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Deep Clustering

cluster A

cluster B

unsupervised classification  ≡  clustering



Outline

I. Intro: unified view on common unsupervised losses

-   variance, entropy, mutual information
-   generative (K-means, GMM, ...)  &  discriminative (decisiveness, fairness, …)

II. Clustering with softmax models

- relation to K-means and SVM clustering
- max-margin property for generalized decisiveness (Renyi entropy) 
- optimization: self-labeling, soft pseudo-labels
- collision cross-entropy 
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I. Intro: unified view on common 
unsupervised losses

K-means

entropy clustering

Mutual Information (MI) clustering

discriminative
entropy clustering

generative

decisiveness, fairnessGMM (EM)

[Bridle, Heading, MacKay, NeurIPS 1991]



K-means
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color quantization 
- RGB feat ures f

superpixels
- RGBXY features f

[Achanta et al., PAMI 2011]
variance clustering



K-means +
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Normalized Cuts  [Shi&Malik 2000]

kernelized
formulation

with Gaussian kernel

variance clustering

unsupervised segmentation

- implicit  high-dimensional features f



K-means +
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variance clustering

probabilistic
formulation

Gaussian density

negative log-likelihoods



Probabilistic K-means
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isotropic Gaussian densitiesisotropic Gaussian densities



Probabilistic K-means
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general Gaussian densitiesisotropic Gaussian densities

elliptic K-means or GMM

clustering by fitting probability density models



Probabilistic K-means
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cross-entropy between 
true data density in Sk 

and density model Pk

general Gaussian densitiesisotropic Gaussian densities

Monte Carlo
approximation

clustering by fitting probability density models



?

Entropy clustering (generative)
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general density modelsisotropic Gaussian densities

entropy of
data density in Sk 

fitting Gaussian densities fitting  general density models
(histograms, kernel densities, mixtures) 

Zhu & Yuille, 1996

multi-modal
objects

uni-modal
objects



?
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general density modelsisotropic Gaussian densities

fitting Gaussian densities fitting  general density models
(histograms, kernel densities, mixtures) 

Zhu & Yuille, 1996

variance clustering entropy clustering

multi-mode
object

uni-modal
objects



“complex” data   ⟹   “complex” densities
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𝑃 𝑘|𝑥  =
𝑃 𝑥|𝑘 𝑃(𝑘)

σ𝑗 𝑃 𝑥 𝑗 𝑃(𝑗)
~ 

𝑒−
1
2 𝑥−𝜇𝑘

𝑇Σk
−1 𝑥−𝜇𝑘

σ𝑗 𝑒−
1
2 𝑥−𝜇𝑗

𝑇
Σj

−1 𝑥−𝜇𝑗

Data is linearly separable 
can we stick to a linear classifier?fitting Gaussian densities

general Gaussian densities

𝐾 × 𝑁 𝐾 × 𝑁 + 𝐾 × 𝑁2

basic K-means GMM

model complexity

number of 
parameters:

Bayesian posterior for estimated Gaussian densities:elliptic K-means or GMM

quadratic 
decision 

boundaries

quadratic 
Gaussian 
classifier



replace by a posterior model
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𝜎𝑘 𝒘𝑥  =
𝑒𝑤𝑘⋅𝑥

σ𝑗 𝑒𝑤𝑗⋅𝑥

Towards discriminative models

Clustering with softmax models?   Losses?

𝑃 𝑘|𝑥  =
𝑃 𝑥|𝑘 𝑃(𝑘)

σ𝑗 𝑃 𝑥 𝑗 𝑃(𝑗)
~ 

𝑒−
1
2 𝑥−𝜇𝑘

𝑇Σk
−1 𝑥−𝜇𝑘

σ𝑗 𝑒−
1
2 𝑥−𝜇𝑗

𝑇
Σj

−1 𝑥−𝜇𝑗

e.g.  softmax  +  linear classifier

Bayesian posterior implied by density models:

𝐾 × 𝑁

number of 
parameters



Entropy clustering with softmax models
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Discriminative properties:

1. Decisiveness: avoid data points near the boundary

2. Fairness: similar cluster cardinalities

entropy of 
average 

prediction

average 
entropy of 
prediction • clustering [Bridle, Heading, MacKay, NeurIPS 1991]

• semi-supervised learning [Grandvalet & Bengio, NeurIPS’04]

assuming 
linear classifier



Mutual Information for Clustering
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generative algorithms
(optimizing density models)

discriminative algorithms
(optimizing prediction models)

data class
predictions

entropy of
average

predictions

average
entropy of
prediction 

(average) entropy of 
data density
in each class

entropy of 
all data density

Q: equivalence of generative and discriminative algorithms for clustering ???

A: practical clustering algorithms may have different hypothesis spaces
(density models, classifier models) 

“decisiveness”“fairness”(as in earlier slides)

[Bridle, Heading, MacKay, NeurIPS 1991]

needed only if 
representation

is not fixed
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II. Discriminative clustering 
with softmax models

- relation to K-means and SVM clustering
- max-margin property for generalized decisiveness (Renyi entropy) 
- optimization: self-labeling, pseudo-labels
- collision cross-entropy 



Theorem [Jabi et.al. PAMI’21] :    Decisive & fair linear classifier              K-means

Generative vs. Discriminative

GMMK-means

Generative clustering Discriminative clustering

Our Theorem [tbs] :    Decisiveness has margin maximizing property

decisive & fair   

PAGE  17
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discriminative entropy clustering “regularized” soft K-means

sKM loss = 419.60CE loss = -0.6610CE loss = -0.6910 sKM loss = 401.45

Global and Local Minima
[Jabi et.al. PAMI’21] 



Shannon

We prove a margin maximizing property 
for Renyi decisiveness of any order α >0.

binary case, K=2

0
1

Generalized Decisiveness: Renyi Entropy (Rα)
[A. Renyi,  1961]
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Theorem [Our generalization to clustering] 
Consider any set FL of feasible (fair) linearly separable binary labelings/clusterings.  
Assuming w(γ) minimizes regularized decisiveness R𝜶 over liner classifiers WFL 
consistent with  FL 

      then                                            corresponding to the max-margin clustering .
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Margin Maximization: Renyi Decisiveness (R𝜶)

unsupervised 
clustering

loss

• unsupervised generalization of max-margin property of logistic regression [Rosset, Zhu, Hastie, 2003]

• relates to SVM clustering [Xu,Neufeld,Larson,Schuurmans, 2004] PAGE  20
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Global minima for various γ

γ  controls 
“softness”

only

γ —› 0
maximizes 

margin

Larger γ
reduces ||w||
also softening
the boundary,

which orients it 
“orthogonally” 

to data
to improve 

decisiveness
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Multi-class example (K=3)

maximizes only 
minimum 

pairwise margin

(red–blue in this case)

K-means entropy clustering

would be max-margin
decision boundary 
for green and blue

would be max-margin
decision boundary 
for green and red

does not care 
about margins



Non-linear (deep) clustering

linear posterior model deep posterior model

Input x 𝑤 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

linear classifier

𝜎(𝒘𝑥) 𝜎(𝒘𝑓𝒗(𝑥))

𝐻 ത𝜎 − 𝐻 𝜎
applies to any softmax model

Input x 𝑣 𝑤 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

feature extractor

𝑓

ANY backbone
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loss: K-means (𝝁) MI (𝒘)

predictor: 𝝁𝑘 − 𝑥 𝜎𝑘 𝒘𝑥

accuracy: 53.2% 60.2%

Linear classifier + low-level features (raw image intensities)

Note: Hungarian matching is used 
to match with ground truth classification

MNIST clustering:  linear classifier + low-level features



MNIST clustering:  linear classifier + deep features
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loss: K-means (𝝁) MI (𝒘)

predictor: 𝝁𝑘 − 𝑓 𝑥 𝜎𝑘(𝒘𝑓(𝑥))

accuracy:
(pretrained features)

50.46% - resnet18 52.77% - resnet18

loss: MI (𝒗, 𝝁) MI (𝒗, 𝒘)

predictor: 𝝁𝑘 − 𝑓𝒗 𝑥 𝜎𝑘(𝒘𝑓𝒗(𝑥))

accuracy:
(pretrained features)

65.01% - resnet18 73.22% - resnet18

+self-augmentation +self-augmentation

89.01% 97.37%

fixed
pretrained 

features

w/ feature
finetuning



MNIST clustering:  linear classifier + deep features
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loss: K-means (𝝁) MI (𝒘)

predictor: 𝝁𝑘 − 𝑓 𝑥 𝜎𝑘(𝒘𝑓(𝑥))

accuracy:
(pretrained features)

50.46% - resnet18 52.77% - resnet18

loss: MI (𝒗, 𝝁) MI (𝒗, 𝒘)

predictor: 𝝁𝑘 − 𝑓𝒗 𝑥 𝜎𝑘(𝒘𝑓𝒗(𝑥))

accuracy:
(pretrained features)

65.01% - resnet18 73.22% - resnet18

+self-augmentation +self-augmentation

89.01% 97.37%

fixed
pretrained 

features

w/ feature
finetuning

perhaps margin maximization
 matters in practice



Why self-augmentation?
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mapping  𝒇𝒗

𝒘

𝑓𝑣(𝑥)
𝑥

Arbitrary input partitioning
can be mapped to linearly
separable deep clusters

under-constrained

space of all 
possible inputs

space of 
deep features



Why self-augmentation?
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𝒘

Self-augmentation constrains 
the decision boundaries
in the input space

=>  additional regularity

       quasi-isometry

𝑓𝑣(𝑥)
𝑥

space of all 
possible inputs

space of 
deep featuresmapping  𝒇𝒗

under-constrained
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II. Algorithms for 
discriminative clustering 

with softmax models

- gradient descent
- self-labeling, pseudo-labels
- collision cross-entropy 



Optimization

uniform distribution 

[Bridle, Heading, MacKay, NeurIPS 1991]

“self-labeling” surrogate 
with pseudo-labels y

  Gradient Descent

[Asano, Rupprecht, Vedaldi, ICLR 2020]

 Optimal Transport- integer programming for 𝑦

- standard network training with CE   Gradient Descent

“hard” pseudo-labels

convexconcave

𝑦 ≈ 𝜎

PAGE  30



Optimization
[Bridle, Heading, MacKay, NeurIPS 1991]

“self-labeling” surrogate 
with pseudo-labels y

𝑦 ≈ 𝜎

  Gradient Descent

[Jabi et.al. PAMI 2021]

- convex w.r.t. 𝑦

- standard network training with CE
  Gradient Descent

- soft pseudo-labels

  approximate solver

linear w.r.t. y convex

PAGE  31



Standard CE and soft pseudo-labels
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𝐻 𝑦, 𝜎  =  𝐾𝐿 𝑦 ∥ 𝜎 + 𝐻(𝑦)

𝐾𝐿(𝑦 ∥ 𝜎)

𝜎𝑘  ≈  𝑦𝑘 ∀𝑘

Pr 𝐶 = 𝑘|𝑥 Pr 𝑇 = 𝑘|𝑥

predicted class C true class T

0 𝜎10.950.5 0.8

𝑦1 = (0.95, 0.05)

𝑦2 = (0.8, 0.2)

𝑦3 = (0.5, 0.5) 𝐏𝐫  𝑪 =  𝑻 

this loss minimizes the distance/divergence
between two distributions

How about maximizing the probability of 
“collision” between C and T ?



Collision Cross Entropy
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෍

𝑘

Pr(𝐶 = 𝑘, 𝑇 = 𝑘)  =෍

𝑘

𝜎𝑘 ⋅ 𝑦𝑘  =

symmetric loss maximizing probability of 
equality/collision between two random variables

=  − ln ෍

𝑘

𝜎𝑘 ⋅ 𝑦𝑘− 𝐥𝐧 𝐏𝐫 𝑪 = 𝑻

𝐏𝐫  𝑪 =  𝑻 

𝜎𝑘  ≈  𝑦𝑘 ∀𝑘

Pr 𝐶 = 𝑘|𝑥 Pr 𝑇 = 𝑘|𝑥

𝐻𝐶(𝜎, 𝑦)

predicted class C true class T

How about maximizing the probability of 
“collision” between C and T ?

vs.  𝐻(𝑦, σ)

target 
distribution

estimated 
distribution



=  − ln ෍

𝑘

𝜎𝑘 ⋅ 𝑦𝑘− 𝐥𝐧 𝐏𝐫 𝑪 = 𝑻

0 𝜎10.950.5 0.8

𝑦1 = (0.95, 0.05)

𝑦2 = (0.8, 0.2)

𝑦3 = (0.5, 0.5)

Collision Cross Entropy 𝐻𝐶(𝜎, 𝑦)

symmetric loss maximizing probability of 
equality/collision between two random variables

vs.  𝐻(𝑦, σ)

target 
distribution

estimated 
distribution
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Robustness of predictions 𝝈 to uncertainty of labels 𝒚
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𝑦 ∶   hard
ො𝑦 :   soft

labels after corruption

ො𝑦 = 1 − 𝜂 ⋅ 𝑦 + 𝜂 ⋅ 𝑢



Optimization
[Bridle, Heading, MacKay, NeurIPS 1991]

“self-labeling” surrogate 
with pseudo-labels y

𝑦 ≈ 𝜎

  Gradient Descent

Collision CE 
  EM- convex w.r.t. 𝑦

- standard network training with collision CE   Gradient Descent

- soft pseudo-labels

convex w.r.t. y convex w.r.t. y

our algorithm

PAGE  36



Experiments (joint clustering with feature learning) 
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(resnet18) (vgg4)

pretrained features - self-supervised representation learning
(SimSLR contrastive learning, Hinton 2020) trained from the scratch
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