CS484/684 Topic 12

Transfer Learning + Localization and Detection

Most slides are from Fei-Fei Li, Justin Johnson, Andrej Karpathy, Serena Yeung, Jia-Bin Huang

Transfer Learning

- Improve learning in a new task through transfer of knowledge from a related task that has already been learned
- Often used when your own dataset is not large enough
 - cannot train large CNN with little data
- Two major strategies
 - Use trained CNN as a fixed feature extractor
 - Fine tune trained CNN for your task
- References
 - Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014
 - Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014
 - Oquab et al, "Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks", CVPR 2014

Transfer Learning Classification: Fixed Feature Extraction

1. Train on Imagenet or load off internet

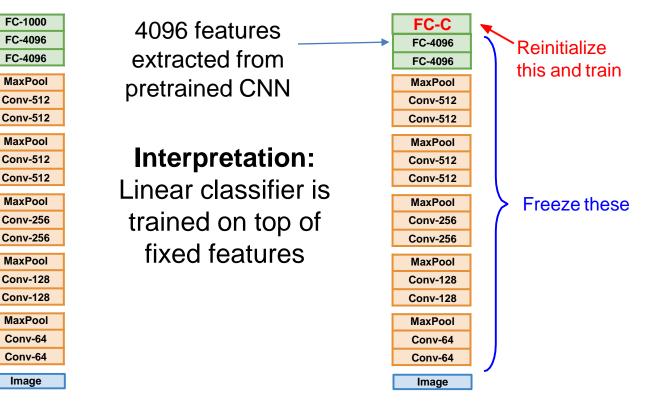
VGG	
FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv-128	
MaxPool	
Conv-64	
Conv-64	
Image	

VGG

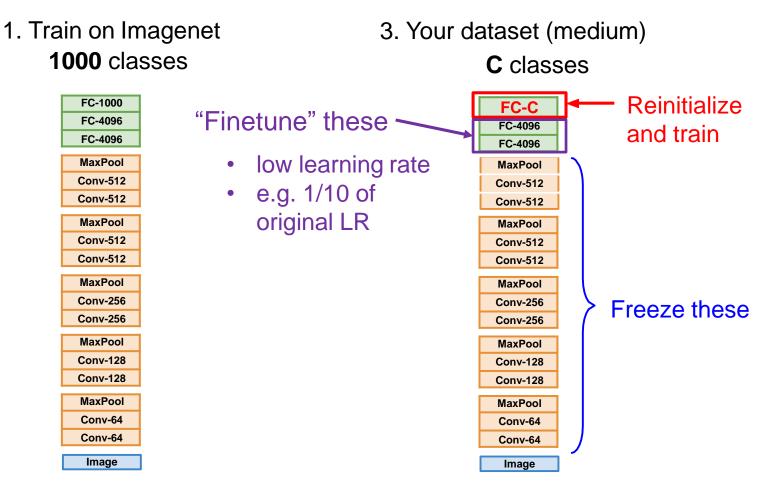
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo TensorFlow: https://github.com/tensorflow/models PyTorch: https://github.com/pytorch/vision

Transfer Learning Classification: Fixed Feature Extraction

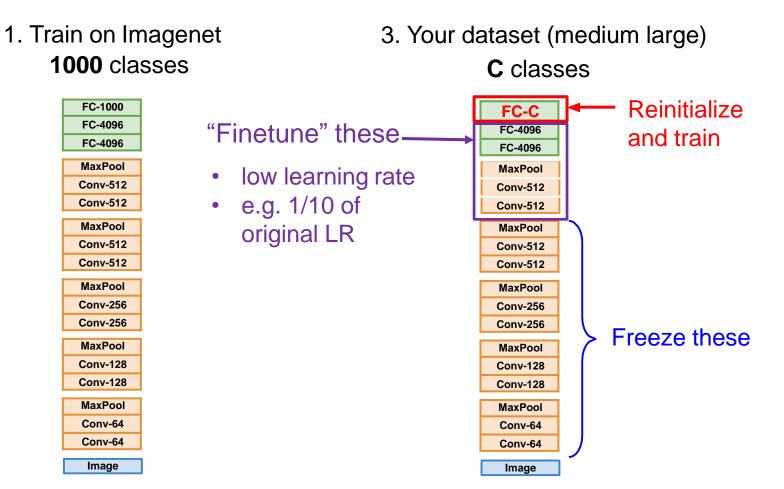
1. CNN pretrained on Imagenet 1000 classes 2. Your dataset (small) C classes



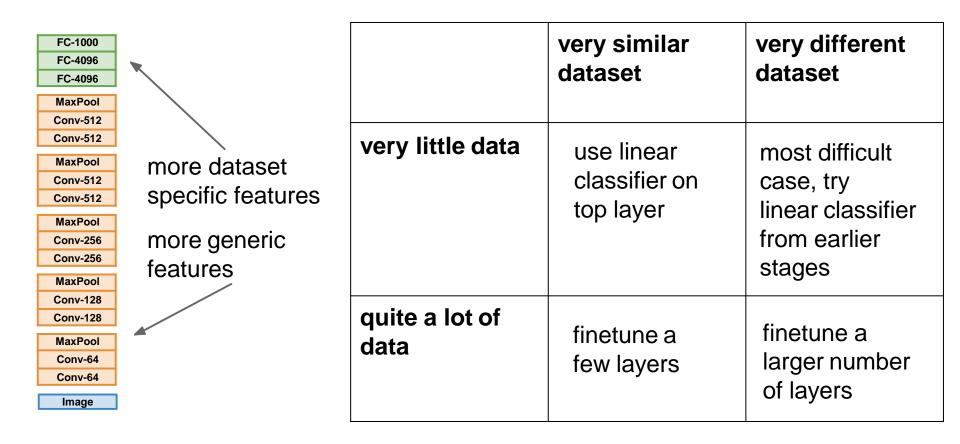
Transfer Learning Classification: Fine Tuning



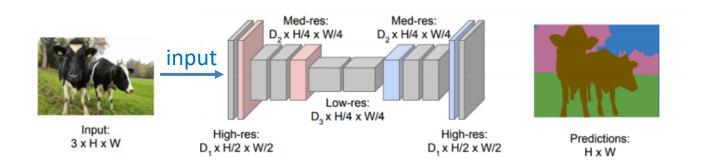
Transfer Learning Classification: Fine Tuning



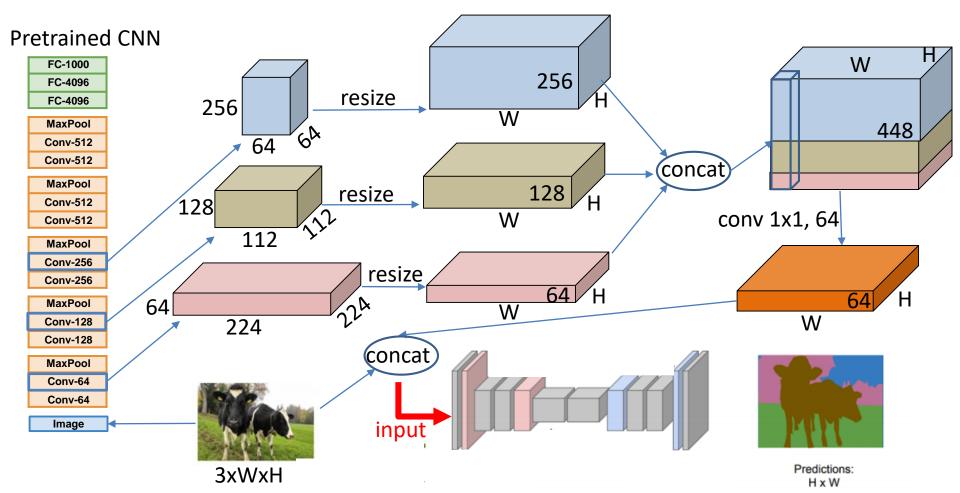
Transfer Learning Classification Overview



Transfer Learning for Semantic Segmentation



Transfer Learning for Semantic Segmentation

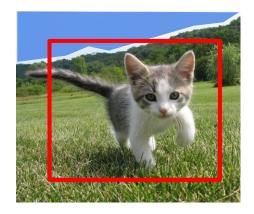


Classification vs. Localization

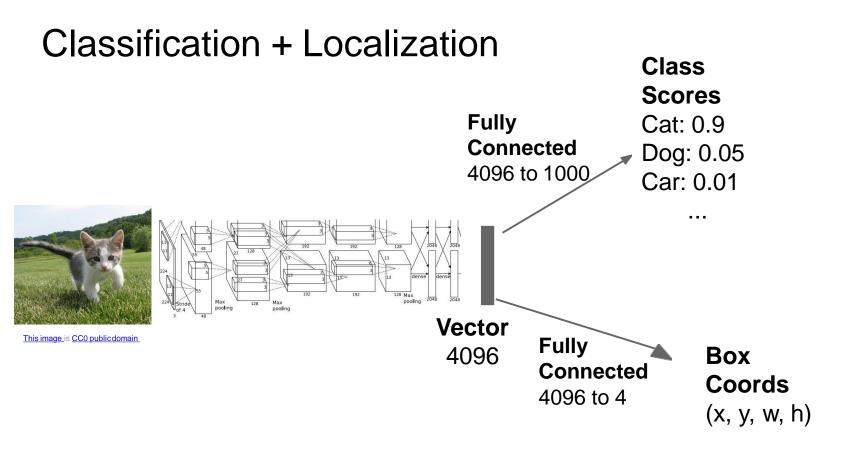
Classification

CAT

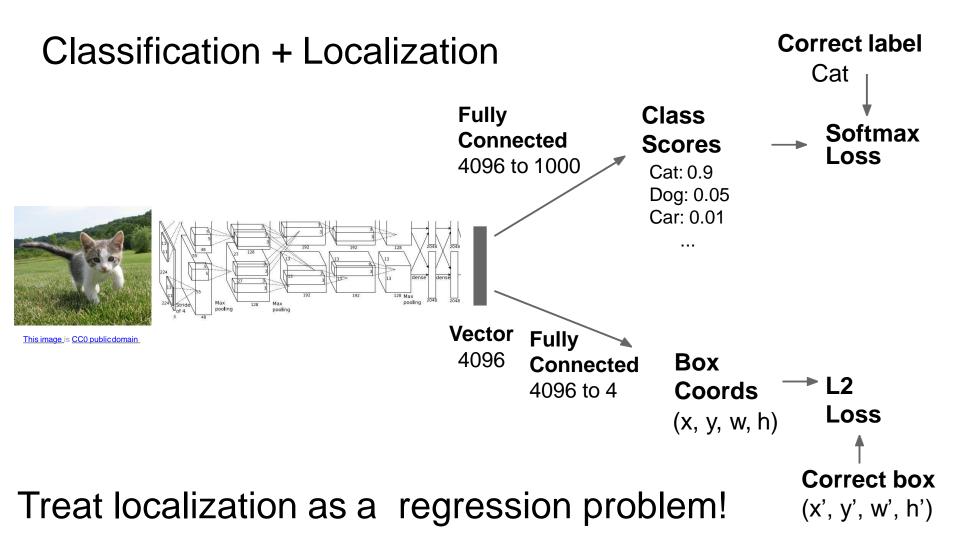
Classification + Localization

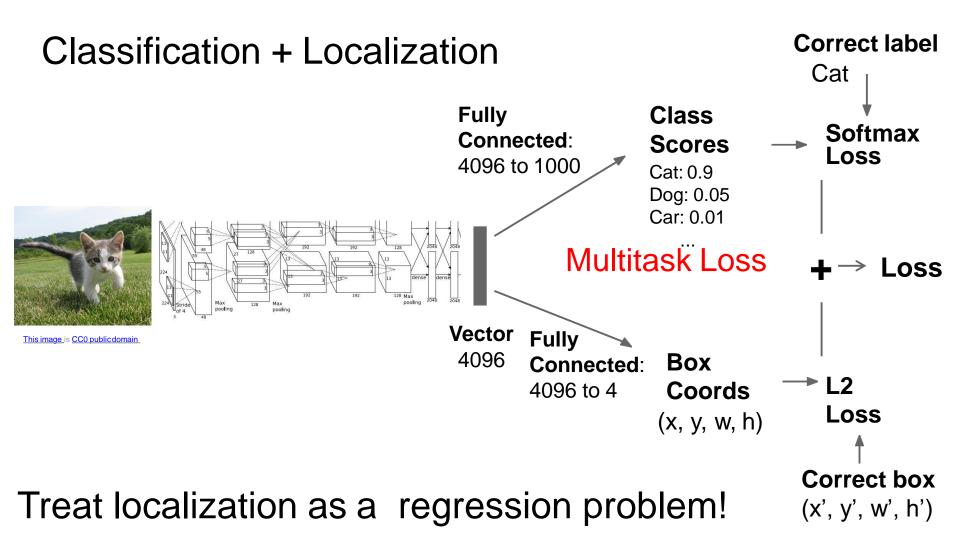


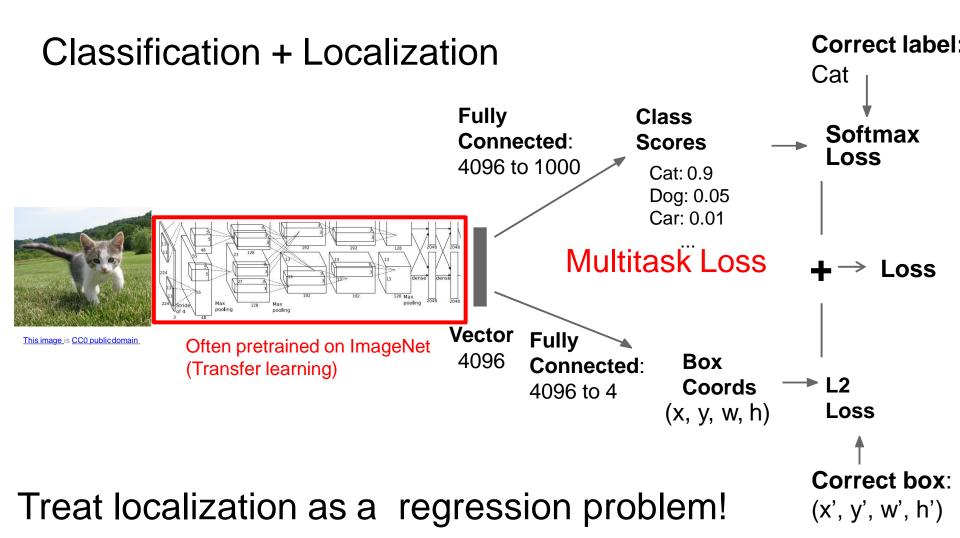
CAT



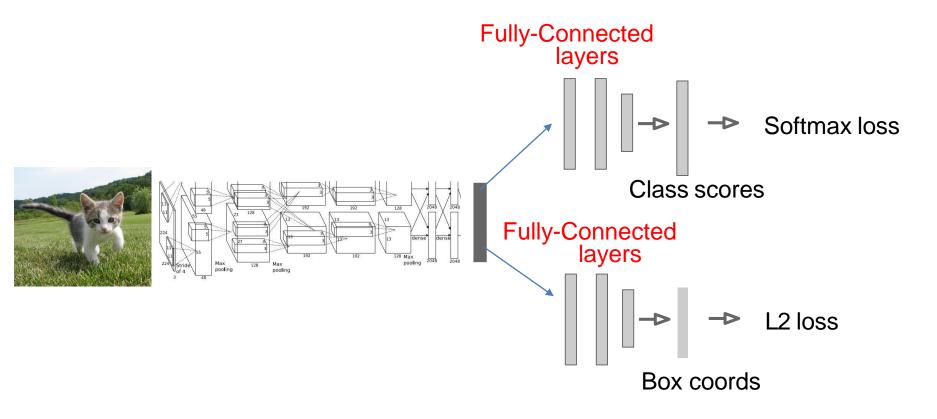
Treat localization as a regression problem!



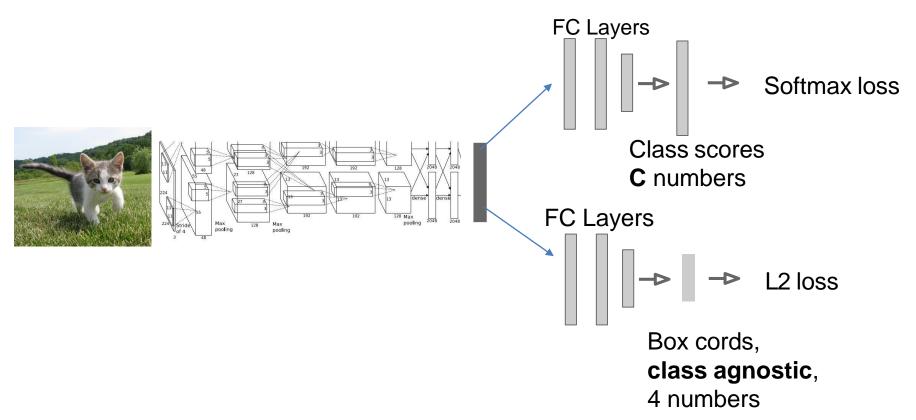




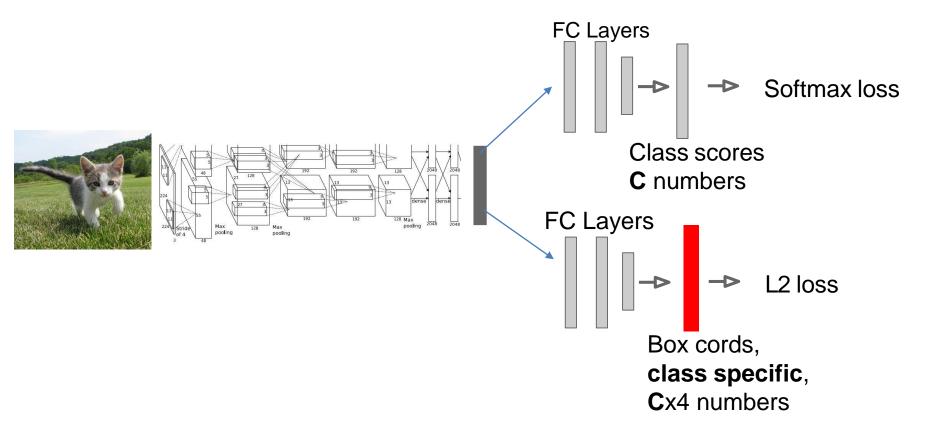
Classification + Localization: More FC Layers



Classification + Localization: Class agnostic vs per class regression

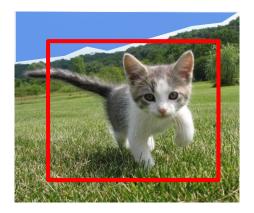


Classification + Localization: Class agnostic vs per class regression

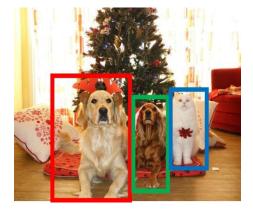


Localization vs. Object Detection

Localization



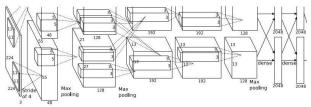
Detection



DOG, DOG, CAT

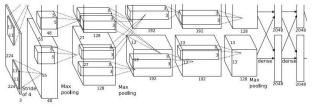
Object categories + 2D bounding boxes

Object Detection as Regression?



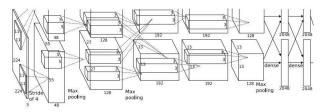
CAT: (x, y, w, h)

4 numbers



DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)

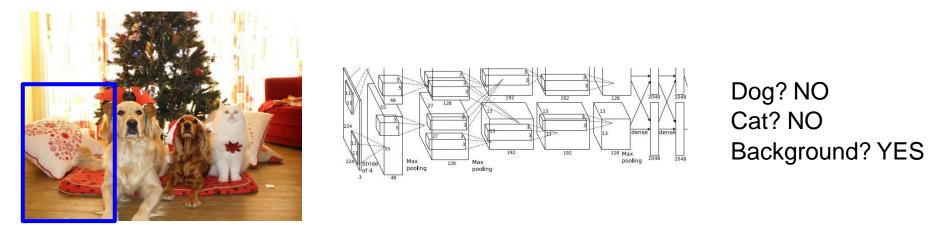
12 numbers



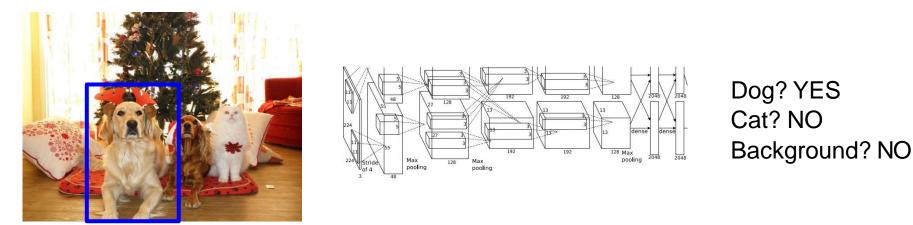
DUCK: (x, y, w, h) DUCK: (x, y, w, h)

Many numbers

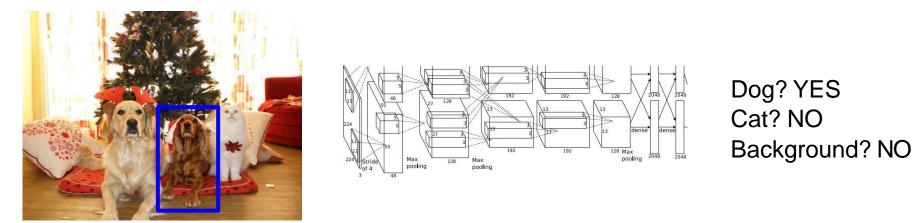
Each image needs a different number of outputs!



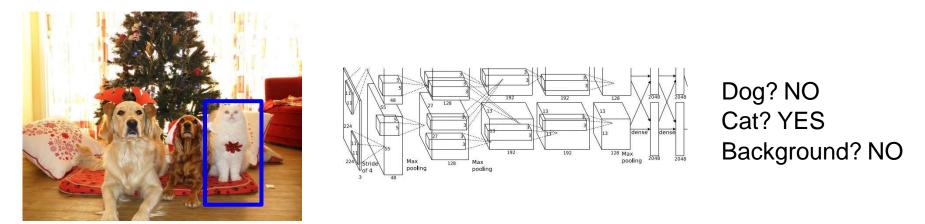
- Apply a CNN to many different crops of the image
- Add an additional "background" class
- CNN classifies each crop as object or background



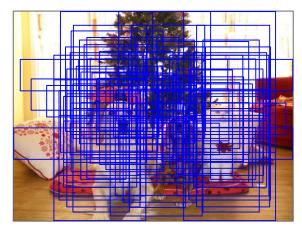
- Apply a CNN to many different crops of the image
- Add an additional "background" class
- CNN classifies each crop as object or background

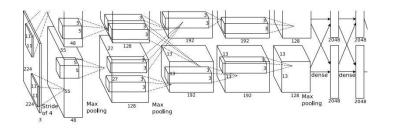


- Apply a CNN to many different crops of the image
- Add an additional "background" class
- CNN classifies each crop as object or background



- Apply a CNN to many different crops of the image
- Add an additional "background" class
- CNN classifies each crop as object or background



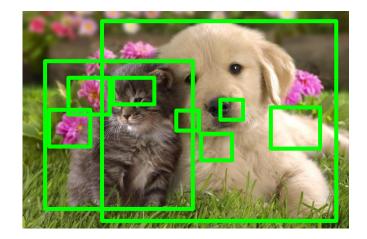


Dog? NO Cat? YES Background? NO

- Problem: Need to apply CNN to huge number of
 - locations, scales, and aspect ratios
- Very computationally expensive!

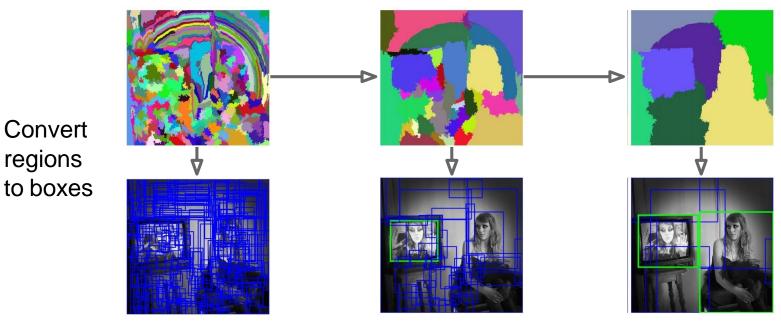
Region Proposals / Selective Search

- Find "blobby" image regions that are likely to contain objects
 - Alexe et al, "Measuring the objectness of image windows", TPAMI 2012
 - Uijlings et al, "Selective Search for Object Recognition", IJCV 2013
 - Cheng et al, "BING: Binarized normed gradients for objectness estimation at 300fps", CVPR 2014
 - Zitnick and Dollar, "Edge boxes: Locating object proposals from edges", ECCV 2014
- Relatively fast to run
 - e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

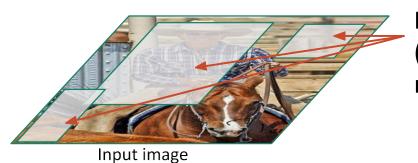


Region Proposals: Selective Search

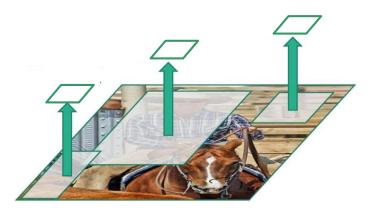
Bottom-up segmentation, merging regions at multiple scales



Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

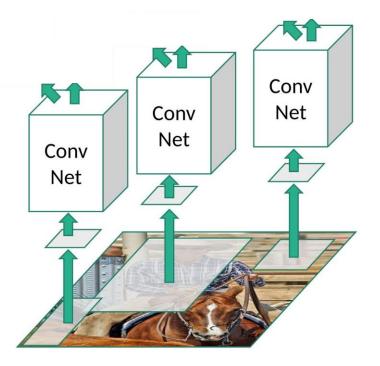


Regions of Interest (ROI) from proposal method (~2k)



Warp ROI to the same size

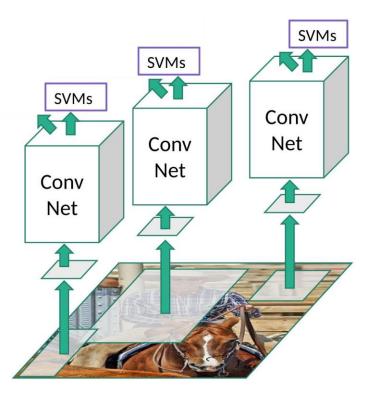
Regions of Interest (ROI) from proposal method (~2k)



Forward each ROI through ConvNet and extract features Sidenote: ConvNet pretrained on large classification dataset, then finetuned on proposal windows

Warp ROI to the same size

Regions of Interest (ROI) from proposal method (~2k)

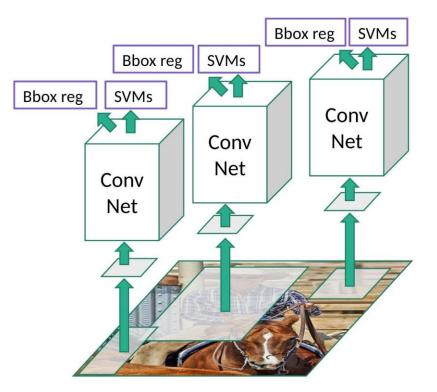


Classify ROIs with SVM (type of linear classifier)

Forward each ROI through ConvNet and extract features

Warp ROI to the same size

Regions of Interest (ROI) from proposal method (~2k) Sidenote: In original paper, separate SVM classifier worked better than softmax layer used for finetuning



Regression for bounding box offset

Classify ROIs with SVM (type of linear classifier)

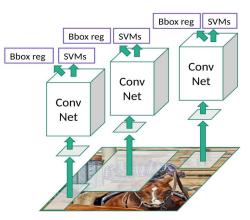
Forward each ROI through ConvNet and extract features

Warp ROI to the same size

Regions of Interest (ROI) from proposal method (~2k)

R-CNN: Problems

- Proposals are not learned, brittle
- Training is multi-stage pipeline
 - with each stage has its own loss function and is trained separately
 - i.e., box regression does not help classification, classification does not help regression
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
 - Need to feed-forward 2000 proposals through ConvNet



Fast R-CNN

Main idea: speedup via shared CNN computation

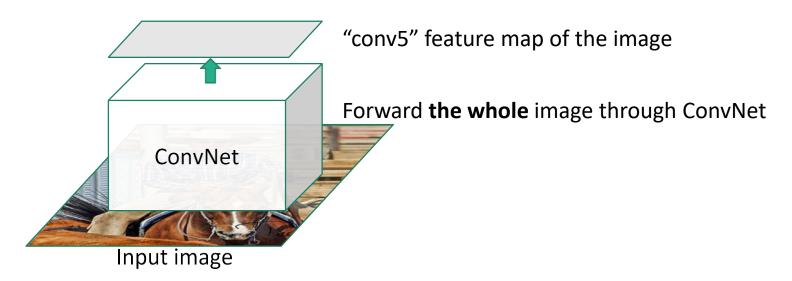
Input image

Girshick, "Fast R-CNN", ICCV 2015

Fast R-CNN

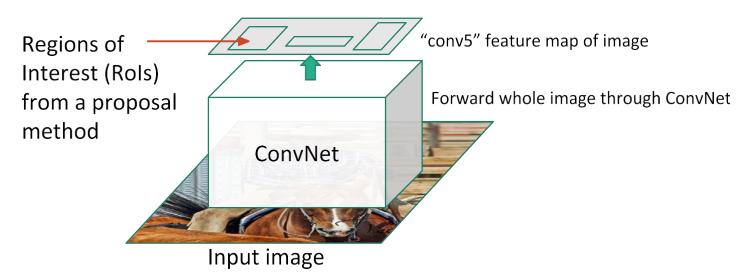
Girshick, "Fast R-CNN", ICCV 2015

Fast R-CNN

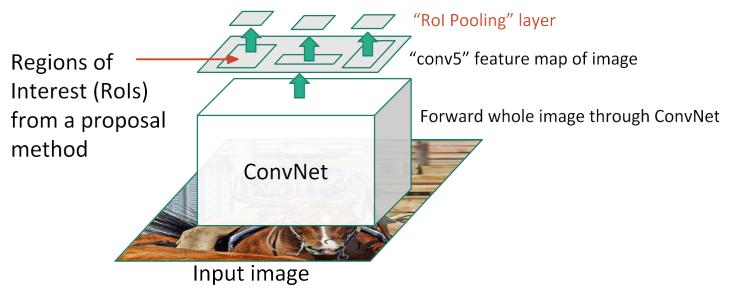


Girshick, "Fast R-CNN", ICCV 2015

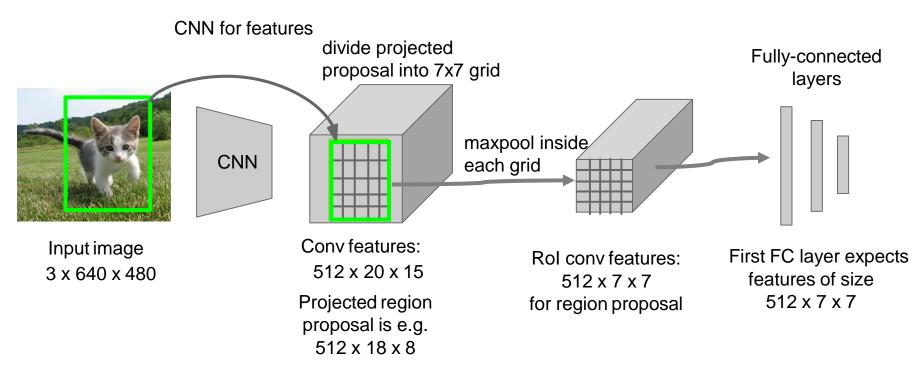
Fast R-CNN



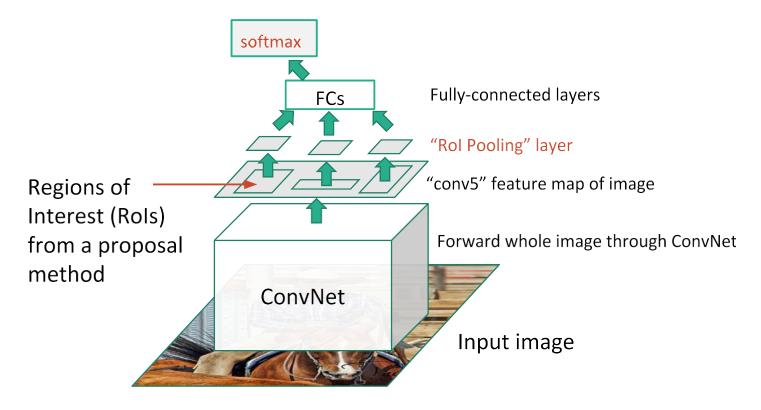
Fast R-CNN



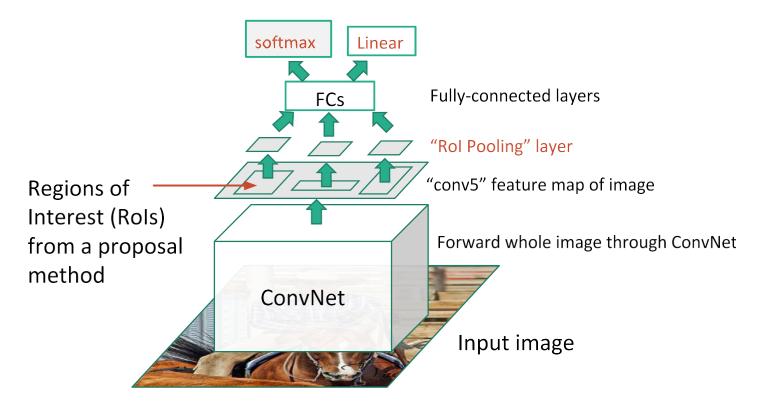
Fast R-CNN: Rol Pooling

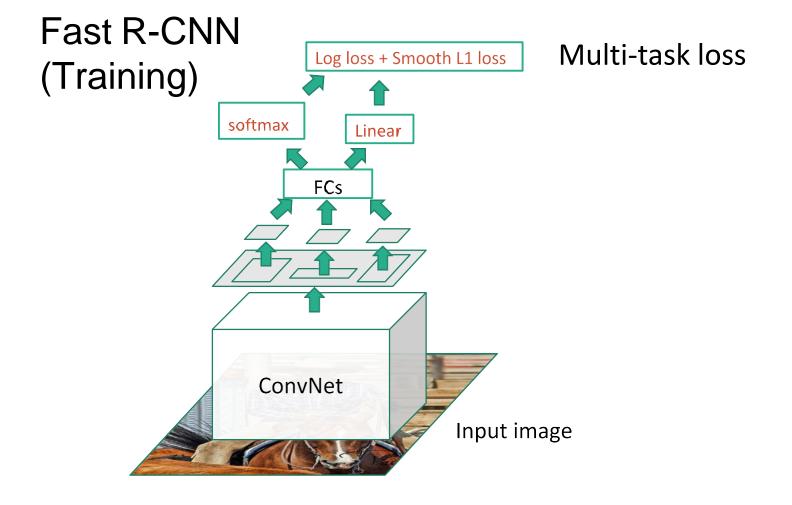


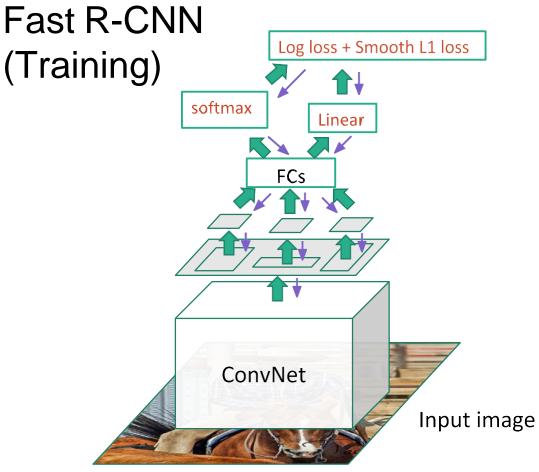
Fast R-CNN



Fast R-CNN







Multi-task loss

- single loss function
- end-to-end training
- box regression and classification can influence each other

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

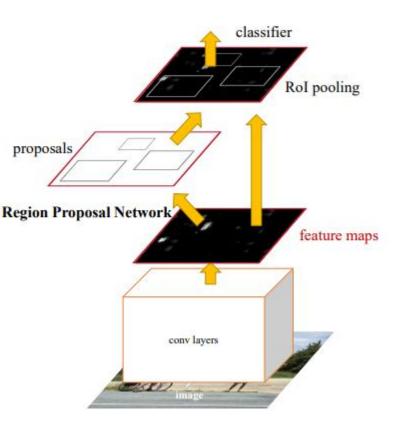
Fast R-CNN Problem

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Test-time speeds don't include region proposals

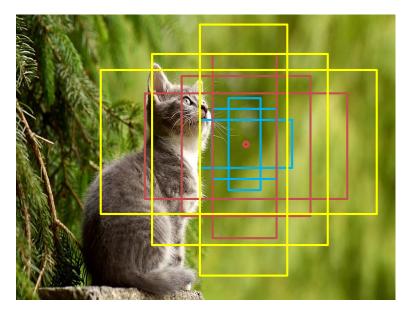
Faster R-CNN

- Make CNN learn the proposals
 - Insert Region Proposal Network (RPN) to predict proposals from features
 - After RPN, as before, use
 - Rol Pooling
 - Classifier
 - Box regressor

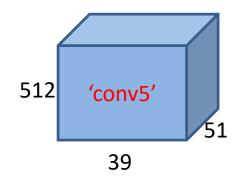


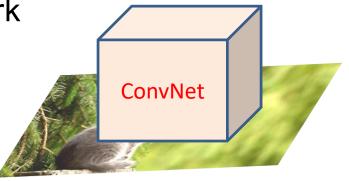
Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

- Consider a fixed set of rectangles as possible proposals
- Choices in paper:
 - height and width ratios 1:1, 1:2, 2:1, at
 - 3 scales, 128x128, 256x256, 512x512
 - stride 16
 - Gives 17,901 boxes for 600x800 image
- Classify each box as proposal/not proposal
 - or object/no object
- How to classify efficiently?



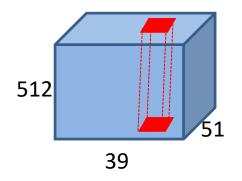
Take layer "conv5" for Region Proposal Network





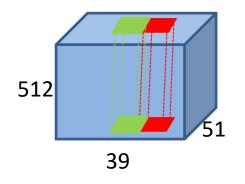
 Moving by 1 "spatial pixel" in this layer corresponds to moving by 16 pixels in the original image

Take layer "conv5" for Region Proposal Network



 Moving by 1 "spatial pixel" in this layer corresponds to moving by 16 pixels in the original image

Take layer "conv5" for Region Proposal Network



move by 16 pixels

- Moving by 1 "spatial pixel" in this layer corresponds to moving by 16 pixels in the original image
- We have 9 possible proposal windows every 16 pixels

Responsible for learning These 9 boxes

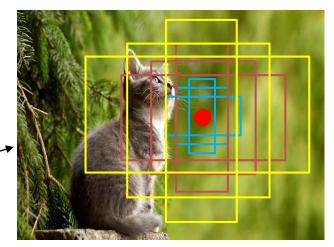
Responsible for learning

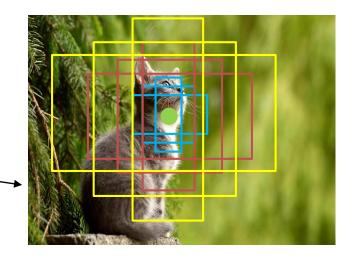
These 9 boxes

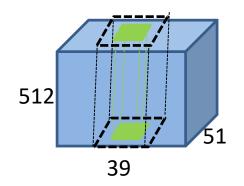
Make each "spatial pixel" responsible for classifying 9 proposal rectangles

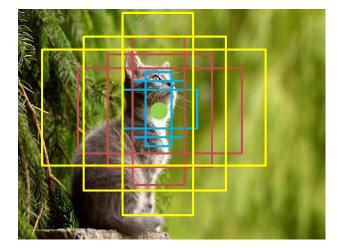
512

39



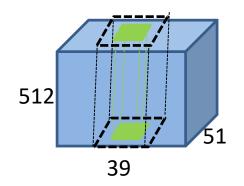


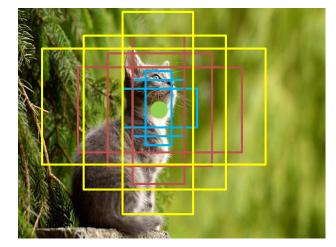




```
move by 16 pixels
```

- Already have 512 features for learning, but not enough
- Take 3 by 3 spatial window around green 'pixel' for learning



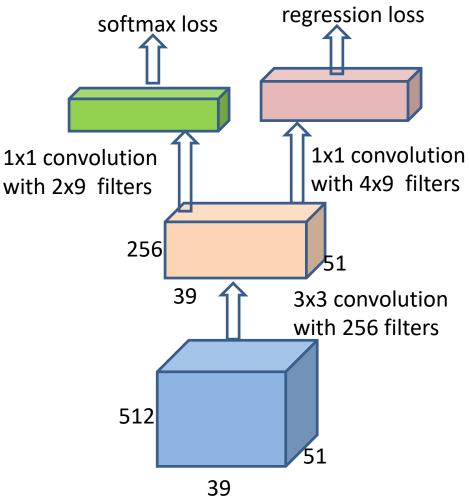


move by 16 pixels

- Already have 512 features for learning, but not enough
- Take 3 by 3 spatial window around green 'pixel' for learning
- Implemented as 3x3 convolutional layer for all pixels
 - with 256 filters, to get 256 new features per 'pixel'

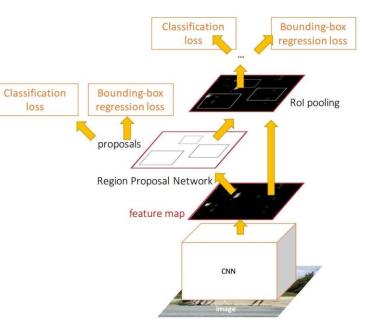
- Now need to classify each "pixel" as object or not object
 - for 9 different proposal boxes

- And get 4 box coordinates
 - for 9 different proposal boxes



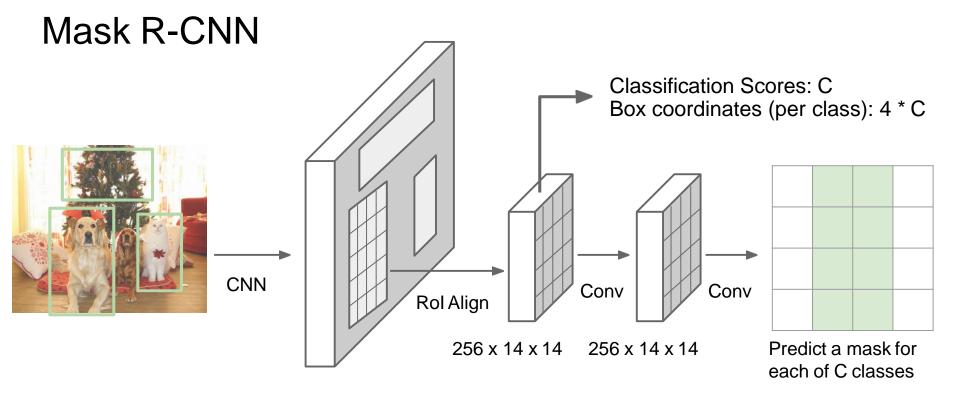
Faster R-CNN: Training

- In the paper: Ugly pipeline
- Since publication: Joint training
- One network, four losses
- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)



Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

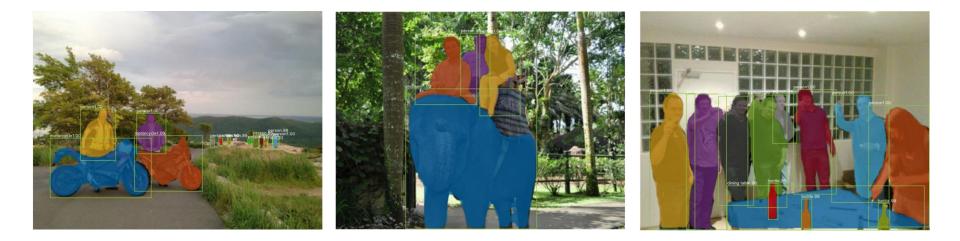


C x 14 x 14

- Adds a branch for predicting segmentation masks on each Rol
- Also changes how RoI pooling implemented
- Computational overhead is small

He et al, "Mask R-CNN", arXiv 2017

Mask R-CNN: Very Good Results!



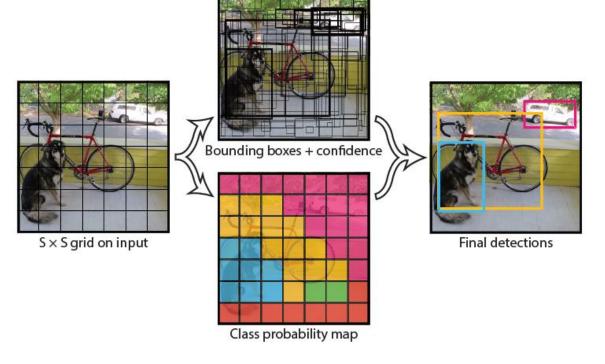
He et al, "Mask R-CNN", arXiv 2017

Mask R-CNN Also does pose

He et al, "Mask R-CNN", arXiv 2017

YOLO- You Only Look Once

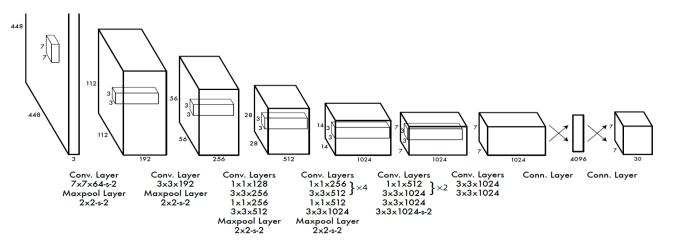
Idea: No bounding box proposals. Predict a class and a box for every location in a grid.



https://arxiv.org/abs/1506.02640

Redmon et al. CVPR 2016.

YOLO- You Only Look Once



Divide the image into 7x7 cells.

Each cell trains a detector.

The detector needs to predict the object's class distributions.

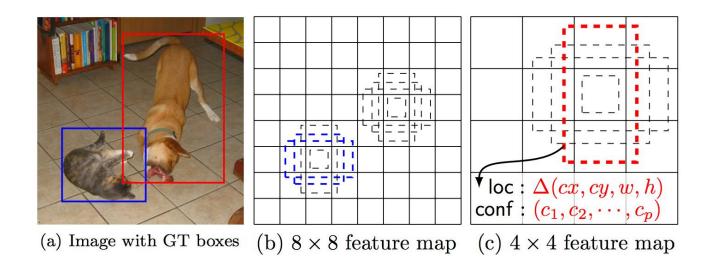
The detector has 2 bounding-box predictors to predict

bounding-boxes and confidence scores.

https://arxiv.org/abs/1506.02640

Redmon et al. CVPR 2016.

SSD: Single Shot Detector



Idea: Similar to YOLO, but denser grid map, multiscale grid maps. + Data augmentation + Hard negative mining + Other design choices in the network.

Liu et al. ECCV 2016.

Object Detection: Impact of Deep Learning

