Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch Abhinav Gupta Alexei A. Efros

ICCV 2015

Presenter: Ahmadreza Jeddi July 2019

Presented in CS 898 course [instructor: professor Yuri Boykov]

University of Waterloo, department of computer science

Outline

- Learning representations for image fragments by using context
- Trained CNNs used as initialization for object detection by R-CNN on Pascal VOC 2007 dataset
- Visual data discovery (unsupervised object discovery) by using representations of image fragments

Introduction

- We like to have rich and high-performance representations of visual data
- Problem statement:
 - Datasets with millions of labeled examples have let CNN-based models learn excellent representations
 - But what about Internet-scale datasets (e.g. hundreds of billions of images) with no annotations?
 - Unsupervised learning ...
 - But without labels, what should be represented?
 - How can one write an objective function to capture representation for an object if the object is not labeled?

Common unsupervised methods to tackle representation learning

• Method A) Image representations as latent variables of generative models

Method B) Image representations as embeddings

Method A

- Image representations as latent variables of generative models
- Example: auto-encoders
- Inferring latent structure is intractable given an image, so these models use sampling to perform approximation
- Promising performance on smaller datasets (e.g. handwritten digits) but not effective for high resolution natural images

Method B

- Image representations as embeddings
- Semantically similar images should have close embedding
- Use a pretext task to create the embeddings
- Pretext task: converts the unsupervised problem into a self-supervised one
- Context prediction as a pretext task: successful in text domain
 - * "Skip-gram" model: word embedding in text domain by using word context

Skip-gram model

- Predicts the context (*n* preceding and *n* succeeding words) of a word
- Converts the unsupervised problem of predicting representations into a self-supervised problem of predicting a word's context
- Training a neural network for this task generates the embedding of words
- But can we use this context idea in image domain?

The Skip-gram model architecture [2]

Context in image domain

- Challenge: predicting pixels is much harder than predicting words
- Two ideas:
 - ❖ Idea A: one patch in an image replaced by a random patch from elsewhere in the dataset
 - **Goal**: discriminate true patches from the randomly replaced patch
 - This task is trivial: discriminating low-level color statistics and lighting would be enough

Context in image domain, Cont.

- Idea B (this work): sample 9 patches (figure 2) from the *same image*. Given the middle patch and a random one (from the ramaining 8 patches), what is the relative position of this random patch to the middle one?
- All patches sharing the same lighting and color statistics
- Hypothesis: Doing well on this task requires understanding scenes and objects

$$X = ([V, V]); Y = 3$$

Learning visual context prediction

- Each patch is processed separately until fc6
- Two representations are fused at fc7
- Weights are tied between the two AlexNets
- Output is one of the 8 possible configurations
- Output of fc6 is the embedding of a patch

The late fusion architecture. A pair of AlexNet-style architectures.

Dotted lines indicate shared weights

Avoiding trivial solutions

- Care must be taken to ensure a pretext task does not take "trivial" shortcuts
- Possible trivial shortcuts in this work:
 - Low-level cues like boundary patterns or textures continuing between patches
 - Solution: gap between patches and random jittering
 - **Chromatic aberration:** raised from differences in the way the lens focuses light at different wavelengths
 - ConvNets can localize patches relative to lens itself
 - Solution: projecting color channels or dropping two of them and replacing them with gaussian noise

Experiments

- Nearest Neighbours
 - By using KNN, determine how good the learned embeddings are
- Object detection
 - R-CNN (Regions with CNN features) with different CNNs and initializations
 - Trained model used as an initialization: significant boost compared to learning from scratch
- Visual data mining
 - Find image fragments which depict the same semantic objects
 - Finding object clusters in unsupervised manner

Nearest Neighbours

- Find nearest neighbours in embedding space to current patch's embedding vector
- Random queries: random patch selected as the input

Object detection

- R-CNN (Regions with CNN features)
- Different architectures and different initializations possible for CNN (part 3 in the pipeline)

R-CNN: Regions with CNN features warped region person? yes. tvmonitor? no. 1. Input image proposals (~2k) CNN features 2. Extract region 3. Compute 4. Classify regions

Object detection, cont.

- Pascal VOC 2007 dataset
- MAP (mean average precision) used as comparison metric

	VOC-2007 Test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
•	DPM-v5[17]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
*	[8] w/o context	52.6	52.6	19.2	25.4	18.7	47.3	56.9	42.1	16.6	41.4	41.9	27.7	47.9	51.5	29.9	20.0	41.1	36.4	48.6	53.2	38.5
	Regionlets[55]	54.2	52.0	20.3	24.0	20.1	55.5	68.7	42.6	19.2	44.2	49.1	26.6	57.0	54.5	43.4	16.4	36.6	37.7	59.4	52.3	41.7
	Scratch-R-CNN[2]	49.9	60.6	24.7	23.7	20.3	52.5	64.8	32.9	20.4	43.5	34.2	29.9	49.0	60.4	47.5	28.0	42.3	28.6	51.2	50.0	40.7
	Scratch-Ours	52.6	60.5	23.8	24.3	18.1	50.6	65.9	29.2	19.5	43.5	35.2	27.6	46.5	59.4	46.5	25.6	42.4	23.5	50.0	50.6	39.8
	Ours-projection	58.4	62.8	33.5	27.7	24.4	58.5	68.5	41.2	26.3	49.5	42.6	37.3	55.7	62.5	49.4	29.0	47.5	28.4	54.7	56.8	45.7
	Ours-color-dropping	60.5	66.5	29.6	28.5	26.3	56.1	70.4	44.8	24.6	45.5	45.4	35.1	52.2	60.2	50.0	28.1	46.7	42.6	54.8	58.6	46.3
	Ours-Yahoo100m	56.2	63.9	29.8	27.8	23.9	57.4	69.8	35.6	23.7	47.4	43.0	29.5	52.9	62.0	48.7	28.4	45.1	33.6	49.0	55.5	44.2
	Ours-VGG	63.6	64.4	42.0	42.9	18.9	67.9	69.5	65.9	28.2	48.1	58.4	58.5	66.2	64.9	54.1	26.1	43.9	55.9	69.8	50.9	53.0
	ImageNet-R-CNN[19]	64.2	69.7	50	41.9	32.0	62.6	71.0	60.7	32.7	58.5	46.5	56.1	60.6	66.8	54.2	31.5	52.8	48.9	57.9	64.7	54.2

Visual data mining

- Unsupervised object discovery
- Application example: content-based retrieval
- Method:
 - Transfer input image to 4 adjacent patches
 - Find 100 images with strongest matches for all four patches
 - Seometric validation: geometrical consistency of matched patches

Qualitative results

Image retrieval on VOC 2011 dataset

Discovered image clusters. Numbers show ranking, determined by the fraction of the top matches that are geometrically verified

Quantitative results

- Clustering images from a subset of Pascal VOC 2007
- Iterative clustering of 1000 sets each having 10 images
- Rank clusters and add them together
- Evaluation metric: AUC (Area Under Curve)
- Purity: the fraction of images in the cluster containing the same category
- Coverage: the fraction of images in the dataset that are contained in at least one of the sets up to a point

Purity vs coverage for objects discovered on a subset of Pascal VOC 2007.

Legend numbers show AUC. Numbers in parentheses show AUC up to coverage of

References

- [1] C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory sig- nal: Discovering objects with predictable context. In ECCV. 2014.
- [2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-tributed representations of words and phrases and their composition- ality. In NIPS, 2013.
- [3] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hier- archies for accurate object detection and semantic segmentation. In CVPR, 2014.
- [4] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. ICCV, 2015.

Thank you

Any question?