judgment to be defined shortly. D−
eliminates y by summing over y the

factor 𝜆y. 𝑒H contributed by𝑚H. Importantly,𝑚L can be left out of this sum, because it is guaranteed

that the measure denotation of𝑚L is independent of the H-labeled y. The formalized translation

does not make memoization explicit, but solutions to this sum may be memoized, with the memo

table indexed by the free (discrete) variables in the sum logsumexp (𝜆y. 𝑒H). These free variables
can be thought of as the Markov blanket [49] of y, conditioned on which all other variables are

uncorrelated with y. The order in which the variables are eliminated is left unspecified; it is a well

studied, orthogonal problem. It is NP-hard to find the optimal ordering that has an elimination

width equal to the tree width [20]. In practice, heuristics (e.g., eliminating variables with fewer

neighbors first) are effective in giving good orderings with low elimination widths.

C eliminates probabilistic-level control flow, namely call and branching terms. To translate a

function call y = f (𝑒), the variable y is labeled H, and the continuation𝑚 to the function call is

factorized into𝑚H and𝑚L. The factor 𝜆y. 𝑒H, representing the probabilistic effects of𝑚H, is passed

to the translated pure function f as the continuation argument. The pure function call f (𝜆y. 𝑒H) 𝑒
returns a R-valued factor, which is then appended to the command to be translated further (16).

Notice that the measure denotation of𝑚L is independent of the return value y. So𝑚L can be left

out of the continuation passed to the CPS-translated function call to f.

C translates a branching term y = case(𝑒; x.𝑚1; x.𝑚2) in a similar manner. It factorizes the

probabilistic continuation into two partitions, constructs a pure continuation using the H partition

only, and CPS-translates the branches by passing this pure continuation ( 5 ).

When there is no more control-flow terms to eliminate, R takes over to eliminate any remaining

probabilistic-level terms, namely sampleR and factor. A sampleR term is eliminated by integration

(i.e., applying logML), which can be any marginal-inference method of choice. Solutions to this

integration may be memoized, with the memo table indexed by the free (discrete) variables in the

integral. Unlike sampleB terms, sampleR terms are not first converted to factor terms before being

eliminated, as integration in general requires sampling from prior distributions of continuous r.v.s.

Like in D−
and C, the probabilistic continuation is factorized in R to allow irrelevant terms to be

left out of the integration. Unlike inD−
orC, continuous r.v.s are eliminated not always one at a time,

but likely simultaneously, to avoid creating unnecessary nested integrals. For instance, the com-

mand𝑚
def

== x = sample (Normal(0, 1)); y = sample (Normal(3, 1)); factor(logPr (Normal(x2 + y
2, 1); 6)) is

translated as RJ𝑚K = RJfactor(logML(𝑚))K = logML(𝑚). Factorization makes sure that all three terms

belong to the same H partition, despite that information-flow typing does not demand so, so that x

and y can be marginalized out simultaneously.

Command factorization via information-flow typing. The judgment∆; Ψ; ΓH; ΓL ⊢𝑚 ⇝Γ
′ 𝑚H ∗𝑚L

factorizes a command𝑚 into𝑚H and𝑚L. Here, Γ
′
is the variable bindings declared in𝑚L and avail-

able for use in𝑚H, such that ∆; Ψ;∅;∅; ΓL ⊢𝑚L : UL
and ∆; Ψ;∅;∅; ΓH, ΓL, Γ

′ ⊢𝑚H : UH
. In broad strokes,

factorization works by partitioning all H-labeled terms in the command to𝑚H and all L-labeled
terms to𝑚L ( 5 14 16). Label inference is implemented by solving unification constraints.

Step 14 performs factorization to eliminate y. With y labeled H, the two factor terms must be

typed at H, while the other two terms can be typed at L and left out of the sum over y. Step 16

performs factorization to eliminate the recursive call z = hmm(z0, xs). With z labeled H, both terms

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:17

in the continuation must be typed at H, so their translation is passed to the pure hmm as the

continuation argument. Step 5 performs factorization to eliminate y = case data ..., which is similar.

Because noninterference guarantees that a L-labeled term behaves irrespective of the value of

the H-labeled variables in ΓH, factorization additionally canonicalizes a L-labeled term: it replaces

the H-labeled variables with default values. This substitution ensures that 𝑚L does not refer to

variables bound in ΓH and thus is well typed under the context ΓL. Finally, factorization specially

treats sampleR terms: it partitions x = sampleR (𝑑) into𝑚L only if x is not needed in the𝑚H, thus

scoping the integral over x to one partition only and avoiding unnecessary nested integrals.

Lemma 6.1. Let ΓH be a context that binds only H-labeled variables and ΓL be a context such that
⊢ ΓL : L. If ∆; Ψ; ΓH; ΓL ⊢𝑚 ⇝Γ

′ 𝑚H ∗𝑚L, then for any 𝛾H ∈ J⌊ΓH⌋K and 𝛾L ∈ J⌊ΓL⌋K, it holds that

J𝑚K𝛾H,𝛾L (JUK) =
∮

J⌊Γ′ ⌋K
J𝑚HK𝛾H,𝛾L,𝛾 ′ (JUK) J𝑚LK𝛾L (d𝛾

′).

Lemma 6.1 assures that factorizing a command𝑚 produces two partitions that together preserve

the semantics of𝑚. The notation

∮
J⌊Γ′ ⌋K 𝑓 (𝛾

′) J𝑚LK𝛾L (d𝛾
′), defined in an appendix with the proof, is

a shorthand for the multiple integral with respect to the measures each denoting an x𝑖 = 𝑡𝑖 in𝑚L.

The lemma is a consequence of noninterference (Theorem 5.3).

Correctness. We prove that the variable-elimination transformation is correct. The theorem states

that the transformed pure expression, when it terminates, computes the log model evidence of the

original probabilistic program. As expected, the proof depends on Lemma 6.1.

Theorem 6.2. Let G; F ;𝑚 be a well typed program where the main command𝑚 has type 𝜏 . If
T
r
G; F ;𝑚

z
= G,G′

;∅; ret(𝑒) and J𝑒K∅ ≠ ⊥, then log J𝑚K∅ (J𝜏K) = J𝑒K∅.

7 EXPERIMENTAL EVALUATION
Scalability of VE compilation. We compare Mappl and SlicStan [29]. Stan [13], while a popular

PPL, does not support discrete parameters. In response, SlicStan features a state-of-the-art VE

compiler that performs information-flow analysis and emits variable-eliminated Stan code. As

a benchmark, we consider a simple HMM, for which both compilers can generate code whose

running time scales linearly with the length of the observed sequence. But compilation time differs.

0 50 100

1
0
−2

1
0

1
1
0

4

length of observed sequence

t
i
m
e
(
s
)

SlicStan Mappl* Mappl

Figure 8. Scaling of compilation time.

Figure 8 shows how compilation time scales as the size of

the inference problem increases. (All experiments in Section 7

were run on a server with a 3.6GHz CPU and 12GB of RAM.)

In SlicStan, models such as HMMs are expressed by unrolling

recursion into a fixed number of iterations, so it is expected that

compilation time increases as the size of the inference problem

increases. Figure 8 confirms this behavior and further shows

that SlicStan struggles with large problem sizes: compiling the

model conditioned on generating a sequence of length 60 takes

over 30 minutes. In contrast, because Mappl can express the

HMM as a recursive program, the compilation time is constant

with respect to the problem size.

We also report the time Mappl takes to compile a version of the HMM with recursion unrolled.

Figure 8 (Mappl*) suggests that the Mappl compiler exhibits better scalability than SlicStan on

the same unrolled model. A probable reason for this speedup is that Mappl uses a simple two-

level lattice in the information-flow analysis, whereas SlicStan uses a meet semilattice, which, as

discussed by Gorinova et al. [29], hinders efficient constraint solving.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:18 Jianlin Li, Eric Wang, and Yizhou Zhang

0 20 40 60

1
0

0
1
0

2
1
0

4

length of observed sequence

t
i
m
e
(
s
)

(a) hmm (Figure 1a)

0 20 40 60

1
0

0
1
0

1
1
0

2
length of observed sequence

(b) hierarchical HMM [59, Fig. 3]

0 20 40 60

1
0

0
1
0

1
1
0

2
1
0

3

length of observed sequence

(c) second-order HMM

0 50 100

1
0
−2

1
0

1
1
0

4

length of sentence

t
i
m
e
(
s
)

(d) pcfg (Figure 1c)

0 50 100

1
0

0
1
0

2
1
0

4

length of sentence

(e) PCFG [41, Ch. 11]

5 10 15 20

1
0

0
1
0

1
1
0

2
1
0

3

total time

(f) CRBD

enum

Mappl#

Dice

PERPL

Mappl

Figure 9. Scaling plots comparing exact-inference methods on recursive programs.

Scalability of exact inference: HMMs, PCFGs, and CRBD. We compare Mappl and PERPL [15]

on recursive programs. PERPL represents a state-of-the-art approach to exact inference for recursive

programs, compiling them to factor graph grammars [16] and then to systems of equations.

The benchmarks are the HMM in Figure 1a, a hierarchical HMM, a second-order HMM, the PCFG

in Figure 1c, a PCFG with 6 nonterminals and 12 productions, and a discrete-time phylogenetic

model. The phylogenetic model generates phylogenetic trees under the constant-rate birth–death

(CRBD) assumption. This CRBD model is similar to the PCFGs in that it uses recursion (as opposed

to iteration) and exhibits stochastic control flow [58].

Figure 9 shows how the inference running time scales as the size of the inference problem

increases. Compilation time is not measured, as it does not vary with the problem size for either

Mappl or PERPL. As PERPL uses a Python back end, to allow a fair comparison, compiled Mappl

programs are further compiled to Python. We use enumeration-based exact inference implemented

in Pyro [10] as an additional baseline on some benchmarks; it leads to exponentially increasing

running time and runs out of memory quickly on all benchmarks.

On the two HMMs, PERPL leads to running time superlinear in the problem size, whereas Mappl

recovers the linear-time forward algorithm for HMMs. For an observed sequence of length 30,

PERPL inference takes over 1 minute, while Mappl inference takes 1.5 seconds. On the two PCFGs

and the CRBD model, PERPL also scales less favorably than Mappl. We note that PERPL supports

unbounded recursion and thus allows the PCFG and CRBD models to be specified in a more

declarative way. For example, the CRBD model in PERPL, though complicated by PERPL’s linearity

restriction, uses an almost surely terminating function to generate the waiting time until the next

speciation or extinction event, whereas the Mappl version uses a geometric distribution truncated

at the remaining time steps to ensure termination.

We also assess, with the PCFGs, the performance implications of the information-flow analysis.

Specifically, we evaluate the performance of a version of Mappl with command factorization

disabled (Mappl#). Disabling factorization means that the VE compilation has to assume correlation

between the subparses of a nonterminal, thereby hindering the discovery of recurring substructure

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:19

10
0

10
2

10
4

1
0
−2

1
0

0
1
0

2

# characters

(a) cipher

10
0

10
2

10
4

1
0
−2

1
0

0
1
0

2

length

(b) diamond

10
0

10
2

10
4

1
0
−2

1
0
−1

1
0

0
1
0

1

length

(c) ladder

10
0

10
2

10
4

1
0
−2

1
0
−1

1
0

0

length

(d) scaling

t
i
m
e
(
s
)

Dice

Mappl

Figure 10. Scaling plots comparing Dice and Mappl on benchmarks from Holtzen et al. [31, Fig. 10].

0 10 20

0
0
.5

1
1
.5

2

# clusters

(a) soft 𝑘-means

0 10 20 30

0
5

1
0

# word instances

(b) LDA

t
i
m
e
(
s
)

HMC

HMC/Mappl

Figure 11. Ahead-of-time VE compilation usingMappl speeds up HMC in NumPyro. Time per chain is reported.

amenable to dynamic programming. Figures 9d and 9e confirm that without factorization, VE-based

inference is intractable.

Scalability of exact inference: Dice benchmarks. We compare Mappl and Dice [31]. Dice is a

state-of-the-art approach to exact inference for discrete, nonrecursive programs. It casts inference

to weighted model counting (WMC) on binary decision diagrams (BDDs), exploiting independence

structure in programs to create compact BDDs for factorized inference. We use benchmarks [31,

Fig. 10] on which Dice has been shown to demonstrate superior scalability over other PPLs that

support exact inference. As Dice uses a C library for WMC on BDDs, to allow a fair comparison,

compiled Mappl programs are further compiled to Rust. This Rust back end of Mappl is not yet

full-featured but is sufficient for these Dice benchmarks.

Figure 10 shows how the running time scales as the problem size increases. Given that the Dice

running time reported by Holtzen et al. [31] includes the time required for BDD generation, the

Mappl running time reported here includes that for VE compilation. Mappl is competitive with

Dice on these scaling benchmarks, in fact outperforming Dice in three out of four cases. A possible

explanation is that since Mappl can express these benchmarks as recursive programs, compilation

time does not increase with the problem size.

We also run Dice on a PCFG. Dice does not support recursion, so we follow the recipe of Chiang

et al. [15, App. E] in expressing a PCFG in Dice by manually unfolding a loop that generates a parse

from subparses. Figure 9d suggests that PCFGs in this encoding are intractable for Dice.

These benchmarks all contain conditional independence structure as a result of function abstrac-

tions. While Mappl may do better on such programs, we note that Dice performs better on large

Bayesian networks (BN). For example, for a BN with ∼40 nodes, Dice solves the inference problem
within 30 ms, while Mappl takes over 1 s. We conjecture that this is due to the known result that

WMC can significantly outperform VE when models contain substantial local structure [14].

Approximate inference: Hamiltonian Monte Carlo (HMC). HMC [23] is a powerful sampling

method for differentiable models. Discrete latent variables introduce nondifferentiability, posing

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:20 Jianlin Li, Eric Wang, and Yizhou Zhang

10
−2

10
1

10
4

20

25

30

time (s)

(a) Beta–Bern, |data | = 32

10
−1

10
2

10
5

40

50

60

70

time (s)

(b) Beta–Bern, |data | = 64

10
−2

10
1

10
4

0

50

100

150

time (s)

(c) Beta–Normal, |data | = 16

e
s
t
i
m
a
t
e
o
f

−
l
o

g
P

r
(d

a
t
a
)

AIS

Mappl/IS

ground truth

Figure 12. Performance of ML estimation on a family of hybrid discrete–continuous HMMmodels (Figure 1e),

measured by how the negative log ML estimate changes as allowable inference time increases.

challenges to applying HMC to hybrid discrete–continuous models. We consider two such models:

a soft 𝑘-means clustering model and a latent Dirichlet allocation (LDA) model. One way to handle

them is by marginalizing out the discrete variables using VE. For example, Pyro’s support for HMC

can handle these models by performing VE on plated factor graphs [48].

Pyro performs VE at run time. So we examine whether the performance of Pyro’s HMC can be

improved by ahead-of-time VE compilation through Mappl. Specifically, we use NumPyro [54],

which supports fast HMC inference on top of JAX [24]. We run NumPyro’s HMC on the original

model and on the Mappl-compiled model with necessary syntax adjustments applied (including

replacing the top-level logML with an invocation of NumPyro’s HMC).

Figure 11 displays the running time of sampling a single chain consisting of 10,000 samples and

2,500 burn-in samples using the No-U-Turn sampler [32], while varying the number of discrete

latent variables in the models. Time is measured after JIT is warmed up. As expected, ahead-of-time

VE compilation leads to improved run-time performance.

Approximate inference: marginal-likelihood estimation. We examine the performance impli-

cations of Mappl’s VE compilation for marginal likelihood (ML) estimation, a key task in Bayesian

learning and inference. We use a family of hybrid discrete–continuous HMMs (hmm
′
in Figure 1e)

as benchmarks. For the VE-compiled programs, we use importance sampling (IS) with Pyro to

solve the inference subproblems (i.e., nested integrals). As a baseline, we use annealed importance

sampling (AIS) [47] to solve the global inference problems directly. AIS, generalizing IS, is a widely

used sampling method for ML estimation. We assess the convergence rate of the ML estimate as

allowable running time increases. Running time roughly translates to the number of importance

samples. We experiment with multiple hyperparameter settings for AIS.

Figures 12a and 12b show the results for an HMMwith input data of length 32 and 64, respectively.

Mappl/IS converges within tens of seconds in both cases. In contrast, AIS either takes thousands of

seconds to converge or does not show signs of convergence even after thousands of seconds, for

each hyperparameter setting tested. The quick convergence with Mappl/IS is a consequence of the

VE compilation eliminating discrete r.v.s and generating single-dimensional subproblems easily

solvable by a Monte-Carlo method.

In fact, the compiled program reveals that the inference problems of this experiment have

exact solutions: we are able to use Mathematica to obtain closed-form solutions to the generated

subproblem integrals. The dotted lines in Figures 12a and 12b represent the exact solutions to the

global problems as computed from those to the subproblems. Our approach enables potentially

harnessing the power of symbolic-integration engines by translating a recursive program into

subproblems that have readily available closed-form solutions.

We also consider a similar HMM where the subproblems in the VE-compiled program are not

known to have closed-form solutions—though they can be approximated with arbitrary precision

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:21

using numerical methods. Figure 12c shows that Mappl/IS quickly converges to this approximate

solution (the dotted line), whereas AIS fails to converge for the relatively small problem size of 16.

VE does not always lead to improved performance, however. As another benchmark, we consider

the aforementioned CRBD model extended with two continuous latent variables for the birth and

10
0

10
2

10
4

1
2

time (s)

IS IS/Mappl

e
s
t
i
m
a
t
e
o
f

−
l
o

g
P

r
(e

xt
in

ct
io

n)

death rates. The plot to the right shows that IS with the VE-

compiled program does not converge faster than IS with the

original program. The VE-compiled program consists in a top-

level integral that nests an exact-inference problem of the kind

addressed in Figure 9f, so each importance sample requires solv-

ing a new exact-inference problem and is thus more expensive

than an importance sample of the original program.

8 RELATEDWORK AND DISCUSSION
VE for probabilistic programs. VE is supported by many PPLs. Here we focus the discussion on

those on the more expressive end of the spectrum. Early versions of IBAL support VE for programs

with unbounded recursion and use lazy evaluation [51]. This approach allows models such as

PCFGs to be specified more declaratively, but it seems to have been abandoned in favor of bounded

recursion for correctness and efficiency concerns [50] in later versions of IBAL [52] and Figaro [53].

PERPL [15] supports exact inference for programs with unbounded recursion, by compiling them

to monotone systems of polynomial equations. Infinite data types, such as integers and strings, pose

challenges to equation solving, as they would lead to infinite systems of equations. In response,

PERPL uses whole-program transformations (de- and re-functionalization) to eliminate infinite

data types. These transformations further necessitate a linear type system to ensure correctness.

Mappl shares the restriction of bounded recursion with a few other PPLs that support VE on

PCFG-like models. Bounded recursion, while unable to express PCFGs as almost surely terminating

programs, is expressive enough for Bayesian-inference queries on these models (see Figure 1c and

another encoding given in an appendix), as the observed data is finite. Koller et al. [34] call such

queries evidence-finite. We consider our choice to restrict attention to bounded recursion a sweet

spot in the design space: it aligns well with the evidence-finite nature of many Bayesian inference

problems, does not require the programmer to reason about linearity, leads to provably correct

VE-compiled code with performance matching the best known PTIME algorithms, and still allows

reasonably concise, readable programs.

SlicStan [29] supports VE for an imperative PPL where programs have deterministic support and

variables are global. It supports loops but not recursion, and HMMs expressed via loops do not seem

to type-check in SlicStan’s information-flow type system. Mappl, in contrast, is a functional PPL

with a wider range of features. The denotational treatment is compositional by nature: it enables a

noninterference result on open terms, crucial for eliminating variables in subterms under binders.

As Section 7 shows, Mappl’s support for recursion, as well as its use of a two-level lattice rather

than a meet semilattice, avoids the limitation of the SlicStan compiler in scaling to large models.

Solving probabilistic inference problems analytically. Exact, analytical solutions to inference

problems are welcome whenever computationally efficient. Some PPLs support exact inference for

nonrecursive programs with no or very restricted form of continuous variables, by compiling them

into finite graph representations for efficient inference [12, 17, 31, 59]. FSPN [63] and PERPL [15]

support exact inference for recursive programs, though they are known to work only for programs

with discrete variables. Hakaru [46, 65] and Psi [25, 26] enable exact inference for programs with

continuous variables (though still omitting recursion) using computer-algebra solvers.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



218:22 Jianlin Li, Eric Wang, and Yizhou Zhang

Delayed sampling in Birch [43] and ProbZelus [8, 3] allow partial analytical solutions to sub-

programs by exploiting conjugacy. The similarity to our approach is that both are forms of automatic

Rao–Blackwellization [57, §4.2] that analytically reduce an inference problem to a better-behaved

one. The distinctions are that delayed sampling derives closed-form posteriors for conjugate priors

whereas our approach compiles away discrete variables, that delayed sampling is an inference-time
approach based on dynamic dependence graphs whereas ours is a compile-time transformation,

and that delayed sampling is not known to work with recursion.

In practice, no single inference technology is likely to excel at all problems; our approach and

existing inference methods are complementary. Identifying independence is generally useful for

compile-time Rao–Blackwellization; for example, our information-flow analysis can potentially

be used in gradient-based methods to reduce variance for gradient estimators. On the other hand,

our approach can potentially capitalize on advances in symbolic integration to solve generated

subproblems analytically.

Reasoning about independence in probabilistic programs. Verifying randomized algorithms

may require reasoning about independence, for which program logics have been developed [7, 6, 40].

While these program logics enable calculational, largely manual proofs of functional correctness,

an information-flow type analysis is more amenable to automation through type inference. Hur

et al. [33] and Amtoft and Banerjee [2] study program slicing for probabilistic while-languages.

Their reasoning is concerned with determining if two variables are correlated conditioned on

the observe statements in a program. Conditional independence can sometimes be determined

syntactically for Bayesian networks through the notion of active trails [49]. The idea has been

adapted to probabilistic programs [33, 37], though a full soundness result is lacking.

Semantics of probabilistic programs. As a Cartesian-closed alternative to measurable spaces,

QBSes are introduced to handle higher-order types [30, 62]. It is further shown that QBSes can be

equipped with compatible 𝜔-cpo structures to handle term-level recursion and recursive types [64].

Mappl’s denotational semantics uses these constructions. Another way to give semantics to PPLs

is by first defining a deterministic operational semantics indexed by a randomness source and then

integrating over randomness to obtain a measure semantics [11]. Prior work constructs logical

relations for program equivalence in this operational setting [18, 66, 69], while we construct logical

relations for noninterference in a denotational setting.

9 CONCLUSION
Our approach to variable elimination and marginal inference, presented in the context of Mappl,

represents a generalization and synthesis of several important ideas.

• A compiler eliminates probabilistic effects, generalizing variable elimination from graphical

models to a richly expressive PPL with recursion.

• It decomposes a global inference problem into subproblems, recovering and generalizing widely

used dynamic-programming algorithms for recursive models.

• It factorizes computations into independent partitions, repurposing information-flow typing to

probabilistic programs.

• Its correctness result relies on a logical-relations argument, adapting semantic models for

noninterference to a measure-theoretic setting.

The payoff is that Mappl allows useful recursive models to be expressed in a functional, recursive

style, while enabling sound, scalable inference for a broad class of these programs. Future work could

explore ways to enable programmer control over the decomposition into inference subproblems

and to exploit local structure in certain models to further speed up inference.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.



Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:23

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.We thank Oghenevwogaga Ebresafe,

Edward Lee, and CongMa for discussions and help. This workwas supported by the Natural Sciences

and Engineering Research Council of Canada. The views and opinions expressed are those of the

authors and do not necessarily reflect the position of any funding agency.

DATA AVAILABILITY STATEMENT
The Mappl compiler implementation is available [38].

REFERENCES
[1] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A core calculus of dependency. In ACM

SIGPLAN Symp. on Principles of Programming Languages (POPL). https://doi.org/10.1145/292540.292555

[2] Torben Amtoft and Anindya Banerjee. 2020. A theory of slicing for imperative probabilistic programs. ACM Tran. on
Programming Languages and Systems (TOPLAS) 42, 2 (April 2020). https://doi.org/10.1145/3372895

[3] Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin. 2022. Semi-symbolic inference

for efficient streaming probabilistic programming. Proc. of the ACM on Programming Languages (PACMPL) 6, OOPSLA2
(Oct. 2022). https://doi.org/10.1145/3563347

[4] Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On continuation-passing transformations and expected cost

analysis. Proc. of the ACM on Programming Languages (PACMPL) 5, ICFP (Aug. 2021). https://doi.org/10.1145/3473592

[5] J. K. Baker. 1979. Trainable grammars for speech recognition. The Journal of the Acoustical Society of America 65, S1
(1979). https://doi.org/10.1121/1.2017061

[6] Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A bunched logic for conditional independence. In

ACM/IEEE Symp. on Logic In Computer Science (LICS). https://doi.org/10.1109/LICS52264.2021.9470712

[7] Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A probabilistic separation logic. Proc. of the ACM on Programming
Languages (PACMPL) 4, POPL (Dec. 2019). https://doi.org/10.1145/3371123

[8] Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive

probabilistic programming. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/3385412.3386009

[9] Richard E. Bellman. 1957. Dynamic Programming. Princeton University Press.

[10] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit

Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep universal probabilistic programming.

Journal of Machine Learning Research (JMLR) 20, 1 (2019). arXiv:1810.09538

[11] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation

for universal probabilistic programming. In ACM SIGPLAN Conf. on Functional Programming (ICFP). https://doi.org/10.

1145/2951913.2951942

[12] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jurgen Van Gael. 2011. Measure

transformer semantics for Bayesian machine learning. In European Symp. on Programming (ESOP). https://doi.org/10.

1007/978-3-642-19718-5_5

[13] Bob Carpenter, AndrewGelman, MatthewD. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of Statistical
Software 76, 1 (2017). https://doi.org/10.18637/jss.v076.i01

[14] Mark Chavira and Adnan Darwiche. 2008. On probabilistic inference by weighted model counting. Artificial Intelligence
172, 6 (2008). https://doi.org/10.1016/j.artint.2007.11.002

[15] David Chiang, Colin McDonald, and Chung-chieh Shan. 2023. Exact recursive probabilistic programming. Proc. of the
ACM on Programming Languages (PACMPL) 7, OOPSLA1 (April 2023). https://doi.org/10.1145/3586050 arXiv:2210.01206

[16] David Chiang and Darcey Riley. 2020. Factor graph grammars. In Conf. on Neural Information Processing Systems
(NeurIPS). arXiv:2010.12048

[17] Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013. Bayesian

inference using data flow analysis. In Proc. of the 9th Joint Meeting of the European Software Engineering Conf. and the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/3372895
https://doi.org/10.1145/3563347
https://doi.org/10.1145/3473592
https://doi.org/10.1121/1.2017061
https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3385412.3386009
https://arxiv.org/abs/1810.09538
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1007/978-3-642-19718-5_5
https://doi.org/10.1007/978-3-642-19718-5_5
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1145/3586050
https://arxiv.org/abs/2210.01206
https://arxiv.org/abs/2010.12048


218:24 Jianlin Li, Eric Wang, and Yizhou Zhang

ACM SIGSOFT Symp. on the Foundations of Software Engineering (ESEC/FSE). https://doi.org/10.1145/2491411.2491423

[18] Ryan Culpepper and Andrew Cobb. 2017. Contextual equivalence for probabilistic programs with continuous random

variables and scoring. In European Symp. on Programming (ESOP). https://doi.org/10.1007/978-3-662-54434-1_14

[19] Oliver Danvy and Andrzex Filinski. 1992. Representing control: a study of the CPS transformation. Mathematical
Structures in Computer Science 2, 4 (1992). https://doi.org/10.1017/S0960129500001535

[20] Adnan Darwiche. 2009. Modeling and Reasoning with Bayesian Networks. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511811357

[21] Dorothy E. Denning and Peter J. Denning. 1977. Certification of programs for secure information flow. Comm. of the
ACM (CACM) 20, 7 (July 1977). https://doi.org/10.1145/359636.359712

[22] Dorothy Elizabeth Robling Denning. 1982. Cryptography and Data Security. Addison-Wesley Reading.

[23] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. 1987. Hybrid Monte Carlo. Physics Letters B 195,

2 (1987). https://doi.org/10.1016/0370-2693(87)91197-X

[24] Roy Frostig, Matthew Johnson, and Chris Leary. 2018. Compiling machine learning programs via highllevel tracing.

https://mlsys.org/Conferences/doc/2018/146.pdf

[25] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic inference for probabilistic programs. In

Int’l Conf. on Computer Aided Verification (CAV). https://doi.org/10.1007/978-3-319-41528-4_4

[26] Timon Gehr, Samuel Steffen, and Martin Vechev. 2020. 𝜆PSI: Exact inference for higher-order probabilistic programs.

In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/3385412.

3386006

[27] J. A. Goguen and J. Meseguer. 1982. Security policies and security models. In IEEE Symp. on Security and Privacy.
https://doi.org/10.1109/SP.1982.10014

[28] Noah D. Goodman and Andreas Stuhlmüller. 2014. The design and implementation of probabilistic programming

languages. http://dippl.org.

[29] Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, and Matthijs Vákár. 2021. Conditional independence by typing.

ACM Tran. on Programming Languages and Systems (TOPLAS) 44, 1 (Dec. 2021). https://doi.org/10.1145/3490421

arXiv:2010.11887

[30] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order

probability theory. In ACM/IEEE Symp. on Logic In Computer Science (LICS). https://doi.org/10.5555/3329995.3330072

arXiv:1701.02547

[31] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact inference for discrete probabilistic

programs. Proc. of the ACM on Programming Languages (PACMPL) 4, OOPSLA (Nov. 2020). https://doi.org/10.1145/

3428208 arXiv:2005.09089

[32] Matthew D. Homan and Andrew Gelman. 2014. The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian

Monte Carlo. Journal of Machine Learning Research (JMLR) 15, 1 (Jan. 2014). https://doi.org/10.5555/2627435.2638586

[33] Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. 2014. Slicing probabilistic programs. In ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/2594291.2594303

[34] Daphne Koller, David McAllester, and Avi Pfeffer. 1997. Effective Bayesian inference for stochastic programs. In Proc.
of the 14th National Conf. on Artificial Intelligence and the 9thConf. on Innovative Applications of Artificial Intelligence
(AAAI/IAAI).

[35] Satoshi Kura. 2023. Higher-order weakest precondition transformers via a CPS transformation. (2023). arXiv:2301.09997

[36] Alexander K. Lew, Matin Ghavamizadeh, Martin C. Rinard, and Vikash K. Mansinghka. 2023. Probabilistic programming

with stochastic probabilities. Proc. of the ACM on Programming Languages (PACMPL) 7, PLDI (June 2023). https:

//doi.org/10.1145/3591290

[37] Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang. 2023. Type-preserving, dependence-aware guide generation

for sound, effective amortized probabilistic inference. Proc. of the ACM on Programming Languages (PACMPL) POPL.
https://doi.org/10.1145/3571243

[38] Jianlin Li, Eric Wang, and Yizhou Zhang. 2024. Compiling probabilistic programs for variable elimination with

information flow (artifact). https://doi.org/10.5281/zenodo.10951893

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.

https://doi.org/10.1145/2491411.2491423
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1017/CBO9780511811357
https://doi.org/10.1017/CBO9780511811357
https://doi.org/10.1145/359636.359712
https://doi.org/10.1016/0370-2693(87)91197-X
https://mlsys.org/Conferences/doc/2018/146.pdf
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1109/SP.1982.10014
http://dippl.org
https://doi.org/10.1145/3490421
https://arxiv.org/abs/2010.11887
https://doi.org/10.5555/3329995.3330072
https://arxiv.org/abs/1701.02547
https://doi.org/10.1145/3428208
https://doi.org/10.1145/3428208
https://arxiv.org/abs/2005.09089
https://doi.org/10.5555/2627435.2638586
https://doi.org/10.1145/2594291.2594303
https://arxiv.org/abs/2301.09997
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3571243
https://doi.org/10.5281/zenodo.10951893


Compiling Probabilistic Programs for Variable Elimination with Information Flow 218:25

[39] Jianlin Li, Eric Wang, and Yizhou Zhang. 2024. Compiling Probabilistic Programs for Variable Elimination with
Information Flow (Extended Version). Technical Report CS-2024-03. School of Computer Science, University of Waterloo.

https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2024-03.pdf

[40] John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A modal separation logic for conditional probability. Proc. of
the ACM on Programming Languages (PACMPL) 7, PLDI (June 2023). https://doi.org/10.1145/3591226 arXiv:2304.01339

[41] Christopher Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. MIT Press.

[42] Andrew McCallum, Karl Schultz, and Sameer Singh. 2009. FACTORIE: Probabilistic programming via imperatively

defined factor graphs. In Conf. on Neural Information Processing Systems (NIPS).

[43] Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas Schön. 2018. Delayed sampling and

automatic Rao-Blackwellization of probabilistic programs. In Int’l Conf. on Artificial Intelligence and Statistics (AISTATS).
arXiv:1708.07787

[44] Andrew C. Myers. 1999. JFlow: Practical mostly-static information flow control. In ACM SIGPLAN Symp. on Principles
of Programming Languages (POPL). https://doi.org/10.1145/292540.292561

[45] Andrew C. Myers and Barbara Liskov. 1997. A decentralized model for information flow control. In Proc. of the 16th
ACM Symp. on Operating Systems Principles (SOSP). https://doi.org/10.1145/268998.266669

[46] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic

inference by program transformation in Hakaru (system description). In Functional and Logic Programming. https:

//doi.org/10.1007/978-3-319-29604-3_5

[47] Radford M. Neal. 2001. Annealed importance sampling. Statistics and Computing 11 (2001). https://doi.org/10.1023/A:

1008923215028

[48] Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman.

2019. Tensor variable elimination for plated factor graphs. In Int’l Conf. on Machine Learning (ICML). arXiv:1902.03210

[49] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.

https://doi.org/10.1016/B978-0-08-051489-5.50001-1

[50] Avi Pfeffer. [n.d.]. IBAL: An expressive, functional probabilistic modeling language. ([n. d.]). https://www.cs.tufts.edu/

~nr/cs257/archive/avi-pfeffer/ibal-journal.pdf

[51] Avi Pfeffer. 2001. IBAL: A probabilistic rational programming language. In Int’l Joint Conf. on Artificial Intelligence
(IJCAI).

[52] Avi Pfeffer. 2007. The design and implementation of IBAL: A general-purpose probabilistic language. In Introduction to
Statistical Relational Learning. The MIT Press. https://doi.org/10.7551/mitpress/7432.003.0016

[53] Avi Pfeffer. 2016. Practical Probabilistic Programming. Manning Publications.

[54] Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable effects for flexible and accelerated probabilistic

programming in NumPyro. (2019). arXiv:1912.11554

[55] Lawrence R. Rabiner and Biing-Hwang Juang. 1986. An introduction to hidden Markov models. IEEE ASSP Magazine
3, 1 (1986). https://doi.org/10.1109/MASSP.1986.1165342

[56] Vineet Rajani and Deepak Garg. 2018. Types for information flow control: Labeling granularity and semantic models.

In IEEE Computer Security Foundations Symp. (CSF). https://doi.org/10.1109/CSF.2018.00024

[57] Christian P. Robert and George Casella. 1999. Monte Carlo Statistical Methods. Springer. https://doi.org/10.1007/978-1-

4757-4145-2

[58] Fredrik Ronquist, Jan Kudlicka, Viktor Senderov, Johannes Borgström, Nicolas Lartillot, Daniel Lundén, Lawrence

Murray, Thomas B. Schön, and David Broman. 2021. Universal probabilistic programming offers a powerful approach

to statistical phylogenetics. Communications Biology 4, 1 (2021). https://doi.org/10.1038/s42003-021-01753-7

[59] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. 2021. SPPL: Probabilistic programming with fast

exact symbolic inference. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/3453483.3454078

[60] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 21, 1 (2003). https://doi.org/10.1109/JSAC.2002.806121

[61] Andrei Sabelfeld and David Sands. 2001. A PER model of secure information flow in sequential programs. Higher-Order
and Symbolic Computation 14 (2001). https://doi.org/10.1023/A:1011553200337

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.

https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2024-03.pdf
https://doi.org/10.1145/3591226
https://arxiv.org/abs/2304.01339
https://arxiv.org/abs/1708.07787
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/268998.266669
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1023/A:1008923215028
https://doi.org/10.1023/A:1008923215028
https://arxiv.org/abs/1902.03210
https://doi.org/10.1016/B978-0-08-051489-5.50001-1
https://www.cs.tufts.edu/~nr/cs257/archive/avi-pfeffer/ibal-journal.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/avi-pfeffer/ibal-journal.pdf
https://doi.org/10.7551/mitpress/7432.003.0016
https://arxiv.org/abs/1912.11554
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1038/s42003-021-01753-7
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1023/A:1011553200337


218:26 Jianlin Li, Eric Wang, and Yizhou Zhang

[62] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,

Chris Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proc. of the
ACM on Programming Languages (PACMPL) 2, POPL (Dec. 2017). https://doi.org/10.1145/3158148

[63] Andreas Stuhlmüller and Noah D. Goodman. 2012. A dynamic programming algorithm for inference in recursive

probabilistic programs. (2012). arXiv:1206.3555

[64] Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic programming. Proc.
of the ACM on Programming Languages (PACMPL) 3, POPL (2019). https://doi.org/10.1145/3290349

[65] Rajan Walia, Praveen Narayanan, Jacques Carette, Sam Tobin-Hochstadt, and Chung-chieh Shan. 2019. From high-level

inference algorithms to efficient code. Proc. of the ACM on Programming Languages (PACMPL) 3, ICFP (July 2019).

https://doi.org/10.1145/3341702

[66] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a

probabilistic language with continuous random variables and recursion. Proc. of the ACM on Programming Languages
(PACMPL) 2, ICFP (2018). https://doi.org/10.1145/3236782

[67] Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound probabilistic inference via guide types. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI). arXiv:2104.03598

[68] Nevin Lianwen Zhang and David Poole. 1994. A simple approach to Bayesian network computations. In Proc. of the
10th Canadian Conference on Artificial Intelligence.

[69] Yizhou Zhang and Nada Amin. 2022. Reasoning about “reasoning about reasoning”: Semantics and contextual

equivalence for probabilistic programs with nested queries and recursion. Proc. of the ACM on Programming Languages
(PACMPL) 6, POPL (2022). https://doi.org/10.1145/3498677

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 218. Publication date: June 2024.

https://doi.org/10.1145/3158148
https://arxiv.org/abs/1206.3555
https://doi.org/10.1145/3290349
https://doi.org/10.1145/3341702
https://doi.org/10.1145/3236782
https://arxiv.org/abs/2104.03598
https://doi.org/10.1145/3498677

	Abstract
	1 Introduction
	2 Key Features, Main Ideas, and Examples
	3 Syntax, Type System, and Denotational Semantics
	4 Information-Flow Type System
	5 Noninterference via a Logical-Relations Model
	6 Variable-Elimination Transformation
	7 Experimental Evaluation
	8 Related Work and Discussion
	9 Conclusion
	References

