#### **CS484/684 Computational Vision**

#### **Deep Clustering**











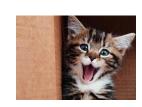








#### cluster B



unsupervised classification  $\equiv$  clustering

#### **Outline**



- I. Intro: unified view on common <u>unsupervised losses</u>
  - variance, entropy, mutual information
  - generative (K-means, GMM, ...) & discriminative (decisiveness, fairness, ...)



#### II. Clustering with softmax models

- relation to K-means and SVM clustering
- max-margin property for generalized decisiveness (*Renyi* entropy)
- optimization: self-labeling, **soft** pseudo-labels
- collision cross-entropy



#### I. Intro: unified view on common unsupervised losses

Mutual Information (MI) clustering



generative

entropy clustering



K-means



[Bridle, Heading, MacKay, *NeurIPS* 1991]

discriminative

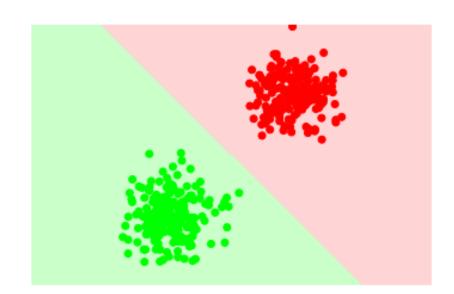
entropy clustering



decisiveness, fairness

#### K-means

$$\min_{S, \boldsymbol{\mu}} E(S, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$



$$\Leftrightarrow \min_{S} \sum_{k=1}^{\infty} |S^k| \operatorname{var}(S^k)$$

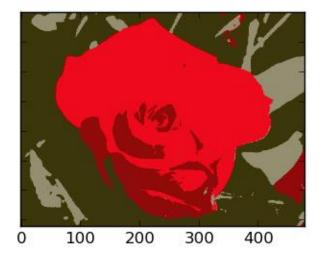
variance clustering



#### color quantization

- RGB feat ures f





#### superpixels

- RGBXY features f



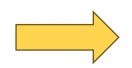
[Achanta et al., PAMI 2011]

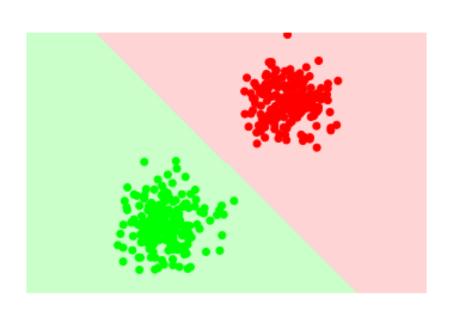
#### K-means +

#### kernelized formulation



$$\min_{S, \boldsymbol{\mu}} E(S, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{p \in S^k} \|f_p - \mu_k\|^2 \qquad \qquad \min_{S} E(S) = \sum_{k} \sum_{pq \in S^k} \frac{\|f_p - f_q\|^2}{2|S^k|}$$





$$\Leftrightarrow \min_{S} \sum_{k=1}^{\infty} |S^k| \operatorname{var}(S^k)$$

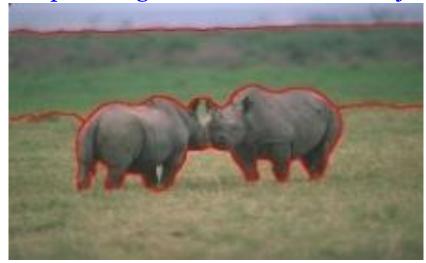
variance clustering

$$\min_{S} E(S) = \sum_{k} \sum_{pq \in S^{k}} \frac{\|J_{p} - J_{q}\|}{2|S^{k}|}$$

$$= -\sum_{k} \sum_{pq \in S^{k}} \frac{\langle f_{p}, f_{q} \rangle}{|S^{k}|} + const$$

with Gaussian kernel  $\langle \ , \ \rangle_G$ unsupervised segmentation

- implicit high-dimensional features f



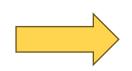
Normalized Cuts [Shi&Malik 2000]

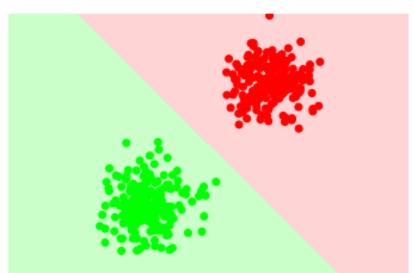
#### K-means +

#### probabilistic



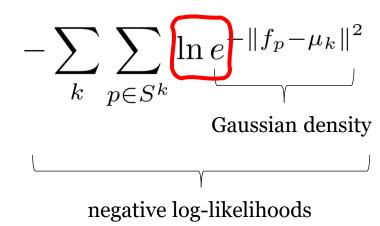
$$\min_{S,\boldsymbol{\mu}} E(S,\boldsymbol{\mu}) = \sum_{k=1}^K \sum_{p \in S^k} \|f_p - \mu_k\|^2$$





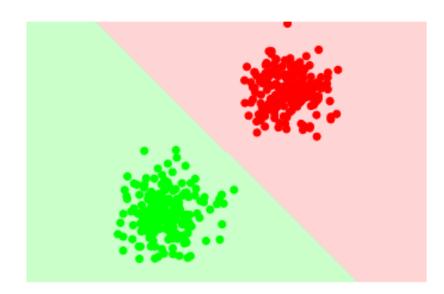
$$\Leftrightarrow \min_{S} \sum_{k=1}^{\infty} |S^k| \operatorname{var}(S^k)$$

variance clustering



#### **Probabilistic K-means**

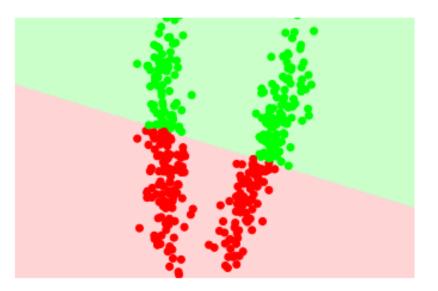
$$\min_{S,P} E(S,P) = -\sum_{k=1}^K \sum_{p \in S^k} \ln P_k(f_p)$$



isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$



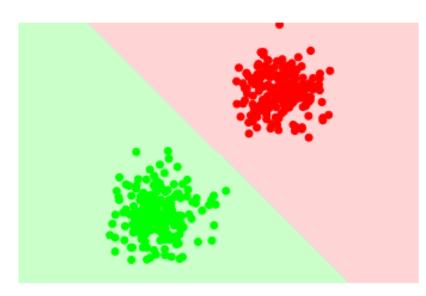


isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

#### **Probabilistic K-means**

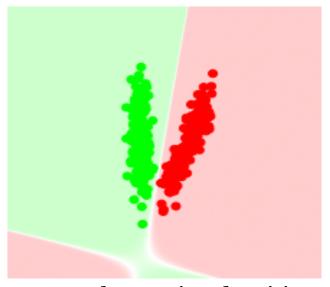
$$\min_{S,P} E(S,P) = -\sum_{k=1}^K \sum_{p \in S^k} \ln P_k(f_p)$$



isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

#### elliptic K-means or GMM



general Gaussian densities

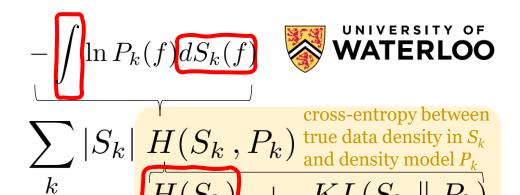
$$P_k \in \mathcal{N}(\mu_k, \Sigma_k)$$

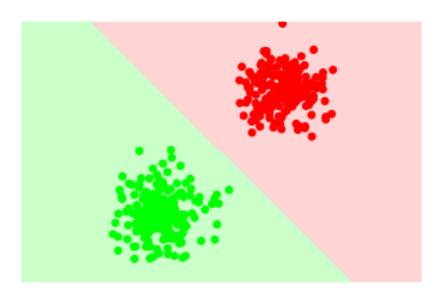
clustering by fitting probability density models

#### **Probabilistic K-means**

$$\min_{S,P} E(S,P) = -\sum_{k=1}^{K} \sum_{p \in S^k} \ln P_k(f_p)$$







isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$



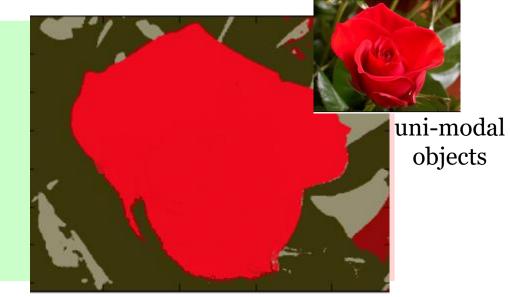
general Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, \Sigma_k)$$

clustering by fitting probability density models

#### **Entropy clustering** (generative)

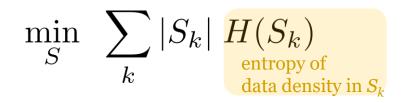
$$\min_{S,P} \sum_{k} |S_k| \underbrace{H(S_k, P_k)}_{H(S_k)} + \underbrace{KL(S_k \parallel P_k)}$$

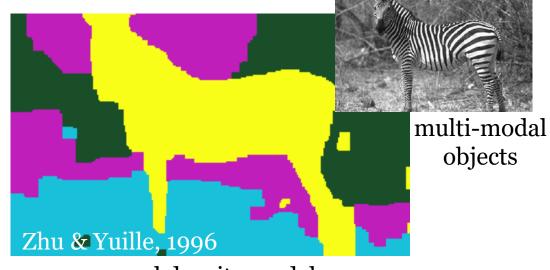


isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

fitting Gaussian densities





general density models

$$P_k \in \mathcal{P}(S_k)$$

#### fitting general density models

(histograms, kernel densities, mixtures)



#### variance clustering

$$\min_{S} \sum_{k} |S_k| \ var(S_k)$$



#### entropy clustering

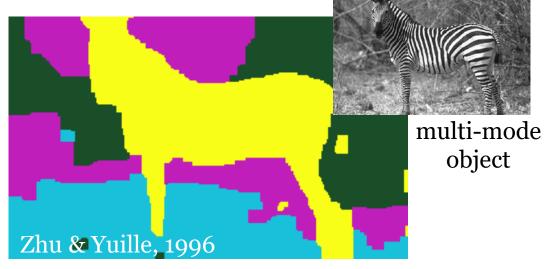
$$\min_{S} \sum_{k} |S_k| \ H(S_k)$$



isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

#### fitting Gaussian densities



general density models

$$P_k \in \mathcal{P}(S_k)$$

#### fitting general density models

(histograms, kernel densities, mixtures)

#### "complex" data $\implies$ "complex" densities



elliptic K-means or GMM

quadra decisi bounda



general Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, \Sigma_k)$$

fitting Gaussian densities

Bayesian posterior for estimated Gaussian densities:

$$P(k|x) = \frac{P(x|k)P(k)}{\sum_{j} P(x|j) P(j)} \sim \frac{e^{-\frac{1}{2}(x-\mu_k)^T \sum_{k}^{-1} (x-\mu_k)}}{\sum_{j} e^{-\frac{1}{2}(x-\mu_j)^T \sum_{j}^{-1} (x-\mu_j)}}$$
quadratic Gaussian classifier

#### model complexity

|                       | basic K-means | GMM                         |  |
|-----------------------|---------------|-----------------------------|--|
| number of parameters: | $K \times N$  | $K \times N + K \times N^2$ |  |

Data is *linearly separable* can we stick to a linear classifier?

#### **Towards discriminative models**



Bayesian posterior implied by density models:

$$P(k|x) = \frac{P(x|k)P(k)}{\sum_{j} P(x|j)P(j)} \sim \frac{e^{-\frac{1}{2}(x-\mu_{k})^{T}\sum_{k}^{-1}(x-\mu_{k})}}{\sum_{j} e^{-\frac{1}{2}(x-\mu_{j})^{T}\sum_{j}^{-1}(x-\mu_{j})}}$$

replace by a **posterior model** 



e.g. softmax + linear classifier 
$$\sigma^k(\mathbf{w}x) = \frac{e^{w_k \cdot x}}{\sum_j e^{w_j \cdot x}}$$

number of parameters 
$$K \times N$$

$$\sigma_{\mathbf{w}} := \sigma(\mathbf{w}x)$$

Clustering with *softmax* models? Losses?

#### **Entropy clustering with** softmax **models**



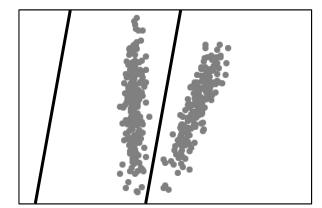
average entropy of prediction

$$\overline{H(\sigma)} := \frac{\sum_{p} H(\sigma_p)}{|\Omega|}$$

entropy of 
$$\underbrace{\operatorname{average}}_{\text{prediction}} \quad -H(\overline{\sigma}) := -H\left(\frac{\sum_p \sigma_p}{|\Omega|}\right)$$

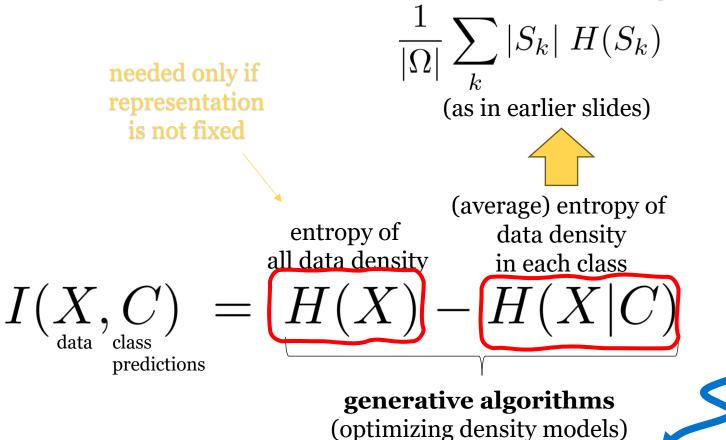
#### Discriminative properties:

- 1. Decisiveness: avoid data points near the boundary
  - clustering [Bridle, Heading, MacKay, NeurlPS 1991]
  - semi-supervised learning [Grandvalet & Bengio, NeurIPS'04]
- 2. Fairness: similar cluster cardinalities



assuming linear classifier  $\sigma_{\mathbf{w}} := \sigma(\mathbf{w}x)$ 

#### **Mutual Information for Clustering**





$$H\left(\frac{1}{|\Omega|}\sum_{p}\sigma_{p}\right)\frac{1}{|\Omega|}\sum_{p}H(\sigma_{p})$$
"fairness" "decisiveness"
[Bridle, Heading, MacKay, NeurlPS 1991]
entropy of average entropy of prediction
$$H(C)-H(C|X)$$

**discriminative algorithms** (optimizing prediction models)

**Q**: equivalence of generative and discriminative algorithms for clustering ???

A: practical clustering algorithms may have different hypothesis spaces

(density models, classifier models)



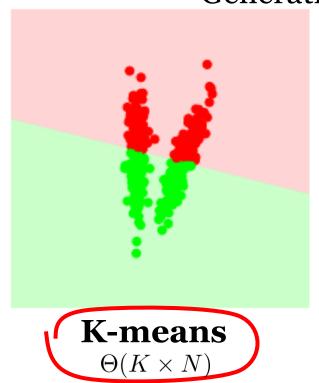
# II. Discriminative clustering with *softmax* models

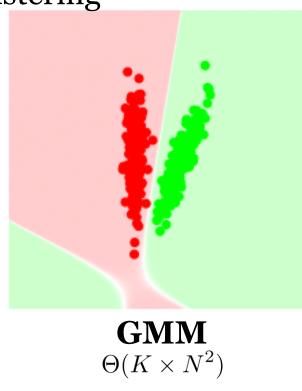
- relation to K-means and SVM clustering
- **max-margin property** for generalized decisiveness (*Renyi* entropy)
- optimization: self-labeling, pseudo-labels
- collision cross-entropy

#### **Generative vs. Discriminative**

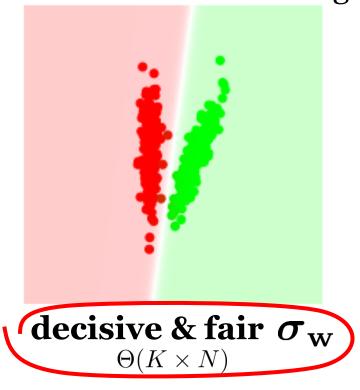


Generative clustering





Discriminative clustering



**Theorem** [Jabi et.al. PAMI'21]: Decisive & fair linear classifier  $\equiv$  K-means

Our Theorem [tbs]: Decisiveness has margin maximizing property

#### **Global and Local Minima**

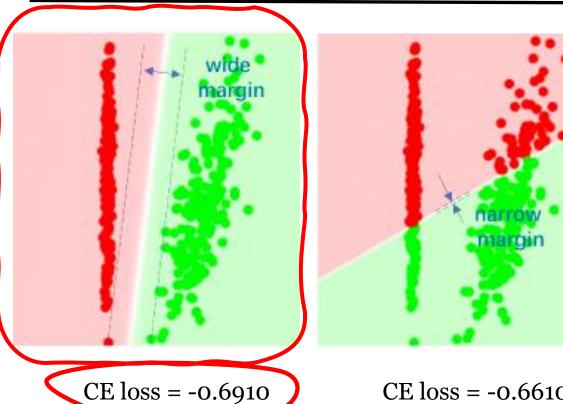


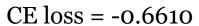
#### discriminative entropy clustering

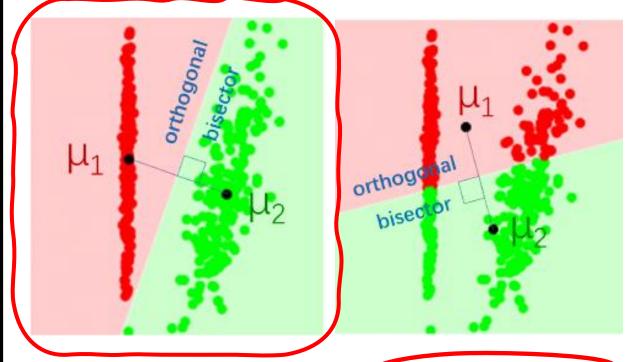
$$CE(\mathbf{w}) = \overline{H(\sigma_{\mathbf{w}})} - H(\overline{\sigma_{\mathbf{w}}}) + \gamma \|\mathbf{w}\|^2$$

"regularized" **soft K-means** [Jabi et.al. PAMI'21]

$$sKM(S, \boldsymbol{\mu}) = \sum_{k} \sum_{p} S_{p}^{k} ||x_{p} - \mu_{k}||^{2} - \gamma \overline{H(S)} - \overline{||x||^{2}}$$







sKM loss = 419.60

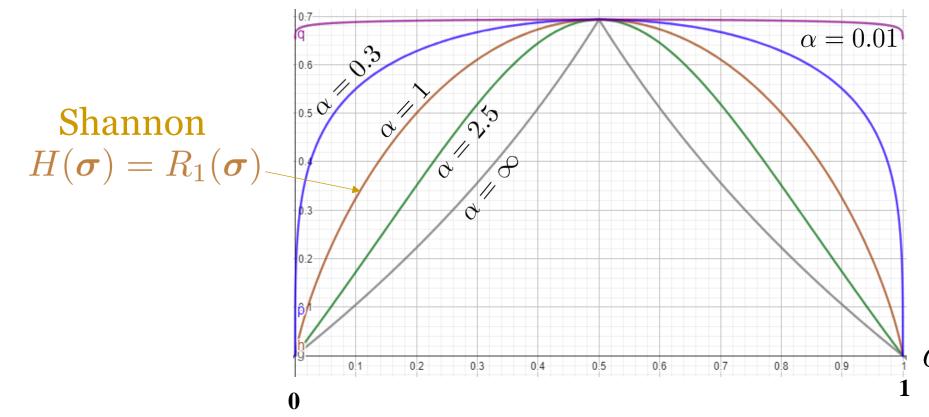
sKM loss = 401.45

#### Generalized Decisiveness: Renyi Entropy ( $R_{\alpha}$ )



$$\overline{H(\sigma)} := \frac{\sum_{p} H(\sigma_{p})}{|\Omega|}$$

[A. Renyi, 1961]



binary case, K=2

$$\boldsymbol{\sigma} := (\sigma, 1 - \sigma)$$

We prove a margin maximizing property for Renyi decisiveness of any order  $\alpha > 0$ .

#### Margin Maximization: Renyi Decisiveness ( $R_{\alpha}$ )



#### **Theorem** [Our generalization to clustering]

Consider any set FL of feasible (fair) linearly separable binary labelings/clusterings. Assuming  $\mathbf{w}(\gamma)$  minimizes **regularized decisiveness**  $\mathbf{R}_{\alpha}$  over liner classifiers  $\mathbf{W}^{FL}$  consistent with FL

unsupervised

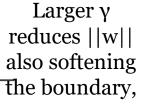
clustering 
$$\underset{\mathbf{w} \in \mathbf{W}^{FL}}{\operatorname{arg}} \lim_{\mathbf{w} \in \mathbf{W}^{FL}} |\mathbf{y}| \mathbf{w}|^2 + \overline{R_{\alpha}(\boldsymbol{\sigma_{\mathbf{w}}})}$$

then 
$$\frac{\mathbf{w}(\gamma)}{\|\mathbf{w}(\gamma)\|} \stackrel{\gamma \to 0}{\longrightarrow} \mathbf{u}^{\hat{\mathbf{y}}}$$
 corresponding to the max-margin clustering  $\hat{\mathbf{y}} \in FL$ .

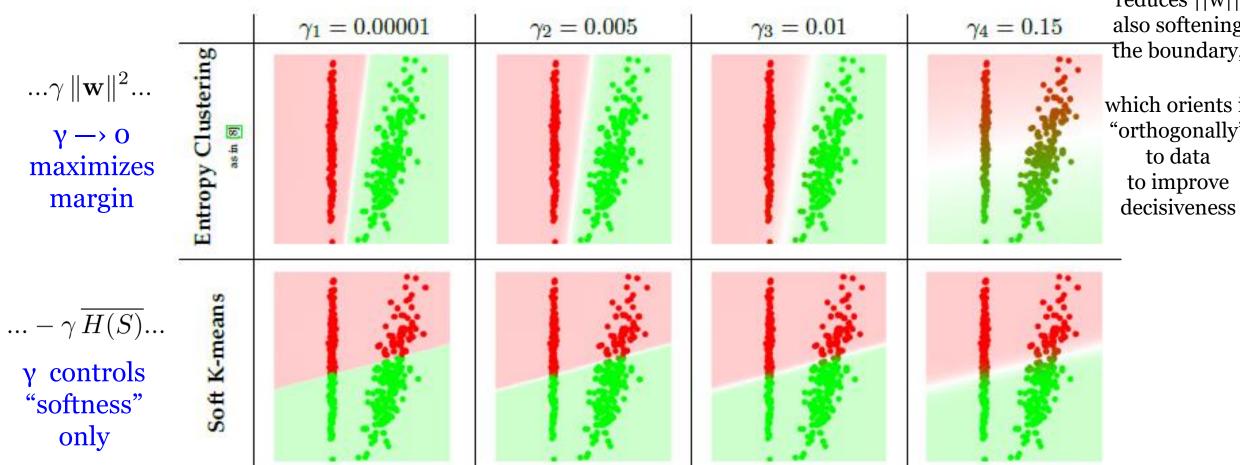
- unsupervised generalization of max-margin property of logistic regression [Rosset, Zhu, Hastie, 2003]
- relates to SVM clustering [Xu,Neufeld,Larson,Schuurmans, 2004]

#### Global minima for various y





which orients it "orthogonally" to data to improve



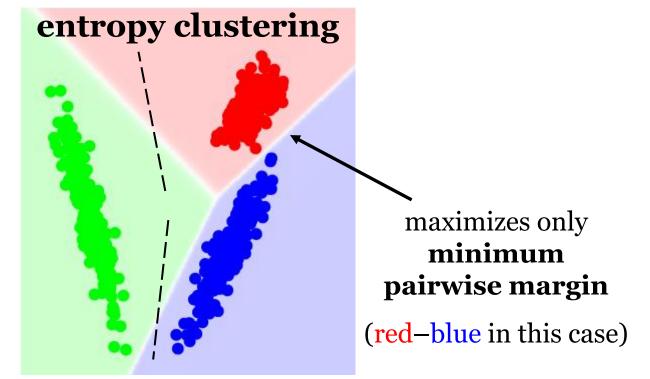
#### Multi-class example (K=3)

does not care

about margins

K-means orthogonal bisector would be max-margin decision boundary for green and red



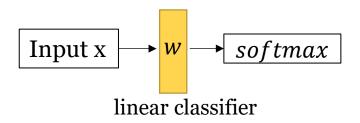


would be max-margin decision boundary for green and blue

#### Non-linear (deep) clustering

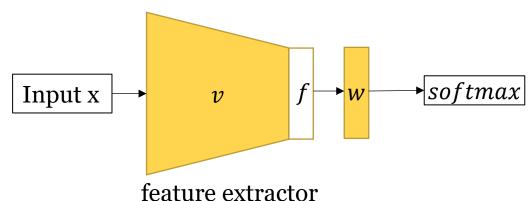


linear posterior model



$$\sigma(wx)$$

deep posterior model



$$\sigma(\mathbf{w}f_{\mathbf{v}}(\mathbf{x}))$$

#### ANY backbone

$$H(\bar{\sigma}) - \overline{H(\sigma)}$$
 applies to **any** softmax model

#### MNIST clustering: linear classifier + low-level features 🚃



Linear classifier + low-level features (raw image intensities)

| loss:      | K-means $(\mu)$              | MI(w)                   |
|------------|------------------------------|-------------------------|
| predictor: | $\ \boldsymbol{\mu}^k - x\ $ | $\sigma^k(\mathbf{w}x)$ |
| accuracy:  | 53.2%                        | 60.2%                   |

Note: Hungarian matching is used to match with ground truth classification

#### MNIST clustering: linear classifier + deep features



#### fixed pretrained features

| loss:                           | K-means ( $\mu$ )               | MI (w)                     |
|---------------------------------|---------------------------------|----------------------------|
| predictor:                      | $\ \boldsymbol{\mu}^k - f(x)\ $ | $\sigma^k(\mathbf{w}f(x))$ |
| accuracy: (pretrained features) | 50.46% - resnet18               | 52.77% - resnet18          |

## w/ feature finetuning

| loss:                           | $MI(v, \mu)$                                     | MI(v, w)                     |  |
|---------------------------------|--------------------------------------------------|------------------------------|--|
| predictor:                      | $\ \boldsymbol{\mu}^k - f_{\boldsymbol{v}}(x)\ $ | $\sigma^k(\mathbf{w}f_v(x))$ |  |
| accuracy: (pretrained features) | 65.01% - resnet18                                | 73.22% - resnet18            |  |

#### MNIST clustering: linear classifier + deep features



#### fixed pretrained features

| loss:                              | K-means ( $\mu$ )               | MI (w)                     |
|------------------------------------|---------------------------------|----------------------------|
| predictor:                         | $\ \boldsymbol{\mu}^k - f(x)\ $ | $\sigma^k(\mathbf{w}f(x))$ |
| accuracy:<br>(pretrained features) | 50.46% - resnet18               | 52.77% - resnet18          |

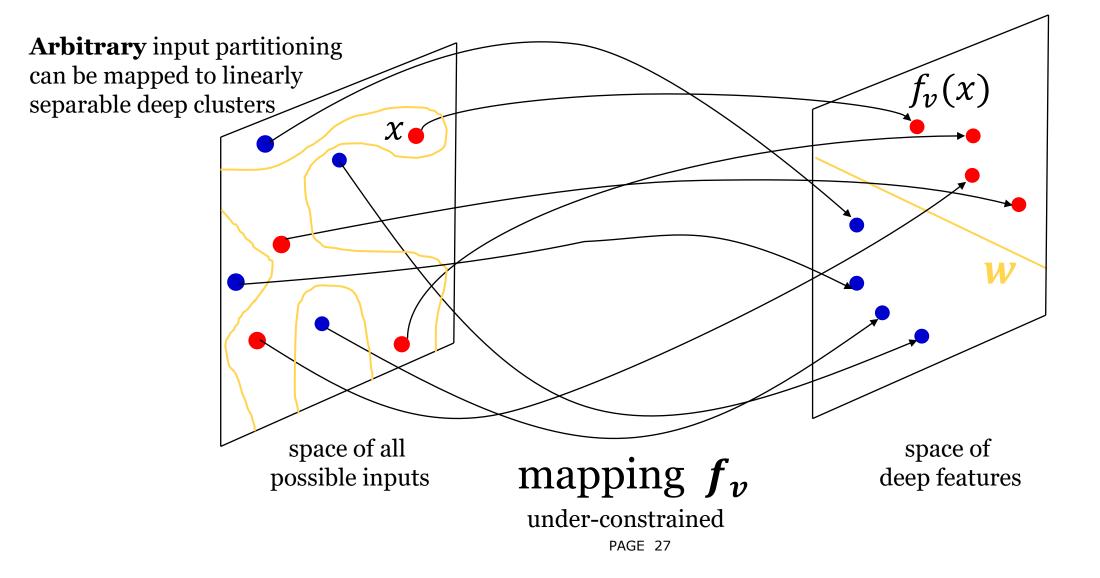
## w/ feature finetuning

| loss:                              | $\mathrm{MI}\left(oldsymbol{v},oldsymbol{\mu} ight)$ | MI(v, w)                     |  |
|------------------------------------|------------------------------------------------------|------------------------------|--|
| predictor:                         | $\ \boldsymbol{\mu}^k - f_{\boldsymbol{v}}(x)\ $     | $\sigma^k(\mathbf{w}f_v(x))$ |  |
| accuracy:<br>(pretrained features) | 65.01% - resnet18                                    | 73.22% - resnet18            |  |
|                                    | +self-augmentation                                   | +self-augmentation           |  |
|                                    | 89.01%                                               | 97.37%                       |  |

perhaps margin maximization matters in practice

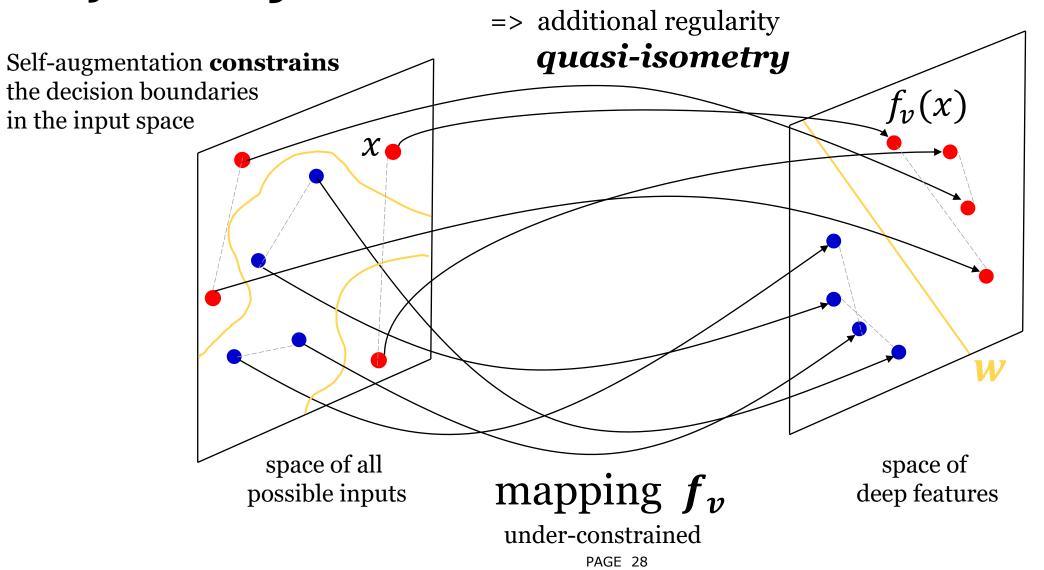
#### Why self-augmentation?





#### Why self-augmentation?







# II. Algorithms for discriminative clustering with *softmax* models

- gradient descent
- self-labeling, pseudo-labels
- collision cross-entropy

#### **Optimization**



[Bridle, Heading, MacKay, NeurIPS 1991]

$$L(\sigma) = \overline{H(\sigma)} - H(\overline{\sigma})$$
concave
 $v \approx \sigma$ 

← Gradient Descent

"self-labeling" surrogate with *pseudo-labels* y

$$L(\sigma, y) = \overline{H(y, \sigma)}$$

s.t. 
$$y \in \Delta_{0,1}^K$$
 "hard" pseudo-labels  $\bar{y} = u$  uniform distribution

- integer programming for *y*
- standard network training with CE

**←** Optimal Transport

**←** Gradient Descent

[Asano, Rupprecht, Vedaldi, ICLR 2020]

#### **Optimization**



[Bridle, Heading, MacKay, NeurIPS 1991]

$$L(\sigma) = \overline{H(\sigma)} - H(\overline{\sigma})$$

← Gradient Descent

"self-labeling" surrogate with *pseudo-labels* y

$$L(\sigma, y) = \overline{H(y, \sigma)} - \overline{H(\overline{y})}$$
linear w.r.t. y convex

$$s.t.$$
  $y \in \Delta^K$  - soft pseudo-labels

- convex w.r.t. y
- standard network training with CE

- ← approximate solver
- **←** Gradient Descent

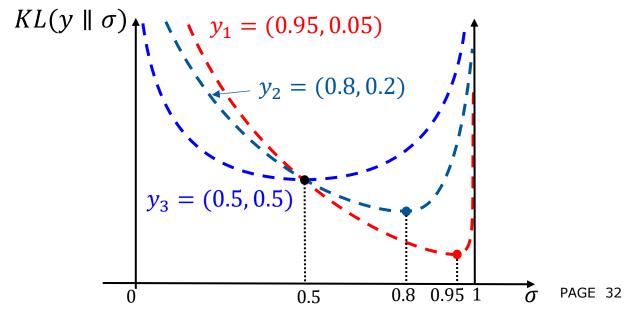
[Jabi et.al. PAMI 2021]

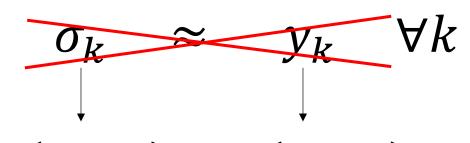
#### Standard CE and soft pseudo-labels



$$H(y,\sigma) = KL(y \parallel \sigma) + H(y)$$

**this loss** minimizes the distance/divergence between two distributions





$$Pr(C = k|x)$$
  $Pr(T = k|x)$ 

predicted class C true class T

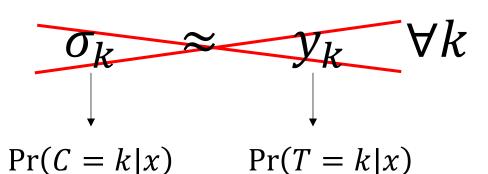
$$Pr(C = T)$$

How about maximizing the **probability of** "collision" between C and T?

## Collision Cross Entropy $H_C(\sigma, y)$ vs. $H(y, \sigma)$

$$-\ln \Pr(C = T) = -\ln \sum_{k} \sigma_k \cdot y_k$$

**symmetric loss** maximizing probability of equality/collision between two random variables



predicted class C true class T

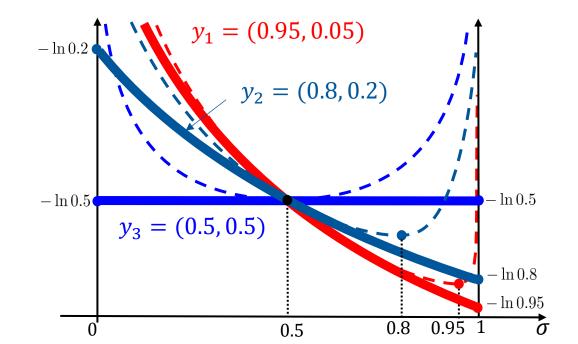
$$\sum_{k} \sigma_k \cdot y_k = \sum_{k} \Pr(C = k, T = k) = \Pr(C = T)$$

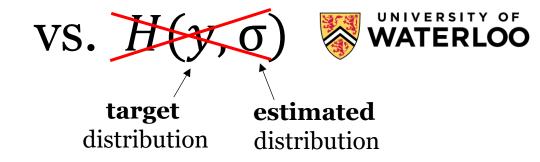
How about maximizing the **probability of** "collision" between C and T?

### Collision Cross Entropy $H_C(\sigma, y)$ vs. $H(y, \sigma)$

$$-\ln \Pr(C = T) = -\ln \sum_{k} \sigma_k \cdot y_k$$

**symmetric loss** maximizing probability of equality/collision between two random variables





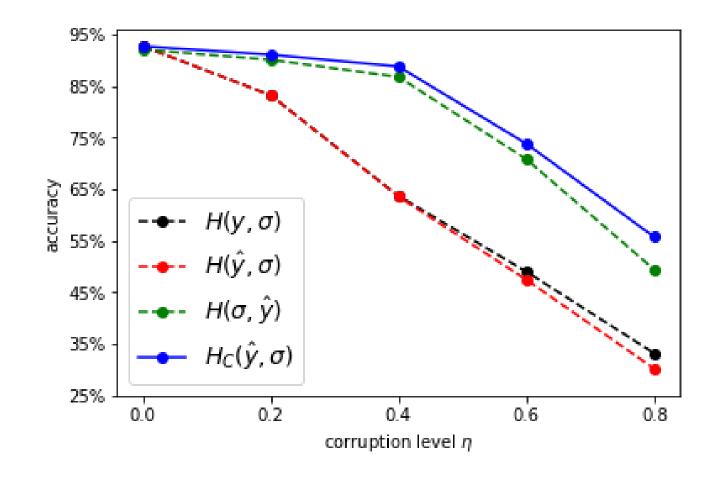
#### Robustness of predictions $\sigma$ to uncertainty of labels y

labels after corruption

y : hard

 $\hat{y}$  : soft

$$\hat{y} = (1 - \eta) \cdot y + \eta \cdot u$$



#### **Optimization**

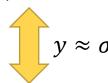


[Bridle, Heading, MacKay, NeurIPS 1991]

$$L(\sigma) = \overline{H(\sigma)} - H(\overline{\sigma})$$

**←** Gradient Descent

"self-labeling" surrogate with *pseudo-labels* y



#### our algorithm

$$L(\sigma,y) = \overline{H_C(\sigma,y)} - H(\overline{y})$$
 s.t.  $y \in \Delta^K$  - soft pseudo-labels

**Collision CE** 

- convex w.r.t. *y* 

convex w.r.t. y convex w.r.t. y

- standard network training with collision CE

 $\leftarrow$  EM

**←** Gradient Descent

#### Experiments (joint clustering with feature learning)

pretrained features - self-supervised representation learning (SimSLR contrastive learning, Hinton 2020)

(resnet18)

| Our        | 78.12% (0.1) | 83.27% (0.2) | 47.01% (0.2) |
|------------|--------------|--------------|--------------|
| MIADM [15] | 67.84% (0.2) | 74.76% (0.3) | 43.47% (0.5) |
| IMSAT [14] | 70.23% (2.0) | 77.64% (1.3) | 43.68% (0.4) |
| SCAN [44]  | 75.5% (2.0)  | 81.8% (0.3)  | 42.2% (3.0)  |
|            | STL10        | CIFAR10      | CIFAR100-20  |
|            |              |              |              |

trained from the scratch

(vgg4)

|            | STL10       | CIFAR10     | CIFAR100-20 | MNIST       |
|------------|-------------|-------------|-------------|-------------|
| IMSAT [14] | 25.28%(0.5) | 21.4%(0.5)  | 14.39%(0.7) | 92.90%(6.3) |
| IIC [16]   | 24.12%(1.7) | 21.3%(1.4)  | 12.58%(0.6) | 82.51%(2.3) |
| SeLa [1]   | 23.99%(0.9) | 24.16%(1.5) | 15.34%(0.3) | 52.86%(1.9) |
| MIADM [15] | 23.37%(0.9) | 23.26%(0.6) | 14.02%(0.5) | 78.88%(3.3) |
| Our        | 25.98%(1.1) | 24.26%(0.8) | 15.14%(0.5) | 95.11%(4.3) |