
5

Abstraction-Safe Effect Handlers via Tunneling

YIZHOU ZHANG, Cornell University, USA

ANDREW C. MYERS, Cornell University, USA

Algebraic effect handlers offer a unified approach to expressing control-flow transfer idioms such as exceptions,

iteration, and async/await. Unfortunately, previous attempts to make these handlers type-safe have failed to

support the fundamental principle of modular reasoning for higher-order abstractions. We demonstrate that

abstraction-safe algebraic effect handlers are possible by giving them a new semantics. The key insight is

that code should only handle effects it is aware of. In our approach, the type system guarantees all effects are

handled, but it is impossible for higher-order, effect-polymorphic code to accidentally handle effects raised by

functions passed in; such effects tunnel through the higher-order, calling procedures polymorphic to them. By

contrast, the possibility of accidental handling threatens previous designs for algebraic effect handlers. We

prove that our design is not only type-safe, but also abstraction-safe. Using a logical-relations model that we

prove sound with respect to contextual equivalence, we derive previously unattainable program equivalence

results. Our mechanism offers a viable approach for future language designs aiming for effect handlers with

strong abstraction guarantees.

CCS Concepts: • Software and its engineering→ Control structures;

Additional KeyWords and Phrases: Algebraic effects, parametricity, type systems, exceptions, dynamic scoping

ACM Reference Format:
Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect Handlers via Tunneling. Proc. ACM Program.
Lang. 3, POPL, Article 5 (January 2019), 29 pages. https://doi.org/10.1145/3290318

1 INTRODUCTION
Algebraic effects [Bauer and Pretnar 2015; Plotkin and Power 2003; Plotkin and Pretnar 2013]

have developed into a powerful unifying language feature, shown to encompass a wide variety of

other important features that include exceptions, dynamically scoped variables, coroutines, and

asynchronous computation. Although some type systems make algebraic effects type-safe [Bauer
and Pretnar 2014; Leijen 2017; Lindley et al. 2017], we argue in this paper that algebraic effects are

not yet abstraction-safe: details about the use of effects leak through abstraction boundaries.

As an example, consider the higher-order abstraction map, which applies the same function to

each element in a list:

map[X,Y,E](l : List[X], f : X → Y throws E) : List[Y] throws E

In general, the computation embodied in the functional argument f may be effectful, as indicated

by the clause throws E in the type of f. To make it reusable, map is defined to be polymorphic over

the latent effects E of f, and propagates any such effect to its own caller.

The map abstraction can be implemented in many different ways; modularity is preserved if

clients cannot tell which implementation is hiding behind the abstraction boundary. It would thus

Authors’ addresses: Yizhou Zhang, Cornell University, Gates Hall, Ithaca, NY, 14853, USA, yizhou@cs.cornell.edu; Andrew

C. Myers, Cornell University, Gates Hall, Ithaca, NY, 14853, USA, andru@cs.cornell.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART5

https://doi.org/10.1145/3290318

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

https://doi.org/10.1145/3290318
https://doi.org/10.1145/3290318

5:2 Yizhou Zhang and Andrew C. Myers

be surprising if two implementations of this map abstraction behaved differently when used in the

same context. However, current semantics of algebraic effects allow a client to observe different

behaviors—and to distinguish between the two implementations—when one of the implementations

happens to use algebraic effects internally.

For example, suppose an implementation of map traverses the list using an iterator object. The

iterator throws a NoSuchElement exception when it reaches the end of the list, and the implemen-

tation handles it accordingly. If the client function f also happens to throw NoSuchElement, the

implementation may handle—by accident—an effect it is not designed to handle. By breaking the

implementation of map in this way, such a client thereby improperly observes internals of its

implementation. This violation of abstraction is also a failure of modularity.

We contend that this failure is a direct consequence of the dynamic semantics of algebraic

effect handlers. Intuitively, for Reynolds’ Abstraction Theorem [Reynolds 1983] (also known as

the Parametricity Theorem [Wadler 1989]) to hold for a language with type abstraction (such as

System F), polymorphic functions cannot make decisions based on the types instantiating the type

parameters. Analogously, parametricity of effect polymorphism demands that an effect-polymorphic

function should not make decisions based on the effect it is instantiated with. Yet the dynamic

nature of algebraic effects runs afoul of this requirement: an effect is handled by searching the

dynamic scope for a handler that can handle the effect. To restore parametricity, we propose to

give algebraic effects a new semantics based on tunneling:
Algebraic effects can be handled only by handlers that are statically
aware of them; otherwise, effects tunnel through handlers.

This semantics provides sound modular reasoning about effect handling, while preserving the

expressive power of algebraic effects.

For a formal account of abstraction safety, the typical syntactic approach to type soundness no

longer suffices, because it is difficult to syntactically track type-system properties that are deeper

than subject reduction [Benton and Zarfaty 2007; Dreyer 2018; Milner 1978; Wright and Felleisen

1994]. By contrast, a semantic approach that gives a relational interpretation of types can be applied

to the harder problem of reasoning about program refinement and equivalence. Therefore, a prime

result of the present paper is a semantic type-soundness proof for a core language with tunneled

algebraic effects. To this end, we define a step-indexed, biorthogonal logical-relations model for

the core language, giving a relational interpretation not just to types, but also to effects. We show

this logical-relations model offers a sound and complete reasoning process for proving contextual

refinement and equivalence. Effectful program fragments can then be rigorously proved equivalent,

supporting reasoning about the soundness of program transformations. We proceed as follows:

• We illustrate the problem of accidentally handled effects in Section 2, clarifying the observa-

tion that algebraic effect handlers violate abstraction.

• We present tunneled algebraic effects in Section 3. Tunneling causes no significant changes

to the usual syntax of algebraic effects; it changes the dynamic semantics of effects but does

not lose any essential expressive power.

• We define the operational and static semantics of tunneling via a core language (Section 4).

• In Section 5, we give a logical-relations model for the core language. We establish important

properties of the logical relation, including parametricity and soundness with respect to

contextual refinement. These results, checked using Coq, make rigorous the claim that

tunneled algebraic effects are abstraction-safe.

• We demonstrate the power of the logical relation in Section 6 by proving program equivalence.

As promised, effect-polymorphic abstractions in the core language hide their use of effects.

• We survey related work (Section 7) and conclude (Section 8).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:3

val tr : Tree[int] = . . .

try { iterate(tr) }

with yield(x) {

print(x)

resume()

}

(a)

1. calls

2. calls 5. yield

7. calls

yield

10. resume

iterate

3. calls 4. yield

iterate

6. yield

iterate

client

print

8. calls 9. returns

(b)

Figure 1. (a) Client code iterating over a binary tree. (b) A stack diagram showing the control flow.

2 ALGEBRAIC EFFECTS AND ACCIDENTAL HANDLING
Algebraic effects are gaining popularity among language designers because they enable statically

checked, programmer-defined control-flow transfer. Legacy language abstractions for control flow,

including exceptions, yielding iterators, and async/await, become just instances of algebraic effects.

We illustrate the problems with algebraic effects in the setting of a typical object-oriented

language, like Java, C#, and Scala, that has been extended with algebraic effects and effect poly-

morphism. Despite this object-oriented setting, the problems we identify and the solution we

propose are broadly applicable to languages with algebraic effects or with mechanisms subsumed

by algebraic effects.

2.1 Algebraic Effects and Handlers
The generality of algebraic effects comes from the ability to define an effect signature whose
implementations are provided by effect handlers. An effect signature defines one or more effect
operations. For example, the code below

effect Yield[X] {

yield(X) : void

}

defines an effect signature named Yield, parameterized by a type variable X. This signature contains

only one operation, yield, and invoking this operation requires a value of type X. This Yield effect

can be used for declarative definitions of iterators. For example, the function iterate is an in-order

iterator for binary trees:

interface Tree[X] {

value() : X

left() : Tree[X]

right() : Tree[X]

}

iterate[X](tr : Tree[X]) : void throws Yield[X] {

iterate(tr.left())

yield(tr.value())

iterate(tr.right())

}

Invoking an effect operation has the corresponding effect. In the example, the iterate function

invokes the yield operation, so it has the effect Yield[X]. Static checking of effects requires that

this effect be part of the function’s type, in its throws clause.

Traversing a tree using the effectful iterate function uses the help of an effect handler (Figure 1a).

The effectful computation is surrounded by try { . . . }, while the handler follows with and provides

an implementation for each effect operation. In this example, the implementation of yield first

prints the yielded integer, and resumes the computation in the try block.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:4 Yizhou Zhang and Andrew C. Myers

The implementation of an effect operation has access to the continuation of the computation

in the corresponding try block. This continuation, denoted by the identifier resume, takes as an

argument the result of the effect operation, and when invoked, resumes the computation at the

invocation of the effect operation in the try block. Because the result type of yield is void, the

call to resume accepts no argument. Figure 1b visualizes the control flow under this resumptive

semantics using a stack diagram.

The handling code of Figure 1a is actually syntactic sugar for code declaring an anonymous

handler:

try { iterate(tr) }

with new Yield[int]() {

yield(x : int) : void { print(x); resume() }

}

The sugared form in Figure 1a requires the name yield to be unambiguous in the context. It is

also possible to define standalone handlers instead of inlining them. Handlers can also have state.

For example, handler printInt, defined separately from its using code, stops the iteration after 8

rounds:

handler printInt for Yield[int] {

var cnt = 0 // State of the handler
yield(x : int) : void {

if (cnt < 8) { print(x); ++cnt; resume() }

}

}

// Using code allocates a handler object
// with state cnt initialized to 0
try { iterate(tr) }

with new printInt()

Effect Polymorphism. Higher-order functions like map accept functional arguments that are in

general effectful. Such higher-order functions are therefore polymorphic in the effects of their

functional argument. Language designs for effects typically include this kind of polymorphism to

allow the definition of reusable generic abstractions [Hillerström and Lindley 2016; Leijen 2017;

Lindley et al. 2017; Rytz et al. 2012]. As an example, consider a filtering iterator that yields only

those elements satisfying a predicate f that has its own effects E.

fiterate[X,E](tr : Tree[X], f : X → bool / E) : void / Yield[X], E {

foreach (x : X) in tr

if (f(x)) { yield(x) }

}

Here we introduce “/” as a shorthand for throws. The higher-order function is parameterized by an

effect variable E, which is the latent effect of the predicate f. The implementation iterates over the

tree and yields elements that test true with f. Because it invokes yield and f, its effects consist of

both Yield[X] and E.

2.2 Accidentally Handled Effects Violate Abstraction
Suppose we want a higher-order abstraction that computes the number of tree elements satisfying

some predicate. It can be implemented by counting the elements yielded by fiterate, as shown

in Figure 2a. The same abstraction can also be implemented in a recursive manner, as shown in

Figure 2b. We would hope that these implementations are contextually equivalent, meaning that

they can be interchanged freely without any client noticing a difference.

Unfortunately, there do exist clients that can distinguish between the two implementations,

as shown in Figure 3a. This client code interacts with the abstraction whose implementation is

provided either by fsize1 or by fsize2, and uses a function named f as the predicate. But it also

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:5

1 fsize1[X,E](tr : Tree[X], f : X→ bool / E) :

2 int / E {

3 val num = 0

4 try { fiterate(tr, f) }

5 with yield(x : X) : void {

6 ++num; resume()

7 }

8 return num

9 }

(a)

fsize2[X,E](tr : Tree[X], f : X→ bool / E) :

int / E {

val lsize = fsize2(tr.left(), f)

val rsize = fsize2(tr.right(), f)

val cur = f(tr.value()) ? 1 : 0

return lsize + rsize + cur

}

(b)

Figure 2. Two implementations of a higher-order abstraction. The intended behaviors of these two imple-

mentations are the same: returning the number of elements satisfying a predicate in a binary tree.

1 val fsize = . . . // The right-hand side is either fsize1 or fsize2
2 val g = fun(x : int) : bool / Yield[int] { yield(x) ; f(x) }

3 try { fsize(tr, g) }

4 with yield(x : int) : void {

5 . . . // do something with x

6 resume()

7 }

(a)

1. calls

2. calls 5. yield

6. calls

yield

7. resume

client

fiterate

fsize1

3. calls 4. yield

g

(b)

Figure 3. (a) A client that can distinguish between fsize1 and fsize2, two supposedly equivalent imple-

mentations of the same abstraction. (b) Snapshot of the stack when fsize1 accidentally handles an Yield
effect raised by applying g.

does something else with each element that f is applied to, using the help of an effect handler: it

wraps f in another function g (line 2), which, before calling f, yields the element to a handler that

does the extra work (line 5). The client passes to the abstraction the wrapper g, which is eventually

applied somewhere down the call chain. This application of g raises an Yield[int] effect, which

the programmer would expect to be propagated back to the client code and handled at lines 4–7.

However, the programmer will be unpleasantly surprised if the client uses the implementation

provided by fsize1. At the point where the effect arises, the runtime searches the dynamic scope

for a handler that can handle the effect. Because the nearest dynamically enclosing handler for

Yield[int] is the one in fsize1 (lines 5–7 in Figure 2a), the effect is unexpectedly intercepted by

this handler, incorrectly incrementing the count. Figure 3b shows the stack snapshot when this

accidental handling happens.

By contrast, the call to fsize2 behaves as expected. Hence, two well-typed, type-safe, intuitively

equivalent implementations of the same abstraction exhibit different behaviors to the same client.

Syntactic type soundness is preserved—neither program gets stuck during execution—but the type

system is not doing its job of enforcing abstraction.

The above example demonstrates a violation of abstraction from the implementation perspective,

but a similar story can also be told from the client perspective: two apparently equivalent clients can

make different observations on the same implementation of an abstraction. For example, consider

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:6 Yizhou Zhang and Andrew C. Myers

the following two clients of fsize1: one looks like Figure 3a but with line 5 left empty, and the

other is simply fsize1(tr, f).

The handling of the Yield effect in the first client ought to amount to a no-op, so the two programs

would be equivalent. Yet the equivalence does not hold because of the accidental handling of effects

in the first program. This client perspective shows directly that the usual semantics of algebraic

effect handling fails to comply with Reynolds’ notion of relational parametricity [Reynolds 1983],

which states that applications of a function to related inputs should produce related results.

Prior efforts based on effect rows and row polymorphism have aimed to prevent client code

from meddling with the effect-handling internals of library functions [Biernacki et al. 2017; Leijen

2014]. Notably, recent work by Biernacki et al. [2017] has shown relational parametricity for a core

calculus with algebraic effects, but the type system compromises on the expressiveness of effect

subsumption and relies on extra programmer annotations. For example, under their typing rules,

function fsize1 would not type-check unless (a) its signature mentioned the Yield effect, thereby

exposing the implementation detail that fsize1 handles Yield internally:

fsize1[X,E](tr : Tree[X], f: X → bool / { Yield[X], E }) : int / E

or (b) a special “lift” operator is inserted at the place where f is applied in fiterate.

3 TUNNELED ALGEBRAIC EFFECTS
Just as algebraic effect handlers arose as a generalization of exception handlers [Plotkin and Pretnar

2013], we build on the insight of Zhang et al. [2016], who argue that tunneled exceptions make

exceptions safer through a limited form of exception polymorphism. We show that tunneling can

be generalized to algebraic effects broadly along with the general form of effect polymorphism

presented in Section 2.1.

Tunneled algebraic effects address the problem of accidental handling. Despite this increase in

safety, there is no increase in programmer effort. In fact, with the new tunneling semantics in

effect, the examples from Section 2.2 become free of accidental handling, with no syntactic changes
required.

Consider the version of Figure 3a that resulted in accidental handling of effects (i.e., the version

that uses fsize1). Under the new semantics, the Yield effect raised by applying g is tunneled

straightaway to the client code, without being intercepted by the intermediary contexts. Figure 4

shows the stack snapshot when this tunneling happens.

3.1 Tunneling Restores Modularity
This tunneling semantics enforces the modular reasoning principle that handlers should only

handle effects they are locally aware of. In the example, the intermediary contexts, fsize1 and

fiterate, are polymorphic in an effect variable that represents the latent effects of their functional

1. calls

2. calls

5. calls

yield

6. resume

client

fiterate

fsize1

3. calls

4. yield

g

Figure 4. Snapshot of the stack when a Yield effect raised by applying g is tunneled to the client code.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:7

1 interface Visitor[E] {

2 visit(While) : void/E

3 visit(Assign) : void/E

4 . . .

5 }

6 interface While extends Stmt {

7 cond() : Expr

8 body() : Stmt

9 accept[E](v : Visitor[E]) : void/E

10 { v.visit(this) }

11 . . .

12 }

13 effect Val[X]

14 { get() : X } // Immutable variables
15 effect Var[X] extends Val[X]

16 { put(X) : void } // Mutable variables

17 effect IOExc { throw() : void }

18 print(s : String) : void / IOExc { . . . }

19 indent(l : int) : void / IOExc { . . . }

20 class pretty for Visitor[{Val[int],IOExc}]{

21 visit(w : While) : void / _ { // Infers effects
22 val l = get() // Current level of indentation
23 indent(l) // Print indentation
24 print("while ")

25 w.cond().accept(this)

26 print("\n")

27 try { w.body().accept(this) }

28 with get() : int {

29 resume(l + 1) // Increment indentation level
30 }

31 }

32 . . .

33 }

34 try {

35 val v = new pretty()

36 program.accept(v)

37 } with {

38 get() : int { resume(0) }

39 throw() : void { . . . }

40 }

Figure 5. Using tunneled algebraic effects to provide access to the context for visitors.

arguments. So they ought to be oblivious to whatever effect applying g might raise at run time.

The modular reasoning principle hence prohibits handlers in these intermediary contexts from

capturing any dynamic instantiations of the effect variable; accidental handling is impossible.

The client code, by contrast, is locally aware that applying fsize1 to g manifests the latent effect

of g. The modular reasoning principle thus requires that the client code provide a handler for this

effect in order to maintain type safety.

The lack of modularity in the presence of higher-order functions is an inherent problem of

language mechanisms based on some form of dynamic scoping, many of which are subsumed by

algebraic effects. Among such effects, the one that most famously conflicts with modular reasoning

is perhaps dynamically scoped variables.

Dynamically scoped variables increase code extensibility, as exemplified by the TEX program-

ming language [Knuth 1984], because they act as implicit parameters that can be accessed—and

overridden—in their dynamic extents. But their unpredictable semantics prevents wider adoption. In

particular, a higher-order function may accidentally override variables that its functional argument

expects from the dynamic scope, a phenomenon known in the Lisp community as the “downward

funarg problem” [Steele 1990]. This problem with dynamically scoped variables is an instance of

accidental handling.

Fortunately, tunneling offers a solution broadly applicable to all algebraic effects, including

dynamically scoped variables and exceptions. We illustrate this solution through an example

involving the tunneling of multiple effects.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:8 Yizhou Zhang and Andrew C. Myers

3.2 Tunneling Preserves the Expressivity of Dynamic Scoping Safely
Consider the Visitor design pattern [Gamma et al. 1994], which recursively traverses an abstract

syntax tree (AST). Visitors often keep intermediate state in some associated context. For example,

a type-checking visitor would use a typing environment as the context, while a pretty-printing

visitor would use a context to keep track of the current indentation level. The state in such contexts

is essentially an instance of dynamic scoping. Moreover, the type-checking visitor may expect the

context to handle typing errors, while the pretty-printing visitor needs the context to handle I/O

exceptions. A common Visitor interface is therefore unable to capture this variability in the notion

of context. So either uses of the Visitor pattern are limited to settings that do not need context, or

the programmer has to resort to error-prone workarounds.

One such workaround is to capture context information as mutable state. However, recursive

calls to the visitor often need to update context information. So side effects need to be carefully

undone as each recursive call returns; otherwise, subtrees yet to be visited would not have the right

context information.

Tunneled algebraic effects provide the expressive power needed to address this quandary, without

incurring the problems of dynamic scoping. Figure 5 shows a pretty-printing visitor defined using

tunneled algebraic effects. The Visitor interface (lines 1–5) is generic with respect to the effects of

the visitor methods. AST visitors can all implement this interface but provide their own notions

of context. For the pretty-printer, indentation is modeled as an (immutable) dynamically scoped

variable, whose effect signature is given on lines 13–14. This signature can be extended to support

mutability (lines 15–16), though it is not needed by this example. The visitor also uses methods

print and indent (lines 18 and 19), which can raise I/O exceptions.

Pretty-printing While loops (lines 21–31) manipulates the dynamic scope. To properly indent,

the current indentation level is obtained from the dynamically scoped variable by invoking the

effect operation get (line 22). The loop body is printed using the same visitor, but with an updated

indentation level. This overriding of the dynamically scoped variable is done by providing a new

handler for the recursive visit of the loop body (lines 27–30). The initial level of indentation is

provided by the client code on line 38.

Figure 6 visualizes the propagation of a Yield[int] effect and an IOExc exception raised when

visiting a loop body. Notice that these effects tunnel through the effect-polymorphic acceptmethods.

So even if any of the accept methods handled effects internally, they would not be able to intercept

the effects passing by.

3.3 Accomplishing Tunneling by Statically Choosing Handlers
The modular reasoning principle requires that it be possible to reason statically about which

handler is used for each invocation of effect operations. Accordingly, the language mechanism for

accomplishing tunneling requires that an effect handler be given whenever an effect operation

is invoked. As we show below, such a handler can take the form of a concrete definition or of a

handler variable, and does not have to be provided explicitly in typical usage.

The effect-handling code on the left is actually shorthand for the code on the right, which

explicitly names the exception handler to use:

try { throw() }

with throw() { . . . }

try { H.throw() }

with H = new IOExc() {

throw() : void { . . . }

}

The handler with a concrete definition is given the name H, and the invocation H.throw() indicates

that H is chosen explicitly as the handler for the effect operation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:9

1. calls

2. calls

8. calls

get

9. resume

client

visit

accept

3. calls

accept

5. calls

accept

6. calls

visit

4. calls

visit

7. get

1. calls

2. calls

client

visit

accept

3. calls

accept

5. calls

accept

6. calls

visit

4. calls

visit

7. throw

8. throw

9. throwthrow

10. calls
11. aborts

Figure 6. Left: stack snapshot at the point when printing the loop body asks for the current indentation level.

Right: stack snapshot when an I/O exception is raised while printing the loop body.

While the try–with construct introduces bindings of handlers with concrete definitions, mentions

of effect names in method, interface, or class headers introduce bindings of handler variables. For
example, the iterate method from Section 2.1 mentions Yield[X] in its throws clause:

iterate[X](tr : Tree[X]) : void / Yield[X] { . . . }

So iterate is desugared using explicit parameterization with a handler variable named h:

iterate[X, h : Yield[X]](tr : Tree[X]) : void / h {

iterate[X, h](tr.left())

h.yield(tr.value())

iterate[X, h](tr.right())

} // Uses of the handler variable are highlighted

The method is polymorphic over a handler for Yield[X], and the effectful computation in its body

is handled by this handler.

Inferring omitted handlers. Naming the handler might seem verbose, but does not create a

burden on the programmer: when programs are written using the usual syntax, the choice of

handler is obvious, so the language can always figure out what is omitted.

To map a program written in the usual syntax into one in which the choice of handler is explicit,

two phases of rewriting are performed: desugaring, and resolving omitted handlers. Desugaring

involves

(a) introducing explicit bindings for concrete handler definitions and explicit handler-variable

bindings for handler polymorphism, and

(b) identifying where handlers are omitted and must be resolved—namely at invocation sites of

effect operations and of handler-polymorphic abstractions.

Once the program is desugared, an omitted handler for some effect signature (or effect operation) is

always resolved to the nearest lexically enclosing handler binding for that signature (or operation).

In the examples above, the concrete handler definition H is the closest lexically enclosing one

for IOExc, and the handler variable h is the closest lexically enclosing one for Yield[X]. So when

they are omitted in the program text, the language automatically chooses them as handlers for the

respective effects.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:10 Yizhou Zhang and Andrew C. Myers

Tunneling. Tunneling falls out naturally. Performing the rewriting discussed above on the example

in Figure 3a yields the following program:

val fsize = . . .

val g = fun[h : Yield[int]](x : int) : bool / h { h.yield(x); f(x) }

try { fsize(tr, g[H]) }

with H = new Yield[int]() { yield(x : int) : void { . . . } }

When g is passed to the higher-order function, its handler variable is substituted with the locally

declared handler H, the closest lexically enclosing one for Yield[int]. As a result, the invocation of

the effect operation in g will unequivocally be handled by H, rather than being intercepted by some

handler declared in an intermediary context.

As another example, class pretty in Figure 5 is actually parameterized by two handler vari-

ables ind and io representing the dynamically scoped indentation level and the handling of I/O

exceptions:

class pretty[ind : Val[int], io : IOExc] for Visitor[{ind,io}] {

visit(w : While) : void / {ind,io} {

. . .

try { w.body().accept[{H,io}](this[H, io]) }

with H = new Val[int]() {

get() : int { resume(l+1) }

}

. . .

}

. . .

}

For the code that visits the loop body (i.e., line 27 of Figure 5, whose full form is also shown

above), two handlers for Val[int] are lexically in scope—the handler variable ind and the handler

definition named H. The closest lexically enclosing one is chosen, so loop bodies are visited using

an incremented indentation level. Notice that the this keyword is actually a handler-polymorphic

value, so it is possible to recursively invoke the visitor while overriding the handler. For the handling

of I/O exceptions, the handler variable io is the only applicable handler lexically in scope. Both

kinds of effects are guaranteed not to be captured by the effect-polymorphic accept methods.

Disambiguating the choice of handler. Although explicitly naming handlers is not necessary

in most cases, the ability to specify handlers explicitly adds expressivity. For example, in their

recent work on using algebraic effects to encode complex event processing, Braćevac et al. (2018)

describe a situation where different invocations of the same effect operation need to be handled by

different surrounding handlers. The ability to explicitly specify handlers addresses this need.

3.4 Region Capabilities as Computational Effects
With the rewriting described in Section 3.3, it may seem superfluous to still statically track the

effects of methods like iterate and g via throws clauses. After all, the desugared method signatures

explicitly require a handler to be provided—it appears guaranteed that the effect of any call to

iterate or g is properly handled.

However, programs would go wrong if these effects were ignored. Consider the program on

the left of Figure 7, where the type system does not track the effect of g other than requiring a

handler to be provided. In this example, g is passed to the (higher-order) identity function, and the

result is stored into a local variable f. As with the fsize example, the handler to provide for g is

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:11

1 val f : int→ void

2 val g = fun[h : Yield[int]](x : int) : void

3 { . . . h.yield(x) . . . }

4 try { f = identity(g[H]) }

5 with H = new Yield[int]() {

6 yield(x : int) : void { . . . resume() }

7 }

8 f(0) // Invokes g[H](0) but causes a run-time error

val f : int→ void

val g = fun[h : IOExc](x : int) : void

{ . . . h.throw() . . . }

try { f = identity(g[H]) }

with H = new IOExc()

{ throw() : void { . . . } }

. . . // Unable to transfer control here when H finishes
return f // Run-time error if f is invoked later

Figure 7. Both programs go wrong as a result of the type system’s not tracking the effect of g other than
requiring a handler to be provided. Region capabilities (Section 3.4) address this issue.

resolved to the closest enclosing handler H. So when a Yield effect arises as a result of applying

f to an integer (line 8), the handling code in H is executed. But H does not have a computation to

resume: the current control state is no longer within a try block!

A similar problem happens when handlers do not resume—but rather abort—computations in

try blocks, such as exception handlers. In the program on the right of Figure 7, g may throw an

IOExc exception, and the computation in g[H] is returned to the caller. When an exception handler

finishes, control ought to be transferred to the point immediately following the corresponding

try–with statement. However, when g[H] is invoked later, raising an exception, the computation

following try–with is no longer available when the exception handler H finishes execution, because

the stack frame containing the computation has been deallocated.

B

A
We can view a try–with statement as marking a program point which, at run time,

divides the stack into two regions. In the figure to the right, the stack grows downwards,

and an effect is raised at the bottom of the stack. The two regions, A and B, represent
the possible control-flow transfer targets when the handler finishes handling the effect:

the upper region A is the computation to jump to if the handler aborts the computation

in the try block, and the lower region B is the try-block computation possibly to be

resumed.

To handle an effect thus requires the capability to access the stack regions. A try–with statement

introduces a unique capability, which the corresponding handler holds within the try block. Capa-

bilities must not be able to escape their corresponding try blocks; otherwise, they would refer to

deallocated stack regions.

To this end, the type system tracks these stack-region capabilities as computational effects. In

the example above, applying g needs the capability held by the handler variable h. So the effect of g

is this capability, denoted by h in the throws clause of g:

val g = fun[h : Yield[int]](x : int) : void / h { . . . h.yield(x) . . . }

In the try block, the handler H provided by the enclosing try–with is used to substitute for the

handler variable, so the expression identity(g[H])—and therefore f—must have type int→ void / H,

meaning that the capability held by H is needed to apply f. However, because f outlives the try–with

that introduces this capability, the capability will be unavailable when f is applied. Fortunately,

since capabilities are tracked statically, the type system rejects this program.

This capability-effect system is more expressive than previous approaches to effect polymorphism

that use an escape analysis to prevent accesses to deallocated regions [Osvald et al. 2016; Zhang

et al. 2016]. In contrast to these approaches, we allow values with latent polymorphic effects to

escape into (effect-polymorphic) data structures, as long as uses of the data structure do not outlive

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:12 Yizhou Zhang and Andrew C. Myers

the corresponding stack regions. For example, cachingFun implements a function that caches the

result of its application, and is polymorphic over the latent effects of that function:

// An effect-polymorphic data structure
class cachingFun[X,Y,E] for Fun[X,Y,E] {

val f : X → Y/E

cachingFun(f : X → Y/E) { this.f = f }

apply(x : X) : Y/E { . . . f(x) . . . }

. . .

}

// Using code
val g = fun(x : int) : void / Yield { . . . }

try {

val f = new cachingFun(g)

. . . // Apply f

}

with yield(x : int) : void { . . . resume() }

In the using code on the right, the effectful computation in g escapes into the newly allocated

data structure denoted by f. So f has type Fun[int,void,H], assuming the handler is named H. But

since f does not outlive the try–with that introduces the capability held by H, the code is safely

accepted.

3.5 Implementation
This paper does not explore the options for implementing the new effect mechanism. However,

implementation is largely an orthogonal concern. It appears entirely feasible to build on ongoing

work on efficiently implementing algebraic effects [Brachthäuser et al. 2018; Leijen 2017]. When

algebraic effects are used as a termination-style exception mechanism, it is important that try-block

computations be cheap; it should be possible to adapt the technique used by Zhang et al. [2016],

which corresponds to passing (static) capability labels rather than whole continuations.

4 A CORE LANGUAGE
To pin down the semantics of tunneled algebraic effects, we formally define a core calculus we call

λ , which captures the key aspects of the language mechanisms introduced in Section 3.

4.1 Syntax
The language λ is a simply typed lambda calculus, extended with language facilities essential to

tunneling, including effect polymorphism, handler polymorphism, a way to access effect opera-

tions (), and a way to discharge effects (). For simplicity, it is assumed that handlers are always

given explicitly for effectful computations (rather than resolving elided handlers to the closest

lexically enclosing binding), that effect signatures contain exactly one effect operation, and that

effect operations accept exactly one argument. Lifting these restrictions is straightforward, but

adds syntactic complexity that obscures the key issues.

Like previous calculi, our formalism omits explicit handler state. But handler state can be encoded

within the algebraic-effects framework—and consequently in λ —as Bauer and Pretnar [2015]

show. It is also possible to extend the core calculus with handler state and, potentially, existentials

to ensure encapsulation of the state. We expect such an extension to be largely orthogonal.

Figure 8 presents the syntax of λ . An overline denotes a (possibly empty) sequence of syntactic

objects. For instance, e denotes a list of effects, with an empty sequence denoted by ∅. The i-th
element in a sequence • is denoted by •(i) . Metavariables standing for identifiers are given a lighter

color.

Types. Types include the base type 1, function types S→ [T]e , effect-polymorphic types ∀α .T ,
and handler-polymorphic types Πh:F [T]e . The result type of a function type or that of a handler-

polymorphic type can be annotated by effects. For brevity, we omit explicit annotations when there

is no effect; for example, the type S→T means S→ [T]∅. Computations directly quantified by

effect variables must be pure, an easily lifted simplification that matches both typical usage and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:13

capability effects e ::= α | ℓ | h.lbl

types T , S ::= 1 | S→ [T]e | ∀α .T | Πh:F [T]e

handlers h,д ::= h | H ℓ

terms t , s ::= () | x | λx :T . t | t s | let x :T = t in s |

Λα . t | t [e] | λh :F. t | t h | h | ℓ
[T]e

t

handler definitions H ,G ::= handlerF x k. t

effect var. environments ∆ ::= ∅ | ∆, α

handler var. environments P ::= ∅ | P, h :F

term var. environments Γ ::= ∅ | Γ, x :T

label environments Ξ ::= ∅ | Ξ, ℓ : [T]e

effect names F labels ℓ effect variables α handler variables h term variables x, y, k, ...

Figure 8. Syntax of λ

previous formalizations (e.g., [Biernacki et al. 2017; Leijen 2017]). Abstract handlers h implement

effect signatures, whose names are ranged over by F. We assume a global mapping from effect

names to effect signatures; given an effect name F, the helper function op(·) returns the type of its
effect operation.

Terms. Terms consist of the standard ones of the simply typed lambda calculus plus those concerned

with effects, including the - and -terms, effect-polymorphic abstraction Λα . t and its application,
and handler-polymorphic abstraction λh :F. t and its application. The - and - terms, which we

read as “up” and “down”, correspond in the language of Section 3 to effect operations and effect

handling.

For example, given a handler variable h that implements an effect F with signature T1→T2,
the term h is an effect operation whose implementation is provided by h, while the term h v
invokes the effect operation (assuming the value v has type T1), raising an effect.

The try–with construct corresponds to terms of form

ℓ
[T]e

(λh :F. t) H ℓ

where the term t corresponds to the computation in the try block, and H the handler in the with

clause. Term t is placed in a handler-polymorphic abstraction, which is then immediately applied

to the handler. The handler variable h, occurring free in t , can be thought of as creating a local

binding for handler H that t uses to handle its effects.

As discussed in Section 3.4, a try–with expression implicitly marks a program point, creating

a stack-region capability that is in scope within the try block. Correspondingly, -terms in λ
mark program points that create capabilities. These capabilities are represented by labels ℓ; terms of

form
ℓ
[T]e

t bind a label ℓ whose scope is t . Subterms of t can then use ℓ to show they possess the

region capability. Labels bound by different -terms are assumed to be unique. To ensure unique

typing, a -term is annotated with the type and effects [T]e of the very term; they correspond to

the type and effects of a try–with expression as a whole. We omit these annotations when they are

irrelevant in the context.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:14 Yizhou Zhang and Andrew C. Myers

values v,u ::= () | λx :T . t | Λα . t | λh :F. t | H ℓ

evaluation contexts K ::= [·] | K t | v K | K [ℓ] | K H ℓ | let x :T = K in t | ℓ K

t1 −→ t2

[e-ktx]

t1 −→ t2

K[t1] −→ K[t2]
[e-app] (λx :T . t) v −→ t {v/x} [e-eapp] (Λα . t) [ℓ] −→ t

{
ℓ
/
α
}

[e-happ] (λh :F. t) H ℓ −→ t
{
H ℓ
/
h
}

[e-let] let x :T = v in t −→ t {v/x}

[e-down-val]
ℓ v −→ v [e-down-up]

H = handlerF x k. t op(F) = T1→T2
ℓ K

[
H ℓ v

]
−→ t

{
λy :T2.

ℓ K[y]
/
k
}
{v/x}

Figure 9. Operational semantics of λ

To handle an effect requires both the handling code and the capability. Hence, handler defi-

nitions H are always tagged by a label in scope, forming pairs of form H ℓ
. Our use of -terms

supports pairing different handler definitions with the same program point, a useful feature that is

common in programming languages with exception handlers but that does not seem to be captured

by previous formalisms. For example, the following term corresponds to associating two handlers

with the same try block:
ℓ
[T]e

(
λh1 :F1. (λh2 :F2. t) H

ℓ
2

)
H ℓ

1

Handlers. A handler h is either a handler variable h or a definition–label pair H ℓ
. The (statically

unknown) label embodied in a handler variable h is denoted by h.lbl. Substituting a handler of

form H ℓ
for a handler variable h also replaces any occurrences of h.lbl with ℓ.

Handler definitions H are of form handlerF x k. t , where F is the effect signature being imple-

mented and t is the handling code. Variables x and k may occur free in t : x denotes the argument

passed to the effect operation, and k the continuation at the point the effect operation is invoked.

Effects. The type system needs to track region capabilities as computational effects. An effect e is
either an effect variable α , a label ℓ bound by a -term, or the label of a handler variable. With

effects being just capabilities, we can handle effect composition simply: effect sequences e are

essentially sets—the order and multiplicity of effects in a sequence are irrelevant. Substituting an

effect sequence e for an effect variable α that is part of another effect sequence works by flattening e
and replacing α with the flattened effects.

4.2 Operational Semantics
A small-step operational semantics of the core language is given in Figure 9. The semantics is

defined in a largely standard way using evaluation contexts [Felleisen 1987] with capture-avoiding

substitution denoted by · {·/·}. The transitive closure and the transitive, reflexive closure of the

small-step transition relation −→ are denoted by −→+ and −→∗, respectively.

Of all the evaluation rules, [e-down-up] is most interesting, as it deals with the invocation of

effect operations. Evaluating an invocation H ℓ v amounts to evaluating the handling code in H ,

which requires the capability to access the stack regions marked by ℓ. Therefore, to reduce H ℓ v ,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:15

∆ | P | Γ | Ξ ⊢ t : [T]e

[t-up]

∆ | P | Γ | Ξ ⊢ h : F | e
op(F) = T→S

∆ | P | Γ | Ξ ⊢ h : [T→ [S]e]∅
[t-down]

∆ | P | Γ | Ξ, ℓ : [T]e ⊢ t : [T]e, ℓ
∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

∆ | P | Γ | Ξ ⊢ ℓ
[T]e

t : [T]e

∆ | P | Γ | Ξ ⊢ h : F | e

[t-hvar]

P(h) = F

∆ | P | Γ | Ξ ⊢ h : F | h.lbl
[t-hdef]

Ξ(ℓ) = [S]e op(F) = T1→T2
∆ | P | Γ, x :T1, k :T2→ [S]e | Ξ ⊢ t : [S]e

∆ | P | Γ | Ξ ⊢
(
handlerF x k. t

)ℓ
: F | ℓ

Figure 10. Selected rules from the static semantics of λ

the dynamic scope is searched for an evaluation context
ℓ K[·] that binds ℓ. Notice that since

labels bound by -terms are assumed to be unique, the inner context K does not further nest

any evaluation context
ℓ
[·] binding the same label. This evaluation context K is then passed

to the handling code as the resumption continuation. In case the handler chooses to abort the

computation in K , evaluation continues with the surrounding evaluation context, as rule [e-ktx]

suggests. Notice that K is guarded by
ℓ
when passed to the handling code, so any invocation of

effect operations labeled by ℓ in the resumption continuation can be handled properly.

4.3 Static Semantics
Some of the static-semantics rules of λ are provided in Figure 10. Term well-formedness rules

have form ∆ | P | Γ | Ξ ⊢ t : [T]e , where ∆, P, Γ and Ξ are environments of free effect variables,

handler variables, term variables, and labels, respectively. The judgment form says that under these

environments the term t has type T and effects e .
Rule [t-up] suggests that an effect operation h is a first-class value with type T→ [S]e , where

T→S is the effect signature and e is the capability held by h.

Rule [t-down] suggests that a term t guarded by
ℓ
possesses the capability ℓ: in the premise, t

is typed under the label environment augmented with ℓ. Importantly, however, the label ℓ must

not occur free in the result type T and effects e . Otherwise, ℓ could outlive its binding scope. For

instance, it would then be possible to type the term
ℓ

[S1→[S2]ℓ]∅

(
H ℓ
)
as S1→ [S2]ℓ , assuming H

implements effect signature S1 → S2. Per evaluation rule [e-down-val], the term would then

evaluate to H ℓ
. But without a corresponding

ℓ
in the dynamic context, an invocation of the

effect operation H ℓ t would get stuck.

Handler well-formedness rules have form ∆ | P | Γ | Ξ ⊢ h : F | e , which states that handler h
implements the algebraic effect F and has label e . Rule [t-hdef] requires that the handling code t of
a handler H ℓ

be typable using the type and effects [S]e prescribed by the label ℓ. This requirement

helps the reduction rule [e-down-up] preserve typing.

The other static semantics rules are largely standard and can be found in the technical re-

port [Zhang and Myers 2018]. These include the remaining rules for term well-formedness, the

rules for the well-formedness of types and effects, and the rules for the partial orderings on types

and effect sequences.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:16 Yizhou Zhang and Andrew C. Myers

C ::= [·] | C[λx :T . [·]] | C[[·] t] | C[t [·]] | C[let x :T = [·] in t] |

C[let x :T = t in [·]] | C[Λα . [·]] | C[[·] [e]] | C[λh :F. [·]] | C[[·] h] |

C
[
t
(
handlerF x k. [·]

)ℓ]
| C

[(
handlerF x k. [·]

)ℓ]
| C

[
ℓ
[·]

]

Figure 11. Program contexts of λ

Encoding data structures. For simplicity, λ does not have data structures. However, λ allows

their encoding via closures, where the captured variables may have latent polymorphic effects. For

example, a simplified pair data structure polymorphic over the latent effects of its components can

be encoded as follows:

T
def
= S1→ [S2]α S1 and S2 can be any closed type

pair
def
= Λα . λx :T . λy :T . λf :T→T→T . f x y construct a pair

first
def
= Λα . λp : (T→T→T)→T . p (λx :T . λy :T . x) obtain the first component

second
def
= Λα . λp : (T→T→T)→T . p (λx :T . λy :T . y) obtain the second component

The two components, both having type T , have α as their latent effects. The pair constructor is
then polymorphic in α .

This example cannot be readily encoded in previous formalisms [Osvald et al. 2016; Zhang et al.

2016], which support a limited form of effect polymorphism by introducing second-class values

that cannot escape their defining scope. In particular, these systems do not admit the subterm

λx :T . λy :T . x in the definition of first, or the subterm λy :T . y in the definition of second. Variable x
in the first subterm, being second-class because it has a polymorphic latent effect, escapes its

defining scope via the closure λy :T . x capturing it. Similarly, in the second subterm, variable y
escapes its defining scope. By contrast, our use of explicit effect polymorphism and capability labels

enables the definition of effect-polymorphic data structures.

4.4 Contextual Refinement and Equivalence
A program context is a program with a hole [·] in it. Figure 11 shows the different types of program

contexts in λ . Well-formedness judgments for program contexts have the form

⊢ C : ∆ | P | Γ | Ξ | [S]e ⇝ T

The meaning of this judgment is that if a term t satisfies the typing judgment ∆ | P | Γ | Ξ ⊢ t : [S]e ,
then plugging t intoC results in a program that satisfies ∅ |∅ |∅ |∅ ⊢ C[t] : [T]∅. These rules are
available in the technical report.

Our goal is to prove that with tunneling, algebraic effects can preserve abstraction. Abstraction

is shown by demonstrating that implementations using effects internally cannot be distinguished

by external observers. The gold standard of indistinguishability is contextual equivalence: two terms

are contextually equivalent if plugging them into an arbitrary well-formed program context always

gives two programs whose evaluations yield the same observation [Morris 1968].

We define contextual equivalence in terms of contextual refinement, a weaker, asymmetric relation

that requires one term to be able to simulate the behaviors of the other:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:17

Definition 1 (contextual refinement ≼ctx and contextual equivalence ≈ctx).

∆ | P | Γ | Ξ ⊢ t1 ≼ctx t2 : [T]e
def
= ∀C . ⊢ C : ∆ | P | Γ | Ξ | [T]e ⇝ T ′ ⇒

(∃v1. C[t1] −→
∗ v1) ⇒ (∃v2. C[t2] −→

∗ v2)

∆ | P | Γ | Ξ ⊢ t1 ≈ctx t2 : [T]e
def
= ∆ | P | Γ | Ξ ⊢ t1 ≼ctx t2 : [T]e ∧ ∆ | P | Γ | Ξ ⊢ t2 ≼ctx t1 : [T]e

For programs to be equivalent in the above definition, they only need to agree on termination,

but this seemingly weak observation of program behavior does not weaken the discriminating

power of the definition, because of the universal quantification over all possible program contexts

and because λ is Turing-complete (see Section 5.1). Hence, if two computations that reduce

to observably different values, one can always construct a program context that makes the two

computations exhibit different termination behavior.

However, the universal quantification over contexts also makes it hard to show equivalence

by using the definition directly. We therefore take one of the standard approaches to establishing

contextual equivalence: constructing a logical relation that implies contextual equivalence.

5 A SOUND LOGICAL-RELATIONS MODEL
We develop a logical-relations model for λ and prove the important property that logically related

terms are contextually equivalent. This semantic soundness result guarantees that the language λ
is both type-safe and abstraction-safe.

5.1 Step Indexing
A logical-relations model gives a relational interpretation of types, traditionally defined inductively

on the structure of types. But language features like recursive types require a more sophisticated

induction principle. Algebraic effects present a similar challenge because effect signatures can be

defined recursively.

Recursively defined effect signatures give rise to programs that diverge, and consequently make

the language Turing-complete. For example, suppose effectF has signature op(F) = 1→Πh:F [T]h.lbl,
which recursively mentions F, and that H is defined as follows:

H
def
= handlerF x k. k (λh :F. h () h)

Then the evaluation of the program
ℓ
[T]∅ (λh :F. h () h) H ℓ

does not terminate:

ℓ (λh :F. h () h) H ℓ −→
ℓ
(

H ℓ () H ℓ
)
−→
(
λy :Πh:F [T]h.lbl.

ℓ y H ℓ
)
(λh :F. h () h)

−→
ℓ (λh :F. h () h) H ℓ −→ · · ·

Because of this recursion in the signature of F, structural induction alone is unable to give a

well-defined relational interpretation of F.

[löb]

P , ▷Q ⊢ Q

P ⊢ Q

[mono]

P ,Q ⊢ R

P , ▷Q ⊢ ▷R

Figure 12. Rules for ▷

Step indexing [Appel and McAllester 2001] has been successfully ap-

plied to cope with recursive types (e.g., by Ahmed [2006]). In this ap-

proach, the logical relation is defined using a double induction, first on

a step index, and second on the structure of types. Intuitively, the step

index indicates for how many evaluation steps the proposition is true;

at step 0 everything is vacuously true, and if a proposition is true for any

number of steps then it is true in a non-step-indexed setting.

Our definition is step-indexed. It uses a logic equipped with the modal-

ity ▷, read as “later”, which offers a clean abstraction of step indexing [Appel et al. 2007; Dreyer et al.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:18 Yizhou Zhang and Andrew C. Myers

ℓ ↷ K ℓ ↷ [·]
ℓ ↷ K

ℓ ↷ K t

ℓ ↷ K

ℓ ↷ v K

ℓ ↷ K

ℓ ↷ K [ℓ]

ℓ ↷ K

ℓ ↷ K H ℓ

ℓ ↷ K

ℓ ↷ let x :T = K in t

ℓ1 ↷ K
ℓ1 , ℓ2

ℓ1 ↷ ℓ2 K

Figure 13. ℓ ↷ K means the evaluation context K does not bind label ℓ

2009]. If proposition P holds for n steps, then ▷ P holds for n − 1 steps. So P implies ▷ P . Importantly,

the ▷ modality provides the [löb] axiom (Figure 12), which can be viewed as an induction principle

on step indices. The ▷ modality distributes over other connectives, so rule [mono] is derivable.

As we shall see in Section 5.3, to ensure well-definedness, recursive invocations of the interpre-

tation of effect signatures occur under the ▷ modality.

5.2 A Biorthogonal Term Relation
We introduce a logical relation for terms, which are closed under the empty variable environments

but may use capability labels that are not locally bound. The term relation is defined using the

technique of biorthogonality, pioneered by Pitts and Stark [1998]. Biorthogonality, also known

as ⊤⊤-closure, lends itself to languages whose operational semantics manipulate evaluation con-

texts [Biernacki et al. 2017; Dreyer et al. 2012; Johann et al. 2010]: in a biorthogonal term relation,

two terms are related if evaluating them in related evaluation contexts yields related observations.

Hence, our term relation T is defined as follows, with a relationK providing a notion of relatedness

for evaluation contexts and relation O relating observations:

O (t1, t2)
def
= (∃v1,v2. t1 = v1 ∧ t2 −→

∗ v2) ∨
(
∃t ′

1
. t1 −→ t ′

1
∧ ▷O

(
t ′
1
, t2
))

T J[T]eK
ρ
δ (t1, t2)

def
= ∀K1,K2. K J[T]eK

ρ
δ (K1, K2) ⇒ O (K1[t1], K2[t2])

K J[T]eK
ρ
δ (K1, K2)

def
=
(
∀v1,v2.VJT Kρδ (v1, v2) ⇒ O (K1[v1], K2[v2])

)
∧(

∀t1, t2. SJ[T]eK
ρ
δ (t1, t2) ⇒ O (K1[t1], K2[t2])

)
SJ[T]eK

ρ
δ (K1[t1], K2[t2])

def
= ∃ψ , ℓ1, ℓ2.UJeKρδ

(
t1, t2, ψ , ℓ1, ℓ2

)
∧(

∀i . ℓ (i)
1
↷ K1

)
∧
(
∀i . ℓ (i)

2
↷ K2

)
∧

∀t ′
1
, t ′

2
. ψ
(
t ′
1
, t ′

2

)
⇒ ▷T J[T]eK

ρ
δ

(
K1

[
t ′
1

]
, K2

[
t ′
2

])
Apart from the S relation, the above definitions are standard. We define logical equivalence in

terms of a notion of logical refinement, in much the same way that we define contextual equivalence

in terms of contextual refinement. Rather than requiring the terms to exhibit the same termination

behavior, the observation relation O relates two computations where termination of the first

computation merely implies that of the second one. The O relation is defined recursively; the use

of the ▷ modality suggests that the definition is implicitly indexed by the number of remaining

evaluation steps the first computation can take.

Two evaluation contexts are related by K if they yield related observations when applied

to related values. However, in the presence of algebraic effects, values are not the only kind of

irreducible term. Terms of formK
[

H ℓ v
]
where the evaluation contextK does not bind ℓ (captured

by the judgment form ℓ ↷ K defined in Figure 13) are stuck when put into an empty evaluation

context.

So we borrow from Biernacki et al. [2017] a logical relation SJ[T]eK
ρ
δ , which, being a smaller

relation than T J[T]eK
ρ
δ , relates two computations that can possibly get stuck by themselves because

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:19

Semantic types:

VJ1Kρδ (v1, v2)
def
= v1 = () ∧ v2 = ()

VJT→ [S]eK
ρ
δ (v1, v2)

def
= ∀u1,u2.VJT Kρδ (u1, u2) ⇒ T J[S]eK

ρ
δ (v1 u1, v2 u2)

VJ∀α .T Kρδ (v1, v2)
def
= ∀ℓ1, ℓ2,ϕ . T

q
[T]∅

yρ
δ, α 7→

〈
ℓ1, ℓ2, ϕ

〉 (v1 [ℓ1], v2 [ℓ2])
VJΠh:F [T]eK

ρ
δ (v1, v2)

def
= ∀H ℓ1

1
,H ℓ2

2
,η. ▷ H JFK

(
H ℓ1

1
, H ℓ2

2
, η
)
⇒

T J[T]eK
ρ, h 7→

〈
H ℓ

1

1
, H ℓ

2

2
, η
〉

δ

(
v1 H

ℓ1
1
, v2 H

ℓ2
2

)
Semantic effect signatures:

H JFK
(
H ℓ1

1
, H ℓ2

2
, η
) def
= Hi = handlerF x k. ti (i = 1, 2) ∧ op(F) = T1→T2 ∧

∀v1,v2.VJT1K
∅
∅ (v1, v2) ⇒

∀u1,u2.
(
∀w1,w2.VJT2K

∅
∅ (w1, w2) ⇒ η (u1 w1, u2 w2)

)
⇒

η (t1 {u1
/
k} {v1

/
x}, t2 {u2

/
k} {v2

/
x})

Semantic effects:

UJαKρδ
(
t1, t2, ψ , ℓ1, ℓ2

) def
= δ (α) =

〈
ℓ′
1
, ℓ′

2
,ϕ
〉
∧ ϕ
(
t1, t2, ψ , ℓ1, ℓ2

)
UJeKρδ (t1, t2, ψ , ℓ1, ℓ2)

def
= ρ1e = ℓ1 ∧ ρ2e = ℓ2 ∧(
UAJeKρδ (t1, t2, ψ , ℓ1, ℓ2) ∨ UBJeK (t1, t2, ψ , ℓ1, ℓ2)

)
UAJeKρδ (t1, t2, ψ , ℓ1, ℓ2)

def
= t1 = H ℓ1

1
v1 ∧ t2 = H ℓ2

2
v2 ∧ ▷H JFK

(
H ℓ1

1
, H ℓ2

2
,WJeKρδ

)
∧

op(F) = T→T ′ ∧ ▷VJT K∅∅ (v1, v2) ∧ ψ ≡ ▷VJT ′K∅∅
UBJeK (t1, t2, ψ , ℓ1, ℓ2)

def
=
(
∀K . ℓ1 ↷ K ⇒ ℓ1 K[t1] −→

+ ℓ1 K
[
t ′
1

])
∧(

∀K . ℓ2 ↷ K ⇒ ℓ2 K[t2] −→
∗ ℓ2 K

[
t ′
2

])
∧ ψ ≡

{(
t ′
1
, t ′

2

)}
UJeKρδ (t1, t2, ψ , ℓ1, ℓ2)

def
= ∃i .U

q
e (i)

yρ
δ (t1, t2, ψ , ℓ1, ℓ2)

Semantic labels:
WJh.lblKρδ (t1, t2)

def
= ρ (h) =

〈
H ℓ1

1
,H ℓ2

2
,η
〉
∧ η (t1, t2)

WJℓKρδ (t1, t2)
def
= Ξ(ℓ) = [T]e ∧ T J[T]eK

ρ
δ (t1, t2)

Figure 14. Relational interpretation of types, effect signatures, and effects

they raise effects among e . The definition of theK relation then requires that two related evaluation

contexts yield related observations when applied to not only values related byV but also terms

related by S. The S relation is discussed further in Section 5.3.

Because of the use of biorthogonality, and assuming parametricity is derivable, our term relation

is automatically complete with respect to contextual refinement [Dreyer et al. 2012; Pitts and Stark

1998]: contextually equivalent terms are always logically related. So the key theorems to prove are

parametricity and soundness.

The definitions of the relations T , K , and S are mutually recursive, and are dependent on the

semantic interpretation of a typeVJT Kρδ and that of an effect sequenceUJeKρδ , defined below.

5.3 Semantic Types, Semantic Effect Signatures, and Semantic Effects
The logical relationVJT Kρδ (Figure 14), defined by structural induction on the type T , interprets T
as a binary relation on values. The unit type and function types are interpreted in a standard

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:20 Yizhou Zhang and Andrew C. Myers

way, following the contract that the logical relation should be preserved by the elimination (or

introduction) forms of the types.

Effect-polymorphic types and handler-polymorphic types bind effect variables and handler

variables. Accordingly, environments δ and ρ are introduced to provide substitutions for variables

occurring free in the type being interpreted:

δ ::= ∅ | δ , α 7→
〈
ℓ1, ℓ2,ϕ

〉
ρ ::= ∅ | ρ, h 7→

〈
H ℓ1

1
,H ℓ2

2
,η
〉

We use δ1 and δ2 (resp. ρ1 and ρ2) to mean the substitution functions for free effect (resp. handler)

variables. In addition to these syntactic substitution functions, the environment δ maps each effect

variable to a third component that is the semantic interpretation chosen for the effect variable, while

the environment ρ maps each handler variable to a third component that is the term relation the

computations of the two handlers satisfy. (Metavariables ϕ, η, andψ range over relation variables.)

The definitions in Figure 14 are also parameterized by a label environment Ξ; labels in the domain

of Ξ may occur free in the types and effects being interpreted. We omit Ξ for brevity.

The definition ofVJ∀α .T Kρδ shows the source of the abstraction guarantees provided by effect-

polymorphic abstractions: two effect-polymorphic abstractions are related if their applications

are related however the effect variable is interpreted. The definition of VJΠh:F [T]eK
ρ
δ says that

two handler-polymorphic abstractions are related if their applications to any related handlers are

related. Handler-relatedness is defined by the logical relationH JFK, indexed by effect signatures F.
As discussed in Section 5.1, effect signatures can be recursively defined. Thus H JFK is invoked
here under the ▷ modality so that the definition is admissible.

The interpretation of an effect signature F is similar to that of a function type: two handlers are

related if their handling code is related under any related substitutions for the free variables.H JFK
relates a third component η that is a term relation; the handler computations are in this relation.

H JFK is not indexed by environments δ and ρ, because effect signatures are closed.
We revisit the definition of the S relation introduced in Section 5.2. As mentioned earlier, S can

relate terms of form K
[

H ℓ v
]
where ℓ ↷ K—although terms in this relation are not necessarily

effectful, because it is possible for programs that use effects and those that do not to be equivalent.

The operational meaning of these terms depends upon a larger surrounding context that binds

the label ℓ. Therefore, the relation SJ[T]eK
ρ
δ is defined using theUJeKρδ relation, which relates the

(possibly) effectful computations t1 and t2 and also a binary term relation ψ ∈ P(Term × Term)
specifying the outcomes of these computations in a larger context. Given this specification, the

definition of SJ[T]eK
ρ
δ checks that plugging any pair of terms (t ′

1
, t ′

2
) related by the outcome

specification into the current evaluation contexts yield related terms. Notice that K1

[
t ′
1

]
and K2

[
t ′
2

]

only need to be related in the future as indicated by the use of the ▷ modality, because it takes

evaluation steps to reach t ′
1
.

Capability effects are interpreted by theUJeKρδ relation. For an effect variableα , the interpretation
is simply the relation mapped to by the environment δ . For an effect of form ℓ or h.lbl, two
interpretations are provided. RelationUAJeKρδ relates two effect operation invocations: H ℓ1

1
v1

and H ℓ2
2
v2 are related provided the handlersH

ℓ1
1

andH ℓ2
2

are related and the argumentsv1 andv2
are related. The outcome relation ψ in this case is the value relation at the return type of the

effect operation. The interpretation of ℓ and that of h.lbl differ in the relation that the handlers

satisfy, captured by the two cases in the definition ofWJeKρδ : for h.lbl, this relation is the one

that ρ maps h to, while for ℓ, this relation is T J[T]eK
ρ
δ , provided the label environment Ξ maps ℓ

to [T]e . RelationUBJeK relates two terms t1 and t2 when evaluating them in evaluation contexts of

form
ℓ K[·] (where K does not bind ℓ) preserves the evaluation contexts.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:21

∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T]e
def
= ∀δ . J∆K (δ) ⇒ ∀ρ. JPK (ρ) ⇒ ∀γ . JΓKρδ (γ) ⇒
T J[T]eK

ρ
δ (δ1ρ1γ1t1, δ2ρ2γ2t2)

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : F | e
def
= ∀δ . J∆K (δ) ⇒ ∀ρ . JPK (ρ) ⇒ ∀γ . JΓKρδ (γ) ⇒

H JFK
(
δ1ρ1γ1h1, δ2ρ2γ2h2,WJeKρδ

)
J∅K (δ)

def
= δ = ∅ J∆,αK (δ)

def
= δ = δ ′, α 7→

〈
ℓ1, ℓ2,ϕ

〉
∧ J∆K (δ ′)

J∅K (ρ)
def
= ρ = ∅ JP, h :FK (ρ)

def
= ρ = ρ ′, h 7→

〈
H ℓ1

1
,H ℓ2

2
,η
〉
∧ JPK (ρ ′) ∧ H JFK

(
H ℓ1

1
, H ℓ2

2
, η
)

J∅Kρδ (γ)
def
= γ = ∅ JΓ, x :T Kρδ (γ)

def
= γ = γ ′, x 7→⟨v1,v2⟩ ∧ JΓKρδ (γ ′) ∧ VJT Kρδ (v1, v2)

Figure 15. Logical relations for open terms and handlers

The interpretation of a sequence of effects e is naturally the union of the interpretation of the

individual effects in the sequence.

5.4 Properties of the Logical Relations
Basic properties. We point out some basic properties of the logical relations. These properties

are employed by the proof leading to the soundness theorem and are used frequently in proofs of

logical relatedness.

The following lemma applies when the goal is to prove the relatedness of two terms in which

the subterms in the evaluation contexts are related:

Lemma 1. Given evaluation contexts K1 and K2, if

(a) for any v1 and v2,VJT Kρδ (v1, v2) implies T
q
[T ′]e′

yρ
δ (K1[v1], K2[v2]), and

(b) for any s1 and s2, SJ[T]eK
ρ
δ (s1, s2) implies T

q
[T ′]e′

yρ
δ (K1[s1], K2[s2]),

then for any t1 and t2, T J[T]eK
ρ
δ (t1, t2) implies T

q
[T ′]e′

yρ
δ (K1[t1], K2[t2]).

The lemma says it suffices to show the evaluation contextsK1 andK2 satisfy the following conditions:

applying K1 and K2 to (a) related values and (b) related terms in the SJ[T]eK
ρ
δ relation yields related

terms in the T
q
[T ′]e′

yρ
δ relation. We capture the preconditions of Lemma 1 by defining a logical

relation KT
q
[T]e ⇝ [T ′]e′

yρ
δ : two evaluation contexts K1 and K2 are in this relation precisely

when they satisfy the preconditions (a) and (b) of Lemma 1.

The following two lemmas show that reduction on either side reflects the term relation:

Lemma 2. If t1 −→ t ′
1
and ▷T J[T]eK

ρ
δ

(
t ′
1
, t2
)
, then T J[T]eK

ρ
δ (t1, t2).

Lemma 3. If t2 −→ t ′
2
and T J[T]eK

ρ
δ

(
t1, t

′
2

)
, then T J[T]eK

ρ
δ (t1, t2).

The asymmetry with respect to the use of the ▷ modality in the preconditions is a result of the

asymmetry in the definition of the O relation.

The following lemma allows proving two terms related by showing that they are in theV relation

or in the S relation:

Lemma 4. VJT Kρδ ⊆ T J[T]eK
ρ
δ ∧ SJ[T]eK

ρ
δ ⊆ T J[T]eK

ρ
δ

These basic properties (Lemmas 1 to 4) are a consequence of the biorthogonal, step-indexed term

relation defined in Section 5.2.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:22 Yizhou Zhang and Andrew C. Myers

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : F | e
op(F) = T→S

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : [T→ [S]e]∅

∆ | P | Γ | Ξ, ℓ : [T]e ⊢ t1 ≼log t2 : [T]e, ℓ
∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

∆ | P | Γ | Ξ ⊢ ℓ
[T]e

t1 ≼log
ℓ
[T]e

t2 : [T]e

P(h) = F

∆ | P | Γ | Ξ ⊢ h ≼log h : F | h.lbl

Ξ(ℓ) = [S]e op(F) = T1→T2
∆ | P | Γ, x :T1, k :T2→ [S]e | Ξ ⊢ t1 ≼log t2 : [S]e

∆ | P | Γ | Ξ ⊢
(
handlerF x k. t1

)ℓ
≼log

(
handlerF x k. t2

)ℓ
: F | ℓ

Figure 16. Selected compatibility lemmas. The lemmas are written in the style of inference rules so that

they can be read in tandem with the corresponding typing rules [t-up], [t-down], [t-hvar], and [t-hdef]

in Figure 10.

Soundness. Contextual refinement is defined for open terms, so we lift the term relation and the

handler relation to open terms and open handlers by quantifying over related closing substitutions

for the variable environments, as shown in Figure 15. Here, γ provides substitution functions for

term variables: γ ::= ∅ | γ , x 7→⟨v1,v2⟩. The interpretation of variable environments as relations

on substitutions, also given in Figure 15, is standard.

Central to the proof of soundness are the compatibility lemmas; they show that logical refine-

ment ≼log is preserved by the syntactic typing rules. Figure 16 shows those compatibility lemmas

corresponding to the typing rules in Figure 10, while the rest can be found in the technical report.

Parametricity, and the fact that well-formed program contexts preserve logical refinement, are

direct consequences of the compatibility lemmas:

Theorem 1 (Parametricity, a.k.a., Fundamental Property, a.k.a., Abstraction Theorem).

(1) ∆ | P | Γ | Ξ ⊢ t : [T]e ⇒ ∆ | P | Γ | Ξ ⊢ t ≼log t : [T]e
(2) ∆ | P | Γ | Ξ ⊢ h : F | e ⇒ ∆ | P | Γ | Ξ ⊢ h ≼log h : F | e

Lemma 5 (Congruency). ⊢ C : ∆ | P | Γ | Ξ | [T]e ⇝ T ′ ∧ ∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T]e ⇒
∅ |∅ |∅ |∅ ⊢ C[t1] ≼log C[t2] : [T

′
]∅

One last step leading to the soundness theorem is to show the logical relation is adequate—two

logically related pure terms are observationally related:

Lemma 6 (Adequacy). ∅ |∅ |∅ |∅ ⊢ t1 ≼log t2 : [T]∅ ⇒ O (t1, t2)

Type safety, the property that well-typed programs can only evaluate to values or diverge, falls out

as an easy corollary of Adequacy and Parametricity, as the O relation only relates terms whose

evaluations do not get stuck.

Theorem 2 (Type Safety). If ∅ |∅ |∅ |∅ ⊢ t : [T]∅ and t −→∗ t ′, then either there exists v such

that t ′ = v or there exists t ′′ such that t ′ −→ t ′′.

The key theorem that logical refinement implies contextual refinement—and therefore logical

equivalence implies contextual equivalence—is a result of Adequacy and Congruency:

Theorem 3 (Soundness). ∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T]e ⇒ ∆ | P | Γ | Ξ ⊢ t1 ≼ctx t2 : [T]e

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:23

5.5 Formalization in Coq
The definitions and results presented in Sections 5.3–5.4 have also been formalized using the Coq

proof assistant [Coq 8.7]. The implementation consists of about 4,000 lines of code for defining the

language and proving syntactic properties, and another 4,200 lines of code for defining the logical

relations and proving their properties.

The logical relations are defined using the IxFree library [Polesiuk 2017], which is a shallow

embedding of Dreyer et al.’s logic LSLR [Dreyer et al. 2009] in Coq. It also provides tactics for

manipulating inference rules such as [löb] and [mono], as well as a fixed-point operator for

functions contractive in the use of the step index. Because IxFree does not support dependently

typed fixpoint functions and because we use a dependently typed variant of de Bruijn indices, in

our Coq formalization the type and effects attached to a label must be closed. We expect to extend

the IxFree library and overcome this limitation in the Coq formalization.

6 PROVING EXAMPLE EQUIVALENCES
We demonstrate that the logical-relations model allows us to prove refinement and equivalence

results that would not hold if algebraic effects were not tunneled. Beyond the usefulness of equiva-

lence for programmer reasoning, such equivalence results could be used to justify the soundness of

compiler transformations on effectful programs.

Example 1. In this example, we show that clients of an effect-polymorphic abstraction cannot

cause implementation details of the abstraction to leak out. We assume that λ has a second base

type N with the operator +.

Let f be a variable with an effect-polymorphic type T
def
= ∀α . (N→ [N]α)→ [N]α . Our goal is to

prove the following two terms contextually equivalent:

t1
def
= f [∅] (λx :N. x + x)

t2
def
= let g : Πh:F N→ [N]h.lbl = λh :F. λx :N. h x in

ℓ
[N]∅ (λh :F. f [h.lbl] (g h)) H ℓ

where H
def
= handlerF x k. k (x + x) and op(F) = N → N. The second term t2 corresponds to

the following program written using the try–with construct, assuming the effect operation is

named twice:

effect F { twice(N) : N }

val g = fun(x :N) : N /F { return twice(x) }

try { f(g) } with twice(x) { resume (x + x) }

Notice that this equivalence should apply to all possible (well-typed) implementations of f, so even

if the implementation handles F internally, the clients are unable to make different observations.

As a result, equivalence results of this kind ensure the correctness of compiler transformations that

optimize away uses of effects like that in t2.
By the Soundness theorem, it suffices to show that t1 and t2 are logically equivalent. Below we

show the logical refinement∅ |∅ | f :T |∅ ⊢ t1 ≼log t2 : [N]∅ holds; the proof of the other direction

is similar. By the definition of logical refinement (≼log), we need to show for any f1 and f2 in the

logical relation VJT K∅∅, the terms t1
{
f1
/
f
}
and t2

{
f2
/
f
}
are in the logical relation T

q
[N]∅

y∅
∅.

Notice that we can make reduction steps on t2
{
f2
/
f
}
. So applying Lemma 3, our goal becomes

T
q
[N]∅

y∅
∅

(
f1 [∅] (λx :N. x + x), ℓ

[N]∅ f2 [ℓ]
(
λx :N. H ℓ x

))
(1)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:24 Yizhou Zhang and Andrew C. Myers

We can show a result slightly different from (1): we will show that the terms in (1) are related

by T
q
[N]∅

y∅
δ instead, where δ contains the mapping α 7→

〈
∅, ℓ,ϕ

〉
and ϕ is the interpretation

specifically chosen for α in this example:

ϕ =
{ 〈

(λx :N. x + x) n,
(
λx :N. H ℓ x

)
n, {⟨2n, 2n⟩}, ∅, ℓ

〉 ��� n ∈ N
}

Having this result, we can use a weakening lemma (omitted) to obtain (1). Here, the presence of

effect polymorphism allows us to interpret α in arbitrary ways, but as we shall see, this particular

choice of ϕ allows us to establish logical relatedness. To obtain this result, we apply Lemma 1 with

evaluation contexts [·] and
ℓ
[N]∅ [·]:

• We want to show KT
q
[N]α ⇝ [N]∅

y∅
δ

(
[·], ℓ

[·]
)
. We apply the [löb] rule from Section 5.1:

to prove this goal, we are allowed to assume

▷KT
q
[N]α ⇝ [N]∅

y∅
δ

(
[·], ℓ

[·]
)

(2)

Unfolding the definition of KT generates the following two goals:

(a) We want to show for anyv1 andv2 in the relationVJNK∅δ , the termsv1 and
ℓ v2 are related

by T
q
[N]∅

y∅
δ . This is immediate, because the right-hand side evaluates to v2 and the value

relation is included in the term relation (Lemma 4).

(b) We want to show for any K1[s1] and K2[s2] in the relation SJ[N]α K∅δ , the terms K1[s1] and
ℓ K2[s2] are related by T

q
[N]∅

y∅
δ . Unfolding the definition of S, we know there exists an

outcome relationψ such that

(i) UJαK∅δ
(
s1, s2, ψ , ℓ1, ℓ2

)
,

(ii) ∀i . ℓ (i)
1
↷ K1 and ∀i . ℓ

(i)
2
↷ K2, and

(iii) ∀s ′
1
, s ′

2
. ψ
(
s ′
1
, s ′

2

)
⇒ ▷T J[N]α K∅δ

(
K1

[
s ′
1

]
, K2

[
s ′
2

])
.

Since we interpret α as ϕ (i.e.,UJαK∅δ ≡ ϕ), we know s1, s2, ψ , ℓ1, and ℓ2 are precisely the

terms, relation, and labels in ϕ. Thus we need to show

T
q
[N]∅

y∅
δ

(
K1[(λx :N. x + x) n],

ℓ K2

[(
λx :N. H ℓ x

)
n
])

Making evaluation steps on both sides, the goal becomes ▷T
q
[N]∅

y∅
δ

(
K1[2n],

ℓ K2[2n]
)
.

The new goal is guarded by the ▷ modality because evaluation occurred in the first computa-

tion. The new proof context is as follows, where the first assumption is the Löb induction

hypothesis (2):

▷KT
q
[N]α ⇝ [N]∅

y∅
δ

(
[·], ℓ

[·]
)

∀s ′
1
, s ′

2
. ψ
(
s ′
1
, s ′

2

)
⇒ ▷T J[N]α K∅δ

(
K1

[
s ′
1

]
, K2

[
s ′
2

])
▷T

q
[N]∅

y∅
δ

(
K1[2n],

ℓ K2[2n]
)

We already haveψ (2n, 2n), so ▷T J[N]α K∅δ (K1[2n], K2[2n]) holds. Now we can apply rule

[mono] from Section 5.1: the presence of the ▷ modality in the goal cancels out the occur-

rences of ▷ in the assumptions. The new goal then follows from the definition of KT .

• We are left to show T J[N]α K∅δ
(
f1 [∅] (λx :N. x + x), f2 [ℓ]

(
λx :N. H ℓ x

))
. By the hypoth-

esis VJ∀α . (N→ [N]α)→ [N]α K∅∅ (f1, f2) and by the definition of V , we have that the terms

f1 [∅] and f2 [ℓ] are in the relation T
q
[(N→ [N]α)→ [N]α]∅

y∅
δ . Because the logical relation

is compatible with the typing rule for applications, it suffices to show that the values that f1 [∅]

and f2 [ℓ] are applied to (i.e., λx :N. x + x and λx :N. H ℓ x) are in the relationVJ(N→ [N]α)K
∅
δ ,

which by definition means applications of these two abstractions to the same natural number

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:25

are in the term relation T J[N]α K∅δ . By Lemma 4, we show the applications are actually in the

smaller S relation:

SJ[N]α K∅δ
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n
)

With the evaluation contexts being [·], the following conditions are straightforward to show:

(i) UJαK∅δ
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n, {⟨2n, 2n⟩}, ∅, ℓ

)
,

(ii) ℓ ↷ [·], and

(iii) for any s ′
1
and s ′

2
related by {⟨2n, 2n⟩}, ▷T J[N]α K∅δ

(
s ′
1
, s ′

2

)
.

Example 2. In this example, we show tunneled algebraic effects preserve the abstraction of handler

polymorphism.

Let f be a variable with a handler-polymorphic type Πh:F (N→ [N]h.lbl)→ [N]h.lbl. Our goal is to

prove the following two terms contextually equivalent:

t1
def
=

ℓ
[N]∅ (λh :F. f h (λx :N. x + x)) H ℓ

t2
def
=

ℓ
[N]∅ (λh :F. f h (λx :N. h x)) H ℓ

where H
def
= handlerF x k. k (x + x) and op(F) = N→N. Again, this equivalence is expected to hold

regardless of the implementation of f, which is free to handle F internally.

The proof is structured in an analogous way to that in Example 1: we apply Lemma 1 and

prove that the evaluation contexts
ℓ
[·] and

ℓ
[·] are in the relation KT

q
[N]h.lbl ⇝ [N]∅

yρ
∅ and

that the application terms f1 H
ℓ (λx : N. x + x) and f2 H

ℓ
(
λx :N. H ℓ x

)
, where f1 and f2 are

(related) substitutions for f, are in the relation T J[N]h.lblK
ρ
∅. Here ρ

def
= h 7→

〈
H ℓ,H ℓ,T

q
[N]∅

y∅
∅

〉
,

and H JFK
(
H ℓ, H ℓ, T

q
[N]∅

y∅
∅

)
holds by Parametricity. The new element in this proof is the

interpretation of the effect h.lbl. In particular, showing the subgoal

SJ[N]h.lblK
ρ
∅
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n
)

involves showing UJh.lblKρ∅
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n, {⟨2n, 2n⟩}, ℓ, ℓ

)
, which can be

verified as follows:

∀K . ℓ ↷ K ⇒ ℓ K[(λx :N. x + x) n] −→+ ℓ K[2n]

∀K . ℓ ↷ K ⇒ ℓ K
[(
λx :N. H ℓ x

)
n
]
−→∗

ℓ K[2n]

Note that the corresponding definition in Figure 14 requires the first computation to take at least

one reduction step, so when verifying that the evaluation contexts are in the KT relation, the

[mono] rule allows shifting reasoning to a future world where the Löb induction hypothesis applies.

7 RELATEDWORK
Previous work proposes ways to make algebraic effects composable. Leijen [2014] suggests using an

inject function to prevent client code from meddling with the effect-handling internals of library

functions. Applying inject to a computation causes effects raised from that computation to bypass

the innermost handler enclosing it. Biernacki et al. [2017] propose a “lift” operator that works in a

similar fashion: computations surrounded by a lift operator [·]F bypass the innermost effect handler

for F. The programmer can use inject or lift to prevent effects of a client-provided function from

being intercepted by the effect-polymorphic, higher-order function that applies it. Both of these

type systems use effect rows and row polymorphism, and distinguish different occurrences of the

same effect name in a row.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:26 Yizhou Zhang and Andrew C. Myers

The very use of effect rows in these approaches does not seem to be without limitations. In

particular, it poses challenges to composing polymorphic effects. For example, because α , β is not a

legal effect row, this effect-polymorphic higher-order function type does not seem to be expressible

using effect rows: ∀α .∀β . ((T1→ [T2]α)→ [T3]β)→ (T1→ [T2]α)→ [T3]α,β .
Biernacki et al. [2017] show that effect polymorphism in a core language equipped with the lift

operator satisfies parametricity; we borrow useful techniques from their logical-relations definition.

The type system of Biernacki et al. poses restrictions on “subeffecting” (cf. subtyping): it rejects—by

fiat—an effect variable α as a subeffect of F,α . The absence of accidental handling hinges upon

this restriction: the programmer must thread lift operators through effect-polymorphic code to

please the type checker. For example, function fiterate from Section 2 would not type-check in

their system because the effect of f(x) (i.e., effect variable E) is not a subeffect of Yield[X], E. The

programmer would have to choose between (a) declaring variable fwith type X→ bool /Yield[X], E,

and (b) surrounding f(x) with a lift operator. In contrast, because it rests on the intuitive principle

that code should only handle effects it is locally aware of, tunneling requires no essential changes

to effect-polymorphic code.

Zhang et al. [2016] propose an alternate semantics for exceptions in their Genus language, in

which exceptions are tunneled through contexts that are not statically aware of them. While we

build on this insight, this prior work is limited to exceptions rather than more general algebraic

effects, and importantly, the mechanism is not shown formally to be abstraction-safe. The kind of

exception polymorphism it supports is also more limited: functions are polymorphic in the latent

exceptions of only those types that are annotated weak. It is argued that trading weak annotations for

explicit effect variables reduces annotation burden. However, this approach makes it cumbersome,

if not impossible, to define exception-polymorphic data structures, such as the cachingFun class in

Section 3.4. The weak annotations are essentially a mechanism for region-capability effects: values

of weak types have a stack discipline and thus can only be used in a second-class way, but data

structures require a finer-grained notion of region capability.

Functional programming languages like ML and Haskell do not statically check that exceptions

are handled, so we do not consider them fully type-safe. Interestingly, accidental handling can be

avoided in SML, because SML exception types are generative [Milner et al. 1990] and because a

handler can only handle lexically visible exception types. However, the type system does not ensure

that accidental handling is avoided or that exceptions are handled at all. Bračevac et al. [2018]

observe the need to disambiguate handlers for invocations of the same algebraic effect operation.

Compared with their proposed solution of generative effect signatures, tunneling addresses the issue

straightforwardly: handlers can be specified explicitly for each invocation of the effect operation.

Brachthäuser and Schuster [2017] encode algebraic effect handlers as a Scala library named Effekt.

Like our use of handler polymorphism, the encoding passes handlers down to the place where

effect operations are invoked, using Scala’s implicits feature [Oliveira et al. 2010] and in particular,

implicit function types [Odersky et al. 2017], to resolve implicit arguments as handler objects in

scope. Clients of Effekt do not have to worry about accidental handling, but this approach does not

guarantee the absence of run-time errors. In addition to the handling code, a stack-marking prompt
must be passed down too, so that when the effect operation is invoked, the continuation up to the

prompt is captured and passed to the handling code. But there is no static checking that the prompt

obeys the stack discipline—type-safety relies on client code using the library in a disciplined way.

It is hypothesized that this safety issue could be remedied by using the @local annotation

provided in a Scala extension [Osvald et al. 2016]. Parameters of functions and local variables can

be annotated @local, making them second-class. In contrast to the Genus weak annotation [Zhang

et al. 2016], @local is applied to uses of types (instead of definitions of types), so it seems no

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:27

lighter-weight than explicit effect variables. Like the weak annotations, @local cannot offer the

fine-grained notion of region capability needed to express effect-polymorphic data structures.

Our use of capability effects to ensure soundness is adapted from work on region-based memory

management [Crary et al. 1999; Grossman et al. 2002; Tofte and Talpin 1997]. A capability is a set

of live memory regions. To prevent accesses to deallocated memory regions, computations are

typed with capability effects that specify the set of regions they might access. We apply this idea to

ensure continuations of handling code are accessible. Our type system is simpler than a full-fledged

region type system because safety concerns only lexical regions delimited by effect handlers.

The problem of accidentally handled effects generalizes the problem of variable capture in early

programming languages (e.g., Lisp) that supported dynamically scoped variables. Dynamically

scoped variables do not have to be dynamically typed; Lewis et al. [2000] provide a type system

for them, treating them as implicit parameters. To avoid variable capture, Lewis et al. ban the use

of implicitly parameterized functions as first-class values, losing the extensibility that makes dy-

namically scoped variables attractive. Tunneled algebraic effects offer abstraction-safe dynamically

scoped variables without sacrificing their expressive power.

Kammar et al. [2013] distinguish between deep and shallow semantics for handlers. A shallow

handler is discarded after it is first invoked, while a deep handler can continue to handle the rest of

the computation it envelops. Handlers for tunneled algebraic effects are deep. Shallow handlers

pose challenges to modular reasoning, because it is difficult to reason statically about how effects

raised from the rest of the computation are handled.

The effect constructs in our core language are essentially a pair of delimited control opera-

tors [Danvy and Filinski 1990; Felleisen 1988]. With delimited control, one operator C (cf. in

λ) captures the continuation delimited by a corresponding operator of the other kind D (cf. in

λ). Among the variety of previous delimited control operators, ours are closest to those with

named prompts [Dyvbig et al. 2007; Gunter et al. 1995]. Rather than pairing a C operation with the

dynamically closest enclosingD, these mechanisms allow uses ofD to be named and consequently

referenced by invocations of C, enabling static reasoning. Although embedded in statically typed

languages, the earlier mechanisms do not guarantee type safety—a C operation can go unhandled.

8 CONCLUSION
We have argued that tunneling is the right semantics for algebraic effects because, as we have shown

formally, it makes them abstraction-safe, preserving modular reasoning. Because algebraic effects

generalize other mechanisms such as exceptions, dynamically scoped variables, and coroutines,

the tunneling semantics fixes not only algebraic effects generically, but also the design of several

specific language features. We have provided a strong foundation for the design of algebraic-effect

mechanisms that are not only type-safe, but also abstraction-safe. Our new semantics should

be a useful guide for future language designs and also motivate support for algebraic effects in

mainstream languages.

ACKNOWLEDGMENTS
We thank Josh Acay, Sam Lindley, Craig McLaughlin, and Drew Zagieboylo for their helpful

feedback on this paper, along with our shepherd and the anonymous reviewers. We also thank

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski for making their software

available. This research was supported by NSF grant 1513797 and NASA grant NNX16AB09G but

does not necessarily represent the opinions of these funding agencies.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

5:28 Yizhou Zhang and Andrew C. Myers

REFERENCES
Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In 15th European Symposium on

Programming, 2006. Extended/corrected version available as Harvard University TR-01-06.

Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-carrying code. ACM
Trans. on Programming Languages and Systems, 23(5), September 2001.

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A very modal model of a modern,

major, general type system. In 34th ACM Symp. on Principles of Programming Languages (POPL), 2007.

Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers. Logical Methods in Computer Science,
Volume 10, Issue 4, December 2014.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of Logical and Algebraic Methods
in Programming, 84(1), 2015.

Nick Benton and Uri Zarfaty. Formalizing and verifying semantic type soundness of a simple compiler. In Proceedings of the
9th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, pages 1–12, 2007.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle with care: Relational interpretation of

algebraic effects and handlers. Proc. ACM on Programming Languages, 2(POPL), December 2017.

Jonathan Immanuel Brachthäuser and Philipp Schuster. Effekt: Extensible algebraic effects in Scala (short paper). In

Proceedings of the 8th ACM SIGPLAN International Symposium on Scala, 2017.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Algebraic effects for the masses. Proc. ACM on
Programming Languages, 2(OOPSLA), October 2018.

Oliver Bračevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, and Mira Mezini. Versatile event

correlation with algebraic effects. Proc. ACM on Programming Languages, 2(ICFP), August 2018.

Coq 8.7. The Coq proof assistant. http://coq.inria.fr. Version 8.7.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of capabilities. In 26th ACM Symp.
on Principles of Programming Languages (POPL), 1999.

Olivier Danvy and Andrzej Filinski. Abstracting control. In ACM Conf. on LISP and Functional Programming, pages 151–160,
1990.

Derek Dreyer. Milner award lecture: The type soundness theorem that you really want to prove (and now you can). In 45th

ACM Symp. on Principles of Programming Languages (POPL), 2018.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations. In 24th Annual IEEE Symposium on
Logic In Computer Science (LICS), 2009.

Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control effects on local relational

reasoning. Journal of Functional Programming, 22(4-5):477–528, 2012.

R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic framework for delimited continuations. Journal of
Functional Programming, 17(6):687–730, November 2007. ISSN 0956-7968.

Matthias Felleisen. The calculi of λ-v-CS conversion: A syntactic theory of control and state in imperative higher-order
programming languages. PhD thesis, Indiana University, Indianapolis, IN, USA, 1987.

Mattias Felleisen. The theory and practice of first-class prompts. In 15th ACM Symp. on Principles of Programming Languages
(POPL), pages 180–190, 1988.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, MA, 1994. ISBN 0-201-63361-2.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. Region-based memory

management in Cyclone. In ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), pages
282–293. ACM Press, 2002.

Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control in ml-like languages. In 7th

Conf. on Functional Programming Languages and Computer Architecture (FPCA), 1995.

Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers. In Proceedings of the 1st International
Workshop on Type-Driven Development, 2016.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

Abstraction-Safe Effect Handlers via Tunneling 5:29

Patricia Johann, Alex Simpson, and Janis Voigtländer. A generic operational metatheory for algebraic effects. In 25th Annual
IEEE Symposium on Logic In Computer Science (LICS), 2010.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In 18th ACM SIGPLAN Int’l Conf. on Functional
Programming, 2013.

Donald Ervin Knuth. The TEXbook. Addison-Wesley Reading, 1984.

Daan Leijen. Koka: Programming with row polymorphic effect types. In 5th Workshop on Mathematically Structured
Functional Programming. EPTCS, 2014.

Daan Leijen. Type directed compilation of row-typed algebraic effects. In 44th ACM Symp. on Principles of Programming
Languages (POPL), 2017.

Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields. Implicit parameters: Dynamic scoping with static

types. In 27th ACM Symp. on Principles of Programming Languages (POPL), 2000.

Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In 44th ACM Symp. on Principles of Programming
Languages (POPL), 2017.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences, 17(3):348–375,
1978.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, Cambridge, MA, 1990. ISBN

978-0262631327.

J. H. Morris, Jr. Lambda-Calculus Models of Programming Languages. PhD thesis, Massachusetts Institute of Technology,

1968.

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro Stucki. Simplicitly:

Foundations and applications of implicit function types. Proc. ACM on Programming Languages, 2(POPL), December 2017.

Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implicits. In 25th ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), 2010.

Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. Gentrification gone too far?

Affordable 2nd-class values for fun and (co-)effect. In 2016 ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2016.

Andrew M Pitts and Ian Stark. Operational reasoning for functions with local state. Higher order operational techniques in
semantics, pages 227–273, 1998.

Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied Categorical Structures, 11(1):69–94, Feb
2003.

Gordon Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in Computer Science, Volume 9, Issue 4,

December 2013.

Piotr Polesiuk. IxFree: Step-indexed logical relations in Coq. In 3rd International Workshop on Coq for Programming Languages
(CoqPL), 2017.

John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages 513–523, 1983.

Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects. In 26th European Conf. on Object-Oriented
Programming, 2012.

Guy L. Steele, Jr. Common LISP: the Language. Digital Press, second edition, 1990. ISBN 1-55558-041-6.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and Computation, 132(2):109–176, 1997.

Philip Wadler. Theorems for free! In 4th Conf. on Functional Programming Languages and Computer Architecture (FPCA),
pages 347–359, September 1989.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and Computation, 115(1):
38–94, 1994. ISSN 0890-5401.

Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect handlers via tunneling: technical report. Technical Report 1813–

60202, Cornell University Computing and Information Science, November 2018. URL http://hdl.handle.net/1813/60202.

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. Accepting blame for safe tunneled

exceptions. In 37th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), pages 281–295,
June 2016. URL http://www.cs.cornell.edu/andru/papers/exceptions.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 5. Publication date: January 2019.

http://hdl.handle.net/1813/60202
http://www.cs.cornell.edu/andru/papers/exceptions

	Abstract
	1 Introduction
	2 Algebraic Effects and Accidental Handling
	2.1 Algebraic Effects and Handlers
	2.2 Accidentally Handled Effects Violate Abstraction

	3 Tunneled Algebraic Effects
	3.1 Tunneling Restores Modularity
	3.2 Tunneling Preserves the Expressivity of Dynamic Scoping Safely
	3.3 Accomplishing Tunneling by Statically Choosing Handlers
	3.4 Region Capabilities as Computational Effects
	3.5 Implementation

	4 A Core Language
	4.1 Syntax
	4.2 Operational Semantics
	4.3 Static Semantics
	4.4 Contextual Refinement and Equivalence

	5 A Sound Logical-Relations Model
	5.1 Step Indexing
	5.2 A Biorthogonal Term Relation
	5.3 Semantic Types, Semantic Effect Signatures, and Semantic Effects
	5.4 Properties of the Logical Relations
	5.5 Formalization in Coq

	6 Proving Example Equivalences
	7 Related Work
	8 Conclusion
	References

