CS484/684 Computational Vision

Deep Clustering

cluster B

unsupervised classification \equiv clustering

Outline

- I. Intro: unified view on common <u>unsupervised losses</u>
 - variance, entropy, mutual information
 - generative (K-means, GMM, ...) & discriminative (decisiveness, fairness, ...)

II. Clustering with softmax models

- relation to K-means and SVM clustering
- max-margin property for generalized decisiveness (*Renyi* entropy)
- optimization: self-labeling, **soft** pseudo-labels
- collision cross-entropy

I. Intro: unified view on common unsupervised losses

Mutual Information (MI) clustering

generative

entropy clustering

K-means

[Bridle, Heading, MacKay, *NeurIPS* 1991]

discriminative

entropy clustering

decisiveness, fairness

K-means

$$\min_{S, \boldsymbol{\mu}} E(S, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

$$\Leftrightarrow \min_{S} \sum_{k=1}^{\infty} |S^k| \operatorname{var}(S^k)$$

variance clustering

color quantization

- RGB feat ures f

superpixels

- RGBXY features f

[Achanta et al., PAMI 2011]

K-means +

kernelized formulation

$$\min_{S, \boldsymbol{\mu}} E(S, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{p \in S^k} \|f_p - \mu_k\|^2 \qquad \qquad \min_{S} E(S) = \sum_{k} \sum_{pq \in S^k} \frac{\|f_p - f_q\|^2}{2|S^k|}$$

$$\Leftrightarrow \min_{S} \sum_{k=1}^{\infty} |S^k| \operatorname{var}(S^k)$$

variance clustering

$$\min_{S} E(S) = \sum_{k} \sum_{pq \in S^{k}} \frac{\|J_{p} - J_{q}\|}{2|S^{k}|}$$

$$= -\sum_{k} \sum_{pq \in S^{k}} \frac{\langle f_{p}, f_{q} \rangle}{|S^{k}|} + const$$

with Gaussian kernel $\langle \ , \ \rangle_G$ unsupervised segmentation

- implicit high-dimensional features f

Normalized Cuts [Shi&Malik 2000]

K-means +

probabilistic

$$\min_{S,\boldsymbol{\mu}} E(S,\boldsymbol{\mu}) = \sum_{k=1}^K \sum_{p \in S^k} \|f_p - \mu_k\|^2$$

$$\Leftrightarrow \min_{S} \sum_{k=1}^{\infty} |S^k| \operatorname{var}(S^k)$$

variance clustering

Probabilistic K-means

$$\min_{S,P} E(S,P) = -\sum_{k=1}^K \sum_{p \in S^k} \ln P_k(f_p)$$

isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

Probabilistic K-means

$$\min_{S,P} E(S,P) = -\sum_{k=1}^K \sum_{p \in S^k} \ln P_k(f_p)$$

isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

elliptic K-means or GMM

general Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, \Sigma_k)$$

clustering by fitting probability density models

Probabilistic K-means

$$\min_{S,P} E(S,P) = -\sum_{k=1}^{K} \sum_{p \in S^k} \ln P_k(f_p)$$

isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

general Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, \Sigma_k)$$

clustering by fitting probability density models

Entropy clustering (generative)

$$\min_{S,P} \sum_{k} |S_k| \underbrace{H(S_k, P_k)}_{H(S_k)} + \underbrace{KL(S_k \parallel P_k)}$$

isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

fitting Gaussian densities

general density models

$$P_k \in \mathcal{P}(S_k)$$

fitting general density models

(histograms, kernel densities, mixtures)

variance clustering

$$\min_{S} \sum_{k} |S_k| \ var(S_k)$$

entropy clustering

$$\min_{S} \sum_{k} |S_k| \ H(S_k)$$

isotropic Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, I)$$

fitting Gaussian densities

general density models

$$P_k \in \mathcal{P}(S_k)$$

fitting general density models

(histograms, kernel densities, mixtures)

"complex" data \implies "complex" densities

elliptic K-means or GMM

quadra decisi bounda

general Gaussian densities

$$P_k \in \mathcal{N}(\mu_k, \Sigma_k)$$

fitting Gaussian densities

Bayesian posterior for estimated Gaussian densities:

$$P(k|x) = \frac{P(x|k)P(k)}{\sum_{j} P(x|j) P(j)} \sim \frac{e^{-\frac{1}{2}(x-\mu_k)^T \sum_{k}^{-1} (x-\mu_k)}}{\sum_{j} e^{-\frac{1}{2}(x-\mu_j)^T \sum_{j}^{-1} (x-\mu_j)}}$$
quadratic Gaussian classifier

model complexity

	basic K-means	GMM	
number of parameters:	$K \times N$	$K \times N + K \times N^2$	

Data is *linearly separable* can we stick to a linear classifier?

Towards discriminative models

Bayesian posterior implied by density models:

$$P(k|x) = \frac{P(x|k)P(k)}{\sum_{j} P(x|j)P(j)} \sim \frac{e^{-\frac{1}{2}(x-\mu_{k})^{T}\sum_{k}^{-1}(x-\mu_{k})}}{\sum_{j} e^{-\frac{1}{2}(x-\mu_{j})^{T}\sum_{j}^{-1}(x-\mu_{j})}}$$

replace by a **posterior model**

e.g. softmax + linear classifier
$$\sigma^k(\mathbf{w}x) = \frac{e^{w_k \cdot x}}{\sum_j e^{w_j \cdot x}}$$

number of parameters
$$K \times N$$

$$\sigma_{\mathbf{w}} := \sigma(\mathbf{w}x)$$

Clustering with *softmax* models? Losses?

Entropy clustering with softmax **models**

average entropy of prediction

$$\overline{H(\sigma)} := \frac{\sum_{p} H(\sigma_p)}{|\Omega|}$$

entropy of
$$\underbrace{\operatorname{average}}_{\text{prediction}} \quad -H(\overline{\sigma}) := -H\left(\frac{\sum_p \sigma_p}{|\Omega|}\right)$$

Discriminative properties:

- 1. Decisiveness: avoid data points near the boundary
 - clustering [Bridle, Heading, MacKay, NeurlPS 1991]
 - semi-supervised learning [Grandvalet & Bengio, NeurIPS'04]
- 2. Fairness: similar cluster cardinalities

assuming linear classifier $\sigma_{\mathbf{w}} := \sigma(\mathbf{w}x)$

Mutual Information for Clustering

$$H\left(\frac{1}{|\Omega|}\sum_{p}\sigma_{p}\right)\frac{1}{|\Omega|}\sum_{p}H(\sigma_{p})$$
"fairness" "decisiveness"
[Bridle, Heading, MacKay, NeurlPS 1991]
entropy of average entropy of prediction
$$H(C)-H(C|X)$$

discriminative algorithms (optimizing prediction models)

Q: equivalence of generative and discriminative algorithms for clustering ???

A: practical clustering algorithms may have different hypothesis spaces

(density models, classifier models)

II. Discriminative clustering with *softmax* models

- relation to K-means and SVM clustering
- **max-margin property** for generalized decisiveness (*Renyi* entropy)
- optimization: self-labeling, pseudo-labels
- collision cross-entropy

Generative vs. Discriminative

Generative clustering

Discriminative clustering

Theorem [Jabi et.al. PAMI'21]: Decisive & fair linear classifier \equiv K-means

Our Theorem [tbs]: Decisiveness has margin maximizing property

Global and Local Minima

discriminative entropy clustering

$$CE(\mathbf{w}) = \overline{H(\sigma_{\mathbf{w}})} - H(\overline{\sigma_{\mathbf{w}}}) + \gamma \|\mathbf{w}\|^2$$

"regularized" **soft K-means** [Jabi et.al. PAMI'21]

$$sKM(S, \boldsymbol{\mu}) = \sum_{k} \sum_{p} S_{p}^{k} ||x_{p} - \mu_{k}||^{2} - \gamma \overline{H(S)} - \overline{||x||^{2}}$$

sKM loss = 419.60

sKM loss = 401.45

Generalized Decisiveness: Renyi Entropy (R_{α})

$$\overline{H(\sigma)} := \frac{\sum_{p} H(\sigma_{p})}{|\Omega|}$$

[A. Renyi, 1961]

binary case, K=2

$$\boldsymbol{\sigma} := (\sigma, 1 - \sigma)$$

We prove a margin maximizing property for Renyi decisiveness of any order $\alpha > 0$.

Margin Maximization: Renyi Decisiveness (R_{α})

Theorem [Our generalization to clustering]

Consider any set FL of feasible (fair) linearly separable binary labelings/clusterings. Assuming $\mathbf{w}(\gamma)$ minimizes **regularized decisiveness** \mathbf{R}_{α} over liner classifiers \mathbf{W}^{FL} consistent with FL

unsupervised

clustering
$$\underset{\mathbf{w} \in \mathbf{W}^{FL}}{\operatorname{arg}} \lim_{\mathbf{w} \in \mathbf{W}^{FL}} |\mathbf{y}| \mathbf{w}|^2 + \overline{R_{\alpha}(\boldsymbol{\sigma_{\mathbf{w}}})}$$

then
$$\frac{\mathbf{w}(\gamma)}{\|\mathbf{w}(\gamma)\|} \stackrel{\gamma \to 0}{\longrightarrow} \mathbf{u}^{\hat{\mathbf{y}}}$$
 corresponding to the max-margin clustering $\hat{\mathbf{y}} \in FL$.

- unsupervised generalization of max-margin property of logistic regression [Rosset, Zhu, Hastie, 2003]
- relates to SVM clustering [Xu,Neufeld,Larson,Schuurmans, 2004]

Global minima for various y

which orients it "orthogonally" to data to improve

Multi-class example (K=3)

does not care

about margins

K-means orthogonal bisector would be max-margin decision boundary for green and red

would be max-margin decision boundary for green and blue

Non-linear (deep) clustering

linear posterior model

$$\sigma(wx)$$

deep posterior model

$$\sigma(\mathbf{w}f_{\mathbf{v}}(\mathbf{x}))$$

ANY backbone

$$H(\bar{\sigma}) - \overline{H(\sigma)}$$
 applies to **any** softmax model

MNIST clustering: linear classifier + low-level features 🚃

Linear classifier + low-level features (raw image intensities)

loss:	K-means (μ)	MI(w)
predictor:	$\ \boldsymbol{\mu}^k - x\ $	$\sigma^k(\mathbf{w}x)$
accuracy:	53.2%	60.2%

Note: Hungarian matching is used to match with ground truth classification

MNIST clustering: linear classifier + deep features

fixed pretrained features

loss:	K-means (μ)	MI (w)
predictor:	$\ \boldsymbol{\mu}^k - f(x)\ $	$\sigma^k(\mathbf{w}f(x))$
accuracy: (pretrained features)	50.46% - resnet18	52.77% - resnet18

w/ feature finetuning

loss:	$MI(v, \mu)$	MI(v, w)	
predictor:	$\ \boldsymbol{\mu}^k - f_{\boldsymbol{v}}(x)\ $	$\sigma^k(\mathbf{w}f_v(x))$	
accuracy: (pretrained features)	65.01% - resnet18	73.22% - resnet18	

MNIST clustering: linear classifier + deep features

fixed pretrained features

loss:	K-means (μ)	MI (w)
predictor:	$\ \boldsymbol{\mu}^k - f(x)\ $	$\sigma^k(\mathbf{w}f(x))$
accuracy: (pretrained features)	50.46% - resnet18	52.77% - resnet18

w/ feature finetuning

loss:	$\mathrm{MI}\left(oldsymbol{v},oldsymbol{\mu} ight)$	MI(v, w)	
predictor:	$\ \boldsymbol{\mu}^k - f_{\boldsymbol{v}}(x)\ $	$\sigma^k(\mathbf{w}f_v(x))$	
accuracy: (pretrained features)	65.01% - resnet18	73.22% - resnet18	
	+self-augmentation	+self-augmentation	
	89.01%	97.37%	

perhaps margin maximization matters in practice

Why self-augmentation?

Why self-augmentation?

II. Algorithms for discriminative clustering with *softmax* models

- gradient descent
- self-labeling, pseudo-labels
- collision cross-entropy

Optimization

[Bridle, Heading, MacKay, NeurIPS 1991]

$$L(\sigma) = \overline{H(\sigma)} - H(\overline{\sigma})$$
concave
 $v \approx \sigma$

← Gradient Descent

"self-labeling" surrogate with *pseudo-labels* y

$$L(\sigma, y) = \overline{H(y, \sigma)}$$

s.t.
$$y \in \Delta_{0,1}^K$$
 "hard" pseudo-labels $\bar{y} = u$ uniform distribution

- integer programming for *y*
- standard network training with CE

← Optimal Transport

← Gradient Descent

[Asano, Rupprecht, Vedaldi, ICLR 2020]

Optimization

[Bridle, Heading, MacKay, NeurIPS 1991]

$$L(\sigma) = \overline{H(\sigma)} - H(\overline{\sigma})$$

← Gradient Descent

"self-labeling" surrogate with *pseudo-labels* y

$$L(\sigma, y) = \overline{H(y, \sigma)} - \overline{H(\overline{y})}$$
linear w.r.t. y convex

$$s.t.$$
 $y \in \Delta^K$ - soft pseudo-labels

- convex w.r.t. y
- standard network training with CE

- ← approximate solver
- **←** Gradient Descent

[Jabi et.al. PAMI 2021]

Standard CE and soft pseudo-labels

$$H(y,\sigma) = KL(y \parallel \sigma) + H(y)$$

this loss minimizes the distance/divergence between two distributions

$$Pr(C = k|x)$$
 $Pr(T = k|x)$

predicted class C true class T

$$Pr(C = T)$$

How about maximizing the **probability of** "collision" between C and T?

Collision Cross Entropy $H_C(\sigma, y)$ vs. $H(y, \sigma)$

$$-\ln \Pr(C = T) = -\ln \sum_{k} \sigma_k \cdot y_k$$

symmetric loss maximizing probability of equality/collision between two random variables

predicted class C true class T

$$\sum_{k} \sigma_k \cdot y_k = \sum_{k} \Pr(C = k, T = k) = \Pr(C = T)$$

How about maximizing the **probability of** "collision" between C and T?

Collision Cross Entropy $H_C(\sigma, y)$ vs. $H(y, \sigma)$

$$-\ln \Pr(C = T) = -\ln \sum_{k} \sigma_k \cdot y_k$$

symmetric loss maximizing probability of equality/collision between two random variables

Robustness of predictions σ to uncertainty of labels y

labels after corruption

y : hard

 \hat{y} : soft

$$\hat{y} = (1 - \eta) \cdot y + \eta \cdot u$$

Optimization

[Bridle, Heading, MacKay, NeurIPS 1991]

$$L(\sigma) = \overline{H(\sigma)} - H(\overline{\sigma})$$

← Gradient Descent

"self-labeling" surrogate with *pseudo-labels* y

our algorithm

$$L(\sigma,y) = \overline{H_C(\sigma,y)} - H(\overline{y})$$
 s.t. $y \in \Delta^K$ - soft pseudo-labels

Collision CE

- convex w.r.t. *y*

convex w.r.t. y convex w.r.t. y

- standard network training with collision CE

 \leftarrow EM

← Gradient Descent

Experiments (joint clustering with feature learning)

pretrained features - self-supervised representation learning (SimSLR contrastive learning, Hinton 2020)

(resnet18)

Our	78.12% (0.1)	83.27% (0.2)	47.01% (0.2)
MIADM [15]	67.84% (0.2)	74.76% (0.3)	43.47% (0.5)
IMSAT [14]	70.23% (2.0)	77.64% (1.3)	43.68% (0.4)
SCAN [44]	75.5% (2.0)	81.8% (0.3)	42.2% (3.0)
	STL10	CIFAR10	CIFAR100-20

trained from the scratch

(vgg4)

	STL10	CIFAR10	CIFAR100-20	MNIST
IMSAT [14]	25.28%(0.5)	21.4%(0.5)	14.39%(0.7)	92.90%(6.3)
IIC [16]	24.12%(1.7)	21.3%(1.4)	12.58%(0.6)	82.51%(2.3)
SeLa [1]	23.99%(0.9)	24.16%(1.5)	15.34%(0.3)	52.86%(1.9)
MIADM [15]	23.37%(0.9)	23.26%(0.6)	14.02%(0.5)	78.88%(3.3)
Our	25.98%(1.1)	24.26%(0.8)	15.14%(0.5)	95.11%(4.3)