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Abstract
Unhandled exceptions crash programs, so a compile-time
check that exceptions are handled should in principle make
software more reliable. But designers of some recent lan-
guages have argued that the benefits of statically checked ex-
ceptions are not worth the costs. We introduce a new stati-
cally checked exception mechanism that addresses the prob-
lems with existing checked-exception mechanisms. In partic-
ular, it interacts well with higher-order functions and other
design patterns. The key insight is that whether an excep-
tion should be treated as a “checked” exception is not a prop-
erty of its type but rather of the context in which the excep-
tion propagates. Statically checked exceptions can “tunnel”
through code that is oblivious to their presence, but the type
system nevertheless checks that these exceptions are han-
dled. Further, exceptions can be tunneled without being acci-
dentally caught, by expanding the space of exception identi-
fiers to identify the exception-handling context. The resulting
mechanism is expressive and syntactically light, and can be
implemented efficiently. We demonstrate the expressiveness
of the mechanism using significant codebases and evaluate
its performance. We have implemented this new exception
mechanism as part of the new Genus programming language,
but the mechanism could equally well be applied to other pro-
gramming languages.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Control
structures

Keywords Exception tunneling; exception handling; Genus
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1. Introduction
Exceptions make code more reliable by helping programmers
handle abnormal or unusual run-time conditions. The core
idea is to transfer control in a nonlocal way to handler code
that can be factored out from common-case code. This sepa-
ration of concerns simplifies code and prompts programmers
not to forget about exceptional conditions.

There has been disagreement since the 1970’s about how
or whether exceptions should be subject to static check-
ing [19, 28]. This disagreement continues to the present
day [17]. Some currently popular languages—Java [20] and
Swift [46]—offer checked exceptions that the compiler stati-
cally ensures are handled. However, exceptions are not part of
type checking in other popular languages such as C++ [44],
C# [23], Scala [36], and Haskell [38].

Proponents of static checking argue that exceptions rep-
resent corner cases that are easy to forget. The evidence
suggests they have a point. One study of a corpus of C#
code [8] determined that 90% of the possible exceptions are
undocumented. Undocumented exceptions make it hard to
know whether all exceptions are handled, and these unhan-
dled exceptions percolate up through abstraction layers, caus-
ing unexpected software failures. Statically checked excep-
tions help programmers build more robust code [48].

Opponents of static checking argue that the annotation
burden of statically checked exceptions does not pay off—
that statically checked exceptions are too rigid to support
common design patterns and common ways in which soft-
ware evolves [11, 51]. They, too, have a point. The problems
with statically checked exceptions have become more appar-
ent in recent years as object-oriented (OO) languages like C#,
Scala, and Java have acquired lambda expressions and the use
of higher-order functions has become more common. As a re-
sult, the promise of exceptions to help make software more
reliable has been partly lost.

Studies of the effectiveness of exception mechanisms have
concluded that existing mechanisms do not satisfy the appro-
priate design criteria [6, 7]. C# does not statically check ex-
ceptions because its designers did not know how to design
such an exception mechanism well, saying “more thinking
is needed before we put some kind of checked exceptions
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mechanism in place” [22]. It seems the long-running conflict
between checked and unchecked exceptions can be resolved
only by a new exception mechanism.

This paper aims to provide a better exception mecha-
nism, one that combines the benefits of static checking with
the flexibility of unchecked exceptions. The new mechanism
gives programmers static, compile-time guidance to ensure
exceptions are handled, but works well with higher-order
functions and design patterns. It adds little programmer bur-
den and even reduces that burden. The run-time overhead
of the mechanism is low, because exception handling does
not require stack-trace collection in common use cases and
avoids the need to wrap checked exceptions inside unchecked
ones.

Two main insights underlie the new design. The first is that
the distinction between “checked” and “unchecked” should
not be a property of the type of the exception being raised, as
it is in Java, but rather a property of the context in which the
exception propagates. In contexts that are aware of an excep-
tion, the exception should be checked statically to ensure that
it is handled. To handle higher-order functions and design
patterns, however, some contexts must be oblivious to ex-
ceptions propagating through them; exceptions should tunnel
uncaught through oblivious contexts, effectively unchecked.

This principle implies that the same exception may be both
checked and unchecked at different points during its propa-
gation. To prevent oblivious code from accidentally catch-
ing exceptions, a second insight is needed: exceptions can be
distinguished by expanding the space of exception identifiers
with an additional label that describes the exception-aware
context in which this exception can be caught. These labels
can be viewed as an extension of the notion of blame labels
found in previous work on gradual typing [50]. Unlike with
gradual typing, this sort of “blame” is not a programmer er-
ror; it is instead a way to indicate that exceptions should tun-
nel through the oblivious code until they arrive at the right
exception-aware context.

We start the rest of the paper by exploring requirements
for a good exception mechanism in Section 2. Sections 3–6
present our new exception mechanism informally in the con-
text of a Java-like language. Section 7 defines a core language
whose semantics show more precisely how the mechanism
works. Using this core language, we prove the key theorem
that all exceptions are handled explicitly. Section 8 describes
our implementation of the new exception mechanism in the
context of the Genus programming language [53]. The effec-
tiveness of the mechanism is evaluated in Section 9, using
code drawn from real-world codebases. Related work is ex-
plored more fully in Section 10; we conclude in Section 11.

2. Design Principles for Exceptions
The goal of an exception mechanism is to simplify and reg-
ularize the handling of exceptional events, making programs

more reliable. However, there are two quite different classes
of exceptional events, with different design goals:

• Failures. Some events cannot reasonably be expected to
be handled correctly by the program—especially, events
that arise because of programmer mistakes. Other events
such as running out of memory also fall into this category.

• Unusual conditions. Other events arise during correct
functioning of the program, in response to an unusual
but planned-for state of the environment, or even just an
unusual case of an algorithm.

These two classes place different requirements on the ex-
ception mechanism. For failures, efficiency is not a concern
because the program is not expected to recover. However,
programmers need the ability to debug the (stopped) program
to discover why the failure occurred, so it is important to
collect a stack trace. Furthermore, since failures imply vio-
lation of programmer assumptions, having to declare them
as part of method signatures or write handler code for them
is undesirable. Nonetheless, there are cases where the ability
to catch failure exceptions is useful, such as when building
frameworks for executing code that might fail.

For the second class of exceptions, unusual conditions, the
design goals are different. Now efficiency matters! Because
exceptions are slow in many common languages, program-
mers have learned to avoid using them. One insight is that
because unusual conditions are part of the correct function-
ing of the program, the overhead of collecting a stack trace is
unnecessary.

Unfortunately, existing languages tend not to support the
distinction between these two exception classes well. For ex-
ample, typical Java usage always leads to stack-trace collec-
tion, making exceptions very expensive. At the same time,
code is cluttered with handlers for impossible exceptions.

2.1 Higher-Order Functions and Exceptions
Current exception mechanisms do not work well in code that
uses higher-order functions. An example is an ML-style map

method that applies a function argument to each element
of a list, returning a new list. Callers of the higher-order
function may wish to provide as an argument a function
that produces exceptions to report an unusual condition that
was encountered, such as an I/O exception. Of course, we
want these exceptions to be handled. But the implementation
of map knows nothing about these exceptions, so if such
exceptions do occur, they should be handled by the caller of
map. It is unreasonable for map either to handle or to declare
them—its code should be oblivious to the exceptions.

This example illustrates why otherwise statically typed
functional programming languages such as ML and Haskell
do not try to type-check exceptions statically [25]. The prob-
lem has also become more prominent in modern OO lan-
guages that have added lambda expressions and are increas-
ingly relying on libraries that use them (e.g., JavaFX, Apache
Spark). The problem is encountered even without lambda ex-
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pressions, though; for example, Java’s Iterator interface
declares no exceptions on its methods, which means that
implementations of Iterator are not allowed to generate
exceptions—unless they are made “unchecked”.

Our goal is to achieve the notational convenience of the
functional programming languages along with the assurance
that exceptions are handled, which is offered by languages
such as Java, Swift [46], and Modula-3 [34]. We propose that
a higher-order function like map should be implementable in a
way that is oblivious to the exceptions possibly generated by
its argument. The possible exceptions of the argument should
not be declared in the signature of map; nor should the code
of map have to say anything about these exceptions.

A subtle problem arises when a higher-order function like
map uses exceptions inside its own implementation. If the ex-
ceptions of the argument and the internal exceptions collide,
the map code could then accidentally catch exceptions that are
not intended for it—an effect we call exception capture by
analogy with the problem of variable capture in dynamically
scoped languages [43]. For modularity, a way is needed to
tunnel such exceptions through the intermediate calling con-
text. In fact, accidentally-caught exceptions are a real source
of serious bugs [10, 13].

An alternative to our oblivious-code approach that has
been suggested previously [18, 24, 41, 47] is to parameter-
ize higher-order code like map over the unknown exceptions
of its argument. This exception polymorphism approach re-
quires writing annotations on oblivious code yet still permits
accidental exception capture.

2.2 Our Approach
Backed by common sense and some empirical evidence, we
believe that code is more reliable when compile-time check-
ing guides programmers to handle exceptional cases. It is dis-
appointing that recent language designs such as C# and Scala
have backed away from statically declared exceptions.

We propose a new statically checked exception mecha-
nism that addresses the weaknesses of prior exception mech-
anisms:

- It supports static, local reasoning about exceptions. Local
reasoning is efficient, but more importantly, it aids pro-
grammer understanding. A code context is required to han-
dle only the exceptions it knows about statically.

- The mechanism is cheap when it needs to be: when excep-
tions are used for nonlocal control flow rather than failures.

- In the failure case, however, the mechanism collects the
stack trace needed for debugging.

- It supports higher-order functions whose arguments are
other functions that might throw exceptions to which the
higher-order code is oblivious.

- It avoids the exception-capture problem both for higher-
order functions and for failures.

3. The Exception Mechanism
We use Java as a starting point for our design because it is
currently the most popular language with statically checked
exceptions. Our design is presented as a version of the Genus
language, a variant of Java with an expressive constrained
genericity mechanism [53]. The essential ideas should ap-
ply equally well to other languages, such as Java, C# [31],
Scala [36], and ML [32]. Since exception-oblivious code
(like map) is often generic, it is important to study how ex-
ceptions interact with sophisticated generics.1

Previous languages have either had entirely “checked”
or “unchecked” exceptions (in Java’s terminology), or, as
in Java, have assigned exception types to one of these two
categories. Our insight is that “checked” vs. “unchecked” is
a property of the context of the exception rather than of its
type. Any exception should be “checked” in a context that is
not oblivious to the exception and can therefore handle it. But
in a context that is oblivious to the exception, the exception
should be treated as “unchecked”.

Genus requires that a method handle or explicitly propa-
gate all exceptions it knows can arise from operations it uses
or methods it calls. If the implementation of a method explic-
itly throws an unhandled exception whose type (or the super-
type thereof) is not listed in the method’s header, the program
is rejected.

Like in Java, exceptions can be handled using the try–
catch construct, and a finally block that is always executed
may be provided. (The try-with-resources statement of Java
7 is easily supported; it is orthogonal to the new features.)

A method that wishes merely to propagate an exception to
its caller can simply place a throws clause in its signature. We
say such an exception propagates in checked mode. Unlike in
Java, exceptions in checked mode do not cause stack-trace
collection.

3.1 Failures
Unlike Java, our mechanism makes it easy for the program-
mer to indicate that an exception should not happen. The pro-
grammer ordinarily does this by putting a fails clause in the
method header. Any caller of the method is then oblivious to
the exception, meaning that the exception will be treated as
unchecked as it propagates further. When code fails because
of an exception, the exception propagates in a special mode,
the failure mode.

For example, a programmer who is certain that the Object
class can be loaded successfully can write

Class loadObject() fails ClassNotFoundException {
return Class.forName("genus.lang.Object");

}

where the method forName in Class declares ClassNotFound-
Exception in its throws clause. Note that a fails clause

1 Genus uses square brackets rather than angle brackets for generic type
arguments: List[T] rather than List<T>. For brevity, we use Genus syntax
and the Genus equivalents of Java core classes without further explanation.
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is really part of the implementation rather than part of the
method signature or specification. We write it in the header
just for convenience.

Exceptions propagating in failure mode also differ in what
happens at run time. Programmers need detailed information
to debug the stopped program to discover how the failure
occurred. Therefore, failure exceptions collect a stack trace.
This is relatively slow (as slow as most Java exceptions!) but
efficiency is not a concern for failures.

3.2 Avoiding Exception Capture
Since exceptions propagating in failure mode do not appear
in method signatures, it is important to avoid catching them
accidentally. For example, consider the following code that
calls two functions g() and h():

void f() {
try {

g(); // signature says "throws MyExc"
h(); // signature doesn’t say "throws MyExc"

} catch (MyExc e) {...}
}

Suppose that because of a programmer mistake, the call to
h() unexpectedly fails with exception MyExc. If this excep-
tion were caught by the catch clause, f() would execute
code intended to compensate for something that happened in
g(). We prevent this undesirable exception capture by en-
suring that failure exceptions cannot be caught by any ordi-
nary catch clauses: failure exceptions tunnel past all ordinary
catch clauses.

Although exceptions in failure mode are not normally
handled, there may be value in catching them at the top level
of the program or at the boundary between components, to
allow for more graceful exit. Genus supports this with a rarely
used catch all construct that catches all exceptions of a
given type, regardless of propagation mode. For example, if
the try statement above were extended to include a second
clause catch all (MyExc e) {...}, the first catch clause
would catch the expected MyExcs thrown by g, and the second
catch all clause would catch failure-mode MyExcs tunneled
through h.

3.3 Fail-by-Default Exceptions
Java has a commonly accepted set of exceptions that usually
correspond to programmer mistakes: the built-in subclasses
of RuntimeException or Error. To reduce annotation bur-
den for the programmer, our mechanism does not ordinarily
require writing a fails clause in order to convert such excep-
tions to failure mode. We say these exceptions fail by default.

Fail-by-default exceptions are different from Java’s un-
checked exceptions. Unchecked exceptions conflate failures
with ordinary exceptions that are tunneling through oblivious
code but that still ought to be subject to static checking.

In contrast, fail-by-default exceptions remain in checked
mode until they reach a method-call boundary; they con-
vert from checked mode to failure mode only if the current
method does not declare the exception in its throws clause.

1 List[R] map[T,R](Function[T,R] f, List[T] src) {
2 List[R] dest = new ArrayList[R]();
3 for (T t : src) dest.add(f.apply(t));
4 return dest;
5 }

Figure 1: A higher-order function written in Genus

1 List[String] x = ...; List[Class] y;
2 try { y = map(Class::forName, x); }
3 catch (ClassNotFoundException e) {...}

Figure 2: Passing a function that throws extra exceptions

A fail-by-default exception collects a stack trace only if and
when it does fail, so code can still handle exceptions like
NoSuchElementException efficiently. It is therefore reason-
able and useful to write code that handles such exceptions.

Genus also permits the set of fail-by-default exceptions to
be changed on a per-class basis by adding a throws or fails
clause to the class definition.

4. Higher-Order Abstractions and Tunneling
As discussed in Section 2.1, higher-order functions pose

a problem for statically checked exception mechanisms. The
same problem arises for many common object-oriented de-
sign patterns, which are essentially higher-order functions.
Our solution is to tunnel exceptions through oblivious code.

For example, Genus allows the programmer to pass to the
higher-order function map (Figure 1) an implementation of
Function that throws exceptions, even though the signature
of Function does not mention any exceptions. If the passed
Function throws an exception, that exception is tunneled
through the exception-oblivious code of map to the caller of
the exception-aware code that called map.

In the code of Figure 2, the method forName in class Class
is passed to map. This call is legal even though forName is
declared to throw an exception ClassNotFoundException.
Since map is oblivious to this exception, it cannot be expected
to handle it. By contrast, the caller of map is aware that an
object that throws exceptions is used at a type (Function)
that does not declare any exceptions. Because it is aware of
the exception, the caller is responsible for the exception.

If ClassNotFoundException arises at run time, it tunnels
through the code of map and is caught by the catch clause.
Alternatively, the caller could have explicitly converted the
exception to a failure (via a fails clause) or explicitly al-
lowed it to propagate (via a throws clause). In any case, ex-
ception handling is enforced statically.

4.1 Exception Tunneling is Safe and Light
In Java, the rigidity of checked exceptions has led to some
verbose and dangerous idioms, especially when higher-order
functions and design patterns are used. Exception tunneling
helps avoid these undesirable programming practices.

In particular, Java programmers often abandon static
checking of exceptions to make it possible for their excep-
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interface Visitor {
void visit(IfTree t);
...

}

class IfTree implements Tree {
void accept(Visitor v)

{v.visit(this);} ...
}

class Pretty implements Visitor { ...
void visit(IfTree t) {

try {...} // pretty-print IfTree
catch (IOException e) { throw new UncheckedIO(e); }

} // wraps IOException
}

void printTree(Tree t, Pretty v) throws IOException {
try { t.accept(v); }
catch (UncheckedIO u) { throw u.getCause(); }

} // unwraps UncheckedIO

class UncheckedIO extends RuntimeException {...}

Figure 3: The pretty-printing visitor in javac (simplified).
Code for exception wrapping and unwrapping is highlighted.

weak interface Visitor{
void visit(IfTree t);
...

}

class IfTree implements Tree {
void accept(Visitor v)

{v.visit(this);} ...
}

class Pretty implements Visitor { ...
void visit(IfTree t) throws IOException {...} // OK

}

1 void printTree(Tree t, Pretty v) throws IOException {
2 t.accept(v);
3 }

Figure 4: Exception tunneling in javac, ported to Genus.

tions to pass through exception-oblivious higher-order code.
They either define their own exceptions as unchecked, or
they cope with preexisting checked exceptions by calling un-
safe APIs like sun.misc.Unsafe::throwException [29], or
by wrapping checked-exception objects inside unchecked-
exception objects. Wrapping with unchecked exceptions is
the safest of these workarounds because it makes exception
capture less likely, but wrappers are verbose and expensive.

Figure 3 shows an example of this idiom taken from the
javac compiler [37], which contains a number of visitors for
the Java AST. In order to conform to the Visitor interface,
the visit methods in the pretty-printing visitor (Pretty)
wrap the checked IOException into unchecked wrappers,
which are then unwrapped as shown in method printTree.
This programming pattern is verbose, abandons static check-
ing, and is likely to be slow due to stack-trace collection.

When written in Genus, the same visitor pattern (Fig-
ure 4) does not require exception wrapping or unwrapping
to achieve tunneling. The modifier weak on the interface
Visitor (see Section 4.4) makes it legal for its implemen-
tations to declare new exceptions (the interface Function

is annotated similarly). In printTree, the call t.accept(v)
passes a visitor object that throws the additional exception
IOException. If this exception is thrown by the visitor, it
tunnels until it reaches printTree. Thus, the antipattern of
exception wrapping becomes unnecessary.

Checked Tunneling Failure
Local, static checking Yes No No
Stack-trace collection No No Yes

Checked
mode

Failure
mode

Tunneling
mode

(1)

(2) (3)

(4)

(1)(2): §4.2 and §4.3 (3)(4): §3.1 and §3.3

Figure 5: Three exception propagation modes

List[R] map[T,R](Function[T,R] f,
List[T] src) {

List[R] dst = new ArrayList[R]();
mapImpl(f, src, dst);
return dst;

}
void mapImpl[T,R](Function[T,R] f,

List[T] s, List[R] d) {
if (d.size() >= s.size()) return;
d.add(f.apply(s.get(d.size())));
mapImpl(f, s, d);

}

map
mapImpl

caller of map

mapImpl

mapImpl
f checked

tunneling

checked

mapImpl
mapImpl
mapImpl

Figure 6: A recursive implementation of map (left) and a stack
snapshot showing propagation of an exception caused by f (right).
The stack grows downwards.

4.2 Tunneling Checked Exceptions
Earlier we discussed two modes of exception propagation:
checked mode and failure mode. Tunneling mode is a third
mode of propagation. The relationships between the three
modes are summarized in Figure 5. In tunneling mode, as in
checked mode, static checking enforces handling of excep-
tions. As in failure mode, these exceptions do not need to be
declared in signatures of the methods they tunnel through.

A given exception may propagate in more than one mode.
Consider the alternative, slightly contrived implementation
of map in Figure 6. It calls a helper method mapImpl, which
then recursively calls itself to traverse the list. Suppose an
exception arises when function f is applied to the sixth el-
ement in the list. Figure 6 shows a snapshot of the current
call stack. Since f is the place where the exception is gener-
ated, the exception first propagates in checked mode within
the function f. Because its caller mapImpl is oblivious to the
exception, the exception then switches to tunneling mode and
propagates through all the mapImpl stack frames. Finally, the
caller of map knows about the exception and thus can handle
it. The exception returns to checked mode when it reaches
this caller. From there, it can be either caught, rethrown in
checked mode, or turned into failure.

4.3 Tunneling, Exception Capture, and Blame
Tunneling avoids the phenomenon of exception capture dis-
cussed in Section 3. In OO languages like Java and C#, ex-
ception capture occurs because of an unexpected collision in
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the space of exception identifiers; an exception identifier in
these languages is simply the exception type. We avoid ex-
ception capture by augmenting the identity of a thrown ex-
ception to include a notion of “blame”.

To ensure that every exception is eventually either handled
or treated as a failure, a method must discharge every excep-
tion it is aware of statically. There are three ways to discharge
an exception: 1) handle it with a catch clause, 2) propagate
it to its caller as a checked exception via a throws clause, or
3) convert it to a failure via a fails clause (which is implicit
for fail-by-default exceptions).

Each of these three ways discharges exceptions from a
set of program points that are statically known to give rise
to these exceptions. We say these program points can be
blamed for the exception. With each such program point, we
associate a blame label that identifies where responsibility
lies for the exception.

At run time, then, a thrown exception is identified both
by its exception type, and by its blame label. An exception
is discharged (e.g., caught by a catch clause, or converted
to failure by a fails clause), only if the blame label of
the exception lies within the lexical scope covered by that
particular discharging point. Otherwise, the exception is one
that the discharging point is oblivious to.

We use the word “blame” because this mechanism is re-
lated to the notion of blame used in work on behavioral con-
tracts [14, 15] and gradual typing [50]. A compiler for a grad-
ually typed language might label program points with unique
identifiers wherever there is a mismatch between expected
and actual types. When a cast failure happens at run time,
blame can be attributed to the program point at fault.

Here, mismatch occurs analogously when the type of an
actual argument declares exceptions not encompassed by
those declared by the formal parameter type. Any exception
mismatch in the parameters passed to a method call causes
blame to be assigned to the program point of the method call.
However, unlike in gradual typing, exceptions arising from a
program point assigned blame do not imply mistakes,2 since
the programmer must discharge the exceptions.

For example, in Figure 2, the program point where Class::
forName is used at type Function is in the scope of the ensu-
ing catch clause at line 3. Because it creates a mismatch with
the signature of Function, this program point can be blamed
for the exception. Similarly, in Figure 4, the shaded program
point (line 2) where a Pretty object is used at type Visitor

is in the scope of the clause throws IOException (line 1).
Because there is a mismatch between Pretty and Visitor,
the shaded program point can be blamed for the exception.
Throughout the paper, we highlight program points that are
assigned blame and their matching discharging points.

2 Findler et al. [15] use the term “blame” to mean “the programmer should
be held accountable for shoddy craftsmanship”. At the risk of confusion, we
reuse the term to mean there is an exception to be discharged in this context.

weak interface Iterator[E] {
E next() throws NoSuchElementException;

// The exception indicates iteration is over
...

}
class Tokenizer implements Iterator[Token] {
Token next() throws IOException,

NoSuchElementException {...}
...

}

Figure 7: The Iterator interface and an inexact subtype

Iterator[Token] iter = new Tokenizer(reader);
while (true) {

Token t;
try { t = iter.next(); }
catch (NoSuchElementException e) { break; }
catch (IOException e) { log.write(...); continue; }
...

}

Figure 8: Using a Tokenizer as an Iterator generates blame.

4.4 Weak Types
Some supertypes, usually interfaces, abstract across families
of otherwise unrelated subtypes. Such interfaces often arise
with design patterns like Iterator and Visitor. The in-
tention of such types is to capture only a fragment of the
behavior—a core set of methods—so that various implemen-
tations can have a common interface other software compo-
nents can use.

Frequently there is utility in allowing subtypes of these
interfaces to throw new exceptions. For example, suppose
a lexer breaks input files into tokens; an Iterator might
be used to deliver the tokens to code that consumes them.
However, reading from a file can cause an IOException; the
exception cannot reasonably be handled by the iterator, so
should be propagated to the client code. In Java, program-
mers cannot throw a checked exception like IOException in
such an implementation; they must either resort to unchecked
exceptions, abandoning static checking, or define their own
interfaces that compose poorly with existing components.

Genus addresses this need for flexibility. Methods that
allow their overridings to throw new exceptions are declared
with the weak modifier. The weak modifier can also be applied
to a type definition to conveniently indicate that all methods
in that type are intended to be weak; see the definition of
Iterator in Figure 7 for an example.

A subtype of a weak type can be inexact; for example,
the Tokenizer class in Figure 7 is inexact with respect to its
weak interface since its next method adds IOException. A
Tokenizer can be used as an Iterator but this generates
blame, forcing IOException to be handled, as in Figure 8.

Behavioral subtyping and conformance. Behavioral sub-
typing [27] is based on the idea that the allowed uses of an
object should be known based on its apparent type. There-

6



class ObjectPool<T> {
Factory<T> f;
T borrow() throws Exception

{... f.make() ...}
...
}
interface Factory<T> {
T make() throws Exception;
}
class ConnFactory implements

Factory<Connection> {
Connection make()

throws SQLException {...}
}

class ObjectPool[T]
where Factory[T] {

T borrow()
{... T.make() ...}

...
}
weak constraint Factory[T]{
static T make();

}
model ConnFactory for

Factory[Connection] {
static Connection make()

throws SQLException {...}
}

Figure 9: Object pool in Java (left) and in Genus (right)

fore, an overriding method cannot add new exceptions to the
supertype’s signature for the method.

Our mechanism relaxes this requirement for weak types.
Methods of an inexact subtype must obey the supertype
specification—except that they can throw more exceptions.
This implies that their additional exceptional conditions must
be signaled with different types than those in the supertype
method—Tokenizer indicates an I/O problem by throwing
IOException, not NoSuchElementException—and that the
exceptional conditions the supertype defines must not be sig-
naled in other ways—Tokenizer cannot issue a failure or
return null when the iteration has no more elements.

5. Generics and Exceptions
We have also used Genus to explore the important interaction
between exceptions and mechanisms for constrained para-
metric polymorphism. Various languages constrain generic
type arguments in various ways: for example, Java and C#
use subtyping constraints, whereas Haskell and Genus use
the more flexible mechanism of type classes [49].

Genus provides constrained parametric polymorphism
via constraints and models [53]. Like type classes, Genus
constraints are predicates describing type features required
by generic code. Genus models show how types can sat-
isfy constraints, like type class instances in Haskell. Unlike
Haskell instances, models are explicitly part of the instantia-
tion of a generic abstraction. For example, the two instantia-
tions Set[String] and Set[String with CaseInsensEq]

are different types distinguished by the use of the model
CaseInsensEq in place of default string equality. This dis-
tinction is helpful for precisely reasoning about exceptions.

As with interfaces, we would like the flexibility to in-
stantiate generic abstractions with types whose operations
throw additional exceptions not provided for by the con-
straint. Thus, similar to interfaces, Genus constraints can be
weak; models may be inexact with respect to the weak con-
straints they witness.

The example in Figure 9 shows the utility of this feature,
comparing Java and Genus code for an object pool abstrac-
tion. The left side of the figure shows an example adapted

from the Apache Commons project [2]. The abstract factory
type Factory defines a method make with a signature that de-
clares “throws Exception”. This idiom is common in Java
libraries, because it permits subtypes to refine the actual ex-
ceptions to be thrown.

However, such declarations are a source of frustration
for Java programmers [51]. Consider that method make is
called by the method borrow in ObjectPool to create a
new object in case there is no idle one, so borrow must
also declare “throws Exception”. The precise exception
(in the example, SQLException) is therefore lost. Clients of
ObjectPool<Connection> must handle Exception, which is
no better, and perhaps worse, than having an unchecked ex-
ception. Further, client code that handles the overly general
exception is more likely to suffer from exception capture.

The right side of Figure 9 shows a reasonable way to im-
plement the example in Genus. A constraint Factory[T]

is used to express the requirement that objects of type T

can be made in some way; because it does not declare
any exceptions, method borrow need not either. However,
a model like ConnFactory can add its exceptions such as
SQLException to the method make. Client code can then use
the type ObjectPool[Connection with ConnFactory] to
recycle Connection objects. Because the model is part of the
type, it is statically apparent that the exception SQLException

may be thrown; the client code will be required to handle this
exception—but only this exception.

6. Exactness Analysis
The new exception mechanism poses new challenges for type
checking. One challenge is that the identity of an exception
includes a blame label, so blame should not be allowed to es-
cape its scope. Otherwise, an exception might not be handled.

For example, consider the first definition of the Peeking-

Iterator class in Figure 10. It decorates a wrapped Iterator

in field inner to support one-element lookahead. Its next and
peek methods call inner.next(). Per Section 4.4, it is possi-
ble to pass an object of some inexact subtype of Iterator to
the constructor, to be assigned to inner. However, Iterator
is a weak type, so the methods of the actual object being
passed may throw exceptions not declared by Iterator. If
the assignment to inner were allowed, the same exceptions
would propagate when the next method of the Peeking-

Iterator object were called. And this call could be delayed
until outside the context that is aware of the mismatch with
Iterator. In this case, the exceptions would not be guaran-
teed to be handled.

Therefore, we want to detect statically that the assignment
to inner lets the blame from the inexact object escape. Stor-
ing an inexact object into a data structure at a weak type, or
even returning an inexact object from a method, may permit
such an escape of blame.

A second challenge for the new exception mechanism,
and indeed for exception mechanisms generally, is that pro-
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1 class PeekingIterator[E] implements Iterator[E] {
2 Iterator[E] inner;
3 PeekingIterator(Iterator[E] it) { inner = it; ...}
4 E peek() throws NoSuchElementException
5 {... inner.next() ...}
6 ...
7 }

8 class PeekingIterator[I extends Iterator[E], E]
9 implements Iterator[E] {

10 I inner;
11 PeekingIterator(I it) { inner = it; ...}
12 E peek() throws NoSuchElementException
13 {... inner.next() ...}
14 ...
15 }

Figure 10: Two definitions of PeekingIterator. The top one
allows blame to escape, but a warning is issued for the constructor.
The bottom one uses dependent exactness to soundly avoid the
warning.

grammers should not be forced to write handlers for program
points where exceptions cannot happen. To address this chal-
lenge, the location of blame should be precise. Figure 8 offers
an example of this problem. The method call iter.next()
might appear (to the compiler) not to throw any exceptions
because iter has type Iterator[Token], yet we know that
it may throw an IOException because iter is initialized to
a Tokenizer. A safe, conservative solution would be to re-
quire all of the code below this initialization to be wrapped
in a try–catch. But this solution would make it difficult to
continue the iteration after an IOException is raised.

Genus addresses these two challenges using an intraproce-
dural program analysis that assigns exactness to uses of weak
types, with little annotation effort by the programmer.

6.1 Exactness Annotations and Exactness Defaults
Indicating intolerance of inexactness at use sites. When
a formal parameter or local variable is assigned a weak type,
the programmer can annotate the type with @exact to indicate
that an exact subtype must be used. For example, if the
programmer adds @exact to the formal parameter of the
constructor at line 3 in Figure 10,

PeekingIterator(@exact Iterator[E] it) {inner = it;...}

it becomes a static error to pass an inexact implementation
of Iterator to the constructor. So it is guaranteed that using
inner will not generate unexpected exceptions. By contrast,
without @exact, Genus issues a warning about the assign-
ment to the escaping pointer inner at line 3. If the exception
is actually thrown at run time, it is converted into failure and
the usual stack trace is collected.

Although @exact might appear to add notational burden,
our experience with porting existing Java code into Genus
(Section 9) suggests that this escape hatch is rarely needed.
We have not seen the need to use the @exact annotation to
dismiss such warnings in existing code ported from Java.

It seems that programmers use weak types differently from
other types—weak types provide functionality rather than
structure. Further, exactness defaults and exactness inference
(Section 6.2) reduce annotation overhead, and exactness-
dependent types (Section 6.3) provide more expressiveness.

Exactness defaults. Exactness defines what exceptions that
are not declared by the weak type might nevertheless be
generated by the term being typed. Exactness E is formally a
mapping from methods to sets of exceptions. These mappings
form a lattice ordered as follows:

E1 ≤ E2 ⇔ dom(E1) ⊆ dom(E2) ∧ ∀m. E1(m) ⊆ E2(m)

The bottom lattice element is strict exactness, denoted by ∅.
To avoid the need for programmers to write the annotation

@exact for most uses of weak types, the compiler determines
exactness using a combination of exactness defaults and au-
tomatic exactness inference. To see how these mechanisms
work, consider the code in Figure 11.

1. Weak types used as return types or field types are exact, as
these are the channels through which pointers can escape.
For these types, we have E = ∅.

2. Methods and constructors are implicitly polymorphic with
respect to exactness. That is, they can be viewed as param-
eterized by the exactness of their argument and receiver
types.

3. Weak types in a local context are labeled by exactness
variables: for example, x and y in Figure 11, at lines 2
and 11 respectively.
A unification-based inference engine solves for these vari-
ables, inferring exactness from the local variable uses
(Section 6.2).

4. For a procedure call, an exactness variable is generated for
each argument and/or receiver whose formal parameter
type is weak. Exactness variables of this kind in Figure 11
are z (line 9) and w (line 12).

5. Recall that Genus supports constrained parametric poly-
morphism via type constraints [53]. Subtype constraints
and where-clause constraints can also specify exactness.
Their default exactness is deduced in ways similar to
those listed above. For example, in Figure 11 the use of
Runnable in g’s signature (line 1) constrains the type pa-
rameter T, so its exactness is resolved to a fresh name e,
with respect to which g is polymorphic.

6.2 Solving Exactness Constraints
At each assignment (including variable initialization and ar-
gument passing) to a variable with weak type τ , inexact val-
ues must not escape into variables with exact types. There-
fore, constraints of form τ⟨Er⟩ ≤ τ⟨El⟩ are generated, where
El is the exactness of the left-hand side expected type τ in an
assignment, resolved as described in Section 6.1, and Er is
the exactness of the right-hand side actual type with respect
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weak interface Runnable { void run(); }

1 void g[T extends Runnable⟨e⟩](List[T] l) {
2 Runnable⟨x⟩ r0;
3 if (new Random().nextBoolean())
4 r0 = new Runnable()
5 { void run() throws IOException {...} };
6 else

7 r0 = new Runnable()
8 { void run() throws EOFException {...} };
9 try {r0.run();} // Runnable⟨z⟩

10 catch (IOException ex) {...}
11 for (Runnable⟨y⟩ r : l)
12 r.run(); // Runnable⟨w⟩
13 }

Figure 11: Running example for exactness analysis. Uses of weak
types are tagged by exactness variables, to be fed into the solver.
(EOFException is a subtype of IOException.)

to τ . For example, the code of Figure 11 then generates the
following constraints with line numbers attached:

τ⟨Er⟩ ≤ τ⟨El⟩
Runnable⟨{run 7→ IOException}⟩ ≤ Runnable⟨x⟩ 4
Runnable⟨{run 7→ EOFException}⟩ ≤ Runnable⟨x⟩ 7

Runnable⟨x⟩ ≤ Runnable⟨z⟩ 9
Runnable⟨e⟩ ≤ Runnable⟨y⟩ 11
Runnable⟨y⟩ ≤ Runnable⟨w⟩ 12

Iterator[T]⟨∅⟩ ≤ Iterator[T]⟨v⟩ 11

The last constraint is due to desugaring of the loop at
lines 11–12:
for (Iterator[T]⟨v⟩ i = l.iterator();;) {

Runnable⟨y⟩ r;
try { r = i.next(); }
catch (NoSuchElementException ex) { break; }
r.run();

}

Note that enhanced for loops are translated differently by
Java and Genus. Genus exceptions are fast enough that it is
often faster to call next() and catch a final exception, rather
than calling hasNext() on every iteration.

The compiler solves these constraints by finding the least
upper bounds of x, y, z, w, and v:

x = z = {run 7→ {IOException, EOFException}}
y = w = e
v = ∅

The fact that a solution exists implies that inexact pointers
will not escape to the heap, addressing the first challenge of
escaping blame.

The solution also reveals precisely where exception han-
dling is required, addressing the second challenge of blame
precision. Specifically, the solution to each variable gener-
ated via the fourth case of exactness defaults (Section 6.1)
tells what exception can be produced by the method call. In
our running example, the solution to z is that the method call
r0.run() may throw IOException or EOFException, which
are handled by the catch block. Notice that although mis-

matches happen at lines 4 and 7, the blame does not take
effect until the method call at line 9.

The solution to w is the polymorphic label e, which means
that the current context is oblivious to whatever exceptions
correspond to e when g is called, as discussed in Section 4.

6.3 Exactness-Dependent Types
It is possible to write a type-safe PeekingIterator using
the @exact annotation, but we might want a peeking itera-
tor that throws the same exceptions as its underlying iter-
ator does. This expressiveness can be obtained by making
PeekingIterator talk about the potential mismatch, as in
the bottom definition of PeekingIterator in Figure 10. The
class is now parameterized by the type of the iterator it dec-
orates. In the using code below, PeekingIterator is instan-
tiated on an inexact subtype of Iterator, so the compiler
requires the exception to be handled:

try {
PeekingIterator[Tokenizer,Token] pi =

new PeekingIterator[Tokenizer,Token](...);
while (pi.hasNext()) {... pi.peek() ...}

} catch (IOException e) {...}

Parameterized by a weak constraint, the Genus version of
ObjectPool in Figure 9 is similarly exactness-dependent.

The special this keyword, when referring to the cur-
rent object of a weak class, also has an exactness-dependent
type—it is dependent on the exactness of the run-time class
of the object with respect to the enclosing weak class. Since
the run-time class is statically unknown, the compiler must
assume that it can add arbitrary exceptions. Thus it results in
a compiler warning to use this in ways that generate blame.
However, we expect this to be rare: most weak types are in-
terfaces, which do not normally use this.

7. Formalization
We formalize the new exception mechanism using a core
calculus, CBC (for Checked Blame Calculus).

7.1 Syntax and Notations
Figure 12 defines both a surface and a kernel syntax for CBC.
Programs are written in the surface syntax, and rewritten to
and evaluated in the kernel calculus. Applications in surface
terms are tagged by unique blame labels (ranged over by ℓ)
representing lexical positions where blame can arise. Rewrit-
ing propagates these labels from the surface language to the
kernel language, for blame tracking during kernel evaluation.

The surface syntax assumes a fixed set of exception names
ranged over by E. The kernel syntax allows them to be
labeled to form new names; E and Eℓ are different names.

Surface types (τ ) include weak types and strong types.
A strong type (σ) is either the base type B or a function
type τ ⊥−→ [σ]E that does not allow mismatch against E.
(An overline denotes a (possibly empty) set.) A weak type
τ ⊤−→ [σ]E , on the other hand, tolerates mismatch. Notice that
function return types must be strong to prevent blame from
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Surface terms f ::= b | x | λx :τ . f | {f1 f2}ℓ |
let x :τ ← f1 in f2 |
throw E | try f1 catch E ▷ f2

Surface types τ ::= σ | τ ⊤−→ [σ]E
Surface strong types σ ::= B | τ ⊥−→ [σ]E

Kernel terms e ::= b | x | λx :T . e | e1 e2 |
let x :T ← e1 in e2 |
throw U | try e1 catch U ▷ e2

Kernel types T ::= S | T ⊤−→ [S]U
Kernel strong types S ::= B | T ⊥−→ [S]U
Kernel exceptions U ::= E | Eℓ

Environments Γ ::= ∅ | Γ, x :τ⟨E⟩
Escape kind K ::= ⊤ | ⊥

K(σ) = ⊥ Γ⊥ = {x :σ⟨∅⟩ | x :σ⟨∅⟩ ∈ Γ }
K
(
τ ⊤−→ [σ]E

)
= ⊤ Γ⊤ = Γ

Figure 12: Syntax of CBC

escaping. The same can be said about kernel types. Since
there is an obvious injection (syntactic identity) from surface
types to kernel types, we abuse notation by using τ and σ in
places where kernel types T and S are expected.

Environments Γ contain mappings from variables to their
types and exactness. Exactness is represented by sets of ex-
ceptions. Strong types enforce strict exactness, so their exact-
ness is represented by ∅. The auxiliary function K(·) returns
⊥ for strong types and ⊤ for weak types; values of weak
types must not escape. Γ⊥ retains only the strongly-typed
variables in Γ.

7.2 Semantics
Surface-to-kernel rewriting. Figure 13 defines the rewrit-
ing rules. The judgment Γ;K ⊢ f ⇝ e : [τ ]E translates the
surface term f to the kernel term e, assigns f the type τ , and
infers the exceptions E that evaluating e might raise.

Typing is dependent on K, which indicates whether the
term in question is guaranteed not to escape. For example,
the left-hand-side term in an application is type-checked with
K = ⊤ as in R-APP-E and R-APP-I, while the body of an
abstraction is type-checked with K = ⊥ as in R-ABS. R-
VAR-W denies first-class citizenship to weakly typed vari-
ables, and augments the return type if the environment indi-
cates inexactness.

Exception mismatch is computed using the subtyping re-
lation≲E , as in R-APP-I and R-LET. But only with R-APP-I
can blame take effect, and its translation is consequently less
obvious. To avoid exception capture, we need to give new
names to exceptions involved in the mismatch. Therefore,
the translation wraps the argument in an abstraction, which,
when applied, catches any exceptions in the mismatch (E)
and rethrows their labeled versions (Eℓ). The caller is aware
of the exceptions E, so it catches the labeled exceptions tun-
neled to its context and strips off their labels.

Semantics of the kernel calculus. The static and dynamic
semantics of the kernel are omitted here for lack of space but
can be found in the technical report [54]. The static seman-
tics is largely similar to the typing induced by rewriting, ex-
cept that the kernel need not worry about exception capture.
Hence, exception propagation happens in the usual way.

7.3 Type Safety
The type system guarantees that if a program can be typed
without exceptional effects, it cannot get stuck when evalu-
ated, or terminate in an exception. This guarantee easily fol-
lows from two other standard results.

First of all, the kernel type system is sound:

Theorem 1 (Kernel soundness: preservation and progress)

- If ∅;K ⊢ e : [T ]U and e −→ e′ then ∅;K ⊢ e′ : [T ]U .
- If ∅;K ⊢ e : [T ]U then either

1. ∃v. e = v, or
2. ∃U0 ∈ U. e = throw U0, or
3. ∃e′. e −→ e′.

Proof. This is proved in the usual way, by induction on the
kernel typing derivation. See the technical report for details
of this proof and of other formal results in this paper.

Second, the translation from the surface language to the
kernel language is type-preserving:

Lemma 1 (Rewriting preserves types)
If Γ;K ⊢ f ⇝ e : [τ ]E then Γ;K ⊢ e : [τ ]E .

Proof. By induction on the derivation of the translation.

The guarantee that well-typed programs handle their ex-
ceptions is a direct corollary of these two previous results:

Corollary 1 (No uncaught exceptions)
If ∅;⊥ ⊢ f ⇝ e : [τ ]∅ then ∃v. e −→∗ v.

8. Implementation
We have implemented the new exception mechanism for the
Genus programming language. The implementation consists
of about 5,800 lines of code, extending the compiler for
the base Genus language [53]. Genus is implemented using
Polyglot [35], so code generation works by translating to Java
code, using a Java compiler as a back end.

The rest of this section focuses on the translation into
Java. The translation is guided by two goals: 1) it should
prevent accidental capturing of exceptions, and 2) it should
add negligible performance overhead to normal control flow.

8.1 Representing Non-Checked Exceptions
Unlike exceptions in checked mode, exceptions traveling in
tunneling mode or failure mode must acquire new identi-
ties to avoid accidental capturing. These identities are imple-
mented by wrapping exceptions into objects of classes Blame
and Failure. Both classes extend RuntimeException, but
Blame does not collect a stack trace.
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Γ;K ⊢ f ⇝ e : [τ ]E [R-CONST]
Γ;K ⊢ b ⇝ b : [B]∅

[R-VAR-S]
x :σ⟨∅⟩ ∈ ΓK

Γ;K ⊢ x ⇝ x : [σ]∅

[R-VAR-W]
x :τ ⊤−→ [σ]E1

⟨E2⟩ ∈ ΓK

Γ;K ⊢ x ⇝ x :
[
τ ⊤−→ [σ]E1∪E2

]
∅

[R-ABS]
ΓK , x :τ⟨∅⟩;⊥ ⊢ f ⇝ e : [σ]E

Γ;K ⊢ λx :τ . f ⇝ λx :τ . e :
[
τ ⊥−→ [σ]E

]
∅

[R-LET]
Γ;K(τ1) ⊢ f1 ⇝ e1 : [τ3]E1

τ3 ≲E τ1 Γ, x :τ1⟨E⟩;K ⊢ f2 ⇝ e2 : [τ2]E2

Γ;K ⊢ let x :τ1 ← f1 in f2 ⇝ let x :τ1 ← e1 in e2 : [τ2]E1∪E2

[R-APP-E]
Γ;⊤ ⊢ f1 ⇝ e1 :

[
τ1

⊤−→ [σ]E3

]
E1

Γ;K(τ1) ⊢ f2 ⇝ e2 : [τ2]E2
τ2 ≲∅ τ1

Γ;K ⊢ {f1 f2}ℓ ⇝ e1 e2 : [σ]E1∪E2∪E3

[R-APP-I]
Γ;⊤ ⊢ f1 ⇝ e1 :

[
τ1

⊤−→ [σ1]E3

]
E1

Γ;K(τ1) ⊢ f2 ⇝ e2 : [τ2]E2
τ2 ≲E τ1 τ2 = τ21

⊤−→ [σ22]E4

Γ;K ⊢ {f1 f2}ℓ ⇝ try e1
(
let x :τ2 ← e2 in λy :τ21 . try x y catch E ▷ throw Eℓ

)
catch Eℓ ▷ throw E : [σ1]E1∪E2∪E3∪E

[R-TRY-CATCH]
Γ;K ⊢ f1 ⇝ e1 : [τ ]E1

Γ;K ⊢ f2 ⇝ e2 : [τ ]E2
E ∈ E1

Γ;K ⊢ try f1 catch E ▷ f2 ⇝ try e1 catch E ▷ e2 : [τ ](E1\{E})∪E2

[R-THROW]
Γ;K ⊢ throw E ⇝ throw E : [σ]E

[R-SUBSUME]
Γ;K ⊢ f ⇝ e : [τ1]E1

τ1 ≲∅ τ2 E1 ⊆ E2

Γ;K ⊢ f ⇝ e : [τ2]E2

τ1 ≲E τ2 [SS-B]
B ≲∅ B

[SS-S]

τ2 ≲∅ τ1 σ1 ≲∅ σ2

E1 ⊆ E2

τ1
⊥−→ [σ1]E1

≲∅ τ2
⊥−→ [σ2]E2

[SS-W]
τ2 ≲∅ τ1 σ1 ≲∅ σ2

τ1
K−→ [σ1]E1

≲E1\E2
τ2

⊤−→ [σ2]E2

Figure 13: Surface-to-kernel rewriting

8.2 Translating Exception-Oblivious Code
Methods with weakly typed parameters ignore extra excep-
tions generated by them. To ensure they are handled in the
appropriate context, weakly typed parameters, including the
receiver, are accompanied by an additional Blame argument
that serves as the blame label. When the actual argument is
exact, the Blame argument is null. For example, the weak type
Iterator has the following translation:

interface Iterator<E> {
E next$Iterator(Blame b$) throws NoSuchElementException;
...
}

It receives a Blame object from its caller to accompany the
weakly typed receiver. If an implementation of Iterator

throws a mismatched exception, it is wrapped in this Blame

object and tunneled through the code oblivious to it.
Exception-oblivious procedures are translated in a similar

way. For example, the code generated for map (Figure 1) looks
like the following:

<T,R> List<R> map(Function<T,R> f, List<T> src, Blame b$)
{ ... f.apply$Function(t, b$) ... }

The extra Blame argument b$ is intended for potential mis-
match in the argument function f, and is passed down to the

method call f.apply$Function(...) so that exceptions from
f have the right blame label.

8.3 Translating Exception-Aware Code
The definition of Iterator’s inexact subtype Tokenizer

is exception-aware. Its translation is shown in the left of Fig-
ure 14. Per Java’s type-checking rules, the overriding method
in Tokenizer cannot throw extra checked exceptions. In-
stead, the overriding method next$Iterator(Blame) redi-
rects to method next() that does the real work, possibly
throwing an IOException, and then turns that exception into
either a Blame or a Failure, which is unchecked. If the Blame
argument is not null, there must be a program point ready
to handle the exception. So the IOException is wrapped
in the Blame object and is tunneled to that program point.
If the Blame object is null, a Failure object wrapping the
IOException is created and thrown. This might happen, for
example, if the programmer chose to disregard the compiler
warning reported for passing a Tokenizer (Figure 7) into the
constructor of PeekingIterator (top of Figure 10).

The code in Figure 8 is also exception-aware, and Fig-
ure 14 (right) shows its translation. Instead of creating a new
Blame object every time a mismatch happens, each thread
maintains a Blame object pool that recycles Blame objects. A
Blame object is borrowed from the pool at the blamable pro-
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class Tokenizer implements Iterator<Token> {
Token next$Iterator(Blame b$)

throws NoSuchElementException {
try { return next(); }
catch (IOException e) {

if (b$ != null) { b$.inner = e; throw b$; }
else throw new Failure(e);

}
}
Token next() throws IOException,

NoSuchElementException {...}
...

}

Blame b$ = null;
try {
Iterator<Token> iter = new Tokenizer(reader);
while (true) {
Token t;
try { t = iter.next$Iterator(b$=Thread.borrowB$()); }
catch (NoSuchElementException e) { break; }
catch (Blame bCaught$) {

if (bCaught$ == b$) { log.write(...); continue; }
else throw bCaught$;

}
}

} finally { Thread.handbackB$(b$); }

Figure 14: Translating exception-aware code (Tokenizer from Figure 7 and its using code from Figure 8) into Java

gram point in the try block, and is returned in the finally

block. The catch block catches any Blame, but only executes
the exception handling code if the Blame caught is indeed the
one associated with the blamable program point; otherwise it
rethrows the Blame.

Aggressive interweaving of try–catch in method bodies
might preclude certain compiler optimizations. Therefore,
the translation uses a simple program analysis to identify
existing enclosing try blocks onto which these new catch

blocks can be attached.

8.4 Translating Failure Exceptions
A method body is wrapped in a try block whose correspond-
ing catch block catches all exceptions that will switch to
failure mode after exiting the method. A catch all block is
translated into possibly multiple catch blocks to also catch
compatible Failure and Blame objects.

9. Evaluation
The aim of our evaluation is to explore the expressiveness of
the new exception mechanism, and its overhead with respect
to both performance and notational burden.

9.1 Porting Java Code to Use Genus Exceptions
To evaluate the expressive power of the new exception mech-
anism, we ported various existing Java programs and li-
braries into Genus. Some of this code (ObjectPool and
PeekingIterator) is described earlier, but we examined
some larger code samples:

• We ported the Java Collections Framework and found
that no @exact annotations were needed. In addition, the
Genus compiler found unreachable code in Abstract-

SequentialList, thanks to fail-by-default exceptions
propagating in checked mode (Section 3.3).

• We ported the javac visitor of Figure 3 into Genus, as
mentioned earlier in Section 4.1. Conversion to the new
exception mechanism allows more than 200 lines of code
to be removed from class Pretty (~1,000 LOC), and more
importantly, restores static checking.

Pe
ri

m
et

er

T
SP

E
m

3d

H
ea

lth

B
iS

or
t

Vo
ro

no
i

Tr
ee

A
ddB
H

Su
nF

lo
w

M
ST

Po
w

er

0.8

0.85

0.9

0.95

1

ra
tio

of
ru

nn
in

g
tim

es
(e

xt
en

de
d

G
en

us
/b

as
e

G
en

us
)

Figure 15: Performance of the exception mechanism on the JOlden
benchmarks and SunFlow.

• Using only checked exceptions, we managed to reimple-
ment the EasyIO text parsing package3 that was developed
for a Cornell programming course. This codebase (~1,000
LOC) uses exceptions heavily for backtracking.

9.2 Performance
The current Genus implementation targets Java. We explored
its performance through several experiments. All data were
collected using Java 8 on a 3.4GHz Intel Core i7 processor
after warming up the HotSpot JVM.

Performance of normal-case code. Perhaps the most im-
portant performance consideration for an exception mecha-
nism is whether it slows down normal-case code. To evaluate
this, we ported Java code that only uses exceptions lightly—
specifically, the JOlden benchmarks [9] and, representing
larger applications, the SunFlow benchmark [45] from the
DaCapo suite [4]. SunFlow is a ray tracer containing ~200
classes and ~21K LOC.

To evaluate the overhead of the new exception mechanism
fairly, we compared the running times of this code between
the extended Genus language (Section 8) and the base Genus
language. Despite support for reified generics, the perfor-
mance under base Genus is close to Java: compared to Java,
it incurred a slowdown of 0.3%.

3 www.cs.cornell.edu/courses/cs2112/2015fa/#Libraries
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Java w/ stack Genus Java w/o stack
7.19 1.16 1.16

Table 1: Performance with EasyIO (s)

mechanism
exception

time (ns)
objects

Java exceptions
new instance 817.7

cached 124.7
Java unchecked wrappers cached 826.0

Genus exceptions new instance 139.8
(tunneled) cached 128.6

Table 2: Exception tunneling microbenchmarks

Figure 15 reports the results of this comparison. Each re-
ported measurement averages at least 20 runs, with a standard
error less than 1.2%. Benchmark parameters were set so that
each run took more than 30 seconds.

Overall, the extended compiler generates slightly faster
code than the original compiler. The average speedup is
2.4%, though performance varies by benchmark. The speedup
is caused largely by the exception-based translation of en-
hanced for loops.

Performance of exception-heavy code. To evaluate the
performance improvement that Genus obtains by avoiding
stack-trace collection on realistic code, we measured the run-
ning times of pattern-matching regular expressions using the
EasyIO package. It makes heavy use of exceptions to control
search. The running times are shown in Table 1. Each number
averages 10 runs, with 6.2M exceptions thrown in each run.

Stack-trace collection in Java causes more than 6× over-
head compared to Genus exceptions. Genus targets Java, so
it is not surprising that similar performance can be achieved
with Java, if stack-trace collection is turned off and exception
objects are cached.

Exception tunneling performance. We used a microbench-
mark to explore the overhead of exception tunneling, the key
difference between Genus and Java. The microbenchmark
performs method calls on objects passed down from a higher-
order function; the method call either throws an exception
or returns immediately, and is prevented from being inlined.
Since there is no other work done by the method, perfor-
mance differences are magnified.

The results are shown in Table 2. We compare exception
tunneling in Genus to two (unsafe) Java workarounds: typical
Java exceptions and unchecked-exception wrappers. We also
refine the comparison for typical Java exceptions and tun-
neled Genus exceptions based on whether a new exception
object is created for each throw; throwing a single cached in-
stance is reasonable for non-failure exceptions carrying no
extra information. Each number averages 20 runs, with a
standard error less than 0.6% of the mean.

The rightmost column measures time to exit via an ex-
ception. Genus exceptions perform well because they do not
collect a stack trace. The slowdown compared to the second

row is mostly because exception mismatch requires borrow

and handback calls (Section 8.3) in every loop iteration.
On the other hand, Genus exceptions significantly out-

perform unchecked wrappers, the safest way to tunnel in
Java. Java’s performance is poor here because an unchecked-
exception object is created for each raised exception, whereas
the implementation of Genus recycles Blame objects.

The microbenchmark also measures the time to return
from a method normally. The average cost of a call and return
in Java was 6.0 ns. In the absence of mismatch, our translation
adds the overhead of passing a null pointer to the normal
return path, increasing the cost slightly to 6.3 ns. The results
in Figure 15 suggest this increase is negligible in practice.

10. Related Work
Notable approaches to exceptions. PL/I was the first lan-
guage with exceptions. It supports user-defined exceptions
with exception handlers dynamically bound to exceptions [28].
Goodenough [19] and Liskov and Snyder [26] introduced
statically scoped handlers. CLU [26] was the first language
to support some static checking of exceptions. Exceptions are
declared in function signatures, and thrown exceptions must
appear in these signatures. If not explicitly resignaled, propa-
gating exceptions automatically convert to failure. Mesa [33]
supports both termination- and resumption-style exceptions
but does not check them statically. Ada [1] attaches handlers
to blocks, procedures, or packages. Unhandled exceptions
propagate automatically, but exceptions are not declared. Eif-
fel [30] exceptions originate from the violation of assertions
and are raised implicitly. Upon exceptions, programmers can
retry the execution with different parameters; otherwise, ex-
ceptions implicitly propagate to callers. Modula-3 [34] in-
troduced fully statically checked exceptions. Black [3] and
Garcia et al. [16] present comparative studies of some excep-
tion mechanisms.

Empirical findings. An empirical study by Cabral and Mar-
ques [7] shows that in Java and .NET exception handlers are
not specialized enough to allow effective handling, which we
believe is partly attributable to a lack of documentation of
exceptions in the .NET case [8] and the rigidity of checked
exceptions in the Java case. Robillard and Murphy [40] iden-
tify the global reasoning required of programmers as a major
reason why exceptions are hard to use.

Exception analysis. Function types in functional languages
such as ML and Haskell do not include exceptions because
they would interfere with the use of higher-order functions.
Exception capture can be avoided in SML [32] because ex-
ception types are generative, but other variants of ML lack
this feature. Leroy and Pessaux [25] observe that uncaught
exceptions are the most common failure mode of large ML
applications, motivating them and others [12] to develop pro-
gram analyses to infer exceptions. Such analyses can be help-
ful, especially for usage studies [52], but they necessarily in-
volve trading off performance and precision, and entail non-
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local reasoning that does not aid programmers in reasoning
about their code. A benefit of our mechanism is that it is
likely to lead to more accurate, scalable static analyses, be-
cause precise exceptions largely remove the need to approxi-
mate exceptional control flow [5, 42].

Exception polymorphism. Some recent designs attempt to
address the rigidity of checked exceptions through excep-
tion polymorphism: anchored exceptions [47] as a Java ex-
tension, polymorphic effects [41] as a Scala extension, row-
polymorphic effect types in the Koka language [24], and
the rethrows clause introduced in Swift 2 [46]. These ap-
proaches add annotation burden to exception-oblivious code;
more fundamentally, they do not address exception capture.

Blame tracking. Our notion of blame is related to that
introduced by work on contracts [14] and further developed
by work on gradual typing [50], in which blame indicates
where fault lies in the event of a contract violation (or cast
failure). In our setting, an exception mismatch results in static
blame being assigned that indicates where “fault” lies should
an exception arise at run time, with the compiler statically
checking that the “faulty” program point handles exceptions.

Blame has polarity [14, 50]; in our setting, exception mis-
match at covariant (or contravariant) positions gives rise
to positive (or negative) blame. Existing mechanisms for
checked exceptions only consider positive blame; exceptions
with negative blame are the missing piece. By contrast, in
Genus both kinds of exceptions are subject to static check-
ing, and our implementation and formalization manifest their
difference: exceptions with negative blame acquire new iden-
tities to achieve safe tunneling.

Type inference. Our exactness inference bears resemblance
to work on gradual type inference [39]. Both inference algo-
rithms encode escape analysis “for free”, although the moti-
vation for escape analysis differs. Our approach to default ex-
actness (Section 6.1) is similar to default region annotations
in a region-based type system [21].

11. Conclusions
Our new exception mechanism combines the benefits of static
checking with the flexibility of unchecked exceptions. We
were guided in the design of this mechanism by thinking
carefully about the goals of an exception mechanism, by
much previous work, and by many discussions found online.
Our formal results and experience suggest that our approach
improves assurance that exceptions are handled. The evalu-
ation shows that the mechanism works well on real code. It
adds negligible cost when exceptions are not being used; ex-
ception tunneling comes with a small performance penalty
that appears to be more than offset in practice by avoiding
the run-time overhead of wrapping exceptions. We hope this
work helps programmers use exceptions in a principled way
and gives language implementers an incentive to make ex-
ceptions more efficient.
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