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We present a new approach to scaling exact inference for probabilistic programs, using generating functions
(GFs) as a compilation target. Existing methods that target representations like binary decision diagrams
(BDDs) achieve strong state-of-the-art results. We show that a compiler targeting GFs can be similarly
competitive—and, in some cases, more scalable—on a range of inference problems where BDD-based methods
perform well.

We present a formal model of this compiler, providing the first definition of GF compilation for a functional
probabilistic language. We prove that this compiler is correct with respect to a denotational semantics. Our
approach is implemented in a probabilistic programming system called Geni and evaluated on a range of
inference problems. Our results establish GF compilation as a principled and powerful paradigm for exact
inference: it offers strong scalability, good expressiveness, and a solid theoretical foundation.
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1 Introduction

Systems with probabilistic behavior are ubiquitous: from computer networks to biological processes
to economic models. Probabilistic programming languages (PPLs) provide a high-level abstraction
for modeling such systems. Given a probabilistic program, the PPL performs probabilistic inference
to answer queries about the program’s behavior—typically, the probability that an event occurs
according to the distribution defined by the program.

Probabilistic inference is computationally challenging, however. Exact inference is even more
s0, as it is concerned with computing precise probabilities rather than approximations. This paper
focuses on the computational challenge of exact inference for discrete probabilistic programs. Even
for a subclass of discrete programs where all variables have finite support, exact inference is known
to be PSPACE-hard in the worst case.
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Compact representations. Advances have been made in exact inference for discrete proba-
bilistic programs. The ability to represent probability distributions in a compact form is perhaps
the most important factor in scaling exact inference—the vanilla approach of using conditional
probability tables (CPTs) quickly becomes intractable as the number of variables increases.

The Dice PPL [19] represents one approach to scalable exact inference. It compiles probabilistic
programs to binary decision diagrams (BDDs) [4], which can succinctly represent the distribution
defined by the program. Dice has been applied to probabilistic model checking [18], where it is
shown to outperform state-of-the-art model checkers such as Storm [17] on some benchmarks.

Another direction that has been explored recently [21, 8, 36, 22] is the use of generating functions
(GFs) [35] for exact inference. Generating functions are a powerful mathematical tool that can
succinctly represent probability distributions over natural numbers. They also enable exact inference
in the presence of infinite-support distributions (e.g., Poisson), which is not possible with BDDs.

Although GFs are mathematically appealing, their use in practical PPL implementations faces
challenges. First, current systems are concerned with imperative probabilistic programs; it is not
immediately clear how to systematically compile functional probabilistic programs to GFs and
further to state and prove correctness of such a compilation. Second, we observe that existing
GF-based PPL implementations do not scale well for many programs that Dice can handle effectively.
For example, Genfer [36] is a GF-based PPL that has been shown to outperform some other GF-based
implementations on a range of benchmarks, but it struggles to scale beyond programs that contain
more than a few variables.

BDD-based inference, in contrast, is effective for more complex programs and, thus, stands as a
common, established approach to exact inference. At first glance, it may seem unlikely that GFs
could compete with BDDs as a compilation target for scaling inference for probabilistic programs
over binary random variables. After all, generating functions are typically valued for their ability
to encode and manipulate possibly infinite sequences.

Contributions. This paper presents a compiler using generating functions as the compilation
target and offering strong scalability, good expressiveness, and a solid theoretical foundation.

Several factors contribute to the scalability of our approach. Generating functions enjoy properties
that allow a compiler to effectively exploit independence and determinism in program structure.
Reducing derivative computations, as well as applying simple compiler and runtime optimizations,
also improves inference scalability.

We implement our approach in a probabilistic programming system called Geni. Geni is a func-
tional PPL supporting finite- and infinite-support discrete distributions, continuous priors, Bayesian
observations, bounded loops, and a restricted form of unbounded loops. The implementation of
Geni is structured as follows:

desugar compile evaluate
Geni PIL DIL inference result

The central component of the Geni implementation is the compilation from PIL to DIL.

« Section 4 formalizes the syntax and semantics of PIL, a functional probabilistic intermediate
language. High-level constructs in the Geni surface language, such as logical operations, integer
arithmetic, bounded loops, and non-recursive functions, are desugared to PIL. In PIL, all values
are either natural numbers or tuples of natural numbers, so PIL is amenable to compilation to
generating functions.

» Section 5 formalizes the compilation of PIL programs into a deterministic language, called DIL,
that we use to specify generating functions. We establish the correctness of this compilation
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into GFs. This formalization is novel, as it is the first time that a GF compilation is defined for
a functional PPL and proven correct. The close correspondence between the PIL denotational
semantics and the PIL-to-DIL compilation is a key insight that helps clarify correctness.

Section 6 describes the implementation of Geni.

« Section 7 evaluates Geni on a range of benchmarks. When compared to state-of-the-art results
from Dice, Geni demonstrates comparable performance—and sometimes, better scalability on
some inference problems where Dice has been considered effective—while also allowing exact
solutions to be derived automatically for a wider range of programs.

We proceed by first reviewing generating functions in the context of probability theory (Section 2)
and then illustrating the key ideas in the design and implementation of Geni with examples
(Section 3).

2 Background on Generating Functions

A brief review of measure theory relevant to our development can be found in an appendix in the
extended version [28]. In this section, we review the concept of generating functions.

Probability-generating functions are a common tool for studying random variables and their
distributions, particularly discrete ones. For a random variable X supported on N or a subset thereof,
its probability-generating function Gy : R — R is defined as

Gx(x) = Ex[xX] = D] P[X =n] - x". (2.1)
neN

Here, the indeterminate x is the formal parameter of the probability-generating function of X.
We use uppercase letters for random variables and lowercase letters for their corresponding GFs’
formal parameters. For instance, the GF of a Bernoulli random variable X with parameter 0.1 is

GX~Bernou|li(0.1)(x) =0.9+0.1x. (2-2)

In Bayesian probabilistic programming, we often work with unnormalized measures. For a
discrete measure p supported on N or a subset of N, we call Gy(x) = [EXNy[xX] the generating
function (GF) of p, omitting the term “probability” since y may not be a proper probability measure.
We use the notation G, or Gy to mean the GF of por X.

Probability masses can be recovered from the GF by taking derivatives:

P[X =n] = % - 6(0), (2.3)

which explains the term “probability-generating function”. Here, Gg?)(x) denotes the n-th derivative
of Gy at point x. The power series », _ (1/n!)- Gg?)(O) - x" is precisely the Taylor expansion of Gy
at 0.

Moments can also be obtained from GFs by taking derivatives. In particular, the expectation (i.e.,
the first raw moment) and the variance (i.e., the second central moment) of a random variable X
can be obtained as follows:!

_ —_ @ D1y _ eDr1y2
E[X] = Gx'(1) and V[X] = 6x'(1) + Gx’(1) — G (1) (2.4)
For the Bernoulli example, one can verify that the probabilities and expected value check out:
1 1
PIX=0]==- 62(0) = 0.9 PIX=1]=—- 6 (0) = 0.1 E[X] = 6(1) = 0.1

Moments may not exist for some distributions. For example, the generalized Zipf distribution with exponent 2 has the
generating function Gy zipf(2)(x) = {(2)7" - Lis(x), where Li,(x) is the polylogarithm function of order 2. The derivative
ngzipf@)(l) diverges—the mean of Zipf(2) does not exist. A sufficient condition for the existence of moments is exponential

tail decay, which is satisfied by the distributions we consider.
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The GF of a multidimensional random variable X = (X, ..., X;) is defined as a multivariate GF:
d

Gy(x) = Gx(x;, ..., %)) = [EX[H x| (2.5)
i=1

We often write x*X as shorthand for H?: . xlX‘ Setting x; to 1 in the multivariate GF has the effect of
marginalizing out the i-th dimension, yielding the GF of the remaining dimensions:
Gy x, (X5 o s X5 X 15005 Xg) = Bx(Xp, o, X2, 1, Xigs o5 X). (2.6)

For a random variable Y obtained by an affine transformation of X (i.e., Y = m - X + n, where
m,n € N), the GF of the joint distribution of X and Y is

Gxy(x,y) = y" - Gx(x - y™). (2.7)
For two independent random variables X and Y, the GF of their sum Z = X + Yis the product of
their GFs at point z:

GAz) = Gx(z) - Gy(2). (2.8)
For independent X and Y, the GF of their joint distribution is the product of the GFs:
Gxy(x, ¥) = Gx(x) - Gy(y). (2.9)

In our development, we work with a language supporting pairs, so we generalize the notion of
GFs by allowing pairs (as opposed to real vectors) as inputs. For example, consider the program
@+ let X =flip0.1in (X,8-X + 1) : Nx N. This program returns a pair: it returns (1, 9) with
probability 0.1 and (0, 1) with probability 0.9. If we let Y be the random variable representing the
return value of this program, then we consider its GF Gy to take a pair of real numbers as input:

Gy(y) =let y, = fst yinlet y, = snd yin 0.1-y, - y5 + 0.9 - y,.

In our development, we will use GFs to represent measures over semantic substitutions for free
variables in programs. So we will further generalize the notion of GFs to allow substitutions as
inputs (Section 5.2).

Common infinite-support discrete distributions have closed-form GFs. For example, the GFs of
geometric distributions and Poisson distributions are given by

G'XNGeo(G)(x) = 9/(1 - (1 - Q)X) and GXNPoisson(Q)(x) = exp(e(x - 1)) (210)

GFs are best known for their ability to compactly encode, manipulate, and analyze infinite sequences.
Common continuous distributions have GFs too. For a random variable X supported on R or a
subset thereof, its GF Gy : R — R is defined as

Gx(x) = Ex[xX] = J xXdX. (2.11)

R
For example, an exponential distribution Exp(6) has GF Gx_,(9)(x) = 0/(60 — log x), and its mean
can be computed as Ey_g,,0)[ X] = ngExp(e)(l) =1/6.

3 Main ldeas

Consider the PIL program in the left column of Figure 1. The construct flip 6 samples a Bernoulli
random variable supported on {0, 1} with parameter 6. The program returns 1 if the sum S, of the n
variables Xj, ..., X, is positive and 0 otherwise. In other words, the program encodes the disjunction
of n Bernoulli random variables: X; V X, V ... V X,,. Although the program is simple and artificial, it
serves as a good starting point to illustrate the main ideas. We will evaluate Geni on more complex
programs further on.
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PIL program DIL expressions Generating functions
€ =1 1
let X; =flip 6, in e = eo-(9_1+91~x1) /1x1.9_1+91xl
let S, = X, e] = efx, > x-s][x, = 1] 1s,.0, + 0,5,
let X, = flip 6, in e, == e - (6_2 +6,- xz) As1%,. (9_1+ 0131) (9_2 + Qsz)
letS, =S, + X, €)= eyfs; > 8 S, X P> X, 5]
[s; > 1][x, — 1] As,. (6 +6,5,) (6, + 05, )
let X; = flip 65 in e = €} - (9_3 +0; - x3) A8,%5. (9_1+ 9152) (9_2 e 9232) (9_3 e 93x3)
let S; =5, + X, € = e3[s, > 5y 83,03 > Xy - 85]
[s, = 1][x; — 1] Ass. (51 + 9133) (0_2 + 9233) (9_3 + 9333)
e, = s, = 0[5, 1] 66,
if S, then e; = eyfs, > 1] —e, 1-6,--6,
1 e = e -2z Az. (1—0_1~--9_,,)z
else
0 e :=¢e -2° 12.6, -6,
e = e +e Az. (1—0_19_n)z+0_19_n

Figure 1. Left: A program written in PIL syntax. Center: The compiled program in DIL. Each line is a DIL
expression that represents the GF in the variables still live after the line in the PIL program. The substitutions
[xx — 1] in gray have the effect of marginalizing out a variable X whose liveness is ending. Right: Denotational
semantics of the DIL expressions in the center.

GF compilation. Let Z be the random variable denoting the return value of the PIL program.
The right column of Figure 1 shows the step-by-step derivation of the GF of Z. The final GF is

G(z) = (1—9_1---9_n)z+9_1---9_n,where§i: 1-6, (3.1)

which encodes the marginal distribution of Z. The goal is to automate the derivation of a computable
form of the generating function from a given PIL program.

To achieve this goal, we need to define a translation from PIL to a target language that can express
generating functions. We call this target language DIL. While PIL is a probabilistic language, DIL is
deterministic. The result of this compilation is the expression e’ defined in the center column of
Figure 1. Each line in the center column is a subexpression of e’ constructed during the compilation
process.

If the compilation is correct, the final DIL expression e’ should have a denotational semantics that
is precisely the generating function Gy. It is in this sense that we refer to the PIL-to-DIL compilation
process as GF compilation.

The curious reader may want to take a sneak peek at the commutative diagram in Figure 8, which
illustrates the compiler correctness property (Theorem 5.1) we will establish.
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GF compilation for a functional language. Existing PPLs that compile to GFs are imperative
[36, 22]: the programs are sequences of commands that mutate a global store of a fixed set of
k variables. This design is convenient, as it allows the use of textbook definition of GFs, which
operate on fixed-size vectors. All GFs constructed during translation have the same k-dimensional
vector space as their domain, and each command acts as a transformer between two k-variate
GFs—mirroring Kozen’s seminal distribution-transformer semantics for imperative probabilistic
programs [23].

We work in a functional setting, which improves modularity but complicates GF compilation. In
our functional setting, the set of in-scope variables is not fixed, so the type signatures of GFs must
vary with the typing context. Moreover, data types in PIL include nested tuples, which prior work
on GF compilation does not consider.

To support all this flexibility, we generalize the notion of GFs, so that they operate on semantic
substitutions for typing contexts rather than fixed-size vectors (Section 5.2).

We can then view GF compilation as a symbolic execution of the functional PIL program, where
the symbolic representations denote generalized GFs. That is, the DIL expressions constructed during
compilation are symbolic GFs representing measures over the possible program states—valuations of
the in-scope variables—at each program point. So we can view these PIL expressions as transformers
between symbolic representations of in-scope variables, with the ability to introduce and eliminate
variables as scopes change.

We use this GF-transformer view to define the GF compilation for PIL (Section 5), and the
measure-transformer view to define its denotational semantics (Section 4), connecting them via the
generalized notion of GFs. The payoff is a tight correspondence between the denotational semantics
and the GF compilation, which elucidates essence and justifies correctness.

Marginalizing out expired variables. A key optimization in the Geni compiler is the marginal-
ization of variables when they expire—i.e., when they are no longer live. This optimization reduces
the input sizes of the intermediate GF expressions created during compilation, which can lead to
savings in time and space during inference.

As shown in (2.6), marginalizing out a variable X; from a multivariate GF Gy is as simple as
setting x; to 1. In the DIL program in Figure 1, this marginalization is performed by the substitutions
[x+— 1]and [s;— 1] fori=1,2,...,n

Importantly, these substitutions occur in the compiled DIL program as soon as the variable’s
liveness ends in the PIL program. If the marginalization were delayed until the end of the program,
the following DIL expression would be generated:

(9_1 + 91x13132 Sn) (9_2 + 023(,'282 Sn) (e_n + enxnsn) [xl = 1][51 = 1] [xn = 1][sn = 1] (3-2)

Evaluating this expression requires O(n?) time, as the k-th last factor in the product involves O(k)
operations. By contrast, the expression e’ defined in Figure 1 can be evaluated more efficiently in
O(n) time.

Extracting probabilities from GFs without differentiation. The Genfer PPL [36] computes
partial derivatives of generating functions, whenever compilation encounters a conditional state-
ment (if E then ... else ...) or Bayesian conditioning statement (observe E), to extract the probability
that the conditional expression E evaluates to true. This differentiation is identified as a performance
bottleneck of Genfer.

Geni reduces the need for differentiation: derivatives are not required when compiling condi-
tionals that test if a variable is nonzero. We make the observation of a perhaps obvious fact: for a
random variable X supported on N or a subset, the probability masses of the zero and non-zero
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600 | — Genfer

— Geni

400 —

time (s)

| | |
0 50 100

number of disjuncts (x103)

Figure 2. Scaling of Genfer and Geni on the program from Figure 1.

events can be directly read off from its generating function Gy(x) without differentiation. That is,
1
PIX=0]= g G(0) = 6x(0) and P[X#0]=1-P[X=0]=1-Gy(0). (3.3)
More generally, for a measure p supported on N or a subset, we have

H({0) = 6,(0) and  u(N\ {0}) = 6,(1) - 6,(0). (3.4)

The compilation of the if expression in Figure 1 uses this fact to extract the masses (e; and e, )
without differentiation. All that is needed is to evaluate the GF at 0 and 1 and perform subtraction.

This observation allows Geni to avoid differentiation for a large class of programs—all programs
that can be expressed by Dice. It is easy to see that differentiation is not needed for a conditional
expression testing if a variable is nonzero. For example, consider the compilation of the if expression
in Figure 1. There, the GF expression e}, is the symbolic representation of program execution before
the if statement. Geni transforms e}, into two GF expressions e+ and e, which constrain e, to the
cases where S, is true and false, respectively. The else branch GF e, is obtained by setting s, to 0 in
e;, while the then branch GF e; is obtained by GF subtraction—differentiation is not required.

For finite-support integer variables, Geni supports them in the same way as Dice: by encoding
them as tuples of binary variables [5]. So differentiation is not needed for conditional expressions
testing such variables. A variable X supported on, say, {0, 1,2, 3} is encoded as a pair of binary
variables (X;, X;), where X = 2X,+ X. Testing X = 2 does not require computing the second-order
derivative (1/2!) - G(;?)(O). Instead, it can be done by testing X; = 0 A X, = 1 without evaluating
any derivatives:

fx,x, (0, 1D}) = prx, ({03) — px, x, ({00, 003) = 6, (0,1) = G,y (0,0). (3.5)

Here, fiy, x, is the joint measure of (X;, X;) and pix, is the marginal measure of X;.

Figure 2 compares how Geni and Genfer scale on the program from Figure 1. Geni scales linearly
with the size of the program, whereas Genfer scales super-linearly.? This difference arises because
Genfer evaluates the n-th derivative of the GF, which requires time polynomial in n, as explained
by Zaiser et al. [36], whereas Geni avoids differentiation entirely.

?In this experiment, Genfer is run on a manually modified version of the program from Figure 1, which we obtained by
manually performing a live variable analysis. This modified version recycles variables when their liveness ends. The result
is a program that uses only two variables, X and S, updated imperatively throughout the program. Using a constant number
of variables is favorable to Genfer’s performance; without it, Genfer would scale exponentially. Nevertheless, we mention
that there exist encodings of logical disjunction on which Genfer scales linearly.
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Figure 3. The BDD that the Dice compiler [19] generates for the disjunction X; vV X, V X;. Dashed lines
indicate that the parent variable takes the value F (false), while solid lines indicate T (true). Dice’s BDD
compilation exploits the determinism in this model—the size of the BDD increases linearly with the number
of variables.

Scaling exact inference. Exact inference for discrete models, even without infinite-support
distributions, is PSPACE-hard. Dice [19] is the state of the art in scaling exact inference for such
probabilistic programs. How does Geni compare to Dice on this front? In Section 7, we seek to
answer this question based on empirical evidence, by evaluating Geni on benchmarks that Dice is
known to handle effectively. The results indicate that Geni can exploit these structures reasonably
well, too—and, perhaps surprisingly, even better than Dice in some cases. Here, we preview the
findings.

Previous work [7] suggests that scaling exact inference for discrete models requires exploiting
available independence structure and local structure in the models.

Independence structure refers to conditional independence relations among variables, like the
kind available in Markov models. It allows computations in inference to be factorized into smaller
computations. Generating functions automatically encode these relations to some extent. As
(2.8) and (2.9) show, independence relations automatically lead to factorized GFs. In addition, by
marginalizing out variables as soon as they are no longer dependent upon, Geni keeps the sizes of
the GFs as small as possible. Other exact-inference methods, including BDD compilation and those
based on variable elimination [37, 16, 27], are known to exploit this structure well.

Local structure refers to a broad category of structural properties including, most notably, deter-
minism. Determinism often exists in probabilistic models with explicit logical conditions, such as
those found in probabilistic logic programs and computer network models. Dice [19] exploits deter-
minism well: determinism leads to sparse CPTs, which in turn lead to compact BDDs. For example,
the disjunction of n binary variables X; V ... vV X, is a model with a high degree of determinism—it
is used as an example by Holtzen et al. [19] to illustrate local structure. As shown in Figure 3, Dice
can compile this model to a BDD of size O(n), rather than a complete binary tree of size O(2").
By contrast, it is well understood that methods based on variable elimination fail to exploit this
determinism, solving this inference problem in O(2") time.

Geni can effectively exploit this determinism, too, with the encoding shown in Figure 1. In
fact, as shown in Figure 4, Geni scales better than Dice on this example. Geni scales linearly with
the number of disjuncts n, while Dice scales super-linearly.® Interestingly, our empirical finding
seems at odds with the comment by Holtzen et al. [19] on the disjunction model: “if the number
of variables disjoined together were to increase, the size of the BDD—and the cost of compiling
it—would increase only linearly with the number of variables” We believe the nuance is that while
the BDD size increases linearly in this case, constructing the BDD may involve operations that
require super-linear time in general [4].

Nevertheless, while Geni is effective at exploiting determinism, it may not be as effective as
Dice at handling programs translated from conditional probability tables. Handling large CPTs well

3We also experimented with alternative encodings of disjunction in Dice. Dice scales super-linearly on these encodings,
while Geni scales linearly.
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Figure 4. Scaling of Dice and Geni on disjunction encodings. Geni is run on the same program from Figure 1.
The same program cannot be expressed in Dice, so we run Dice on a similar program with all summations
replaced by disjunctions.

requires extracting local structure implicitly present in the tabular representation, which BDD
compilation largely automates [19]. As a result, Dice scales better than Geni on such benchmarks.
Despite this limitation, we observe that Geni can still compute exact solutions for very large
Bayesian networks specified as CPTs in reasonable time, where Genfer and methods like variable
elimination would time out or run out of memory in practice.

In summary, our empirical results in Section 7 indicate that Geni and Dice have complementary
strengths. On some inference problems that motivated the use of Dice [18, 33], Geni may scale
surprisingly well: where Dice scales super-linearly, Geni may scale linearly; and where both scale
exponentially, Geni may do so with a smaller base. These models often feature a good amount of
independence and determinism. But Dice may outperform Geni on some other inference problems,
particularly those with large, dense CPTs. We view these findings as a first step toward understand-
ing the performance characteristics of GF-based inference versus BDD-based inference; a more
definitive picture will require further investigation.

Handling infinite-support distributions. Infinite-support distributions naturally arise in
probabilistic models in domains like evolutionary biology and network traffic analysis. For example,
consider the program below written in Geni:

let X = sample Poisson(1) in
loop X sum ForwardPacket()

This program models network traffic where packets arrive according to a Poisson distribution,
which is a standard assumption in traffic modeling. The packets are forwarded through a net-
work of routers. The function ForwardPacket() may be arbitrarily complex: it models the network
topology and also the probabilistic behavior of the router network—routers and links may fail
probabilistically. ForwardPacket returns 1 if a packet reaches the destination and 0 otherwise. The
expression loop X sum ForwardPacket() simulates forwarding all X packets through the network
and computes the total number of packets that are successfully transmitted.

Programs like this are challenging for current PPLs. Dice cannot handle the infinite-support
Poisson distribution. Genfer supports Poisson distributions, but it struggles to scale to complex
network models and does not support loops. Sampling-based methods, such as importance sampling
and Hamiltonian Monte Carlo in PPLs like Pyro [2] and Stan [6], struggle with this inference problem
due to the high-dimensional discrete structure and inherent non-differentiability.
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N|TxT

type T

expression E X|n+n X|(ELE)|fstE[sndE|let X =E inE | X€A]|

sample D | observe E | if E; then E, else E; | loop E; sum E,

distribution D

Bernoulli(#) | Geo(6) | Poisson(6)

typing context ' == @ |T[,X: T
0 €0,1] 0 € (0,1] 0 € (0,00)
+ Bernoulli(6) + Geo(6) + Poisson(0)

F(X):T Vi,r(X,):N FFEI:TI F|_E2:T2 FFE:TIXTZ
I'-X:T r|_n+zini')(i:N F|_(E15E2):T1XT2 rFfStETl
'E : Ty I'(xX)=N

T'-E: T, xT, ILX:TY+E T, A={n,,....m} +D

F'-sndE: T, F'letX=E inE, : T, '-XeA:N I'~sample D : N
'-E:N '-E, :N THE :T TTHE: T '-E, :N @~rE :N

I' - observe E : N F'+ifE thenEyelse E5 : T I'+~loop E; sumE, : N

Figure 5. Syntax and type system of PIL.

Geni can handle this example effectively. It is able to compile the program to a GF that repre-
sents the exact distribution of the number of successfully transmitted packets. To the best of our
knowledge, this is the first time exact solutions can be derived automatically for such a program.

4 PIL: A Probabilistic Intermediate Language

In this section, we formalize the core language PIL, the source language of the GF compilation we
will describe in Section 5.

4.1 Syntax and Typing Rules of PIL
Figure 5 shows the syntax and typing rules of PIL.

A compiler intermediate language. PIL is intended as a compiler intermediate language,
where the only base type is N.

The Geni surface language supports additional high-level features for user convenience: Booleans,
bounded integers, non-recursive function calls, and statically bounded loops. These features can be
desugared into PIL. Booleans are encoded as natural numbers, with logical operators expressed
using affine natural-number arithmetic and the if-then-else construct; for example, Figure 1 shows
an encoding of disjunction. The other features are handled in the same way as in Dice [19]: bounded
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integers (i.e., integers of statically known bit widths) and their arithmetic operations are supported
via the binary encoding [5], function calls are supported via inlining, and statically bounded loops
are supported via unrolling. We do not capture these features in our formalism for simplicity; we
will focus on PIL and the compilation from PIL to DIL.

PIL types include the base type N and product types T; x T,. We overload notations to avoid
cluttering the syntax. For example, depending on the context, N can denote the base type in PIL
or the set of natural numbers. Similarly, n can denote a constant expression in PIL or a natural
number at the meta-level. Pairs are useful for encoding integers as tuples of binary values.

The expression sample D draws a sample from a distribution D. We use flip 6 as a shorthand for
sample Bernoulli(). The expression observe E conditions the program execution on the value of
the subexpression E being nonzero, and the expression if E; then E, else E; tests if E; is nonzero
and evaluates E, or E; accordingly.

Expressive power. Not all ways of combining variables are known to have closed-form gen-
erating functions. Like prior work [21, 8, 36, 22], we make syntactic restrictions such as allowing
only affine operations on variables, viz., n + Zi n; - X;. Despite the restrictions, some non-affine
integer operations are expressible via the binary encoding of unsigned integers.

All Dice programs can be expressed in Geni. Moreover, while only finite-support distributions
are allowed in Dice, Geni additionally allows infinite-support distributions. Geni also allows some
common continuous distributions to be used as priors, though we do not model them here for the
simplicity of the formalism; they can be added as an extension of our development and do not pose
semantic challenges.

Further, PIL supports a stochastic loop construct loop E; sum E,: the loop executes E; times,
each time adding the value of executing E, to an accumulator. The number of iterations need not
be statically known and can be random. The expression E, can contain randomness too, but each
iteration executes E, independently. This independence between loop iterations is reflected in the
typing rule, which requires E, to be typed under an empty context.

This specialized loop construct is useful for expressing a common pattern found in probabilistic
models of evolutionary processes, queuing systems, and communication networks: summing a
stochastic number of independent, identically distributed (i.i.d.) random variables. The number of
loop iterations is random and unbounded (i.e., it can be arbitrarily large), though the loop eventually
terminates after a finite number of iterations. Geni’s support of this feature is novel; Genfer [36]
does not consider compiling any stochastic loops.

This loop construct subsumes built-in distributions like Binomial(X, 6), NegBinomial(X, 8), and
Poisson(0 - X) in Genfer [36]. They are special cases where the summand is a sample expression:

Binomial(X, 0) := loop X sum (sample Bernoulli(6)) (4.1)
NegBinomial(X, ) := loop X sum (sample Geo(0)) (4.2)
Poisson(0 - X) := loop X sum (sample Poisson(0)) (4.3)

For example, NegBinomial(X, 6) represents the number of failures before the X-th success in a
sequence of Bernoulli trials with success probability 6. It is a generalization of Geo(#), which repre-
sents the number of failures before the first success. Hence, NegBinomial(X, 8) can be expressed,
with PIL’s loop—sum construct, as the sum of Xi.i.d. geometric samples.

4.2 Denotational Semantics of PIL

In this section, we give a denotational semantics for PIL. Basics of measure theory are assumed.
Following standard techniques for formally modeling probabilistic programs, we interpret types
and typing contexts as measurable spaces:
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[N] := N [T, xT;] = [I] @ [T,] = & [rX]
Xedom(T)

The base type N is interpreted as the standard Borel space of natural numbers. A product type
T, x T, is interpreted as the product measurable space of the interpretations of T; and T,. A typing
context I is interpreted as the measurable space of substitutions y such that for all X € dom(T),
y(0) € [FCOI.

Built-in distributions in PIL are interpreted as probability measures on N. The interpretations are
standard. For example, Poisson(#) is interpreted as a measure [Poisson(6)] = AA. Zne " e %" /n!
that sums the probability masses over all natural numbers in the input set A. We omit the measure
denotations for the other built-in distributions.

To give meanings to well-typed expressions, we use the standard monad [15] that assigns to a
measurable space S the space Meas S of all measures on S:

PIT] = Meas [T] P[I] := Meas [T]

Interpreting well-typed expressions as measures or measure transformers? One way to
interpret a well-typed expression I' - E : Tis to define a function

P[C+E:T] : [I] - P[T]. (4.4)
For example, in this approach, variables and let-bindings are interpreted as follows:
PICEX: Ty := rety(X)

ve—P[T+E :T,]y;

PIC+let X =E inE, : T = d
L ¢ vin B = Lly © PI0,X: Ty +E, : T,]y[+X — v]

Here, ret vis the unit of the monad: it lifts a value vto the Dirac measure at v. The do {v < p; f(v)}
notation is the bind operation of the monad: it samples a value v from the measure y and feeds it to
fto obtain a new measure. Most denotational semantics of functional PPLs in the literature are
defined in this way [32].

We could follow this approach for PIL as well. However, we would like a semantics that is more
enlightening for the purpose of GF compilation—that is, a semantics that makes clear the close
connection between the measure-theoretic interpretation P[[-] (Figure 6) and the GF compilation
G[-1 (Figure 7), so much so that most structural rules in the GF compilation can be directly adapted
from the denotational semantics.

The standard interpretation (4.4) does not seem to serve this purpose well. P[] in (4.4) is a
space of measures, which corresponds to the space of generating functions of measures on [7]. But
[T in (4.4) is not a space of measures; it does not have a direct correspondence in the GF world.

This observation leads us to define a semantics that interprets a well-typed expression' = E : T
as a function with domain 2P[I'] and codomain VY ¢ dom(T), P[I,Y : T]:

PIT+E : T] : P[T] —» VY ¢ dom(T), P[T,Y : TJ. (4.5)

The codomain is itself a space of (dependently typed) functions, taking a fresh variable Y as input
and producing a measure in the space P[I',Y : T]. The fresh variable Y represents the result of
evaluating E. The denotation P[I" - E : T] is essentially a measure transformer: given an input
measure y € P[I'] and a variable Y, the output P[I" + E : T] ;Y is a measure that characterizes
the joint (unnormalized) distribution of Y and the variables in dom(T).

Interpreting a closed program @ + E : T then amounts to a tree traversal that successively
applies the measure transformers denoting the subexpressions, starting from a measure iz € P[@]
and concluding with a measure in P[Y : T]. Here, iy is the measure that assigns probability 1
to the empty context, and Y is a fresh variable representing the result of evaluating the program.
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As will become clear in Section 5, this interpretation into measure transformers lends itself to
elucidating the connection to GF compilation.

Interpreting well-typed expressions as measure transformers. Figure 6 defines the de-
notational semantics of PIL expressions. In the meta-language, in addition to the usual monadic
operations, we use the following notations:

+ Fory € [I'] and X ¢ dom(T'), the notation y[+X > v] is the extension of y with X mapped to v.
Fory € [I'] and X € dom(T), the notation y[-X] is the elimination of X from dom(y), while
y[X +— v] is the update of y with X mapped to v.

« Forb € {T, L} and y € Meas S, the notation condition b; y1 is defined as if b then y else A_. 0.
It restricts the measure y to the event b. Here, A_. 0 is the null measure.

« fold : (R —> S — S) » S — List R — Sis the usual fold operation on lists.

« For 1 € Meas S, if the normalization constant p([S]) is not zero, then we define normalize p as
the normalized measure p/p([S]).

The definitions in Figure 6 are straightforward for the most part, by induction on typing deriva-
tions. For example, a let binding I' - let X = E; in E, : T, is interpreted as the composition of the
measure transformer denoting E; under I and the measure transformer denoting E, under the ex-
tended context I', X : T;. The final measure, of type Meas [I',Y : T,], is obtained by marginalizing
out the variable X, since X is in scope only within E,. The definitions of these inductive cases will
directly inform the corresponding rules in the GF compilation.

To interpret observe and if expressions, we use an auxiliary definition

P(T+E:N): P[] —-{LT1}—> P[] (4.6)

Given an input measure p € P[], for b € {1, T}, the output measure P(T + E : N) p b is the
restriction of u to those substitutions for I where E evaluates to zero or nonzero, respectively.

The interpretation P[I" + loop E; sum E, : N] pY of the expression loop E; sum E, is a bit more
involved. It is obtained by folding a function A_. f : N — Meas [I,Y : N] — Meas [I,Y : N] over
the list [1, ..., y(X)] € List N. The fresh variable X stands for the result of evaluating E;, namely
the number of iterations. The function A_. fadds the result of evaluating E, to the accumulator. It
ignores the loop index, as the evaluation of E, is i.i.d. across iterations.

For a closed program E, its denotation P[@ + E : T] pg Y is an unnormalized measure, if E uses
Bayesian conditioning. The normalized measure is obtained by normalize (P[@ + E : T] y, Y).

We will abbreviate P[I' - E : T] pY as P[E] pY when T and T are clear from the context.

5 GF Compilation
In this section, we formally define the translation from PIL to DIL.

5.1 Target Language DIL

The target language DIL provides constructs that can be used to express generating functions.
While the base type in PIL is N, the base type in DIL is R. The syntax of DIL is defined as follows:

type 7 = R|rxrt
expression e == x|n|0Ole +eleOele"|expel|l/e|letx=e ine,
(e;,€,) | fste | snde| DY _ye

typing context E = @ |E,x: T
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[PICFE: 1] : P[] - VY & dom(T), P[L,Y : T]|

PIT=X:T)puY = do{}/(—y; rety[+Yl—>y(X)]}
P[rn+ Sone X N] Y = do{y i retyls¥ oo nt -y ()1}

y<PII,_: T +E, : T,] (SDI]T +E :T] /JYI) Y,;
ret Y[+Y = (}/(Yl)’ }/(Yz)), _Yl’ _YZ]

PIT+(ELE) : TyxT,] uY := do

N

PICHfstE: T, puY, = do { y < PITHE: T, xT,] pY; rety[+Y; — fsty(Y),-Y] }

PIT=sndE: L] pY, := do{)/(— PICHE:TyxT,] puY; rety[+Y, — sndy(Y),-Y]}

PIT+let X =E;inE, : T,] uY := do
ret y[-X]

y e PILX:T+E : L] (PITFE : L1 pX)Y; ;

P-XeA: N]JuY:= dO{)M—p; rety[+YHify(X)EAthenlelseO]}
PIT +sample D : T| pY := do{)u—p; v « [D]; rety[+Yl—>v]}
P[T + observe E : N] uY = do{}u—?(IW—E: N) pT; rety[+Yb—>0]}

PIT+if Ethen Exelse E, : Tl pY = Y P +E, : T (P@C+E: N)pub)Y
bef{T,1}
PIT +loop E; sumE, : N pY :=lety/ =P[O+ E, : N] yp Yin
let f = Ap.dof{y < iy’ < p/s rety[Y > y(Y) + y’(Y)] }in
let yy = do {y « p; rety[+Y — 0]} in
Yy < PIT+E : N]pX; fold (A_. f) i [1,...,y(X)]

[P - E:N) : P[I] — {1, 7} > P[]

PO+E:N)plL:

do{y < P[['+E : N] pY; condition y(y) = 0; ret y}

P(L+E:N)puT = do{y < P[[+E: N]pY; condition y(y) # 0; ret y}
Figure 6. Denotational semantics of PIL: interpreting expressions.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 265. Publication date: August 2025.



Compiling with Generating Functions 265:15

DIL is in large part a standard expression language. We will use the notation D[E e : 7] & for
the denotational meaning of a well-typed expression e:

DE+e: 1] : [Z] - [ (5.1)
It interprets an open expression e as a function of the substitution & for the variables bound in =.

The construct e; O e, is the component-wise multiplication, with the following typing rules, one
for scalars and one for pairs:

ZFe R ZFe R Ehe TXT, EkFe X

Ere 06 R Ere Qe X1

We will use e, - e, to mean e; © e, when e; and e, are scalars (i.e., when they have type R).

The construct D}_ge expresses the n-th derivative of e with respect to x at point &
dn
dvn
In this denotational interpretation, we take the n-th derivative of the denotation of the subexpression
e with respect to a metalevel variable v and evaluate the derivative at the point v = 6.

The interpretations of the other constructs are standard and thus omitted. We will abbreviate
DIE e : 1] £as D[e] € when = and 7 are clear from the context.

We will use let (x;, x;) = xin e as a shorthand for let x; = fst xin let x, = snd x in e. Capture-
avoiding substitution of ¢’ for x in e is notated by e[x > ¢’].

DIE - D'_ye : R & = ( W.D[Ex: Rre: R] §[+va]> . (5.2)

v=0

5.2 Generalized Generating Functions

We now generalize the idea of generating functions to Meas [I'], i.e., measures over [IT].
First, we define a translation |-| from PIL types and PIL typing contexts to those in DIL:

IN| == R Ty x To| = [Ty x |Ty| 2] = I0,X T = [T, x : [T]

Notice that a variable name X in PIL is mapped to the variable name x in DIL, by analogy with the
convention that uppercase letters denote random variables and lowercase letters denote their GFs’
formal parameters (Section 2).

For a measure ;1 € Meas [I'], we define its GF G, as a function of type [|I] — R:

6,) = E,_[& =j & u(dy). (53)
[r1

Here, we have generalized GFs to allow for substitutions & € [|T] as inputs, using Lebesgue
integration with respect to the measure p € Meas [I']. The notation " is defined as

= J[ ™, (5.4)

Xedom(T)
by analogy with how x* is defined as Hl_ xiXi in the context of vectors (2.5).
WhenT = @, we consider the right-hand side of (5.4) to be 1. Thus, &, is the constant function 1.

5.3 Compiling Well-Typed PIL Expressions to GF Transformers
We interpret a PIL typing context I into the set of DIL expressions closed under |I:

GIT] = {e| I +e: R} (5.5)
The denotation of an expression e € G[I'] is a function of the type [|T|]] — R, per (5.1). Notice that
[ITT — R is exactly the type of generalized GFs defined in (5.3).
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A well-typed expression I' - E : Tin PIL is then compiled by interpreting it as a GF transformer:
GI'=E: 1] : G[I] - Vy & dom(I), G[L.Y : T]. (5.6)

Notice how the GF compilation in (5.6) is set up in a way that mirrors the measure-transformer
semantics in (4.5). Given an input expression e representing the GF of a measure in Meas [I'], and
given a fresh variable y, the output G[I' - E : T] e yis a DIL expression that represents the GF of
the joint distribution of Y and the variables in dom(I"). We will call the inputs and outputs of these
GF transformers GF expressions.

Compiling a closed program @ - E : Tthen amounts to a tree traversal that successively applies
the GF transformers to GF expressions, starting from the GF expression 1 € G[@] and concluding
with a GF expression in G[Y : T], where Yis a fresh variable representing the result of evaluating
the program. This compilation can also be seen as a symbolic execution, where the intermediate GF
expressions are symbolic representations of the intermediate measures obtained by the measure
transformers in the denotational semantics.

Figure 7 defines the GF compilation of well-typed PIL expressions, by induction on typing
derivations.

All the inductive cases, except for the loop—sum construct, are almost directly read off from
the denotational semantics in Figure 6. For example, a let binding I' - let X = E; in E, : T, is
compiled by composing the GF transformer denoting E; under I' and the GF transformer denoting
E, under the extended context I', X : T;. The final GF expression, of type G[I,Y : T,], is obtained
by marginalizing out the variable X, since X is in scope only within E,. Following (2.6), the
marginalization is done by setting x to the multiplicative identity 1. Since X can have a product
type, we set x to 17, defined as follows:

Iy =1 1r.g, = (17, 1)
The interpretations of observe and if expressions use an auxiliary definition
G +E:N): G[I] - {L, 7} > G[I7. (5.7)

Given an input GF expression e € G[I'], for b € {1, T}, the output GF expression G(I' + E : N) eb
is the restriction of e to those substitutions for I' that cause E to evaluate to zero or nonzero,
respectively. Importantly, differentiation is not needed: following (3.4), the GF expression for the
zero event is obtained by evaluating G[I' - E : N] e yat y = 0, and the GF expression for the
non-zero event is obtained by subtracting the zero event from the full event.

The base cases in Figure 7 follow from standard results about generating functions.

« The case of affine transformations is a direct application of (2.7).

« The cases of the built-in distributions follow from (2.2) and (2.10) as well as (2.9). Notice that in
the case of sample Geo(0), the GF expression may never lead to division by zero: the type system
ensures that 6 € (0, 1], and the GF compilation ensures that the run-time value of yis in [0, 1].

+ The case of set membership (X € A) applies (2.3) to extract the masses of the elements in A via
higher-order derivatives.

« The case of variables is defined with component-wise multiplication ®; when the variable has
the base type N, it reduces to the affine-transformation case.

Now, consider the loop E; sum E, construct. While its measure semantics in Figure 6 takes some
space to define, its GF-transformer interpretation is pleasantly concise—it is essentially composing
two GFs. To gain some intuition, consider the case where E; = X for some X sampled from some
distribution D; and E, = sample D, for some distribution D,:

let X = sample D, in loop X sum (sample D,)
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|GIC+E = 7] : GIT] > Vy ¢ dom(|r), GIT,Y : 71|

GIT-X:T)ey:=e[x—>x0y]

9|[Tl—n+zini~Xi : N]ley:: yieel..., x> x5y, L]
GIT = (ELE) : TixT] ey = let(y,)) =y in

GIT,_ : Ty - E, : T,] (,9[[1"!—E1 : Tl]]e)h) Y2
GIT-fstE: Ti]ey = lety=(y,1)inG[T -E: Ty xT,]ey
G EsndE: Ty]ey, == lety=(17,,) inG[I' - E: Ty xT,] ey

Gl +let X =E;inE;, : T,]ey = letx =17 in

SII,X : Ty - E, : T,] (9|[F +E : Tl]]ex)y

x=0 €

Dn
JI'-XeA:Ney:= letzzz w x"ine—z+y-z

neA

G[T + sample Bernoulli(f) : NJey:=e-(1—-60+0-y)
GIT + sample Poisson(f) : NJey :=e-(exp 8- (y — 1))

0
GIT - sample Geo(§) : NJ ey = e =5

GIT + observe E : NJey := (G(T+E : N)eT)-y°

GII'~if Ethen Erelse E, : T]ey := Z ST+ E, : T] (Q(I“I—E: N))eb)y
be{T,1}

GIT +loop E; sumE, : NJey = letx=G[@0FE, : NJ1yinG[I' -E; : NJex

|G- E: N) : GIT] - {1, 7} - SIrT |

G'-E:N)eL:=lety=0inG[lT—E: N]ey
G('-E:N)eT := (letyzlin9|[T|—E: N]]ey)—g(TI—E: N)el

Figure 7. Compiling PIL to DIL: Interpreting PIL expressions as GF transformers.
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THE:T, Gl-ley \.IFIP9[[E]]ey=IH

[4

GF compilation
(Section 5.3)

PIL semantics DIL semantics

P iy (Section 4.2) (Section 5.1) DLl
Generalized generating function
v (Section 5.2) +
° ) o
PLE] pY G. Goreypy = PIGLE] €]

Figure 8. GF compilation is correct if, given D[e] = G, the diagram commutes (Theorem 5.1).

Suppose D; and D, have GFs Gy and Gy. Let Z be the random variable representing the sum of X
i.i.d. samples of D,. Then by (2.8), we have that the GF of Zis GY(Z)X. But Xis a random variable—we
need to marginalize it out. So the GF of Z is actually

G2) = 3, PIX = n] - 6y(2)" = Ex[6,(2)" | = 6x(61(2)) = (6x = G)(2),
neN

which is the composition of the GFs of D; and D,.

For a closed program E, the compiled DIL program e := G[@  E : T] 1 y stands for an un-
normalized GF, if E uses Bayesian conditioning. The normalized GF is represented by the DIL
expression e/e[y — 17].

We will abbreviate G[T' + E : T] e yas G[E] e ywhen I and T are clear from the context.

5.4 Compiler Correctness
A key theorem is that the GF compilation presented in Figure 7 is semantics-preserving.
Theorem 5.1 (GF compilation preserves semantics). Suppose' - E : T, p € P[I'], e € G[I'],
Dle] = G,, andY & dom(T). Then

Gpeyuy = PIGLE] € y].
That is, the diagram in Figure 8 commutes.
The proof of Theorem 5.1 can be found in an appendix in the extended version [28]. Thanks to

the close correspondence between the measure semantics in Figure 6 and the GF compilation in
Figure 7, the proof is largely straightforward.

6 Implementation

Geni is implemented in Rust. The Geni system consists of a front end that lowers Geni programs to
PIL, a middle end that compiles PIL programs to DIL, and a back end that interprets DIL programs.

Middle end. The implementation of the middle-end compiler includes simple optimizations not
covered in the formalization. In particular, it performs live variable analysis, so that the compilation
can eagerly marginalize out variables that are no longer needed, to reduce the size of the GF
expressions.
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Back ends. For good performance of the DIL interpreter, it is important that results of evaluating
intermediate GF expressions be memoized. As Figure 7 shows, the translation of conditional
expressions duplicates GF expressions, which could lead to exponential blowup for programs with
a large number of conditionals.

For evaluating higher-order derivatives, we use the same framework for automatic differentiation
that Zaiser et al. [36] developed for Genfer, which works by computing the coefficients of the Taylor
expansion of the generating function.

Generating functions, compared to other representations such as BDDs, offer an advantage:
because generating functions consist primarily of pure code performing arithmetic operations,
they can be easily compiled to any general-purpose programming language, especially when
differentiation is not needed. This insight suggests that Geni can have compiler back ends.

Hence, in addition to the interpreter for DIL, we implement a simple compiler that translates
differentiation-free DIL programs to C code, which in turn can be compiled to fast native code using
an off-the-shelf optimizing C compiler like GCC or Clang. Even though the standard C compilers do
not support differentiation, Geni’s C back end is applicable to a large class of programs (including
all programs expressible by Dice), as the design of Geni reduces the need for differentiation. This
design choice uniquely positions Geni to take advantage of the performance potential of generating
functions, which prior work does not tap into [21, 8, 36, 22].

As expected, the generated C code is much faster than the interpreter. Nevertheless, we use the
interpreter in the experiments (Section 7) for a fair comparison with Dice and Genfer: weighted
model counting on BDDs is an interpreted rather than compiled procedure, and Genfer evaluates
GFs using an interpreter. In the experiments, we measure the combined time of compiling to BDDs
(resp. GFs) and interpreting the BDDs (resp. GFs).

Continuous priors. Our implementation of Geni allows certain continuous distributions to be
used as priors—that is, their parameters must be specified at compile time. These distributions include
the uniform distribution on an interval Uniform(a, b), the gamma distribution Gamma(a, f3), the
exponential distribution Exp(4), and the normal distribution Normal(y, o). Continuous distributions
are compiled using moment-generating functions, as in Genfer [36], for numerical stability.

7 Evaluation

In this section, we evaluate the implementation of Geni on a set of exact-inference benchmarks.
All experiments in this paper were run on a workstation with a 3.6GHz CPU and 128 GB of
RAM. The reported times were measured using the Hyperfine command-line tool [20], which
automatically performs multiple runs and statistical analysis across the runs.
We focus on comparing the performance of Geni to that of Dice and Genfer. We do not run other
exact-inference tools like Psi [14] and Hakaru [29], as previous work [19, 36] has shown that they
either cannot express the benchmarks or are generally less scalable than Dice and Genfer.

Probabilistic model checking of finite-horizon Markov chains. Recent work [18] applies
exact probabilistic inference to the symbolic verification of Markov chains with respect to finite-
horizon reachability properties. The tool, called Rubicon, translates discrete-time Markov chains
expressed in the PRISM language [24] to Dice programs and then solves the verification problem by
running exact inference using Dice. It is shown that using Dice as a verification back end improves
scalability: it enables verification to scale to problem sizes that are infeasible with state-of-the-art
probabilistic model checkers like Storm [17].

We compare Dice and Geni on a motivating example from the Rubicon paper [18]. In this Markov
model, there are n factories. On any given day, each factory is in one of two states, striking and not
striking, and has its own probabilities of beginning striking and stopping a strike. The probability

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 265. Publication date: August 2025.



265:20 Jianlin Li and Yizhou Zhang

3,000

400 —

2,000 —
—— Dice
200 - —— Geni
1,000 |~

time (s)

| | | | | | | |
0 500 1,000 10 12 14 16 18

time horizon h (n = 10) number of factoriesn (h = 10)

Figure 9. Scaling of Dice and Geni on a model-checking benchmark from Holtzen et al. [18]. In the right
diagram, Dice times out for n > 18.

that each factory goes on strike depends on a common random event: whether it is raining. The
probability of rain further depends on the previous day’s weather. The verification problem queries
the probability that all factories are simultaneously striking within h days.

Given a PRISM description of this model, we generate a Geni program. We measure the time
taken by Dice and Geni to solve the verification problem specified by the generated programs. We
do not include Genfer in this comparison, as it fails to yield results for relatively small problem
sizes.

We assess scalability along two dimensions: the time horizon A and the number of factories n.
The latter presents a greater challenge for model checking, as the state space grows exponentially
with n but only linearly with h.

+ Scaling with the time horizon h. We fix n = 10 and vary h. Since n is fixed, this experi-
ment examines how well the systems can exploit the Markov property—a type of independence
structure—of the Markov chain to achieve computational savings as the time horizon increases.
The left diagram in Figure 9 shows how the running time scales with h. Dice exhibits super-linear
scaling, while Geni shows linear scaling.

+ Scaling with the number of factories n. We fix h = 10 and vary n. Despite the simplicity of
the model, previous work [18] shows that the state-of-the-art model checker Storm [17] is unable
to scale beyond n = 15. The right diagram in Figure 9 shows how the running time scales with n
for Dice and Geni. We set the time limit to 60 minutes for this experiment. The two systems have
similar performance up to n = 15. Geni performs better beyond that point, whereas Dice does
not scale beyond n = 17.

The results identify a promising application of Geni: it is potentially beneficial to include Geni (or
the techniques embodied by Geni) in the back end of a probabilistic model checking tool.

Grid networks of routers. In this experiment, we evaluate the performance of Geni on a
benchmark that Fierens et al. [13] use to demonstrate the scalability of inference in ProbLog, a
probabilistic logic programming language.

This benchmark, depicted in Figure 10, models a grid network of n x n router nodes. Each link
between two routers has a probability of failure. The inference problem queries the probability that
a packet sent from the top-left router reaches the bottom-right router.

The left diagram in Figure 11 presents the results of this experiment. Genfer and ProbLog do
not scale beyond networks containing more than 100 nodes. Dice and Geni scale better. Our
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def ForwardPacket() =
let X;; = 1inlet X;, = Xj; Aflip 6y 15 in let Xj3 = Xj Aflip 6515 in
let X5, = Xj; Aflip 6,9, in
let Xpp = (Xp1 A flip 0y155) V (X1 A flip Oy135) V (Xqp A flip 615,) in
let Xp3 = (Xpz A flip Oy 53) V (X A flip O1523) V (X3 A flip O133) in
let X3, = Xp; Aflip 635, in

O~

X33

265:21

let Xap = (Xa1 A flip O5135) V (Xo1 A flip 03132) V (Xpp A flip Op335) in
let Xa3 = (X35 A flip O533) V (X A flip 03533) V (X3 A flip 6p333) in

Figure 10. A 3 x 3 grid-network model with probabilistic link failures. The model is from Fierens et al. [13].
Left: network topology. Right: Geni function modeling the probabilistic behavior of the network.
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Figure 11. Scaling of Genfer, ProbLog, Dice, and Geni on grid-network benchmarks.

data analysis suggests that Dice’s time grows exponentially in n?, whereas Geni’s time grows
exponentially in n—Geni exhibits better scalability than Dice on this benchmark.

We also create a benchmark that models an n x n grid network with probabilistic router failures.
The results for Dice and Geni on this benchmark are shown in the right diagram in Figure 11. As in
the previous experiment, Geni exhibits better asymptotic performance than Dice.

Bayesian networks in CPT form. Geni is not intended as a direct compilation target for
Bayesian networks that are represented as conditional probability tables. Specialized solvers exist
for this form of Bayesian networks [31, 11], using knowledge compilation techniques [12]. Dice, at
its core, follows this approach, compiling weighted Boolean formulas to BDDs, which makes it well
suited for handling CPTs.

Although Geni is not designed for CPTs, we still evaluate it on Bayesian network benchmarks
[3] where Dice performs well. We directly encode the CPTs as Geni programs, using the same
encoding strategy in which they are ported to Dice.

We set a time limit of five minutes for each run. The inference problem is to compute the marginal
distribution of a target variable. Since the CPT form of the Bayesian networks does not specify the
target variable, for each system, we run inference on all variables in the network and report the
maximum time taken.

Table 1 shows the results. Geni and Dice are comparable on models such as Hepar 2 and Pigs,
which contain thousands of parameters, but Dice is faster on larger models. Genfer times out on
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Table 1. Comparing the performance of three systems on Bayesian networks in CPT form. Time-out (t/0) is
set to five minutes (i.e., 300 s).

Time (s) Benchmark statistics
Benchmarks

Genfer  Geni Dice | #nodes #arcs # params
Alarm t/o 0.026  0.032 37 46 509
Insurance t/o 1.714 0.631 27 52 1008
Hepar 2 t/o 0.037  0.038 70 123 1453
Hailfinder t/o 1.472  0.359 56 66 2656
Pigs t/o 0.034  0.037 441 592 5618
Water t/o 51.798  0.670 32 66 10083
Munin t/o 281.203 20.191 1041 1397 80592

all the benchmarks. By contrast, Geni can compute exact solutions within five minutes for all the
Bayesian-network models we tested.

Prior work suggests that encoding strategies can strongly influence the performance of Bayesian
network inference [7]; encodings may exist that advantageously translate local structure implicit
in tabular representations into program structure and improve the performance of Geni on large
CPTs.

Poisson packet arrival. Since Geni reuses Genfer’s facilities for computing higher-order deriva-
tives, its performance profile on Genfer’s benchmarks for infinite-support distributions is similar to
Genfer. We do not repeat the experiments here. Instead, we evaluate Geni on a new benchmark that
Genfer cannot handle: a packet-arrival model similar to the one introduced at the end of Section 3.
This benchmark exercises Geni’s support for infinite-support distributions and also the loop-sum
construct.

In this model, packets arrive according to a Poisson process. All the packets are forwarded
through a network of routers. Here, we use the same 3 x 3 grid network as in Figure 10. The program
is conditioned on observing that all packets are successfully forwarded through the grid network.
The inference problem is to compute the posterior expectation of the total number of packets.

Because existing tools for exact inference cannot handle this program, we turn to approximate
inference for comparison with Geni. The challenge of this benchmark is further underscored by the
limited options of applicable approximate inference methods. Since the model is non-differentiable,
methods like Hamiltonian Monte Carlo are not applicable. Sequential Monte Carlo is not applicable
either, as the program’s control flow is stochastic. This leaves us with broadly applicable but often
inefficient methods like importance sampling (IS). Specifically, we use the Pyro PPL [2] and its
implementation of IS to estimate the posterior expectation.

Figure 12 shows the results. For Pyro, we plot how the L1 distance between the true posterior
expectation and the estimate from IS changes as time progresses. As more samples are collected,
the estimate seems to converge to the true posterior expectation, but it only starts to show signs of
convergence well after ten minutes. The convergence is slow, because the inference problem has a
high-dimensional, discrete latent space. In contrast, Geni swiftly outputs the exact solution.

To our knowledge, Geni is the first system that can automatically derive exact solutions for this
class of probabilistic programs. Concurrent work [33] uses a similar model to demonstrate a hybrid
inference approach that combines BDD-based exact inference (for the grid network) and importance
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Figure 12. Comparing Pyro’s importance sampling and Geni’s exact inference on a Poisson packet arrival
model. Packets arrive at a rate of 10 and are routed through the grid network shown in Figure 10.

sampling (for the Poisson process and the loop). This approach, for its use of approximate inference,
is less efficient and cannot produce exact solutions.

8 Related Work

There is a rich literature on inference methods for probabilistic programming languages. We focus
our discussion on exact inference.

Exact inference via generating functions. The use of GFs to scale exact inference is a novel
contribution of Geni, as existing GF-based systems focus on goals other than inference scalability.
Klinkenberg et al. [21] define a GF semantics for an imperative language and use it to analyze if a
given GF overapproximates a program’s meaning. Building on this semantics, Chen et al. [8] and
Klinkenberg et al. [22] develop techniques for semi-automated analysis of imperative programs
with loops. The approach requires the user to provide loop-invariant templates, which is a non-
trivial task. This method is implemented in a system called Prodigy and uses a computer algebra
system (CAS) in the back end. Genfer, by Zaiser et al. [36], is an imperative language without loops.
Inference in Genfer has been shown to be more efficient than in Prodigy, for loop-free programs.
The efficiency is attributed to the use of automatic differentiation instead of CAS.

Other approaches to exact inference. Other PPLs use representations and algorithms other
than GFs for exact inference. BernoulliProb [10] and the probabilistic model checker Storm [17]
use algebraic decision diagrams [1]. Dice [19] uses binary decision diagrams. SPPL [30] uses sum-
product networks. FSPN [34] and PERPL [9] handle unbounded recursion by compiling a recursive
program to a system of equations and solving it. MAPPL [27] generalizes the variable elimination
algorithm [37] to handle evidence-finite recursive programs. Hakaru [29] and Psi [14] use algebraic
simplification and symbolic integration, relying on a CAS for finding closed-form solutions.

The design of these PPLs often involves a trade-off between the expressivity of the language
and the tractability of inference. Greater expressivity can make exact inference intractable or
even impossible—closed-form solutions may not exist in the chosen representation. In the systems
mentioned above, those with a more expressive language tend to be less scalable and less predictable
in performance, while those with better scalability and predictability tend to support a less expressive
language.
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9 Conclusion

Exact inference for probabilistic programs is both computationally and analytically challenging.
This paper presents a compiler for a functional probabilistic programming language that targets
generating functions, improving the scalability of exact inference while enhancing expressive
power and ensuring fundamental correctness properties.

We hope this work will inspire further investigation into the use of generating functions for
probabilistic inference and verification. Future directions include developing more sophisticated
compiler optimizations, further enriching the expressive power of the language, integrating our
approach with other exact or approximate inference methods, and applying our techniques to
broader domains and inference tasks in science and engineering.
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