
70

Familia: Unifying Interfaces, Type Classes,
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Parametric polymorphism and inheritance are both important, extensively explored language mechanisms for

providing code reuse and extensibility. But harmoniously integrating these apparently distinct mechanisms—

and powerful recent forms of them, including type classes and family polymorphism—in a single language

remains an elusive goal. In this paper, we show that a deep unification can be achieved by generalizing the

semantics of interfaces and classes. The payoff is a significant increase in expressive power with little increase

in programmer-visible complexity. Salient features of the new programming language include retroactive

constraint modeling, underpinning both object-oriented programming and generic programming, and module-

level inheritance with further-binding, allowing family polymorphism to be deployed at large scale. The

resulting mechanism is syntactically light, and the more advanced features are transparent to the novice

programmer. We describe the design of a programming language that incorporates this mechanism; using a

core calculus, we show that the type system is sound. We demonstrate that this language is highly expressive

by illustrating how to use it to implement highly extensible software and by showing that it can not only

concisely model state-of-the-art features for code reuse, but also go beyond them.
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1 INTRODUCTION
It is futile to do with more things that which can be done with fewer.

—William of Ockham

Types help programmers write correct code, but they also introduce rigidity that can interfere

with reuse. In statically typed languages, mechanisms for polymorphism recover needed flexibility

about the types that code operates over.

Subtype polymorphism [Cardelli 1988] and inheritance [Cook et al. 1990] are polymorphism

mechanisms that have contributed to the wide adoption of modern object-oriented (OO) languages
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like Java. They make types and implementations open to future type-safe extensions, and thus

increase code extensibility and reuse.

Parametric polymorphism offers a quite different approach: explicitly parameterizing code over

types and modules it mentions [Liskov et al. 1977; Milner 1978; MacQueen 1984]. It has dominated

in functional languages but is also present in modern OO languages. Parametric polymorphism

becomes even more powerful with the addition of type classes [Wadler and Blott 1989], which

allow existing types to be retroactively adapted to the requirements of generic code.

Harmoniously integrating these two kinds of polymorphism has proved challenging. The success

of type classes in Haskell, together with the awkwardness of using F-bounded constraints [Canning

et al. 1989] for generic programming, has inspired recent efforts to integrate type classes into OO

languages [Siek and Lumsdaine 2011; Wehr and Thiemann 2011; Zhang et al. 2015b]. However, type

classes and instances for those type classes burden already feature-rich languages with entirely new

kinds of interfaces and implementations. The difficulty of adopting concepts in C++ [Stroustrup

2009] suggests that the resulting languages may seem too complex.

Meanwhile, work on object-oriented inheritance has increased expressive power by allowing in-

heritance to operate at the level of families of related classes and types [Madsen andMøller-Pedersen

1989; Thorup 1997; Madsen 1999; Ernst 1999; Nystrom et al. 2004; Aracic et al. 2006; Nystrom et al.

2006; Ernst et al. 2006; Clarke et al. 2007; Qi and Myers 2010]. Such family polymorphism, including

virtual types and virtual classes, supports coordinated, type-safe extensions to related types and

classes contained within a larger module. These features have also inspired [Peyton Jones 2009] the

addition of associated types [Chakravarty et al. 2005b] to type classes. Associated types are adopted

by recent languages such as Rust [Rust 2014 2014] and Swift [swift.org 2014]. However, the lack of

family-level inheritance limits the expressive power of associated types in these languages.

Combining all these desirable features in one programming language has not been done pre-

viously, perhaps because it threatens to confront programmers with a high degree of surface

complexity. Our contribution is a lightweight unification of these different forms of polymorphism,

offering increased expressive power with low apparent complexity. This unified polymorphism

mechanism is embodied in a proposed Java-like language that we call Familia.

The key insight is that a lightweight presentation of the increased expressive power can be

achieved by using a single interfacemechanism to express both data abstraction and type constraints,

by using classes as their implementations, and by using classes (and interfaces) as modules. Both

interfaces and classes can be extended. The expressive power offered by previous polymorphism

mechanisms, including flexible adaptation and family polymorphism, falls out naturally. Specifically,

this paper makes the following contributions:

‚ We show how to unite object-oriented polymorphism and parametric polymorphism by

generalizing existing notions of interfaces, classes, and method calls (Sections 3 and 4). The

extensibility of objects and the adaptive power of type classes both follow from this reinter-

pretation.

‚ We further show how to naturally integrate an expressive form of family polymorphism.

The design accommodates features found in previous family-polymorphism mechanisms

(including associated types and nested inheritance) in the above setting of generalized classes

and interfaces, and goes beyond them by offering new expressive power. We present a case

study of using Familia to implement a highly reusable program analysis framework (Section 5).

‚ We capture the new language mechanisms formally by introducing a core language, Feather-

weight Familia, and we establish the soundness of its type system (Section 6).

‚ We show the power of the unified polymorphism mechanism by comparing Familia with

various prior languages designed for software extensibility (Section 7).
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2 BACKGROUND
Our goal is a lightweight, expressive unification of the state of the art in genericity mechanisms.

A variety of complementary genericity mechanisms have been developed, with seemingly quite

different characteristics.

Genericity via inheritance. Object-oriented languages permit a given interface to be imple-

mented in multiple ways, making clients of that interface generic with respect to future implemen-

tations. Hence, we call this a form of implementation genericity. Inheritance extends the power of
implementation genericity by allowing the code of a class to be generic with respect to implemen-

tation changes in future subclasses; method definitions are late-bound. While the type-theoretic

essence of class inheritance is parameterization [Cook and Palsberg 1989], encoding inheritance in

this way is more verbose and less intuitive [Black et al. 2016].

Family polymorphism [Ernst 2001] extends the expressive power of inheritance by allowing late

binding of the meaning of types and classes declared within a containing class, supporting the

design of highly extensible and composable software [Nystrom et al. 2006]. Virtual types [Thorup

1997; Odersky et al. 2003] and associated types [Järvi et al. 2005; Chakravarty et al. 2005b] allow

the meaning of a type identifier to be provided by subclasses; with virtual classes as introduced by

Beta [Madsen and Møller-Pedersen 1989; Ernst 2001], the code of a nested class is also generic with

respect to classes it is nested within. The outer class can then be subclassed to override the behavior

and structure of the entire family of related classes and types in a coordinated and type-safe way.

Classes and types become members of an object of the family class. The late binding of type names

means that all type names implicitly become hooks for later extension, without cluttering the code

with a possibly large number of explicit type parameters.

There are two approaches to family polymorphism; in the nomenclature of Clarke et al. [2007],

the original object family approach of Beta treats nested classes as attributes of objects of the

family class [Madsen and Møller-Pedersen 1989; Ernst 2001; Aracic et al. 2006], whereas in the

class family approach of Concord [Jolly et al. 2004], Jx and J& [Nystrom et al. 2004, 2006], and

ˆFJ [Igarashi and Viroli 2007] nested classes and types are attributes of the family classes directly.

The approaches have even been combined by work on Tribe [Clarke et al. 2007]. Familia follows Jx

by providing nested inheritance [Nystrom et al. 2004], a class family mechanism that allows both

further binding (specialization of nested classes) at arbitrary depth in the class nesting structure,

and also inheritance across families.

Salad

Node

Stmt

Saladx

Node
constFold

Stmt
constFold

UnaryExpr
constFold

Figure 1. Applying family polymorphism to com-
piler construction.

To see how support for coordinated changes

can be useful, suppose we are building a compiler

for a programming language called Saladx, which

extends a previous language called Salad. The

Salad compiler defines data structures (that is,

types) and algorithms that operate on these types.

We would like to reuse the Salad compiler code

in a modular way, without modification. Figure 1

sketches how this can be done in a modular, type-

safe way using nested inheritance.

The original compiler defines abstract syntax tree (AST) nodes such as Node and Stmt. The

extended compiler defines a new module Saladx that inherits as a family from the original Salad

module. The newmodule adds support for a new type of AST node, UnaryExpr, by adding a new class

definition. Saladx also further binds the class Node to add a new method constFold that performs

constant folding. Importantly, the rest of Salad.Node does not need to be restated. Nor does any code

need to be written for Saladx.Stmt; this class implicitly exists in the Saladx module and inherits
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constFold from the new version of Node. References in the original Salad code to names like Node

and Stmt now refer in the Saladx compiler to the Saladx versions of these classes. The Salad code is

highly extensible without being explicitly parameterized.

By contrast, the conventional OO approach could extend individual classes and types from Salad

with new behavior. However, each individually extended class could not access the others’ extended

behavior (such as constFold) in a type-safe way. Alternatively, extensibility could be implemented

for Salad by cluttering the code with many explicit type parameters.

Genericity via parametric polymorphism. Parametric polymorphism, often simply called

generics, provides a more widely known and complementary form of genericity in which code

is explicitly parameterized with respect to the types or modules of data it manipulates. Whereas

implementation genericity makes client code and superclass code generic with respect to future

implementations, parametric polymorphism makes implementations generic with respect to future

clients. Constrained parametric polymorphism [Liskov et al. 1977] ensures that generic code can be

instantiated only on types meeting a constraint. These constraints act effectively as a second kind

of interface.

Haskell’s type classes [Wadler and Blott 1989] manifest these interfaces as named constraints to

which programmers can explicitly adapt existing types. By contrast, most OO languages (e.g., Java

and C#) use subtyping to express constraints on type parameters. Subtyping constraints are rigid:

they express binary methods in an awkward manner, and more crucially, it is typically impossible to

retroactively adapt types to satisfy the subtyping requirement. The rigidity of subtyping constraints

has led to new OO languages that support type classes [Siek and Lumsdaine 2011; Wehr and

Thiemann 2011; Zhang et al. 2015b].

Combining genericity mechanisms. Genericity mechanisms are motivated by a real need

for expressive power. Both family polymorphism and type classes can be viewed as reactions to

the classic expression problem [Wadler et al. 1998] on the well-known difficulty of extending both

data types and the operations on them in a modular, type-safe way [Reynolds 1975]. However, the

approaches are complementary: type classes do not also provide the scalable extensibility [Nystrom

et al. 2004] offered by family polymorphism, whereas family polymorphism lacks the flexible
adaptation offered by type classes. Despite becoming popular among recent languages that incor-

porate type classes [Rust 2014 2014; swift.org 2014], associated types do not provide the degree of

extensibility offered by an expressive family-polymorphism mechanism.

On the other hand, data abstraction is concerned with separating public interfaces from how they

are implemented so that the implementation can be changed freely without affecting the using code.

Implementations are defined in terms of a representation that is hidden from clients of the interface.

Abstract data types, object interfaces, and type classes can all provide data abstraction [Cook 2009].

Genericity mechanisms such as inheritance and parametric polymorphism are not essential to data

abstraction. However, they add significant expressive power to data abstraction.

Languages that combine multiple forms of polymorphism tend to duplicate data abstraction

mechanisms. For example, recent OO languages incorporate the expressive power of type classes

by adding new language structures above and beyond the standard OO concepts like interfaces and

classes [Siek and Lumsdaine 2011; Wehr and Thiemann 2011; Zhang et al. 2015b]. Unfortunately, a

programming language that provides data abstraction in more than one way is likely to introduce

feature redundancy and threatens to confront the programmer with added surface complexity. Even

for Haskell, it has been argued that type classes introduced duplication of functionality [Devriese

and Piessens 2011], and that the possibility of approaching the same task in multiple ways created

confusion [Palmer 2010].

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 70. Publication date: October 2017.



Familia: Unifying Interfaces, Type Classes, and Family Polymorphism 70:5

interface Eq(T) {

boolean T.equals(T);

}

interface Hashable

extends Eq {

int hashCode();

}

interface PartialOrd

extends Eq {

boolean leq(This);

}

interface Ord

extends PartialOrd {

int compare(This);

}

Figure 2. Four interfaces with single representation types. Eq explicitly names its representation type T; the
others leave it implicit as This. The receiver types of the interface methods are the representation types.

interface Set[E where Eq(E)]

extends Collection[E] {

int size();

boolean contains(E);

Self add(E);

Self remove(E);

Self addAll(Set[E]);

¨¨¨

}

(a) Interface Set is parameterized by a type pa-
rameter and a where-clause constraint.

1 interface SortedSet[E]

2 extends Set[E] where Ord(E) {

3 E max() throws SetEmpty;

4 E min() throws SetEmpty;

5 Self subset(E, E);

6 ¨¨¨

7 }

(b) Interface SortedSet extends Set. Its where-
clause constraint Ord(E) entails Eq(E).

Figure 3. Interfaces Set and SortedSet.

Our contribution is a clean way to combine data abstraction and these disparate and powerful

polymorphism mechanisms in a compact package. As a result, programmers obtain the expressive

power they need for a wide range of software design challenges, without confronting the linguistic

complexity that would result from a naive combination of all the mechanisms.

3 UNIFYING OBJECT-ORIENTED INTERFACES AND TYPE CLASSES
Both object-oriented interfaces and type classes are important, but having both in a language can

lead to confusion and duplication. Fortunately, both can be supported by a single, unified interface

mechanism, offering an economy of concepts.

We unify interfaces with type classes by decoupling the representation type of an object-oriented

interface from its object type. A representation type is an underlying type used to implement

the interface; the implementations of interface methods operate on these representation types.

An object type, on the other hand, specifies the externally visible operations on an object of the

interface.

For example, an interface Eq describing the ability of a type T to be compared for equality can be

written as shown in Figure 2.
1
This interface declares a single representation type T (in parentheses

after the interface name Eq); the receiver of method equals hence has this representation type. Each

implementation of this interface chooses some concrete type as the representation type.

As convenient syntactic sugar, an interface with a single representation type may omit its

declaration, implicitly declaring a single representation type named This. In this usage, all non-

static methods declared by the interface have implicit receiver type This. In Figure 2, the other

three interfaces all exploit this sugar.

An interface may also declare ordinary type parameters for generic programming, grouped in

square brackets to distinguish them from representation type parameters. For example, a generic

1
Except as noted, Familia follows the syntactic and semantic conventions of Java [Gosling et al. 2005].
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set interface might be declared as shown in Figure 3a, where the interface Set has an explicit type

parameter E representing its elements. In the figure, the omitted representation type of Set (i.e.,

This) is also the implicit representation type of Collection[E], the interface being extended.

Using interfaces to constrain types. Interfaces can be used as type classes: that is, as con-

straints on types. In Figure 3a, Set has a where-clause where Eq(E), which constrains the choice of

types for E to those which satisfy the interface Eq and that therefore support equality. A where-clause

may have several such constraints, each constraining a type parameter by instantiating an interface

using that type (E in this example) as the representation type. Hence, we also refer to representation

types as constraint parameters.
As syntactic sugar, a where-clause may be placed outside the brackets containing type parameters

(e.g., line 2 of Figure 3b). If kept inside the brackets, the parameters to the constraint may be omitted,

defaulting to the preceding type parameter(s), as in line 1 of Figures 6a and 6b. A where-clause

constraint can optionally be named (e.g., line 20 of Figure 5).

Using the object type. Each interface also defines an object type that has the same name as

the interface. Using an interface as an object type corresponds to the typical use of interfaces in

OO languages. In this case, the interface hides its representation type from the client. For example,

in the variable declaration “Hashable x;”, the representation type is an unknown type T on which

the constraint Hashable(T) holds. The programmer can make the method call x.hashCode() in the

standard, object-oriented way. Thus, the interface Hashable serves both as a type class that is a

constraint on types and as an ordinary object type.

From a type-theoretic viewpoint, object types are existential types, as in some prior object

encodings [Bruce et al. 1999]. A method call on an object (e.g., x.hashCode()) implicitly unpacks

the existentially typed receiver. This unpacking is made explicit in the core language of Section 6.

Subtype polymorphism and constraint entailment. Subtype polymorphism is an essential

feature of statically typed OO languages. As Figures 2 and 3 show, interfaces can be extended

in Familia. The declaration extends Collection[E] in the definition of interface Set introduces

a subtype relationship between Set[E] and Collection[E]. An interface definition can extend

multiple interfaces.

Such subtype relationships are higher-order [Pierce and Steffen 1997], in the sense that interfaces

in Familia can be viewed as type operators that accept a representation type. When the interfaces

are used as object types, this higher-order subtyping relation becomes the familiar, first-order

subtyping relation between object types. When the interfaces are used to constrain types, this

higher-order subtyping relation manifests in constraint entailment, a relation between constraints

on types [Wehr and Thiemann 2011; Zhang et al. 2015b]. For example, consider the instantiation

of Set on line 2 of SortedSet in Figure 3b. The type Set can only be instantiated on a type 𝑇 that

satisfies the constraint Eq(𝑇); here, because Ord (transitively) extends Eq, constraint Ord(E) being

satisfied entails Eq(E) being satisfied.

A second form of constraint entailment concerns varying the representation type, rather than the

interface, when the interface is contravariant in its representation type. For example, all interfaces in

Figures 2 and 3 are contravariant, because they do not use their representation types in covariant or

invariant positions. Because Eq is contravariant, it is safe to use a class that implements Eq(Set[E])

to satisfy the constraint Eq(SortedSet[E]). Figure 4 shows an example of an invariant interface,

LowerLattice, which uses This on line 2 both covariantly (as a return type) and contravariantly (as

receiver and argument types). Familia infers interfaces to be either contravariant or invariant in

their constraint parameters, with most interfaces being contravariant. A constraint parameter that
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1 interface LowerLattice extends PartialOrd {

2 This This.meet(This); // covariant and contravariant uses of This
3 static This top(); // a static method
4 static This meetAll(Iterable[This] c) {

5 This glb = top();

6 for (This elem : c) { glb = glb.meet(elem); }

7 return glb;

8 } // a static method with a default implementation
9 }

Figure 4. An invariant interface for a lower semilattice.

is inferred contravariant may also be explicitly annotated as invariant. Covariance and bivariance

in constraint parameters are not supported because these forms of variance do not seem useful.

Static and default methods in interfaces. Interfaces may also declare static methods that do

not expect a receiver. For example, consider the interface LowerLattice in Figure 4. It describes a

bounded lower semilattice, with its representation type This as the carrier set of the semilattice.

Therefore, LowerLattice extends PartialOrd and additionally declares a binary method meet() and

a static method top() that returns the greatest element.

Interfaces can also provide default implementations formethods.Method meetAll in LowerLattice

computes the greatest lower bound of a collection of elements. However, an implementation of

LowerLattice can override this default with its own code for meetAll.

The current interface Self. In Familia, all interfaces have access to a Self interface that

precisely characterizes the current interface in the presence of inheritance. For example, in interface

Set (Figure 3a), Self is used as the return type of the addAll method, meaning that the return

type varies with the interface the method is enclosed within: in interface Set, the return type is

understood as Set[E]; when method addAll is inherited into interface SortedSet, the return type is

understood as SortedSet[E]. Hence, adding all elements of a (possibly unsorted) set into a sorted

set is known statically to produce a sorted set:

SortedSet[E] ss1 = ¨¨¨; Set[E] s = ¨¨¨;

SortedSet[E] ss2 = ss1.addAll(s);

This and Self are implicit parameters of an interface, playing different roles. The parameter This

stands for the representation type, which is instantiated by the implementation of an interface

with the type of its representation. On the other hand, the parameter Self stands for the current

interface, and its meaning is refined by interfaces that inherit from the current interface. Section 4.4

further explores the roles of This and Self.

Interfaces with multiple representation types. An interface can act as a multiparameter

type class if it declares multiple representation types—that is, if it has multiple constraint parameters.

As an example, the Graph interface (lines 5–11 in Figure 5) constrains both Vertex and Edge types.

Note that the implicit constraint parameter of the superinterface Hashable is used explicitly here.

As seen on lines 7–10, when there are multiple constrained types, the receiver type of each defined

operation must be given explicitly. Unlike interfaces with a single representation type, interfaces

with multiple representation types do not define an object type.
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0graphs

1 module graphs;

2 static List[List[V]] findSCCs[V,E](List[V] vertices) where Graph(V,E) {

3 ¨¨¨ new postOrdIter[V,E](v) ¨¨¨ new postOrdIter[V,E with transpose[V,E]](v) ¨¨¨

4 } // Implements Kosaraju’s algorithm for finding strongly connected components

4graphs.Graph

5 interface Graph(Vertex,Edge)

6 extends Hashable(Vertex) {

7 Vertex Edge.source();

8 Vertex Edge.sink();

9 Iterable[Edge] Vertex.outgoingEdges();

10 Iterable[Edge] Vertex.outgoingEdges();

11 }

11graphs.postOrdIter

12 class postOrdIter[V,E] for Iterator[V]

13 where Graph(V,E) {

14 postOrdIter(V root) { ¨¨¨ }

15 V next() throws NoMoreElement { ¨¨¨ }

16 ¨¨¨

17 }

17graphs.transpose

18 class transpose[Vertex,Edge]

19 for Graph(Vertex,Edge)

20 where Graph(Vertex,Edge) g {

21 Vertex Edge.source()

22 { return this.(g.sink)(); }

23 Vertex Edge.sink()

24 { return this.(g.source)(); }

25 Iterable[Edge] Vertex.outgoingEdges()

26 { ¨¨¨ }

27 Iterable[Edge] Vertex.incomingEdges()

28 { ¨¨¨ }

29 int Vertex.hashCode()

30 { return this.(g.hashCode)(); }

31 }

Figure 5. A generic graph module. Interface Graph has two constraint parameters, so the method receiver
types in interface Graph (and also its implementing class transpose) cannot be omitted. The code in this
graph (except for lines 5–11) is discussed in Section 4.

4 UNIFYING OO CLASSES AND TYPE-CLASS IMPLEMENTATIONS
All previous languages that integrate type classes into the OO setting draw a distinction between

classes and implementations of type classes. Confusingly, different languages use different termi-

nology to describe type-class implementations. Haskell has “instances”, the various C++ proposals

have “concept maps” [Stroustrup 2009], JavaGI [Wehr and Thiemann 2011] has “implementations”,

and Genus [Zhang et al. 2015b] has “models”.

Familia avoids unnecessary duplication and terminology by unifying classes with type-class

implementations. Classes establish the ability of an underlying representation to satisfy the re-

quirements of an interface. The representation may be a collection of fields, in the usual OO style.

Alternatively, unlike in OO style, the representation can be any other type that is to be retroactively

adapted to the desired interface.

For example, to implement the interface Set (Section 3), we can define the class hashset shown in

Figure 6a. Class hashset implicitly instantiates the representation type This of its interface Set[E]

as a record type comprising its field types (i.e., {E[] table; int size}). Since this denotes the

receiver and the receiver has this representation type, the field access on line 5 type-checks. The

receiver type of a class method is usually omitted when the class has a single representation type.

Classes are not types. If classes were types, code using classes would be less extensible because

any extension would be forced to choose the representation type in a compatible way. We give

classes lowercase names to emphasize that they are more like terms. A class can be used via its

constructors; for example, new hashset[E]() produces a new object of type Set[E].
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1 class hashset[E where Hashable]

2 for Set[E] {

3 hashset() { table = new E[10]; }

4 E[] table; int size;

5 int size() { return this.size; }

6 boolean contains(E e)

7 { ¨¨¨ e.hashCode() ¨¨¨ }

8 ¨¨¨

9 }

(a) The representation of hashset is its fields.

1 class mapset[E where Eq]

2 for Set[E](Map[E,?]) {

3 boolean contains(E e)

4 { return this.containsKey(e); }

5 int size()

6 { return this.(Map[E,?].size)(); }

7 ...

8 }

(b) The representation of mapset is a Map object.

Figure 6. Two implementations of the Set interface using different representations.

A distinguishing feature of Familia is that a class can also instantiate its representation type

explicitly, effectively adapting an existing type or types to an interface. Suppose we already had an

interface Map and wanted to implement Set in terms of Map. As shown in Figure 6b, this adaptation

can be achieved by defining a class that instantiates the representation type of Set[E] as Map[E,?].

Class mapset implements the Set operations by redirecting them to corresponding methods of Map.

Note that the value type of the map does not matter, hence the wildcard ?. Because expression

this has type Map[E,?] in class mapset, the method call this.containsKey(e) on line 4 type-checks,

assuming Map defines such a method.

A class like mapset has by default a single-argument constructor that expects an argument of

the representation type. So an object x of type Map[K,V] can be used to construct a set through the

expression new mapset[K](x), an expression with type Set[K]. It is also possible to define other

constructors to initialize the class’ representation.

Classes can be extended via inheritance. A subclass can choose to implement an interface that

is a subtype of the superclass interface, but cannot alter the representation type to be a subtype,

which would be unsound. The fact that a subclass can add extra fields is justified by treating the

representation type of a class with fields as a nested type (Section 5.2).

4.1 Classes as Witnesses to Constraint Satisfaction
The ability of classes to adapt types to interfaces makes generic programming more expressive

and improves checking that it is being used correctly. In particular, the Familia type system keeps

track of which class is used to satisfy each type constraint. For example, suppose we want sets of

strings that are unique up to case-insensitivity; we would like a Set[String] where string equality

is defined in a case-insensitive way. Because interface String has an equals method

interface String { boolean equals(String); ¨¨¨ }

it automatically structurally satisfies the constraint Eq(String) that is required to instantiate Set.

However, it satisfies that interface in the wrong, case-sensitive way. We solve this problem in

Familia by defining a class that rebinds the necessary methods:

class cihash for Hashable(String) {

boolean equals(String s) { return equalsIgnoreCase(s); }

int hashCode() { return toLowercase().hashCode(); }

}

Set[String with cihash] s1 = new hashset[String with cihash]();

Set[String] s2 = s1; // illegal
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Notice that the types in this example keep track of the class being used to satisfy the constraint,

a feature adopted from Genus [Zhang et al. 2015b]: a Set[String], which uses String to define

equality, cannot be confused with a Set[String with cihash]. Such a confusion might be dangerous

because the implementation of Set might rely on the property that two sets use the same notion of

equality.

The type Set[String] does not explicitly specify a class, so to witness the constraint Eq(String)

for it, Familia infers a default class, which in this case is a natural class that Familia automatically

generates because String structurally conforms to the constraint Eq. The natural class has an equals

method that conforms to that required by Eq(String), and its implementation simply calls through

to the underlying method String.equals. We call these “natural classes” by analogy with natural

models [Zhang et al. 2015b].

The natural class can also be named explicitly using the name String, so Set[String] is actually

a shorthand for Set[String with String]. However, the natural class denoted by String is different

from the String type.

We’ve seen that a class can be used both to construct objects and to witness satisfaction of

where-clause constraints. In fact, even object construction is really another case of using a class to

witness satisfaction of a constraint. For example, creating a Set[E] object needs both a value of

some representation type 𝑇 and a class that satisfies the constraint Set[E](𝑇). The job of a class

constructor is to use its arguments to create a value of the representation type.

4.2 Classes as Dispatchers
Like other OO languages, Familia uses classes to obtain dispatch information. Unlike previous OO

languages, Familia allows methods to be dispatched using classes that are not the receiver object’s
class.

The general form of a method call is

𝑒0 .(𝑑.m)(𝑒1, ¨¨¨, 𝑒𝑛)

where 𝑒0 is the receiver, class 𝑑 is the dispatcher, and 𝑒1, ..., 𝑒𝑛 are the ordinary method arguments.

Dispatcher 𝑑 provides the method m being invoked; the receiver 𝑒0 must have the same type as the

representation type of 𝑑 .

This generalized notion of method invocation adds valuable expressive power. For an example,

return to class transpose in Figure 5. On line 20, its where-clause constraint, named g, denotes some

class for Graph(Vertex,Edge). Class transpose implements the transpose of the graph defined by g by

reversing all edge orientations in g; for example, method call this.(g.sink)() on line 22 uses class g

to find the sink of a vertex and returns it as the source. Note that the transposed graph is implemented

without creating a new data structure. On lines 2–4, the method findSCCs() demonstrates one use

for the transposed graph. It finds strongly connected components via Kosaraju’s algorithm [Aho

et al. 1983], which performs two postorder traversals, one on the original graph and one on the

transposed graph.

Dispatcher classes can usually be elided in method calls—Familia infers the dispatcher for an

ordinary method call of form 𝑒0.m(𝑒1, ¨¨¨, 𝑒𝑛)—offering convenience in the common cases where

there is no ambiguity about which dispatcher to use. This inference process handles method

invocation for both object-oriented polymorphism and constrained parametric polymorphism.

In the common case corresponding to object-oriented polymorphism, this ordinary method

call represents finding a method in the dispatch information from 𝑒0’s own class. For example,

assuming s1 and s2 have type String, the method call s1.equals(s2) is syntactic sugar for using the

natural class implicitly generated for String as the dispatcher: it means s1.(String.equals)(s2).

The natural class generated for an interface I actually implements the constraint I(I). So the equals
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class setPO[E where Eq] for PartialOrd(Set[E]) {

boolean Set[E].leq(Set[E] that) { return this.containsAll(that); } // base implementation
boolean SortedSet.leq(SortedSet that) { ¨¨¨ } // specialization
¨¨¨

}

Figure 7. The leqmethods in class setPO are multimethods. The second leqmethod offers an asymptotically
more efficient implementation for two sets sorted using the same order.

method in the natural class for String must have receiver type String and argument type String.

Hence the expanded method call above type-checks.

In another common case corresponding to constrained parametric polymorphism, ordinary

method call syntax may be employed by generic code to invoke operations promised by constraints

on type parameters. For example, consider the method call e.hashCode() on line 7 in class hashset

(Figure 6a). Familia infers the dispatcher to be the class passed in to satisfy the where-clause

constraint Hashable(E). So if the programmer named the constraint as in “where Hashable(E) h”,

the desugared method call would be e.(h.hashCode)().

The generalized form of method calls provides both static and dynamic dispatch. While the

dispatcher class is chosen statically, the actual method code to run is chosen dynamically from

the dispatcher class. It is easy to see this when the dispatcher is a natural class; the natural class

uses the receiver’s own class to dispatch the method call. An explicit class can also provide special-

ized behavior for subtypes of the declared representation type; all such methods are dispatched

dynamically based on the run-time type of the receiver.

In fact, class methods are actually multimethods that dispatch on all arguments whose corre-

sponding types in the interface signature are This. Since Familia unifies classes with type-class

implementations, the semantics of multimethods in Familia is the same as model multimethods in

Genus [Zhang et al. 2015b]. For example, class setPO in Figure 7 implements a partial ordering for

Set based on set containment. It has two leq methods, one for the base case, and the other for two

sorted sets. Notice that in the second leq method, the receiver and the parameter are guaranteed

to have the same ordering, because both occurrences of SortedSet indicate a subtype of the same

Set[E with eq] type, assuming the where-clause constraint is named eq. Hence, the second leq

method can be implemented in an asymptotically more efficient way. When class setPO is used to

dispatch a method call to leq, the most specific version is chosen based on the run-time types of

the receiver and the argument.

4.3 Inferring Default Classes
As mentioned in Sections 4.1 and 4.2, Familia can infer default classes both for elided with clauses

and for elided dispatchers. It does so based on how classes are enabled as potential default choices,
similarly to how models are enabled in Genus [Zhang et al. 2015b]. If only one enabled class works

in the with clause or as the dispatcher, that class is chosen as the default class. Otherwise, Familia

requires the class to be specified explicitly.

Classes can be enabled in four ways: (1) Types automatically generate and enable natural classes.

(2) A where-clause constraint enables a class within its scope. (3) A use-statement enables a class

in the scope where the use-statement resides; for example, the statement “use mapset;” enables

this class as a way to adapt Map[E,?] to Set[E]. (4) A class is enabled within its own definition; this

enclosing class can be accessed via the keyword self.
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For example, consider the method call on line 6 in class mapset (Figure 6b). If the dispatcher

were elided, two classes would be enabled as potential dispatcher choices—one, the natural class

generated for the receiver’s type (i.e., Map[E,?], which has a size() method), and the other, the

enclosing class mapset, which defines a size() method with a compatible receiver type. Because of

this ambiguity, Familia requires the dispatcher to be specified explicitly.

As another example, consider the method call glb.meet(elem) on line 6 in Figure 4. An enclosing

class in this case is the class that implements the LowerLattice interface (this class inherits the

method definition that contains this method call), and only this class is enabled as a potential

dispatcher for the call. So Familia desugars the method call as glb.(self.meet)(elem).

4.4 Self, This, self, and this

As discussed in Section 3, an interface definition has access to both the Self interface and the

This type: Self is the current interface, while This is the type of the underlying representation of

the current interface. Analogously, a class definition (as well as a non-static default method in an

interface) has access to both the self class and the this term: self denotes the current class, while

this denotes the underlying representation of the current class (or equivalently, the receiver). A

class definition also has access to a Self interface that denotes the interface of the current class

self. Hence, class self witnesses the constraint Self(𝑇) where 𝑇 is the type of this.

Although they sound similar, Self (or self) and This (or this) serve different purposes. Both

Self and self are late-bound: in the presence of inheritance, their interpretation varies with the

current interface or class. In this sense, Self and self provide a typed account of interface and class

extensibility. Section 5 shows how the self class is further generalized to support type-safe exten-

sibility at larger scale. On the other hand, the representation type This and the representation this

provide encapsulation—objects hide their representations and object types hide their representation
types—and adaptation—classes adapt their representations to interfaces.

Ignoring nesting (Section 5), objects in Familia are closest from a type-theoretic viewpoint to

the denotational interpretation of objects by Bruce [1994], who gives a denotation of an object

type using two special type variables: the first represents the type of an object as viewed from the

inside, and the second, the type of the object once it has been packed into an existential. These type

variables roughly correspond to This and Self in Familia. This denotational semantics is intended

as a formal model for OO languages, but no later language distinguishes between these two types.

Familia shows that by embracing this distinction in the surface language, the same underlying

model can express both object types and type classes.

4.5 Adaptive Use-Site Genericity
Familia further extends the adaptive power of interfaces to express use-site genericity ala Genus [Zhang

et al. 2015b]. The adaptive power arises from the duality between use-site genericity and definition-

site genericity (i.e., parametric polymorphism), which respectively correspond to existential and

universal type quantification. Because of this adaptive power, we call this “use-site genericity”

rather than “use-site variance”, which only concerns subtyping [Torgersen et al. 2004].

Java uses wildcards and subtyping constraints to express use-site variance. For example, the

type List<? extends Set<E» describes all lists whose element type is a subtype of Set<E>. The

corresponding type in Familia is List[out Set[E]], which is sugar for the explicit existential type

[some T where Set[E](T)]List[T], where Set[E] is used to constrain the unknown type T, and

the leading brackets denote constrained existential quantification. Therefore, one can assign a

List[SortedSet[E]] to a List[out Set[E]] because the natural class generated for SortedSet[E]

satisfies the constraint Set[E](SortedSet[E]). More interestingly, one can assign a List[Map[E,?]]

to a List[out Set[E]] in a context in which class mapset (Figure 6b) is enabled. Note that this
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adaptation is asymptotically more efficient than with the Adapter pattern: when assigning a

List[Map[E,?]] into a List[out Set[E]], the resulting list is represented by a list of maps and a

class that adapts Map to Set, rather than by wrappers that inefficiently wrap each individual map

into a set.

5 EVOLVING FAMILIES OF CLASSES AND INTERFACES
Thus far we have seen how to unify OO classes and interfaces with type classes and their imple-

mentations. However, the real payoff comes from further unifying these mechanisms with family

polymorphism, to support coordinated changes to related classes and types contained within a

larger module.

5.1 Class-Based Family Polymorphism in Familia: an Overview
As in many OO languages, Familia’s module mechanism is based on nesting: classes and interfaces

are modules that can contain classes, interfaces, and types. Familia has nesting both via classes and

via a pure module construct that is analogous to packages in Java or namespaces in C++. Apart

from being able to span multiple compilation units, such a module is essentially a degenerate class

that has no instances and does not implement an interface. Hence, both classes and modules define

families containing their components. Familia interfaces can also contain nested components; a

class inherits the nested components from its interfaces. Since nesting is allowed to arbitrary depth,

a nested component may be part of multiple families at various levels.

Unlike most OO languages, Familia allows not only classes but all modules to be extended via

inheritance. Following C++ convention [Stroustrup 1987], we call the module being extended the

base module and the extending module, the derived module. Hence, superclass and base class are

synonyms, as are subclass and derived class. We also slightly abuse the terminology “module” to

mean not only the module construct but all families that contain nested components.

When a module is inherited, all components of the base module—including nested modules,

classes, interfaces, types,
2
and methods—are inherited into the derived module; the inherited code is

polymorphic with respect to a family it is nested within. Further, the derived module may override
the nested components. In this sense, names of components nested inside a module are implicit
parameters declared by their families.

Example: dataflow analysis. As an example where coordinated changes to a module are useful,

consider the problem of developing an extensible framework for dataflow analysis. A dataflow

analysis can be characterized as a four-tuple p𝐺, 𝐼, 𝐿, 𝐹𝑛q [Aho et al. 2006]: the direction𝐺 that items

flow on the control-flow graph (CFG), the set 𝐼 of items being propagated, the operations [ and J

of the semilattice 𝐿 formed by the items, and the transfer functions 𝐹𝑛 associated with each type of

AST node.

We would like to be able to define a generic dataflow analysis framework that leaves the four

parameters either unspecified or partially specified, so that a specific analysis task (such as live

variable analysis) can be obtained by instantiating or specializing the parameters. This can be

achieved using family polymorphism, but does not work with conventional OO languages since

they do not support coordinated changes, as discussed in Section 2.

Figure 8 shows the code of the module base, which is nested inside the module dataflow. It

provides a base implementation of the extensible dataflow analysis framework discussed earlier.

The four parameters p𝐺, 𝐼, 𝐿, 𝐹𝑛q of a dataflow analysis framework correspond to class cfg, type

Item, class itemlat, and class transfer, respectively. The rest of the module—especially class worker,

2
Nested interfaces are similar to nested types except that nested interfaces can be used to constrain types and that nested

types need not necessarily be bound to interfaces.
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dataflow.base

abstract module dataflow.base {

class cfg for Graph(Peer,Edge);

type Item;

class itemlat for LowerLattice(Item);

}

dataflow.base.Transfer

interface Transfer { Item apply(Item); }

dataflow.base.transfer

class transfer for Transfer(Node) {

Item Node.apply(Item item) { return item; }

}

dataflow.base.Worker

interface Worker { Map[Peer,Item] result(); }

dataflow.base.worker

1 use cfg, itemlat;

2 class worker for Worker {

3 Map[Peer,Item] items; // analysis result
4 ¨¨¨

5 void worklist(List[Peer] src) {

6 List[List[Peer]] sccs =

7 graphs.findSCCs[Peer,Edge](src);

8 for (List[Peer] scc : sccs) {

9 boolean change = false;

10 do { // Iteratively computes result
11 for (Peer p : scc) {

12 Item newf = outflow(p);

13 Item oldf = items.get(p);

14 change |= !oldf.equals(newf);

15 items.put(p,newf);

16 }

17 } while (change);

18 }

19 }

20 Item outflow(Peer p) {

21 List[Item] ins = inFlows(p);

22 Item conf = itemlat.meetAll(ins);

23 Node node = p.node();

24 return node.(transfer.apply)(conf);

25 }

26 List[Item] inFlows(Peer p) { ¨¨¨ }

27 }

Figure 8. Excerpt from an extensible dataflow analysis framework.
(A Peer is a vertex in the CFG, and has access to an AST node, Node.)

dataflow.liveness

module dataflow.liveness extends dataflow.base {

class cfg extends transpose[Peer,Edge with flowGraph]; // Backward analysis
type Item = Set[Var]; // Liveness analysis propagates sets of variables

}

dataflow.liveness.transfer

// Def-Use
class transfer for Transfer(Node) {

Item LocalVar.apply(Item item) {

return item.add(this.var());

}

Item LocalAssign.apply(Item item) {

LocalVar n = this.left();

return item.remove(n.var());

}

}

dataflow.liveness.itemlat

1 class itemlat for LowerLattice(Item) {

2 static Item top() fixes Item

3 { return new hashset[Var](); }

4 Item meet(Item that)

5 { return this.addAll(that); }

6 boolean leq(Item that)

7 { return this.(setPO[Var].leq)(that); }

8 boolean equals(Item that)

9 { return this.(setPO[Var].equals)(that); }

10 }

Figure 9. An extension of the base dataflow framework: live variable analysis.

which implements the worklist algorithm (lines 5–26)—is generic with respect to the choice of

these parameters. Therefore, writing a specific dataflow analysis amounts to instantiating these
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four parameters in a derived module. Crucially, this instantiation can be done in a lightweight,

type-safe way by either binding or further-binding the four nested components.

To illustrate such an extension, Figure 9 shows a module that inherits from the base dataflow

module and implements live variable analysis. Recall that live variable analysis is a backward

analysis where the items are sets of local variables, the meet operator [ takes the union of two

sets, the greatest element J is the empty set, and the transfer functions are defined in terms of

the variables each CFG node defines and uses. The module definition (liveness) declares that it

extends the base module. It provides the definitions of exactly these four implicit parameters.

The combined power of family inheritance and retroactive adaptation is apparent: with roughly

20 lines of straightforward code, we are able to implement a new program analysis. And this

analysis is itself extensible; for example, it can be further extended to report unused variables.

Implementing this example with the same extensibility in any previous language would require

more boilerplate code or design patterns.

5.2 Further Binding
In Familia, all nested names are points of extensibility that can be further-bound in derived modules.

In addition, base modules, superclasses, superinterfaces, supertypes, and interfaces of classes can

be further-bound in derived modules.

Binding nested, unbound names. A derived module can bind the nested components left

unbound in its base module. In the example, derived module liveness binds three components

unbound in module base: it binds nested class cfg by using the transpose of flowGraph (we assume

flowGraph is a class for constraint Graph(Peer,Edge)) as its superclass, it binds nested type Item to

type Set[Var], and it binds nested class itemlat to a nested class definition. A module can nest

unbound methods, classes, or types if it is abstract or one of its families is abstract;
3
module base is

declared abstract.

Unbound classes are not to be confused with abstract classes. An unbound class is one that

a non-abstract, derived module of one of its enclosing families must provide a binding for. So

unlike abstract classes, unbound classes can be used to satisfy constraints (including creating

objects) and dispatch method calls. For example, consider the worklist() method in the base

module, which computes the strongly connected components of the CFG (line 7) to achieve faster

convergence [Nielson et al. 1999]. Class cfg, though unbound, is used (as the default class) to satisfy

the constraint required by the generic findSCCs() method from Figure 5. As another example,

unbound class itemlat is used as the (inferred) dispatcher in the method call on line 14.

It is perfectly okay to give partial definitions to nested classes cfg and itemlat without declaring

them abstract, because a non-abstract, derived module of their family is required to complete the

definitions. (Class itemlat is indeed partially defined because it inherits a default method implemen-

tation from its interface defined in Figure 4.) It follows that the above discussion about unbound

classes applies to partially bound classes as well. Previous languages with family polymorphism do

not support non-abstract classes that are unbound or partially bound.

Nested type Item is essentially an associated type of its family. Associated types are unbound type

members of interfaces and superclasses [Järvi et al. 2005; Chakravarty et al. 2005b].
4
Associated

types were introduced to reduce the number of type parameters, a rationale that applies here as

3
“Abstract methods” in previous OO languages actually mean unbound methods in Familia, while “abstract classes” retain

their meaning.

4
Associated types take different forms in different languages: typedef in C++, abstract type members in Scala,

associatedtype in Swift, to name a few.
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1 interface I { int This.m(); }

2 class c1 for I(Fields) {

3 type Fields = { int f }

4 int Fields.m() { return this.(self.n)(); }

5 int Fields.n() { return this.f; }

6 }

7 class c2 for I(Fields) extends c1 {

8 type Fields = { int f; int g }

9 int Fields.n() { return this.f + this.g; }

10 }

// Testing code
{ int f } t1 = { f = 1 };

{ int f; int g } t2 = { f = 0; g = 2; }

I i = new c2(t2);

i.(I.m)(); // dispatcher is the natural class
t2.(c2.m)(); // dispatcher is c2
t1.(c2.m)(); // illegal

Figure 10. On the left are two classes with fields as their representations (Section 5.2). Testing code on
the right is used to illustrate how late binding ensures type safety (Section 5.3). Receiver types in method
signatures and dispatcher classes in method calls are written out in this example.

well. However, unlike languages like Scala and Haskell that support associated types, it is possible

in Familia to further-bind a previously bound nested name in a derived module.

Further-binding nested names. In Familia, a derived module can further-bind nested interface
and class definitions, specializing and enriching the behavior of the corresponding definition in the

base module. Further binding was introduced by Beta [Madsen et al. 1993]. Languages that support

virtual types but not full family polymorphism, such as Scala, can only simulate further binding

through design patterns [Odersky and Zenger 2005; Weiel et al. 2014].

In the dataflow example, class transfer in the derived module further-binds its counterpart in the

base module. Recall from Section 4.2 that a class can provide specialized behavior for subtypes of the

representation type and that all such methods are dynamically dispatched. The implementation of

the transfer functions demonstrates how family inheritance interacts with this feature. The transfer

class in the basemodule provides a default implementation of a transfer function through themethod

apply. The transfer class in the derived module liveness inherits this default implementation, and

refines it by specializing the implementation of apply to handle the particular types of AST nodes

that play an interesting role in live variable analysis. Dispatching on the receiver object is used to

allow choosing the most specific method among all of the three apply methods at run time.

In addition to specialization, a further-bound interface or class definition can also enrich the

corresponding definition in the base module. This enrichment was seen in the example from

Section 2, in which the class Node and implicitly, all of its derived classes, were extended with a

new method constFold. This example works in Familia as well. If Node were an interface rather

than a class, Familia would check that every class implementing it in the derived module provides

a definition for method constFold.

A nested type can also be further-bound to a subtype. In fact, further-binding is what allows

subclasses to add new fields. Recall from Section 4 that the representation type of a class with fields

is a record type containing the field types. We take this unification a step further with nested types:

field types are essentially a nested record type that can be further-bound to a subtype. For example,

consider classes c1 and c2 on the left of Figure 10, whose representation types are a nested type.

Class c2 adds a new field g by further-binding the nested type Fields to a subtype. Since this has

type Fields in class c2, the nested fields can be accessed via this.f and this.g.

Further-binding base modules. In Familia, not only can nested names be further-bound,

but base modules, superclasses, superinterfaces, and interfaces that classes implement can also
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dataflow dataflow

liveness

base

liveness

saladx

base

salad

(a) Module dataflow is nested within module
salad, and is further-bound by the dataflow
module in saladx. This approach requires mod-
ule dataflow to be nested withinmodule salad.

salad saladx

langdataflow dataflowx

liveness

base

liveness

lang

base

(b) Module dataflow imports salad by bind-
ing the base module of nested module lang
to it. Derived module dataflowx further-
binds the base module to saladx.

subclassing

further 
binding

Figure 11. Two approaches to co-evolving modules dataflow and salad.

be further-bound. The utility of further-binding base modules can be demonstrated by the new

opportunity in Familia to co-evolve related, non-nested families of classes and interfaces.

For example, suppose the dataflow framework in Figures 8 and 9 was developed for the Salad

programming language from Section 2. Because the Saladx extension in Figure 1 adds unary expres-

sions to Salad, we cannot expect the dataflow framework to automatically work correctly for Saladx.

If the dataflow module happened to be nested within the salad module, family polymorphism with

further binding would allow us to add a transfer function for unary expressions in class saladx.

dataflow.liveness.transfer (which would further-bind class salad.dataflow.liveness.transfer).

This approach is illustrated in Figure 11a. Suppose, however, that the dataflow framework were

implemented separately by a third party, and thus had to import the module salad rather than

residing within it. The extensibility strategy just outlined would not work.

This need to co-evolve related families is addressed by further-binding a base module. Figure 11b

illustrates how to co-evolve the dataflow framework and the Salad implementation, and Figure 12

shows the code. In Figure 12a, module dataflow, the dataflow framework for the base Salad language,

declares a nested name lang and binds it by using salad as its base module. In Figure 12b, derived

module dataflowx, the dataflow framework for Saladx, further-binds the base module of lang to

saladx, and updates the transfer function to account for unary expressions. (For brevity, we also say

that module dataflow binds nested name lang to salad and that module dataflowx further-binds

it to saladx.) As we soon see in Section 5.3, the dataflow and dataflowx modules interpret names

imported from the salad and saladx modules (e.g., Node) relative to their own nested component

lang. This relativity ensures that the relationships between the related components in modules

salad and dataflow are preserved when inherited into derived modules saladx and dataflowx;

components of module salad cannot be mixed with components of module dataflowx, which work

with saladx.

Familia supports this kind of further binding for other kinds of nested components than modules.

For example, when a derived module further-binds the superclass of a nested class, Familia checks

that the new superclass extends—up to transitivity and reflexivity—the original superclass. This

check ensures that inherited code is type-safe with respect to the new binding.

5.3 Late Binding of Nested Names via self

A key to making family polymorphism sound is that relationships between nested components

within a larger module are preserved when inherited into a derived module. Familia statically
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dataflow

module dataflow {

module lang

extends salad;

}

(a) Dataflow analysis for Salad.

dataflowx

module dataflowx

extends dataflow {

module lang

extends saladx;

}

dataflowx.liveness.transfer

class transfer for Transfer(Node) {

Item UnaryExpr.apply(Item item) {

return item.remove(this.var());

}

}

(b) Dataflow analysis for extended Salad.

Figure 12. Evolving the dataflow module in accordance with the extension to Salad, using the approach
illustrated by Figure 11b.

ensures that relationships between nested components are preserved through late binding of all
nested names. To see what would go wrong without late binding, consider the right side of Figure 10.

Without late binding of the nested name Fields, the last method call would type-check because

the m() in c2 is inherited from c1 and its receiver type would be { int f } instead of the late-bound

Fields. This would result in a run-time error as t1 does not have the g field.

Recall from Section 4.3 that Familia uses the keyword self to represent the current class or

module. By adding a qualifier, self can also be used to refer to any enclosing class or module.

Names that are not fully qualified are interpreted in terms of an enclosing class or module denoted

by a self-prefix. For example, consider the mentions of the unqualified name Fields in class

c1 of Figure 10. Here Fields is syntactic sugar for the qualified name self[c1].Fields, where

the prefix self[c1] refers to the enclosing class that is, or inherits from c1. When the code is

inherited into class c2, the inferred self-prefix becomes self[c2], a class that is, or inherits from

c2. The unqualified name Fields then has a new meaning in class c2: self[c2].Fields. On the

right of Figure 10, when class c2 is used to invoke method m, the method signature is obtained by

substituting the dispatcher for the self parameter in int self[c2].Fields.m(). This substitution

suggests that the receiver should have type { int f; int g }, so the last method call t1.(c2.m)() is

rejected statically.

The further binding of the base module of nested name lang offers another example. The transfer

class of the base dataflow module (Figure 8) mentions Node, defined by module salad.ast. Because

the enclosing module dataflow binds lang to salad (Figure 12a), Node is expanded to lang.ast.Node.

Further desugaring themention of lang yields self[dataflow].lang.ast.Node. Hence, in the derived

module dataflowx (Figure 12b), the unqualified name Node is reinterpreted as self[dataflowx].lang.

ast.Node. Similarly, module dataflowx interprets the unqualified name Stmt as self[dataflowx].

lang.ast.Stmt, so the subtyping relationship between Stmt and Node is preserved.

Importantly, late binding in Familia supports separate compilation with modular type checking—

existing code need not be rechecked or recompiled when inherited into derived modules. For

example, derived module liveness inherits method outflow() (lines 20–25 of Figure 8), which takes

the meet of all incoming flows of a node and computes the outgoing flow by applying the transfer

function. The call to apply() on line 24 in the basemodule need not be rechecked in a derivedmodule,

say dataflowx.liveness, which interprets the receiver type as self[dataflowx].lang.ast.Node, the

formal parameter type self[dataflowx.liveness].Item, and the dispatcher class self[dataflowx.

liveness].transfer. This guarantees that the method can only be invoked using arguments and

dispatcher that are compatible.

It is occasionally useful to locally turn off late binding. Consider implementing the static top()

method in class liveness.itemlat (Figure 9). We would like to create a new hashset[Var] and return

it. However, it would not type-check because the return value would have type Set[Var], which is
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programs P ::“ ˛ {I C 𝑒 }
class definitions C ::“ class c[𝜑] for 𝑄(𝑇) extends 𝑃 {I C M}

interface definitions I ::“ interface I𝜈[𝜑] extends 𝑄 {m :𝑆 }

method definitions M ::“ m : 𝑆 (x) {𝑒 }

parameterization [𝜑] ::“ [ X where p for 𝐻(𝑇) ]

instantiation [𝜔] ::“ [𝑇 with 𝑑 ]

interface variance 𝜈 ::“ ´ | 0
method signatures 𝑆 ::“ [𝜑] 𝑇1 Ñ 𝑇2

types 𝑇 ::“ int | X | 𝐻

interface paths 𝐻 ::“ 𝑄 | 𝑄 !

inexact class paths 𝑃 ::“ 𝑃 ! .c[𝜔]

inexact interface paths 𝑄 ::“ 𝑃 ! .I[𝜔]

exact class paths 𝑃 !
::“ ˛ | 𝑃 ! .c![𝜔] | self[𝑃]

exact interface paths 𝑄 !
::“ 𝑃 ! .I![𝜔] | Self[𝑄] | 𝑑.itf

dispatchers 𝑑 ::“ 𝑃 ! | p

expressions 𝑒 ::“ 𝑛 | x | pack (𝑒, 𝑑) | unpack 𝑒1 as (x, p) in 𝑒2 | 𝑒0 .(𝑑.m[𝜔])(𝑒1)

class names c
interface names I
method names m
class variables p
type variables X
term variables x

Figure 13. Featherweight Familia: program syntax.

different from the expected, late-bound return type Item. This issue is addressed in a type-safe and

modular way by the fixes-clause in the method signature (line 2). A fixes-clause is followed by a

late-bound name. In this case, the clause fixes Item allows the method to equate types Item and

Set[Var] so that the return statement type-checks. To ensure type safety, the fixes-clause also

forces a derived module of liveness (or a family thereof) to override top() if it further-binds its

nested type Item to a different type than Set[Var].

Because self-qualifiers can be omitted and inferred, family polymorphism becomes transparent

to the novice programmer. And code written without family polymorphism in mind can be extended

later without modification.

6 A CORE LANGUAGE
To make the semantics of the unified polymorphism mechanism more precise, we define a core

language called Featherweight Familia (abbreviated F
2
), capturing the key aspects of Familia.

6.1 Syntax and Notation
F
2
follows the style of Featherweight Java [Igarashi et al. 2001], and makes similar assumptions

and simplifications. F
2
omits a few convenient features of Familia: uses of nested names are fully

expanded, the class used by a method call or a with-clause is always explicit, and natural classes

are encoded explicitly rather than generated implicitly. For simplicity, F
2
does not model certain

features of Familia whose formalization would be similar to that in Featherweight Genus [Zhang

et al. 2015a]: interfaces with multiple constraint parameters, multimethods, and use-site genericity.

Figure 13 presents the syntax of F
2
. An overline denotes a (possibly empty) sequence or mapping.

For example, X denotes a sequence of type variables, m :𝑆 denotes an (unordered) mapping that maps

method names m to method signatures 𝑆 , and ∅ denotes an empty sequence or mapping. The 𝑖-th

element in ‚ is denoted by ‚p𝑖q
. To avoid clutter, we write [𝜑] to denote a bracketed list of type

variables and where-clause constraints, and [𝜔] to denote the arguments to these parameters. A

where-clause constraint in [𝜑] is explicitly named by a class variable p. Substitution takes the form

‚t‚{‚u, and is defined in the usual way. We introduce an abbreviated notation for instantiating
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parameterized abstractions: ‚t𝜔{𝜑u substitutes the types and classes in [𝜔] for their respective

parameters in [𝜑]. Type variables, term variables, and class variables are all assumed distinct in any

environment. Type variables X include This, the implicit constraint parameter of all interfaces. Term

variables x include this. We use 𝑅˚
to mean the reflexive, transitive closure of binary relation 𝑅.

A program P comprises interface and class definitions (I and C) and a “main” expression. A

class definition can contain its own nested classes, interfaces, and methods. An interface definition

has the implicit representation type This, and its variance with respect to This is signified by

𝜈 . All classes implement some interface in F
2
, although they do not have to in Familia. Familia

supports multiple interface inheritance and nested type declarations, permits interfaces to contain

components other than nested methods, and infers interface variance. For simplicity, F
2
does not

model these features. In F
2
, classes do not have explicit fields because field types are essentially a

nested record type (Section 5.2) and because record types can be simulated by interface types.

A class path represents the use of a class. Class paths have exactness, a notion that is also seen in

previous approaches to type-safe extensibility (e.g., Bruce et al. [1997]; Nystrom et al. [2004]; Bruce

and Foster [2004]; Nystrom et al. [2006]; Ryu [2016]). An exact class path 𝑃 ! denotes a particular

class, while an inexact class path 𝑃 abstracts over all of its subclasses (including itself). Inexact class

paths are of the form 𝑃 ! .c[𝜔] and can be used in extends-clauses in class headers as superclasses.

Similar to Featherweight Java, F
2
assumes the well-foundedness condition that there are no cycles

in inheritance chains, as well as the existence of a distinguished, universal superclass empty.

An exact class path 𝑃 ! may take one of the following forms:

(1) ˛, denoting the program P that nests everything;

(2) 𝑃 ! .c![𝜔], denoting class c[𝜔]—not including a subclass thereof—nested within 𝑃 !; or

(3) self[𝑃], denoting an enclosing class that must either be 𝑃 , extend 𝑃 , or further-bind 𝑃 .

For example, in a class definition named c2 nested within class definition c1 which is nested within P,
the current class c2 is referred to as self[self[˛.c1].c2]. Familia uses the lighter syntax self[c1 .c2]

to denote this path, or even just self if c2 is the immediately enclosing class, but the heavier syntax

in F
2
makes it straightforward to perform substitution for outer self-parameters like self[˛.c1].

Some paths with valid syntax cannot appear in F
2
programs: for example, the path self[˛.c!

1
.c2].

Nevertheless, the static semantics may create such paths to facilitate type checking. Given an

inexact class path 𝑃1 “ 𝑃 !
2
.c[𝜔], we use 𝑃 !

1
to mean the exact class path 𝑃 !

2
.c![𝜔].

Although F
2
requires explicit exactness annotations (i.e., !), they are usually not needed in Familia.

The exactness of certain uses of classes is obvious and thus inferred: class paths used in extends-

clauses are inexact, but class paths used in with-clauses, pack-expressions, and as dispatchers in

method calls are all exact.

An interface path 𝐻 represents the use of an interface. Like class paths, interface paths can be

exact (𝑄 !) or inexact (𝑃 ! .I[𝜔]). Inexact paths can be used in extends-clauses in interface headers

and for-clauses in class headers. The distinguished interface Any is the universal superinterface.5

An exact interface path 𝑄 ! may take one of the following forms:

(1) 𝑃 ! .I![𝜔], denoting interface I[𝜔]—not including a subinterface thereof—nested within 𝑃 !;

(2) Self[𝑄], an enclosing interface that must either be 𝑄 , extend 𝑄 , or further-bind 𝑄 ; or

(3) 𝑑.itf, the interface implemented by dispatcher 𝑑 .

For example, in the class definition of c2 nested within c1 which is nested within P, the interface
implemented by the current class is denoted by self[self[˛.c1].c2].itf. In Familia, this interface

is denoted by the lighter syntax Self[c1 .c2]. Familia also supports interface paths with inexact

prefixes (i.e., 𝑃 ! .c[𝜔1].I[𝜔2]); they are not modeled in F
2
for simplicity.

5
Class empty and interface Any are nested directly within the program P. Class empty is parameterized by a type variable X

and implements the constraint ˛.Any(X). A class extending ˛.empty instantiates X as its representation type.
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values 𝑣 ::“ 𝑛 | pack (𝑣, 𝑃 !)

evaluation contexts E ::“ r¨s | E .(𝑃 ! .m[𝜔])(𝑒) | 𝑣0 .(𝑃 ! .m[𝜔])(𝑣1, E, 𝑒) | pack (E, 𝑃 !) |

unpack E as (x, p) in 𝑒2

˛{P! $ 𝑒1 ÝÑ 𝑒2

[unpack] ˛{P! $ unpack (pack (𝑣, 𝑃 !)) as (x, p) in 𝑒 ÝÑ 𝑒t𝑣{xut𝑃 !{pu

[call]

˛{P!prog $ 𝑃 ! { P!disp P!disppmq “ [𝜑]𝑇1 Ñ 𝑇2 (x) {𝑒 }

˛{P!prog $ 𝑣0 .(𝑃 ! .m[𝜔])(𝑣1) ÝÑ 𝑒t𝑣0{thisut𝜔{𝜑ut𝑣1{xu

Figure 14. Featherweight Familia: operational semantics.

type environments Δ ::“ ∅ | Δ, Self[𝑄] | Δ, X

class environments 𝐾 ::“ ˛{P! | 𝐾, self[𝑃] | 𝐾, p for 𝐻(𝑇)

term environments Γ ::“ ∅ | Γ, x :𝑇

Figure 15. Featherweight Familia: environment syntax.

A type 𝑇 is either the integer type, a type variable X, or an object type denoted by an interface

path, which can be either exact or inexact. Inexactly typed values may have a run-time type that

is a subtype, while exactly typed values cannot. A dispatcher 𝑑 is either an exact class path or a

class variable. Dispatchers are used in method calls 𝑒0 .(𝑑.m[𝜔])(𝑒1), object-creation expressions

pack (𝑒, 𝑑), and with-clauses. Function FTVp‚q returns the type variables occurring free in ‚. Function

FCVp‚q returns free class variables.

6.2 Dynamic Semantics
Figure 14 presents the operational semantics of Featherweight Familia, including its values, evalua-

tion contexts, and reduction rules. Object values take the form pack (𝑣, 𝑃 !). Reduction rule [unpack]

unpacks an object. Rule [call] reduces a method call. The method body to evaluate is retrieved

from P!disp, the linkage of the dispatcher 𝑃 !. A linkage provides a dispatch table indexed by method

names, as discussed in more detail in Section 6.3.

6.3 Static Semantics
The complete static semantics of Featherweight Familia can be found in the accompanying supple-

mental material. Below we explain the judgment forms and discuss selected judgment rules shown

in Figures 16 and 18.

Environments. The syntax of environments is shown in Figure 15. A type environment Δ

contains Self[𝑄] parameters as well as type variables. A class environment 𝐾 always contains the

linkage of the entire program (˛{P!). It may also contain self-parameters as well as class variables.

For example, checking program P adds the program linkage into 𝐾 , checking class c (nested within

P) adds self[˛.c] into 𝐾 , and checking interface I (nested within c) adds Self[self[˛.c].I] into Δ.

Constrained parametric polymorphism. As shown in Figure 13, all nested components (C,
I, andM) can be parameterized, so their well-formedness rules require the well-formedness of

the parameters [𝜑], which is expressed using Δ; 𝐾 $ [𝜑] OK. Subsequent checks in these well-

formedness rules are performed under the environments Δ, Δ𝜑 and 𝐾, 𝐾𝜑 , where Δ𝜑 and 𝐾𝜑 consist
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Δ; 𝐾 $t𝜔{𝜑u OK

[Inst]

p@𝑖q Δ; 𝐾 $ 𝑇1
p𝑖q OK p@𝑖q Δ; 𝐾 $ 𝑑p𝑖q OK p@𝑖q 𝐾 $ 𝑑p𝑖q dispatches 𝑇3p𝑖q

p@𝑖q 𝐾 $ 𝑑p𝑖q .itf(𝑇3
p𝑖q) ď 𝐻 p𝑖q(𝑇2

p𝑖q)
!

𝑇1

M

X
)

Δ; 𝐾 $

!

𝑇1 with 𝑑
M

X where p for 𝐻(𝑇2)
)

OK

Δ; 𝐾 ; Γ $ 𝑒 : 𝑇

[E-pack]

Δ; 𝐾 $ 𝑑 OK 𝐾 $ 𝑑 dispatches 𝑇 Δ; 𝐾 ; Γ $ 𝑒 : 𝑇

Δ; 𝐾 ; Γ $ pack (𝑒, 𝑑) : 𝑑.itf

[E-unpack]

Δ; 𝐾 ; Γ $ 𝑒1 : 𝐻 Δ, X; 𝐾, p for 𝐻(X); Γ, x :X $ 𝑒2 : 𝑇 X R FTVp𝑇 q p R FCVp𝑇 q

Δ; 𝐾 ; Γ $ unpack 𝑒1 as (x, p) in 𝑒2 : 𝑇

[E-call]

Δ; 𝐾 $ 𝑑 OK 𝐾 $ 𝑑 dispatches 𝑇0 Δ; 𝐾 ; Γ $ 𝑒0 : 𝑇0 𝐾 $ 𝑑.itf { Q!

Q!t𝑇0{Thisupmq “ [𝜑]𝑇1 Ñ 𝑇2 Δ; 𝐾 $t𝜔{𝜑u OK p@𝑖q Δ; 𝐾 ; Γ $ 𝑒1
p𝑖q

: 𝑇1
p𝑖qt𝜔{𝜑u

Δ; 𝐾 ; Γ $ 𝑒0 .(𝑑.m[𝜔])(𝑒1) : 𝑇2t𝜔{𝜑u

$ P OK

[Prog]

flatten
´

˛ {I C 𝑒 }
¯

“ P! 𝐾
def
“ ˛{P! 𝐾 $ P! I-Conform 𝐾 $ P! FB-Conform

p@𝑖q ∅; 𝐾 ; ˛ $ Ip𝑖q OK p@𝑖q ∅; 𝐾 ; ˛ $ Cp𝑖q OK ∅; 𝐾 ; ∅ $ 𝑒 : 𝑇

$ ˛ {I C 𝑒 } OK

Figure 16. Featherweight Familia: selected well-formedness rules.

of the type parameters and class parameters of [𝜑]. The well-formedness rules of class paths,

interface paths, and method-call expressions correspondingly check the validity of the substitution

of arguments [𝜔] for parameters [𝜑]. These checks use the judgment form Δ; 𝐾 $t𝜔{𝜑u OK, and
its rule is given by [Inst] in Figure 16. In addition to the well-formedness of the arguments, it

requires the constraints implemented by the dispatchers to entail the corresponding where-clause

constraints. Constraint entailment is expressed using the judgment form 𝐾 $ 𝐻1(𝑇1) ď 𝐻2(𝑇2).

Object-oriented polymorphism. The typing of pack- and unpack-expressions is given by rules

[E-pack] and [E-unpack] in Figure 16. The expression pack (𝑒, 𝑑) packs 𝑒 and the dispatcher 𝑑

into an object, where 𝑒 is the underlying representation and 𝑑 is the class implementing the object

type 𝑑.itf. The expression unpack 𝑒1 as (x, p) in 𝑒2 unpacks object 𝑒1 into its representation and class

(bound to x and p, respectively) and evaluates 𝑒2, in which x and p may occur free. The standard

existential-unpacking rule requires the freshly generated type variable not to occur free in the

resulting type; likewise, rule [E-unpack] requires the same of the freshly generated class variable.

While Familia automatically generates natural classes for interfaces, F
2
gives a concrete encoding

of natural classes via unpack-expressions. For example, suppose variable x0 has object type ˛.I,

an interface that requires a single method m:intÑint. Then invoking m on x0 can be written as

x0 .(˛.natural_I! .m)(8), where the natural class natural_I is defined as follows:

class natural_I for ˛.I(˛.I) extends ˛.empty[˛.I]{

m : intÑint (x1) { unpack this as (x2,p) in x2.(p.m)(x1) }

}
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𝑃 !
-linkages 𝑃-linkages 𝑄 !
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Figure 17. Featherweight Familia: linkage syntax.

The natural class implements the method by unpacking the receiver and subsequently calling the

method with the unpacked class as the dispatcher and the unpacked representation as the receiver.

Some prior object encodings formalize objects as explicit existentials [Bruce 1994; Abadi et al. 1996].

The unpacking of receiver objects in natural classes is akin to the way these encodings unpack

existentially typed objects before sending messages to them.

The way that natural classes are encoded suggests that not all interfaces have natural classes.

In fact, an interface such as Eq that uses its constraint parameter in contravariant or invariant

positions other than the receiver type does not have a natural class. The reason is that the encoding

of such natural classes would involve unpacking objects of the representation type every time the

representation type appears in the method signature, including one for the receiver, and that the

unpacked receiver does not necessarily have the same representation type as the other occurrences.

The lack of natural classes for interfaces like Eq means these interfaces cannot be used as object

types as other interfaces (e.g., Set[E]) can. This restriction is not a limitation, though; a survey of a

large corpus of open-source Java code finds that in practice, programmers never use interfaces like

Eq as types of objects [Greenman et al. 2014].

Method calls. Rule [E-call] in Figure 16 type-checks a method call. The method signature that

the call is checked against is retrieved from the linkage of the dispatcher’s interface; this linkage

contains signatures for the methods the interface requires. When the dispatcher 𝑑 is a natural

class, we get a typical object-oriented method call; when 𝑑 is a class variable, we have a method

call enabled by a type-class constraint; and when 𝑑 is any other class, we have an “expander call”

[Warth et al. 2006] that endows the receiver with new behavior. Rule [E-call] unifies these cases.

Family polymorphism. Central to the semantics is the notion of linkages. A class linkage P

(or P!) collects information about a class path of the form 𝑃 (or 𝑃 !). As shown in Figure 17, a class

linkage is a tuple comprising (1) the path, (2) the constraint being implemented, (3) the superclass,

(4) nested method definitions, (5) linkages of nested interfaces, and (6) linkages of nested classes.

The linkage of an inexact class path 𝑃 is parameterized by a self[𝑃] parameter; substitution for

self[𝑃] in that linkage is thus capture-avoiding. We emphasize this fact by putting this self-path,

instead of the inexact path, as the first element of the tuple. Given the linkage P of an inexact class

path 𝑃 , we use P! to mean the linkage of the exact class path self[𝑃]. Interface linkages (Q! and Q)

contain fewer components. In the linkage of an inexact interface path 𝑄 , Self[𝑄] may occur free.

Looking up an (exact) linkage for a nested component named id is denoted by P!pidq or Q!pidq.

The well-formedness rules for paths can be found in the supplemental material, but here Fig-

ure 18 presents the rules that compute linkages for paths. The corresponding judgment forms are

𝐾 $ 𝑃 ! { P!, 𝐾 $ 𝑃 { P, 𝐾 $ 𝑄 ! { Q!, and 𝐾 $ 𝑄 { Q.
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𝐾 $ 𝑃 { P 𝐾 $ 𝑃 ! { P!

[P]

𝐾 $ 𝑃 ! { P!fam P!fampcq “ [𝜑]Pnest
parentpPnestt𝜔{𝜑uq “ 𝑃sup 𝐾 $ 𝑃sup { Psup Psup ‘ Pnestt𝜔{𝜑u “ P

𝐾 $ 𝑃 ! .c[𝜔] { P
[P!-prog]

˛{P! P 𝐾

𝐾 $ ˛ { P!

[P!-self]

𝐾 $ 𝑃 { P

𝐾 $ self[𝑃] { P!
[P!-nest]

𝐾 $ 𝑃 ! .c[𝜔] { P

𝐾 $ 𝑃 ! .c![𝜔] { P!t𝑃 ! .c![𝜔]{self[𝑃 ! .c[𝜔]]u

P1 ‘ P2 “ P3

[Concat-p]

m1 :𝑆1(x1){𝑒1}tself[𝑃2]{self[𝑃1]u ‘ m2 :𝑆2(x2){𝑒2} “ m3 :𝑆3(x3){𝑒3}

I1 :[𝜑11]Q1
tself[𝑃2]{self[𝑃1]u ‘ I2 :[𝜑21]Q2 “ I3 :[𝜑31]Q3

c1 :[𝜑12]P1tself[𝑃2]{self[𝑃1]u ‘ c2 :[𝜑22]P2 “ c3 :[𝜑32]P3
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𝐾 $ 𝑄 { Q 𝐾 $ 𝑄 ! { Q!

[Q]

𝐾 $ 𝑃 ! { P! P!pIq “ [𝜑]Qnest

parentpQnestt𝜔{𝜑uq “ 𝑄sup 𝐾 $ 𝑄sup { Qsup Qsup ‘ Qnestt𝜔{𝜑u “ Q

𝐾 $ 𝑃 ! .I[𝜔] { Q
[Q!-norm]

𝐾 $ 𝑄 !
1

”Ñ 𝑄 !
2

𝐾 $ 𝑄 !
2
{ Q!

𝐾 $ 𝑄 !
1
{ Q!

[Q!-self]

𝐾 $ 𝑄 { Q

𝐾 $ Self[𝑄] { Q!
[Q!-nest]

𝐾 $ 𝑃 ! .I[𝜔] { Q

𝐾 $ 𝑃 ! .I![𝜔] { Q!t𝑃 ! .I![𝜔]{Self[𝑃 ! .I[𝜔]]u

[Q!-itf-p]

𝐾 $ 𝑃 ! { P!

interfacepP!q “ 𝑄 𝐾 $ 𝑄 { Q

𝐾 $ 𝑃 ! .itf { Q!t𝑃 ! .itf{Self[𝑄]u
[Q!-itf-cv]

p for 𝑄(𝑇) P 𝐾 𝐾 $ 𝑄 { Q

𝐾 $ p.itf { Q!tp.itf{Self[𝑄]u

𝐾 $ 𝑄 !
1

”Ñ 𝑄 !
2

[Norm-abs]

𝐾 $ ˛.c![𝜔] { P! interfacepP!q “ 𝑄

𝐾 $ ˛.c![𝜔].itf ”Ñ 𝑄 !
[Norm-cv]

p for 𝑄 !(𝑇) P 𝐾

𝐾 $ p.itf ”Ñ 𝑄 !

Figure 18. Featherweight Familia: selected rules for computing linkages.

Linkages are computed in an outside-in manner. As shown in rule [Prog] in Figure 16, the linkage

of a program is obtained via the helper function flattenp‚q and added to the environment. Rule

[P!-prog] in Figure 18 retrieves this linkage from the environment. The helper function flattenp‚q is

defined in the supplemental material; it does not do anything interesting except converting the

program text into a tree of linkages. Importantly, linkages nested within an outer linkage do not

contain components that are inherited. Thus all nested linkages are incomplete.
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Rule [P] in Figure 18 computes the linkage of an inexact class path 𝑃 ! .c[𝜔]. It first computes the

linkage P!fam of the family 𝑃 !, from which the nested linkage Pnest corresponding to nested class c

is obtained. The helper function parentp‚q finds the superclass, whose linkage is Psup. While Pnest is

incomplete, the superclass linkage Psup is complete. The complete linkage of 𝑃 ! .c[𝜔] is then obtained

by concatenating Psup with Pnestt𝜔{𝜑u, using the linkage concatenation operator ‘ defined by rule

[Concat-p] in Figure 18. Operator ‘ is defined recursively; a nested linkage is concatenated with

the corresponding linkage it further-binds to produce a new nested linkage (see other ‘ -rules

in the supplemental material). Importantly, ‘ replaces the self-parameter of the first linkage

with that of the second linkage; this substitution is key to late binding of nested names. Linkage

concatenation is also what enables dynamic dispatch for object-oriented method calls (i.e., calls

using a natural class as the dispatcher), because a method in a linkage P overrides less specific

methods of the same name in linkages to which P is concatenated.

Rule [P!-nest] shows that the linkage of an exact path 𝑃 ! .c![𝜔] is obtained by substituting

𝑃 ! .c![𝜔] for self[𝑃 ! .c[𝜔]] in the linkage of 𝑃 ! .c[𝜔].

Some interface paths are equivalent. For example, interface path p.itf, where p is declared to

witness constraint 𝑄 !(𝑇), is equivalent to 𝑄 !. This equivalence relation is captured by path normal-

ization (”Ñ). Rules [Norm-abs] and [Norm-cv] in Figure 18 simplify interface paths of form 𝑑.itf.

A path is simplified to its normal form after finite steps of simplification (”Ñ˚
). Other normalization

rules are purely structural; they and the normal forms can be found in the supplemental material.

The linkage computation rules in Figure 18—except for [Q!-norm]—are defined for paths of normal

forms. Rule [Q!-norm] suggests that the linkage of a path is the same as that of its normal form.

The equivalence relation ” (shown in the supplemental material) is then the symmetric closure

of ”Ñ˚
. Because of this path equivalence, substitution for self[𝑃] (resp. Self[𝑄]) also replaces

other self-paths (resp. Self-paths) that are equivalent with self[𝑃] (resp. Self[𝑄]).

Soundness of family polymorphism hinges on a few conformance checks. For example, if a nested

interface definition adds new methods in a derived module, classes implementing the interface in

the base module should also be augmented in the derived module to define the new methods. This

conformance of classes to interfaces is expressed by the judgment form 𝐾 $ P! I-Conform.
Another conformance condition, 𝐾 $ P! FB-Conform, requires that nested classes and interfaces

conform to classes and interfaces they further-bind. In particular, the superclass (or interface) of a

nested class in a derived module should be a subclass (or subinterface) of that of the further-bound

class (or interface) in the base module. Also, a nested, further-binding interface should not change

its variance with respect to the representation type. These checks ensure that inherited code still

type-checks in derived modules.

The rules performing the conformance checks above are given in the supplemental material.

They work by recursively invoking the checks on nested classes. At the top level, they are invoked

from rule [Prog] in Figure 16.

Decidability. Because F2 does not infer default classes, decidability of its static semantics is

trivial: the well-formedness rules and the linkage-computation rules are syntax-directed (the

subsumption rule can be easily factored into the other expression-typing rules, and the path nor-

malization rules are defined algorithmically), and a subtyping algorithm works by climbing the

subtyping hierarchy. Inference of default classes in Familia could potentially introduce nontermina-

tion, similar to how default model inference in Genus could lead to nontermination [Zhang et al.

2015a]. We expect that termination can be guaranteed by enforcing syntactic restrictions in the same

fashion as in Genus. In particular, the restrictions include Material–Shape separation [Greenman

et al. 2014], which, in the context of Familia, prevents the supertype of an interface definition from

mentioning the interface being defined; for example, an interface like Double cannot be declared
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to implement Comparable[Double]. Java allows such supertypes so that types like Double can sat-

isfy F-bounded constraints [Canning et al. 1989] like <T extends Comparable<? super T». Familia

would use a where-clause instead (i.e., [T where Ord(T)]), eliminating possible nontermination

when checking subtyping [Grigore 2017] while adding the flexibility of retroactively adapting types

to constraints.

6.4 Soundness
We establish the soundness of Featherweight Familia through the standard approach of progress

and preservation [Wright and Felleisen 1992]. The key lemmas and their proofs can be found in the

supplemental material.

Lemma 6.1 (Progress) If (i) $ P OK, (ii) flattenpPq “ P!, and (iii) ∅; ˛{ P!; ∅ $ 𝑒 : 𝑇 , then

either 𝑒 is a value or there exists 𝑒 1
such that ˛{P! $ 𝑒 ÝÑ 𝑒 1

.

Lemma 6.2 (Preservation) If (i) $ P OK, (ii) flattenpPq “ P!, (iii) ∅; ˛{ P!; ∅ $ 𝑒 : 𝑇 , and

(iv) ˛{P! $ 𝑒 ÝÑ 𝑒 1
, then ∅; ˛{P!; ∅ $ 𝑒 1

: 𝑇 .

Theorem 6.1 (Soundness) If (i)$ ˛ {I C 𝑒 }OK, (ii) flatten
´

˛ {I C 𝑒 }
¯

“P!, and (iii)˛{P! $

𝑒 ÝÑ˚ 𝑒 1
, then either 𝑒 1

is a value or there exists 𝑒2
such that ˛{P! $ 𝑒 1 ÝÑ 𝑒2

.

7 RELATEDWORK
One way to evaluate programming language designs is by comparison with prior work, and indeed

decades of prior work on language support for extensible and composable software has developed

many mechanisms for extensibility and genericity. However, we argue that no prior work integrates

the different forms of polymorphism as successfully.

Constrained parametric polymorphism. Central to a parametric-polymorphism mechanism

is a way to specify and satisfy constraints on type parameters. Many prior languages have ex-

perimented with either nominal subtyping constraints (e.g., Java and C#) or structural matching

constraints (e.g., CLU [Liskov et al. 1984] and Cecil [Chambers 1992]). Both approaches are too

inflexible: types must be preplanned to either explicitly declare they implement the constraint or

include the required methods with conformant signatures. At the same time, typing is made difficult

by the interaction between inheritance and constraints that require binary methods. F-bounded

polymorphism [Canning et al. 1989] and match-bounded polymorphism [Bruce et al. 2003, 1997;

Abadi and Cardelli 1996] are proposed to address this typing problem. However, they do not address

the more urgent need to allow types to retroactively satisfy constraints they are not prepared to

satisfy; this inflexibility is an inherent limitation of subtyping-based approaches.

To allow retroactive adaptation, recent work follows Haskell type classes [Wadler and Blott

1989]. JavaGI [Wehr and Thiemann 2011] supports generalized interfaces that can act as type

classes. A special implementation construct is used as a type-class instance. Genus [Zhang et al.

2015b] introduces constraints and models on top of interfaces and classes. It avoids the global
uniqueness limitation of Haskell and JavaGI—that type-class instances are globally scoped and

that a given constraint can only be satisfied in one way. To avoid complicating the easy case,

Genus allows constraints to be satisfied structurally via natural models. Genus also supports model-

dependent types that strengthen static checking and model multimethods that offer convenience

and extensibility. Familia incorporates all these Genus features without requiring extra constructs

for constraints or models. Unlike Familia, neither JavaGI nor Genus supports associated types.

Generic programming in Rust [Rust 2014 2014] and Swift [swift.org 2014] is inspired by type

classes as well. In Rust, objects and generics are expressed using the same constructs (trait and

impl), but Rust lacks support for implementation inheritance. These languages also have the
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limitation of global uniqueness. Dreyer et al. [2007] and Devriese and Piessens [2011] integrate

type classes into ML and Agda, respectively, with a goal of not complicating the host language

with duplicate functionality. Although not intended for generic programming, expanders [Warth

et al. 2006] and CaesarJ wrappers [Aracic et al. 2006] support statically scoped adaptation of classes

to interfaces.

In Scala, generics are supported by using the Concept design pattern, made more convenient

by implicits [Oliveira et al. 2010]: traits act as constraints, and trait objects are implicitly resolved

arguments to generic abstractions. This approach does not distinguish types instantiated with

different trait objects (cf. Familia types that keep track of the classes used to satisfy constraints), and

does not allow specializing behavior for subtypes of the constrained type (cf. class multimethods in

Familia). Scala also supports higher-order polymorphism by allowing higher-kinded type parameters

and virtual types [Moors et al. 2008]. Familia supports higher-order polymorphism via nested,

parameterized types and interfaces. Because nested components can be further-bound, higher-order

polymorphism in Familia goes beyond Scala’s higher-kinded virtual types.

Family polymorphism. Prior work on family polymorphism has been largely disjoint from

work on parametric polymorphism. Virtual types [Thorup 1997; Torgersen 1998; Igarashi and Pierce

1999] are unbound type members of an interface or class. They support family polymorphism [Ernst

2001], with families identified by an instance of the enclosing class. Virtual types inspired Haskell

to add associated types to type classes [Chakravarty et al. 2005b,a]. Virtual types are not really

“virtual”: once they are bound in a class, their bindings cannot be refined as can those of virtual

methods and virtual classes. In this sense, they act more like type parameters; in fact, virtual types

are considered an alternative approach to parametric polymorphism [Thorup 1997]. It is understood

that virtual types are good at expressing mutually recursive bounds [Bruce et al. 1998]; this use

of virtual types in generic programming is largely subsumed by the more flexible approach of

multi-parameter type classes [Jones et al. 1997] available in Haskell, JavaGI, Genus, and Familia.

Virtual classes, both based on object families [Madsen et al. 1993; Madsen and Møller-Pedersen

1989; Ernst 1999; Aracic et al. 2006; Bracha et al. 2010], and class families [Nystrom et al. 2004,

2006; Clarke et al. 2007; Qi and Myers 2010], offer a more powerful form of family polymorphism

than virtual types do: a subclass can specialize and enrich nested classes via further binding. Path-

dependent types are used to ensure type safety for virtual types and virtual classes (e.g., Nystrom

et al. [2004]; Ernst et al. [2006]). A variety of other mechanisms support further binding, including

virtual classes, mixin layers [Smaragdakis and Batory 2002], delegation layers [Ostermann 2002],

and variant path types [Igarashi and Viroli 2007]. The family-polymorphism mechanism in Familia

is closest to that in Jx [Nystrom et al. 2004]. Our use of prefix types is adapted from Jx; the fact that

self-prefixes can be inferred makes family polymorphism lightweight in Familia.

Unlike the class-family approach taken in Familia, the object-family approach (virtual classes)

does not readily support cross-family inheritance. For example, with virtual classes, class a.b.c

cannot extend class a.d.e because class a.b.c has no enclosing instance of a.d. Tribe [Clarke et al.

2007] and Scala support cross-family inheritance for virtual classes and virtual types, respectively,

but by adding extra complexity to virtual classes or by resorting to verbose design patterns. Few prior

languages support coordinated evolution of related, non-nested families. Cross-family inheritance

and cross-family coevolution are crucial to deploying family polymorphism at large scale, where

we expect components from different modules to be frequently reused and composed.

Scala supports virtual types but not virtual classes, simulating the latter with a design pat-

tern [Odersky and Zenger 2005]. While this pattern seems effective at a small scale for tasks like

the Observer pattern, it does not scale to a larger setting where cross-family inheritance is needed,

where entire frameworks are extended, and where further binding is therefore needed at arbitrary
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depth. The effort required to encode virtual classes in Scala appears to be significant [Weiel et al.

2014]. Scala also supports mixin composition. A mixin has an unbound superclass that is bound in

classes that incorporate the mixin. Familia is expressive enough to encode mixin composition via

late binding of superclasses, rather than requiring a separate language mechanism for mixins.

Familia extends the expressivity and practicality of family polymorphism. It allows classes to be

unbound yet non-abstract. It also allows externally imported names to coevolve with the current

module by further-binding basemodules. Prior languages that support family polymorphism beyond

virtual types have omitted support for parametric polymorphism. We believe support for parametric

polymorphism is still important, because applicative instantiation of generic abstractions is often

more convenient and interoperable [Bruce et al. 1998].

8 CONCLUSION
Familia achieves a high degree of expressive power by unifying multiple powerful mechanisms for

type-safe polymorphism. The resulting language has low surface complexity—it can be used as an

ordinary Java-like object-oriented language that supports inheritance, encapsulation, and subtyping.

With little added syntax, several powerful features become available: parametric polymorphism

with flexible type classes, wrapper-free adaptation, and deep family polymorphism with cross-

family inheritance and cross-family coevolution. We have described the language intuitively with

examples that illustrate its expressive power. Its operational and static semantics are captured by F
2
,

a core language that we have proved type-safe. Comparisons with previous mechanisms for generic

programming show that Familia improves expressive power in a lightweight way. Implementation

of Familia is left to future work but should be guided by the formal semantics of F
2
.
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