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A Cut separates regions

Graph Cut (Min Cut)
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Dual task
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A Path connects points

Path search (Max Flow)
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Graph Cut (Min Cut) M Path search (Max Flow)

Multi-label

Semantic Segmentation
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A Cut separates regions A Path connects points
Dual task
Graph Cut (Min Cut) M Path search (Max Flow)
Multi-label Multi-label

. . Dual task . .
Semantic Segmentation M Semantic edge detection
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Noisy labels (Semantic boundaries dataset)
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Related works include semantic houndary detection and

= Semantic Boundary Detection
« Canny edge detector [1987, Canny]

o Semantic boundaries dataset
(SBD)[ICCV2011, Hariharan]

» Deep catogory-aware semantic
edge detection (CASENet)
[CVPR2017, Yu]

« Simultaneous edge alignment and
learning (SEAL) [ECCV2018, Yu]

Devil is in the edges, Acuna et al, CVPR2019

= Level set segmentation

« Geodestic object proposal
[ECCV2014, Krahenbuhl ]

 Deep level sets for salient object
detection [CVPR2017, Hu]

 Deep structured active contours
[CVPR2018, Marcos]

 Deep extreme level set [CVPR2019,
Wang]
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Semantic edge detection is to predict boundary maps for K object
classes given an input image x through maximizing the likelihood of

P(yx|x; 0), where y;* € {0,1} indicate whether pixel m belongs class k

Active alignment is to find a more accurate version ¥ of ground-truth
label Y, where S’ - {ylv S’2, ey S’K}
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Semantic edge detection is to predict boundary maps for K object
classes given an input image x through maximizing the likelihood of

P(yx|x; 0), where y;* € {0,1} indicate whether pixel m belongs class k

Active alignment is to find a more accurate version ¥ of ground-truth
label Y, where S’ - {ylv S’Z, ey S’K}

Objective: min £(¥, ) = minmin £(y, 8)
y.,0 0 y
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STEAL architecture consists of two parts: semantic etdge

boundary

classification layer

fixed convolution
(normal estimation)

normal angles

fixed convolution
(normal estimation)

network

boundary detection

" NMS architecture

direction
oS!
boundary
classif. loss
.
. A
NMS loss refined annotated
— labels ground-truth
active
alignment

. STEAL: Semantic Thinning Edge Alignment Learning

Devilis in the Edges
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STEAL architecture consists of two parts: semantic etdge
detection and active alignment

fixed convolution normal angles

(normal esti(jnation) 0 fixed convolution
boundary' (normal estimation)

—_| direction
oS

boundary
classif. loss

[
NMS loss refined A
labels

annotated
ground-truth

softmax

active
alignment

boundary detection — —
network ~ NMS architecture

1.1 Boundary loss
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STEAL architecture consists of two parts: semantic etdge
detection and active alignment

1.3 Direction loss

fixed convolution
(normal estimation)

fixed convolution

boundary (normal estimation)

—_| direction

oS!
boundary
"""""""""""""" classif. loss
o —
. A
______ NMS loss refined annotated
labels

P softmax ground-truth

active
alignment

Boundary detection , --------------------------- —
network " NMS architecture

1.1 Boundary loss 1.2 NMS loss

Non-maximum suppression

L =ai1 Lpcr + as Loms + as Lair
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semantic houndary prediction involves thress losses

1.1 Boundary loss

1.2 NMS loss

Non-maximum suppression

1.3 Direction loss

Devil is in the edges, Acuna et al, CVPR2019

Lpce(0) = ZIOgP Yk|x;0)

= —ZZ{ﬁy log fr(m|x,0)+

+(1- 5)(1 —yi') log(1 — fe(m|x,0))}

Lpms(0) = — Z Z log hi(p|x, 0) ” .
E p

exp(f (plx, 0)/7)
> exp(fi(pelx,0)/7)

hi (p|x, 0) = te{-L —-L+1,...,L}

‘cdlr ZZHCCS dp7ep ))“
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STEAL architecture consists of two parts: level set
formulation and regularization loss

1.3 Direction loss

fixed convolution :normal angles;

(normal esti(pation) 0 fixed convolution

(normal estimation)

——__| direction et .
v 0s
1) boundary :
-~ A classif. loss

A :

K - — ]

H Y - .. 07,1994 H

EEN ) — 7] .

LA

NMS loss érefined 48

boundary

....................................................... .
T T e ol [ B o alignment

network ~ NMS architecture
inference training

1.1 Boundary loss 1.2 NMS loss 2. Level set formulation

L =ai1 Lpcr + as Loms + as Lair
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Level set formulation is huilt for active edge alignment

2. Level set formulation

¥ = {T: ¢(T,t) = 0} V¢

Geodestic active contours, Caselles et al., IJCV1997
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Level set formulation is huilt for active edge alignment

2. Level set formulation

v ={L: (', t) =0} Vt

min L(3,60) = — ) log P(yk,Jklx; 6)
’ k

= — ) (log P(yx|y&) + log P(3xx; 9))
k Prior Edge detector

Geodestic active contours, Caselles et al., IJCV1997
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Level set formulation is huilt for active edge alignment

2. Level set formulation

v ={L: (', t) =0} Vt

min L(3,60) = — ) log P(yk,Jklx; 6)
’ k

= — ) (log P(yx|y&) + log P(3xx; 9))
k Prior Edge detector

Prior energe: E(yu|yi;\; fr) = /g(fk,yk, A) Yr(p) 13 (p)| Op
p

(for¥ir ) = — e —
9\Jky Yk, - 1 i |fk| 1 n |yk|

Geodestic active contours, Caselles et al., IJCV1997
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Level set formulation is huilt for active edge alignment

2. Level set formulation

Prior energe: E(yp|yr; A; fx) = /g(fk,yk, A) Yi(p) |¥k(p)| Op
p

Gradient descent: a)é—it) =kg(f,y, )n— (Vg(f,y,\)n)n

Geodestic active contours, Caselles et al., IJCV1997
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Level set formulation is huilt for active edge alignment

2. Level set formulation

Prior energe: E(yp|yr; A; fx) = /g(fk,yk, A) Yi(p) |¥k(p)| Op
p

Gradient descent: a)é—it) =kg(f,y, )n— (Vg(f,y,\)n)n

Level set trick: 85'%;” — 5/\7’ I:> a‘ggt) —

Geodestic active contours, Caselles et al., IJCV1997
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Level set formulation is huilt for active edge alignment

2. Level set formulation

Prior energe: E(yp|yr; A; fx) = /g(fk,yk, A) Yi(p) |¥k(p)| Op
p

Gradient descent: a)é—it) =kg(f,y, )n— (Vg(f,y,\)n)n

Level set trick: ayﬂaLt(t) = 8 ./\7 :> do(t) _ mv—» ¢| s ’

9¢(t)
ot

Rewrite evolution:

= 9(fi, Yk A) (K + €)[ Vo[ + VgV

Geodestic active contours, Caselles et al., IJCV1997

5T UNIVERSITY OF [ oo o
Devil is in the edges, Acuna et al, CVPR2019 20 @ WATERLOOQO | encineerine



STEAL architecture consists of two parts: level set
formulation and regularization loss

1.3 Direction loss

fixed convolution :normal angles;

(normal esti(pation) 0 fixed convolution

(normal estimation)

——__| direction et .
v 0s
1) boundary :
-~ A classif. loss

A :

K - — ]

H Y - .. 07,1994 H

EEN ) — 7] .

LA

NMS loss érefined 48

boundary

....................................................... .
T T e ol [ B o alignment

network ~ NMS architecture
inference training

1.1 Boundary loss 1.2 NMS loss 2. Level set formulation

0o(t
L =aoa1 Lpcg + a2 Loms + as Lagir % = 9(fk, Yk, ) (K +¢)|Vo| + VgV
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Objective function:

min £(y, ) = min min L(y, )
y,0 & 3
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Objective function:
min £(y, ) = min min L(y, )
y,0 & 3y

Step 1: Fixed 0, optimize ¥

min £(§%,0) = min{— log P(y}[x;0) — C}
Yk

Step 2: Fixed ¥, optimize 0

mein L(Yk,0) = main a1 LpcE + @2 Loms + 3 Lair
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Experimental results show the effectiveness of STEAL in
producing crisp semantic edges

(a) Image (b) CASENet (c) Ours (d) +Thinning Layer (e) Ground-truth
Figure 3: Qualitative Results on the SBD Dataset.
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Experimental results show the effectiveness of STEAL in
producing crisp semantic edges

\ :
R p
(a) Image (b) CASENet (c) Ours (d) +Thinning Layer (e) Ground-truth
Figure 3: Qualitative Results on the SBD Dataset.
Metric | Method | aero | bike | bird | boat |bottle | bus | car | cat | chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train | tv | mean
CASENet 74.84 | 60.17 | 73.71 | 47.68 | 66.69 | 78.59 | 66.66 | 76.23 | 47.17 | 69.35 | 36.23 | 75.88 | 72.45 | 61.78 | 73.10 | 43.01 | 71.23 | 48.82 | 71.87 | 54.93 | 63.52
MF CASENet-S 76.26 | 62.88 | 75.77 | 51.66 | 66.73 | 79.78 | 70.32 | 78.90 | 49.72 | 69.55 | 39.84 | 77.25 | 74.29 | 65.39 | 75.35 | 47.85|72.03 | 51.39 | 73.13 | 57.35 | 65.77
(ODS) SEAL 78.41 | 66.32 | 76.83 | 52.18 | 67.52 | 79.93 | 69.71 | 79.37 | 49.45 | 72.52 | 41.38 | 78.12 | 74.57 | 65.98 | 76.47 | 49.98 | 72.78 | 52.10 | 74.05 | 58.16 | 66.79
Ours (NMS Loss) 78.96 | 66.20 | 77.53 | 54.76 | 69.42 | 81.77 | 71.38 | 78.28 | 52.01 | 74.10 | 42.79 | 79.18 | 76.57 | 66.71 | 77.71 | 49.70 | 74.99 | 50.54 | 75.50 | 59.32 | 67.87
Ours (NMS Loss + AAlign) | 80.15 | 67.80 | 77.69 | 54.26 | 69.54 | 81.48 | 71.34 | 78.97 | 51.76 | 73.61 | 42.82 | 79.80 | 76.44 | 67.68 | 78.16 | 50.43 | 75.06 | 50.99 | 75.31 | 59.66 | 68.15
CASENet 50.53 | 44.88 | 41.69 | 28.92 | 42.97 | 54.46 | 47.39 | 58.28 | 35.53 | 45.61 | 25.22 | 56.39 | 48.45 | 42.79 | 55.38 | 27.31 | 48.69 | 39.88 | 45.05 | 34.77 | 43.71
AP CASENet-S 67.64 | 53.10 | 69.79 | 40.51 | 62.52 | 73.49 | 63.10 | 75.26 | 39.96 | 60.74 | 30.43 | 72.28 | 65.15 | 56.57 | 70.80 |33.91 | 61.92 | 45.09 | 67.87 | 48.93 | 57.95
SEAL 74.24 | 57.45 | 72.72 | 42.52 | 65.39 | 74.50 | 65.52 | 77.93 | 40.92 | 65.76 | 33.36 | 76.31 | 68.85 | 58.31 | 73.76 | 38.87 | 66.31 | 46.93 | 69.40 | 51.40 | 61.02
Ours (NMS Loss) 75.85|59.65 | 74.29 | 43.68 | 65.65 | 77.63 | 67.22 | 76.63 | 42.33 | 70.67 | 31.23 | 77.66 | 74.59 | 61.04 | 77.44 |38.28 | 69.53 | 40.84 | 71.69 | 50.39 | 62.32
Ours (NMS Loss + AAlign) | 76.74 | 60.94 | 73.92 | 43.13 | 66.48 | 77.09 | 67.80 | 77.50 | 42.09 | 70.05 | 32.11 | 78.42 | 74.77 | 61.28 | 77.52 | 39.02 | 68.51 | 41.46 | 71.62 | 51.04 | 62.57

Table 1: Comparison of our method in the re-annotated SBD test set vs state-of-the-art. Scores are measured by %.
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Experimental results show the effectiveness of STEAL in
tolenrence for noisy labels

(a) Image (b) CASENet (c) Ours (d) Ground-truth
Figure 7: Qualitative Results on the Cityscapes Dataset.

5T UNIVERSITY OF [ oo o
Devil is in the edges, Acuna et al, CVPR2019 26 WATERLOOQO | encineerine



Experimental results show the effectiveness of STEAL in
tolenrence for noisy labels
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(a) Image (b) CASENet (c) Ours (d) Ground-truth
Figure 7: Qualitative Results on the Cityscapes Dataset.
Metric |Method ‘TestNMS‘ road ‘s.walk ‘ build.l wall |fence| pole |t—light|t—sign‘ veg ‘terrain‘ sky lperson‘ rider | car |truck| bus | train |motor| bike |mean
MF CASENet 87.06 | 75.95 [ 75.74 [ 46.87 | 47.74 [ 73.23 | 72.70 | 75.65 | 80.42 | 57.77 [86.69 | 81.02 [ 67.93 | 89.10 [ 45.92 [ 68.05 [ 49.63 | 54.21 | 73.74 | 68.92
©Ds) | Qurs(CASENe) 87.23 | 76.08 | 75.73 | 47.86 | 47.57 | 73.67 | 71.77 | 75.19 | 80.58 | 58.39 |86.78 | 81.00 | 68.18 | 89.31 | 48.99 | 67.82 | 50.84 | 55.30 | 74.16 | 69.29
Ours(CASENet) v 88.13 | 76.53 | 76.75 | 48.70 | 48.60 | 74.21 | 74.54 | 76.38 | 81.32 | 58.98 |87.26 | 81.90 | 69.05 | 90.27 | 50.93 | 68.41 | 52.11 | 56.23 | 75.66 | 70.31
+NMS LOSS 88.08 | 77.62 | 77.08 | 50.02 | 49.62 | 75.48 | 74.01 | 76.66 | 81.51 | 59.41 |87.24 | 81.90 | 69.87 | 89.50 | 52.15 | 67.80 | 53.60 | 55.93 | 75.17 | 70.67
+NMS LOSS v 88.94 | 78.21 | 77.75 | 50.59 | 50.39 | 75.54 | 76.31 | 77.45 | 82.28 | 60.19 | 87.99 | 82.48 | 70.18 | 90.40 | 53.31 | 68.50 | 53.39 | 56.99 | 76.14 | 71.42
CASENet 54.58 [ 65.44 [67.75]37.97 [39.93 [ 57.28 | 64.65 [ 69.38 [ 71.27 | 50.28 [73.99 [ 72.56 [ 59.92 | 66.84 [ 35.91 [ 56.04 [ 41.19 [ 46.88 [ 63.54 [ 57.65
AP Ours(CASENet) 68.38 | 69.61 | 70.28 | 40.00 | 39.26 | 61.74 | 62.74 | 73.02 | 72.77 | 50.91 |80.72 | 76.06 | 60.49 | 79.43 | 40.86 | 62.27 | 42.87 | 48.84 | 64.42 | 61.30
Ours(CASENet) v 88.83 | 73.94 | 76.86 | 42.06 | 41.75 | 69.81 | 74.50 | 76.98 | 79.67 | 56.48 |87.73 | 83.21 | 68.10 | 91.20 | 44.17 | 66.69 | 44.77 | 52.04 | 75.65 | 68.13
+NMS LOSS 89.54 | 75.72 | 74.95 | 42.72 | 41.53 | 65.86 | 67.55 | 75.84 | 77.85 | 52.72 | 82.70 | 79.89 | 62.59 | 91.07 | 45.26 | 67.73 | 47.08 | 50.91 | 70.78 | 66.44
+NMS LOSS v 90.86 | 78.94 | 77.36 | 43.01 | 42.33 | 71.13 | 75.57 | 77.60 | 81.60 | 56.98 | 87.30 | 83.21 | 66.79 | 91.59 | 45.33 | 66.64 | 46.25 | 52.07 | 74.41 | 68.89
Table 5: Results on the val set on the Cityscapes dataset. Training is done using the finely annotated train set. Scores are measured by %.
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Experimental results show the effectiveness of STEAL in
tolenrence for noisy labels

Ours
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Figure 5: Comparison of our boundaries vs those obtained from DeepLab
v3+’s segmentation masks. We perform 4.2% better at the strictest regime.
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Experimental results show the effectiveness of STEAL in
tolenrence for noisy labels

Ours o5 I coarse
721 Deeplab V3+ 93 I coarse-to-fine
CASENet o1
70 A 89
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2 68 1 85
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Figure 5: Comparison of our boundaries vs those obtained from DeepLab Figure 6: Semantic Segmentation on Cityscapes val: Performance of

v3+’s segmentation masks. We perform 4.2% better at the strictest regime. DeepLab V3+ when trained with fine data and (blue) vanilla train_extra
set, (orange) our refined data (8 object classes) from train_extra. We see
improvement of more than 1.2 IoU % in rider, truck and bus.
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Conclusions

= Proposed a simple and effective = Introduced a framework that reasons
Thinning Layer and NMS and about true object boundaries during
direction loss that can be used in training to deal with the fact that most
conjunction with existing boundary datasets have noisy annotations
detectors

UNIVERSITY OF FACULTY OF

Devil is in the edges, Acuna et al, CVPR2019 30 % WATE R Loo ENGINEERING



Conclusions

= Proposed a simple and effective = Introduced a framework that reasons
Thinning Layer and NMS and about true object boundaries during
direction loss that can be used in training to deal with the fact that most
conjunction with existing boundary datasets have noisy annotations
detectors

Coarse Annotations on Cityscapes

https://github.com/nv-tlabs/STEAL
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