
CS484/684 Computational Vision

from full supervision to

Weak-supervision,

Semi-supervision, 

Self-supervision, 

etc.

Look, there is 

a horse

over there!



CS484/684 Computational Vision

Weakly-Supervised CNN training (outline)

• Weakly-supervised CNN segmentation

- shortage of training labels

- proposal-based weak-supervision

- partial pixel-level supervision, image-level supervision 

- unsupervised loss functions from low-level vision (topics 8,9) 

• Towards self-supervision

- monocular depth, NERF

- denoising, super-resolution, inpainting, e.t.c.

- regularized and self-supervised losses, auto-encoders

- generative models (GAN, VAE, diffusion models)

- deep clustering, self labeling, etc. (optional topic 13)

• Limitations of NNs



Semantic segmentation with CNNs

Topic 11 discussed fully supervised CNN training

expecting fully labeled pixel-accurate training masks

In any case, it is highly expensive.

The concept of learning to segment a horse from thousands 

of pixel-accurate horse segments is “a bit” ridiculous.  



Semantic segmentation with CNNs

significantly cheaper forms of 

weak supervision for segmentation

First, we discuss training segmentation CNNs 

using partial pixel-level supervision

Boxes
two clicks

per object

Seeds
brush 

stroke

per object



Naïve approach: “proposal generation”

Use available boxes/seeds to generate “training proposals”

Boxes
two clicks

per object

Seeds
brush 

stroke

per object

essentially “fake” ground truth

e.g. using interactive low-level segmentation (e.g. graph cuts, Topic 9)



Naïve approach: “proposal generation”

Use available boxes/seeds to generate “training proposals”

Boxes
two clicks

per object

Seeds
brush 

stroke

per object

essentially “fake” ground truth

ideallyProblem: in practice, so generated proposals will have mistakes. 

   Can’t use previous losses assuming that target is certain/correct. 

e.g. using interactive low-level segmentation (e.g. graph cuts, Topic 9)



Semi-supervised 

learning

?

There are better standard ideas



Semi-supervised 

learning

?

Weakly-supervised 
segmentation

unlabeled data can be

informative 

Similarly, unlabeled pixels 

can be informative

There are better standard ideas



Semi-supervised learning

[Zhu & Goldberg, “Introduction to semi-supervised learning”, 2009]

[Chapelle, Scholkopf & Zien, “Semi-supervised learning”, 2009]

-  true label or target, if any, for data point (feature vector)   

Definition:



Graph-Based Semi-supervised Learning

Loss function ?

- labelled points should have

consistency with the target

e.g. 

- unlabeled points should be

labeled so that there is some 

agreement between neighbors

i.e. pairwise regularization:
- pre-computed affinities, 

      e.g. based on distance 

      between feature vectors       

             and 

(e.g. Gaussian kernel)



Deep Semi-supervised Learning

Classification 
(Weston et al. 2012)

class probabilities at point i

e.g. for classification CNN output



Classification 
(Weston et al. 2012)

Segmentation 
(Tang et al. CVPR18, ECCV18)

p

q

Deep Semi-supervised Learning

class probabilities at point i

e.g. for classification CNN output e.g. for segmentation CNN output

class probabilities at pixel p

?



Regularized Loss Functions

low-level segmentation
  (Topic 9)

We can use regularization ideas from

unsupervised and interactive segmentation

to exploit low-level segmentation cues 
(contrast alignment, boundary regularity, regional color consistency, etc.)

for unlabeled parts of an image



p

q

sparsely connected densely connected

[Geman&Giman’81, BVZ PAMI’01, B&J ICCV’01] [Dense CRF, Krähenbühl & Koltun, NIPS 2011]

Spatial Regularization (unsupervised)

Examples of neighborhood systems N on pixel grid

as in part 2 of Assignment 4

qppq III −=



- contrast weights wpq from topic 9

remember graph cut segmentation (topic 9):

coherence between

 discrete labels

at pixels p and q

Iverson brackets 



sparsely connected densely connected

[Geman&Giman’81, BVZ PAMI’01, B&J ICCV’01] [Dense CRF, Krähenbühl & Koltun, NIPS 2011]

Spatial Regularization (unsupervised)

Examples of neighborhood systems N on pixel grid

qppq III −=



- contrast weights wpq from topic 9

p

q

as in part 2 of Assignment 4

weakly-supervised CNN segmentation:

coherence between

probabilistic predictions

at pixels p and q

relaxation of Iverson brackets 

for probabilistic predictions 



Partial Cross Entropy Loss

predicted “probabilities” for p 

to be in each class

over seeds only

, e.g. (0,0,..,1,...) in one-hot case

Implications:
- Cross entropy is a relaxation of hard constraints for probabilistic predictions.

Remember: if prediction is one-hot

then cross entropy at seed p 

is equivalent to           hard constraint
(as in interactive graph cut, Topic 9)

cross entropy

weakly-supervised CNN segmentation:

Remember “fake” ground truths - network tries hard to learn the mistakes. 

- Cross entropy is a bad idea for pixels where targets yp are corrupted by errors.

not over complete

fake GT mask

inaccurate 

cow mask



Regularization Loss

scribbles / seeds unlabeled pixels

Partial Cross Entropy (PCE)

n-links 

This is nearly identical to graph cut segmentation loss
(this is its relaxation, coincides for one-hot predictions)

weakly-supervised CNN segmentation:

Total Regularized Loss



interactive low-level segmentation vs.

weakly-supervised semantic CNN segmentation

- target label at seed pixel p

regularized loss 

in low segmentation
 (remember from Topic 9)

hard constraints regularizer
(edge alignment, smoothness)

• generate “fake” full target masks

• postprocess CNN output

- segmentation (label or one-hot distribution) at pixel p

In low-segmentation, we optimize segmentation S using loss L(S). 

Goal: (directly) optimize segmentation variables        (e.g. via graph cuts) 



For weakly-supervised network training, we have predictions σ(W) 

and optimize network parameters  W using loss  L(W) = L(σ(W)). 

regularized loss 

for weakly-supervised 

CNN training
[Tang, et al. ECCV 2018, CVPR 2018]relaxation of 

hard constraints

relaxation of 

regularizer
(edge alignment, smoothness)

- probabilities at pixel p

interactive low-level segmentation vs.

weakly-supervised semantic CNN segmentation

In low-segmentation, we optimize segmentation S using loss L(S). 

- target label at seed pixel p

Goal: optimize network weights W giving good predictions σ(W) (e.g. via backpropagation) 



Regularization Loss Gradients

input network prediction for

class k during training

regularization loss

   gradient



Weakly-supervised training of CNN segmentation

regularized losses

partial cross entropy (pCE) only

proposal generation

(“fake” ground truth)

amount of supervision

Representative plots

for different CNN architectures

labeled pixels:

3%
labeled pixels: 

1.5%

labeled pixels:

1%
labeled pixels:

1 (count)



Adding Regularized Losses to pCE

Test image pCE loss + pairwise 

regularization

ground truth

better edge alignment and smoothness

partial 

pixel-level labels 

(seeds)



Multiple Instance Learning (MIL)

find working molecule (drug discovery)

Y
Y

N

binary tags

binary classification 

N

instead of individual examples,

training labels are available

only for sets (bags) of examples

What if image-level labels only ?

First, consider a simple related example: 



{ sky, grass, sand } { sky, sand } { grass, sand }

image-level tags multi-class tags

multi-class classification 

For simplicity, assume pixel colors are discriminative enough features.

In general, segmentation network must learn BOTH

 (deep) discriminative pixel-level features AND their match with class tags

That is, to segment, we just need to learn what color is sky, grass, and sand ?

What if image-level labels only ?

From these three images, we can segment pixels by matching green to grass, blue to sky, and beige to sand.



What if image-level labels only ?

Example:

linear classifier

trained on three images using

raw colors features  (X = RGB)

and tag-consistency loss 

T = { sky, sand }

T = { sky, grass }

T = { grass, sand }

This sum can be interpreted as

prediction (or probability) that

pixel p has one of the classes in  T

the loss encourages

and

results generated by Jiahao Zhang

NOTE:   practical problems on real image datasets: 

a) “background” class is a trivial solution for all images

b) colors are semantically non-discriminative



Some ideas for real datasets:

seeds from “network attention”
see CAM at the end of Topic 10

partial Cross Entropy

volumetric loss

Can be simplified using

 regularization loss

in the previous slides

What if image-level labels only ?

[Kolesnikov & Lampert ECCV 2016]



Zhou, Tianfei, et al. "Regional semantic contrast and aggregation 
for weakly supervised semantic segmentation." CVPR 2022.

Contrastive Learning for Features

More recently, the state of the art for segmentation from image-level

supervision is approaching full pixel-level supervision.

What if image-level labels only ?
Some ideas for real datasets:



Short on labels? 

Can use unsupervised low-level vision

Full pixel-accurate ground truth is practically impossible.

But the shortage of targets can be compensated by 

domain specific losses from low-level vision, e.g.

- volumetric constraints

- boundary regularization (in segmentation)

- spatial regularity of the output (depth or motion field smoothness) 

- photo-consistency (e.g. in stereo and 3D reconstruction)

“self-supervision”
no oracle (ground truth) is used



CNN (FCN) for pixel labeling problems

• semantic segmentation

• depth estimation

• motion estimation

• restoration

• denoising

• inpainting

• e.t.c.

- regression problem (no soft-max), but 

still can use networks (e.g. FCN)   

to produce output (predictions) with 

spatial resolution

- classification

where … full pixel-accurate ground truth is typically impossible



Example: Depth from Single View 

Unsupervised 

Monocular Depth 

Estimation with 

Left-Right 

Consistency 

Godard, Aodha, 

Brostow   

CVPR 2017
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Example: Depth from Single View 

Unsupervised 

Monocular Depth 

Estimation with 

Left-Right 

Consistency 

Godard, Aodha, 

Brostow   

CVPR 2017

How does this work?

self-supervision:
no oracle (ground truth) is used

right (stereo) image is needed 

only during training

network uses only one

(left) image as its input

part used 

in tests

synthesized right image synthesized left image

real right image real left image

Loss: 
photo-consistency

(SSD for synthetic - real )

+ disparity maps

regularity

right disparity map left disparity map



Remember Loss for Stereo (topic 8)

disparity map 

regularity

NOTE: we can use gradient descent over NN parameters w to optimize disparity 

map d just for a given stereo pair (I, I’) as an alternative to optimization in topic 8 

(e.g. graph cut). May benefit from NN’s “inductive bias”.

In fact, NN as optimization tool is used for 3D reconstruction – see NeRF. 



Towards 3D reconstruction - NeRF

Instead of learning a model (function) producing depth map 

              depth map  =  fθ (im1,...)         from one or many images

one can “learn” the radiance field function

     

Illustration credits: B.Mildenhall, P.Srinivasan, M.Tancik, J.Barron, R,Ramamoorthi, R.Ng

RF

x,y,z

θ,φ

Problem formulation: given N views, “learn” RF specific to the scene



NeRF

Instead of learning a model (function) producing depth map 

              depth map  =  fθ (im1,...)         from one or many images

one can “learn” the radiance field function

              

Illustration credits: B.Mildenhall, P.Srinivasan, M.Tancik, J.Barron, R,Ramamoorthi, R.Ng

Problem formulation: given N views, “learn” RF specific to the scene

3D occupancy
(reconstruction)

texture map

x,y,z

θ,φ

Why is this useful?    



NeRF

one can one “learn” the radiance field function RFθ specific to a given scene

Assuming images from K cameras with known positions (projection matrices)

p

k

Illustration credits: 

B.Mildenhall, P.Srinivasan, M.Tancik, 

J.Barron, R,Ramamoorthi, R.Ng

First, consider how RF defines pixel colors in given camera k

Transparency along the ray before segment  i 

color output by RF at point i

Transparency (or “density” integral)

along the ray before point i

color “density” or strength of RF at point i 

Color rendering model for ray                            defined by RFθ for pixel p in camera k

density output by RF

Light contributed by ray segment  i

RF-projected

color at pixel 

known

projection matrix 

for camera k

1 i-1 i i+1... ... N

1

Example:

0
i

Thus, for any pixel p in any camera Pk we can get RF-projected colors  CRF (p)k



NeRF

Training Loss: photo-consistency between RF projected colors

                        and colors Ip observed in  K images

NeRF model parameters

see cool demos at www.matthewtancik.com/nerf

learned RF gives arbitrary view rendering, 

3D object shape and its mapped texture

self–supervision

one can one “learn” the radiance field function RFθ specific to a given scene

Assuming images from K cameras with known positions (projection matrices)

http://www.matthewtancik.com/nerf


NeRF

NOTE: NeRF model is overfit to given K images with known poses.

Unlike mono-depth example, NeRF model should be recomputed for 

each new scene. This is different from traditional network models, 

e.g.                                     that work for any image (after training).

one can one “learn” the radiance field function RFθ specific to a given scene

Assuming images from K cameras with known positions (projection matrices)

Training Loss: photo-consistency between RF projected colors

                        and colors Ip observed in  K images

NeRF model parameters



More self-supervision: image denoising

noisy image restored/denoised image

?

Remember mean and median filtering (see Topic 3)

- not so easy to do well (e.g. avoid boundary blurring)

- now we will “learn” how to do it



denoising

“auto-encoder”

train

denoised image

Iw(I+ε)

Example: image denoising

good image

I

corrupted image

I+ε

self-supervision
using any good images for training

add noise



train

upsampled image

Iw(c(I)+ε)

Example: super-resolution

good image

I

low-res image

c(I)+ε

self-supervision
using any good images for training

blur/downsample + noise

upsampling

“auto-encoder”



colorization

“auto-encoder”

train

Example: image colorization

good image

I

gray image

g(I)+ε

self-supervision
using any good images for training

remove color + noise

colored image

Iw(g(I)+ε)



Example: image inpainting (a.k.a. object removal)

mask given by a user hole filled / inpainted

examples from “Region Filling and Object Removal by Exemplar-Based Image Inpainting” 

                          A. Criminisi, P. Perez and K. Toyama, TPAMI 2004



mask given by a user hole filled / inpainted

Example: image inpainting (a.k.a. object removal)



self-supervision
using full images for training

Example: image inpainting (a.k.a. object removal)

“Context Encoders: Feature Learning by Inpainting”
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. Efros, CVPR 2016 

inpainting

“auto-encoder”

white noise

is added to 

reduce 

overfitting

good image

I

remove a patch + noiseimage with a hole

h(I)

completed patch 

Iw(h(I)+ε)

L2 or L1 losses for

reconstruction errors

basic approach for rectangular holes



inpainting

“auto-encoder”

Example: image inpainting (a.k.a. object removal)

“Context Encoders: Feature Learning by Inpainting”
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. Efros, CVPR 2016 

L2 or L1 losses for

reconstruction errors 

produce blurry results

white noise

is added to 

reduce 

overfitting

basic approach for rectangular holes

self-supervision
using full images for training

image generation

“conditioning”

on exterior region



inpainting

“auto-encoder”

Example: image inpainting (a.k.a. object removal)

“Context Encoders: Feature Learning by Inpainting”
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. Efros, CVPR 2016 

More realistic results 

are obtained with

adversarial training

white noise

is added to 

reduce 

overfitting

L2 or L1 losses for

reconstruction errors 

produce blurry results

basic approach for rectangular holes

self-supervision
using full images for training

image generation

“conditioning”

on exterior region



S. Iizuka, E. Simo-Serra, H. Ishikawa “Globally and locally consistent image completion” 

ACM Transactions on Graphics (ToG), 2017

Generative Adversarial Network (GAN) example 

Example: image inpainting (a.k.a. object removal)

- “Discriminator” is shown either true or generated image. It has to tell “real” from “fake”.

-     “Generator” (completion network, auto-encoder) tries to fool the discriminator.

self-supervision
using a mix of real and inpainted images 

generator input
(includes some noise)

generator ouput

discriminator

Y/N decision

auto-encoder
as on the previous slide



Typically use self-supervision to train auto-encoder networks 

to generate images for classical computer vision problems 

like image denoising, inpainting, super-resolution, and many 

“graphic arts” problems like text-to-image, text-to-video etc.

• Auto-encoder with adversarial training (GAN)

o hard to train (complex min-max optimization), prone to overfitting

• Variational auto-encoder (VAE)
o latent space (AE bottleneck) is regularized to have features with N(0,I) distribution. 

At test time, decoder generates images from white noise.

o uses (variational inference) math related to EM algorithm for GMMs

• Diffusion models

o inject noise at each level and learn to reverse it restoring data from noise

o at test time, the network generates images from white noise 

more in CS480/680

Generative network models

typically, white noise (sampling from Gaussian distribution) is part of input 

we will discuss Denoising Diffusion Probabilistic Models (DDPM)…
[J. Ho, A. Jain, P. Abbeel, NeurIP 2020] 



Let                                      and

DDPM

forward process
(adding noise, easy)

backward process

(denoising, hard)

Forward process: adding Gaussian noise in very small steps ( βt << 1 )

Markov chain

when  t → ∞,  xt  converges to isotropic Gaussian noise 

(recursively derived)

diffusion 

rate

mean covariance



DDPM

forward process
(adding noise, easy)

backward process

(denoising, hard)

Backward process: p(xt-1 | xt) is not easy to estimate, so we learn it

as a parametric model  pθ (xt-1 | xt)

Markov chain

Training from existing images :

1: repeat

2: select random training image

3: select random layer  t 

4: generate white noise ε and recursively “corrupted” images 

5: learn to “denoise”, take one gradient descent step on SSD

6: until “converged”

i.e. learn to predict the noise

(as on the previous slide)

Sampling new images :

1: generate white noise

2: for  t = T, ... ,1   do

3: use trained models 

    to recursively generate  images 

    

     using some white noise z

5: end for

6: return

denoising model



DDPM

forward process
(adding noise, easy)

backward process

(denoising, hard)

Backward process: p(xt-1 | xt) is not easy to estimate, so we learn it

as a parametric model  pθ (xt-1 | xt)

Markov chain

Training from existing images :

1: repeat

2: select random training image

3: select random layer  t 

4: generate white noise ε and recursively “corrupted” images 

5: learn to “denoise”, take one gradient descent step on SSD

6: until “converged”

i.e. learn to predict the noise

(as on the previous slide)

Sampling new images :

1: generate white noise

2: for  t = T, ... ,1   do

3: use trained models 

    to recursively generate  images 

    

     using some white noise z

5: end for

6: return

denoising model

“formally”

derived



Applications of Diffusion Models

▪ Text-to-image Synthesize
▪ Super-resolution

Left: 128x128 low-resolution image. Right: 512x512 resolution image

▪ Image inpainting use “conditional” generation



Generative network models

iClicker 

Question: What best describes generative model for classification?

A:   when a model generates class label

B:   when a model generates image of a given class

C:   Bayes posterior using densities for each class

D:   log-likelihood ratio test

implicitly learn probability density P(I) for images 

(enough to sample/generate images) 

What about generative classification? 

prob. density for class k prob. of class k

explicit value needed



Challenges for image understanding

- self-supervision can be used to improve encoder

- domain adaptation, transfer knowledge

- weakly-supervised or semi-supervised training

• General NN limitations:
 - We started from perceptron motivated by neuron, but

          CNNs are clearly not how brain works. Why?

 - great pattern matching/classification (learned hierarchical non-linear filters)   

but no real intelligence (yet) – easy to fool, creativity?

• Shortage of Labels:

• Self-supervised generative networks 

     do not directly apply to classification



• General NN limitations:
 - We started from perceptron motivated by neuron, but

          CNNs are clearly not how brain works. Why?

 - great pattern matching/classification (learned hierarchical non-linear filters)   

but no real intelligence (yet) – easy to fool, creativity?

Challenges for image understanding

Deep Nets: What have they ever done for Vision?”
Alan Yuille, 2019          https://neuralarchitects.org/slides/yuille-slides.pdf

no training data is enough for combinatorially complex world 

https://neuralarchitects.org/slides/yuille-slides.pdf


Computer Vision 
is a great interdisciplinary research area

 

lots of open problems
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