CS484/684 Computational Vision A WATERLOO

Semantic Segmentation )

backgroun :

¢ » '\t :‘ T
)\ 1A o ¢
- y ! ")‘ 5‘- -‘ .“\
> 3 - - .‘
|’ }M .v"::ﬂ\ . T Pﬁ_‘?‘ ,nﬁl -‘j

t rabbit hamster dog



CS484/684 Computational Vision WATERLOO

Semantic Segmentation (outline)

 Fully-supervised CNN segmentation

- from image labeling to pixel labeling

- typical architectures
fully convolutional networks, encoder/decoder, downsampling/upsampling, skip connections, etc

- training loss function (cross entropy)
- evaluation metrics (mloU, pixel accuracy)

Next topic(s):
weakly-supervised semantic segmentation,
self-supervision, noisy labels, etc



UNIVERSITY OF
% WATERLOO

remember last topic:

Image classification

learn to somewhere in the image
there Is a bicycle and a person

N/

Image-level class tags
(image labels or image tags)




UUUUUU SITY OF

WATERLO

Semantic Segmentation

pixel-level labels
person
bicycle
background

learn to




IIIIIIIIIIII

Fully-supervised Semantic Segmentation
training uses pixel-accurate Ground-Truth

¥ ha
target (GT mask) %

pixel-level labels
person
bicycle
background

Remember:
Image-net has
Pascal dataset 14,000,000

(only) 11,530 fully-labeled images images with
Image-level

http://host.robots.ox.ac.uk/pascal/\VOC
labels (tags)



%Y WATERLOO
Fully-supervised Semantic Segmentation

training uses pixel-accurate Ground Truth

target (GT mask)

pixel-level labels

person
bicycle
background

255 (void/undefined)

y? €10,1,2,3,...] - class label at each pixel p

pixel labels (object classes) used in Pascal dataset:

0 - background
1-20 - airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table,
dog, horse, motorbike, person, potted plant, sheep, sofa, train, TV monitor
255 - void (class for pixel is undefined)



From Image to Pixel Labeling

IIIIIIIIIIII

Image .z

tensor
i e.g. 50x50x20
3

(RGB)

typical operations

N XN

tensor
e.g. 10x10x80

convolution

hx X

combined with
ReLU Pool

:

(simplified) representative image classification CNN

»

label for
whole image
A
N K-class
vector A
e.g. 200 probabilities

typical last layer(s)

fully connected

WX

combined v!ith
soft-max O

Q: How do we go from here to image segmentation?

That Is, how to extend NN methods for image classification
to classification of image pixels ?



From Image to Pixel Labeling

IIIIIIIII

image

»

it tensor
e.g. 50x50x20

3
(RGB)

»

(simplified) representative image classification CNN

tensor
e.g. 10x10x80

:

»

vector

e.g. 200

—

label for
whole image

]

K-class
probabilities

First (naive) idea: classify pixels using sliding windows

]

NXN

consider
larger image

MxM image (M > N)

—

classified pixels




From Image to Pixel Labeling

IIIIIIIII

image

»

tensor
S e.g. 50x50x20
3

(RGB)

»

(simplified) representative image classification CNN

tensor
e.g. 10x10x80

:

»

vector

e.g. 200

—

label for
whole image

]

K-class
probabilities

First (naive) idea: classify pixels using sliding windows

]

NXN

MxM image (M > N)

—

classified pixels




From Image to Pixel Labeling

IIIIIIIII

image

»

tensor
S e.g. 50x50x20
3

(RGB)

»

(simplified) representative image classification CNN

:

tensor
e.g. 10x10x80

»

vector

e.g. 200

—

label for
whole image

]

K-class
probabilities

First (naive) idea: classify pixels using sliding windows

]

NXxN

MxM image (M > N)

—

classified pixels




From Image to Pixel Labeling

IIIIIIIII

Image .z

»

tensor
S e.g. 50x50x20
3

(RGB)

»

(simplified) representative image classification CNN

:

tensor
e.g. 10x10x80

»

vector

e.g. 200

—

label for
whole image

]

K-class
probabilities

First (naive) idea: classify pixels using sliding windows

| N [

N xN

MxM image (M > N)

—

classified pixels




From Image to Pixel Labeling

UNIVERSITY OF
% WATERLOO

Image .z

»

tensor
S e.g. 50x50x20
3

(RGB)

»

(simplified) representative image classification CNN

tensor
e.g. 10x10x80

»

vector
e.g. 200

—

label for
whole image

]

K-class
probabilities

First (naive) idea: classify pixels using sliding windows

| )

| )

| > |:|

NXN
MxXxM image (M > N)

—

A #

classified pixels

NOTE: here
classification CNN

trained on

image-level tags
segments
image pixels

semantic
segmentation

Not bad for a start, but pixels are classified independently (one-at-a-time). For example, such
one-pixel classifying network can NOT learn large spatial patterns of the whole GT segmentation mask.



UNIVERSITY OF

A WATERLOO

@

From Image to Pixel Labeling

Image .z

tensor
e.g. 50x50x20
3

(RGB)

(simplified) representative image classification CNN

label for
whole image
tensor '
e.g. 10x10x80 L K-class
vector .
e.g. 200 probabilities

Better idea: convolutional kernel can be applied to input of any size!

(W+A) x (H+A)

Key insight:
Input

larger input

(W+A-m+1) x (H+A -m+1)

larger output

convolution>

A A

output

A

3
> >

&
<

W xH

(W-m+1) x (H-m+1)

using the same kernel



UNIVERSITY OF
%) WATERLOO

From Image to Pixel Labeling

image

tensor
4 e.g. 50x50x20
3

(RGB)

»

(simplified) representative image classification CNN

label for
whole image

]

tensor
e.g. 10x10x80

»

L K-class
vector probabilities
e.g. 200 vector

e.g. 10

Better idea: convolutional kernel can be applied to input of any size!
Assume all layers are convolutional.

What about last (fully connected) layer?

tensor
e.g. 50x50x20

No problem:
Wiox200X = hixy Ux X

»

tensor
e.g. 10x10x80

B -

K-class
probabilities

tensor
e.q. 1x1x10

e.g. 1x1x200



From Image to Pixel Labeling

UNIVERSITY OF

% WATERLOO

Image .z

3
(RGB)

(simplified) representative image classification CNN

»

»

tensor
e.g. 50x50x20

tensor
e.g. 10x10x80

:

»

vector
e.g. 200

label for
whole image

]

K-class
probabilities

vector
e.g. 10

Better idea: convolutional kernel can be applied to input of any size!
Assume all layers are convolutional.
For simplicity, also assume no pooling and no stride (for now)

consider
larger

image/

A

A

» '
tensor

(50+A) X (50+A) X 20

tensor
(10+A) x (10+A) x 80

»

A

tensor
(1+A) x (1+A) x 200

convolutional kernels (pre-) trained on image classification
are directly applied to larger image

A

»

K-class
probabilities

tensor
(1+A)x(1+A)x 10




UNIVERSITY OF

WATERLOO

From Image to Pixel Labeling

Now, network output has some spatial resolution!

N

Intuition: K-class probabilities in the gray part of the output have N
“receptive field” in the gray part of the input image, *
while yellow output is supported by different ;
NXN sections of the larger image I

/
/ A —— !
A A /
| A /I A
/
Z —
> ,' o
Z
tensor (10+At)e)?(sl%r+A)x80 1+At§nfﬂ xzoq' K-cl
/ (50+A) x (50+A) x 20 (L) x(1+4) : b'cb?ll‘c.’f.
i ) i i e L. robabilities
3 convolutional kernels (pre-) trained on image classification P .
(RGB) S\ ensor

are directly applied to larger image (1+A) X (1+A) X 10



FuIIy Convolutional Network (FCN)

UNIVERSITY OF
%) WATERLOO

»

MxM

_ COMMENT: similar idea was first used by Y. Lecun in the 90s for

detecting digits in (large) images of hand-written text

N

»

A

4‘:::
77

—

tensor

(50+A) x (50+A) x 20
convolutional kernels (pre-) trained on image classification

A

tensor
(10+A) x (10+A) x 80

»

NOTE: input image size can be arbitrarily large

A

A
A l

tensor
(1+A) x (1+A) x 200

are directly applied to larger image

K-class
probabilities
tensor

A

»

K-class
probabilities

tensor
(1+A)x (1+A)x 10




IIIIIIIII

»

MxM

3
(RGB)

N

A’

»

With stride/pooling, /A varies across the network layers
but kernels still apply to images of arbitrary size

‘ﬁf:
A0
/
/

Fully Convolutional Network (FCN)

A
A l

K-class
probabilities

- tensor

NOTE: input image size can be made arbitrarily large

tensor

AH

tensor

i AHI
D= P-
tensor
K-class

probabilities
tensor



% WATERLOO
FuIIy Convolutional Network (FCN)

basic iImage segmentation CNN

A
AHH
A
| A l
i
%

=
>
= K-class
probabilities
tensor
i HxHx K
3
(RGB)

Our first “proper” segmentation CNN
end-to-end trainable by image segmentation GT masks



IIIIIIIIIIII

Fully Convolutional Network (FCN)

4

Ql

MxM

K-class
probabilities
tensor

3 Important practical matters:

(RGB)
FCN can be initialized from network (kernels) pre-trained on

huge image classification training datasets (e.g. ResNet trained on image net)
learning good high-dimensional features (embedding) at later layers

Then can be re-trained (domain adaptation) to any specific
segmentation dataset based on GT segmentation masks (targets)



IIIIIIIIIIII

Fully Convolutional Network (FCN)

4

Ql

MxM

K-class
probabilities
tensor

(RgB) Important practical matters:
works better (after re-training) With pooling, stride, dilation
giving wider “receptive field” for output layer elements/pixels

... even though such operations generally decrease output resolution
therefore, requiring output up-sampling, skip connections, etc.
to improve the resolution



_ & WATERLOO
Popular CNN architectures for segmentation

various ideas/details on

FCN (2015) pooling, stride, dilation
fully convolutional network for segmentation and upsampling
skip connections Fully Convolutional Networks for Semantic Segmentation

Long, Shelhamer, Darrell - CVPR 2015

SegNet (2015) Segnet: A deep convolutional encoder-decoder
encoder / decoder  architecture for image segmentation

Badrinarayanan, Kendall, Cipolla— TPAMI 2017
UNet (2015)
encoder / decoder with symmetric skip connections

U-net: Convolutional networks for biomedical image segmentation
Ronneberger, Fischer, Brox - MICCAI 2015/ Nature Methods 2019

DeeplLab (2015)
atrous convolutions, spatial pyramid pooling, etc.

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolutions, and Fully Connected CRFs
Chen, Papandreou, Kokkinos, Murphy, Yuille — TPAMI 2018/ ICLR 2015



UNIVERSITY OF
WATERLOO

Common Structure: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation
Badrinarayanan, Kendall, Cipolla— TPAMI 2017

| Convolutional Encoder-Decoder

PoIin,g(dices

Output

RGB Image I conv + Batch [Ndrmalisation + ReLU Segmentation
I Pooling I Upsampling Softmax
encoder / \\ decoder /
] upsampling part
important: (upsampling part)

encoder convolutional layers are decoder upsamples encoder-generated features

typically pre-trained on image net (classification delayed to the network end)

Encoder’s main goal is to learn ~ Comment: feature dimensions at the encoder output could be
gOOd discriminative features gradually decreased with upsampling (too expensive, otherwise)



IIIIIIIII

Need for upsampling

Ground truth target Predicted segmentation

Primary goal of the decoder is (to learn) to upsample

soft-max applied directly to
encoder’s output features

COMMENT: some upsampling steps in the decoder could be learned, while
some are hand-engineered. (The same comment is also valid for the encoder)



Methods for Upsampling

>

UNIVERSITY OF

WATERLOO

illustrations credit: Fei-Fei Li

Nearest Neighbor o4l 2] “Bed of Nails” 1 o0l2 o
1 | 2 1 | 1]l2 ]2 2 0 0|0 O
3 4 3/3|4)4 4 3/0|4 0
3 3|14 4 0 0|0 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4
g:;:;ggp \?vhich element was max! U::;Zﬁ;%?}?o m(as on slide 23)
11 2 P8l 3 pooling layer ol o B2 o
3 P8 2| 1 5 6 12 0 B o [ o |
, 1 _ 2121 7|8 Rest of the network e SRR |
i 314 8 30| 0 &
| Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4




Methods for Upsampling

UNIVERSITY OF
% WATERLOO

3 x 3 transpose convolution, stride 2 pad 1

/ output overlaps

—_—
Input gives (
weight for

filter

Input: 2x 2 Output: 4 x 4

Sum where

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Simpler 1D illustration:

Input Filter

X

/\

illustrations credit: Fei-Fei Li

Output

az

+|bx

—
/

\

by
bz

Weights for such transpose convolution kernel (filter) can be learned.

Why should transpose convolution work well for upsampling?



% WATERLOO

Transpose Convolution: Example

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

kernel=3x3
stride=2
padding=1

Output Image

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

First Element x Kernel

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

Output Image

0 0 0
0 0 0
0 0 0

kernel=3x3

stride=2
padding=1

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Added Result

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

0

0 0
0 0
0 0

Output Image

0 0 0
0 0 0
0 0 0

kernel=3x3

stride=2
padding=1

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Next Element x Kernel Output Image
0o/1 2 3 0 | o |0
4.5 6 7 o 0 | 0
8 | 9 |10 11 Element x Kernel 0 0 0
12 113 | 14 | 15 025 05 | 0.25
Input Image

0.5 1 0.5

Kernel

025 | 05 | 0.25
025 | 05 | 0.25

0.5 1 0.5

kernel=3x3
stride=2
padding=1

0.25 | 0.5 | 0.25

illustrations credit: Soroosh Baselizadeh



Transpose Convolution

WATERLOO

. Example

Added Result

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

025 | 05 | 0.25
0.5 1 0.5

025 | 05 | 0.25

kernel=3x3
stride=2
padding=1

Output Image

0 0 0.25 0.5 0.25
0 0 0.5 1 0.5
0 0 0.25 0.5 0.25

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Next Element x Kernel Output Image

0 1 2 3 0 0 025 05 | 0.25
4 5 6 7 0 0 0.5 1 0.5
8 9 10 11 Element x Kernel 0 0 025 | 05 | 0.25
12 | 13 | 14 15 0.5 1 05
Input Image
1 2 1
Kernel

0.5 1 0.5
025 | 05 | 0.25

0.5 1 0.5

kernel=3x3

2 . 2 )
0251 05 1025 stride=2

padding=1

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Added Result

Output Image

0 1 2 3 0 0 025 05 | 0.75 1 0.5
4 | 5 6 7 0 0 0.5 1 1.5 2 1
8 9 |10 | 11 Element x Kernel 0 0 025 05 | 0.75 1 0.5
12 113 (14 | 15 0.5 1 05
Input Image
1 2 1
Kernel

0.5 1 0.5
025 | 05 | 0.25

0.5 1 0.5

kernel=3x3

2 . 2 )
0251 05 1025 stride=2

padding=1

illustrations credit: Soroosh Baselizadeh



Transpose Convolution:

WATERLOO

Example

Next Element x Kernel

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

0.75 | 15
15 3

0.75 | 15

kernel=3x3
stride=2
padding=1

0.75

15

0.75

Output Image

0 0 0.25 0.5 0.75 1 0.5
0 0 0.5 1 15 2 1
0 0 0.25 0.5 0.75 1 0.5

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Added Result Output Image

ol1l213 0 0 | 025 05 | 075 1 1.25 | 1.5 | 0.75
4|15 |67 0 0 0.5 1 1.5 2 2.5 3 1.5
8 911011 Element x Kernel 0 0 0.25 | 05 | 0.75 1 125 | 15 | 0.75
12 113 | 14 | 15 075 | 15 | 0.75

Input Image

15 3 15

Kernel

075 | 15 | 0.75
025 | 05 | 0.25

0.5 1 0.5

kernel=3x3
stride=2
padding=1

0.25 | 0.5 | 0.25

illustrations credit: Soroosh Baselizadeh



Transpose Convolution:

WATERLOO

Example

Next Element x Kernel

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

1 2 1
2 4 2
1 2 1

kernel=3x3

stride=2
padding=1

Output Image

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75
0 0 0.5 1 15 2 2.5 3 15
0 0 0.25 0.5 0.75 1 1.25 15 0.75

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Added Result

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

1 2 1
2 4 2
1 2 1

kernel=3x3

stride=2
padding=1

Output Image

0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0.5 1 15 2 2.5 3 15

2 1.25 0.5 0.75 1 1.25 15 0.75

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Added Result

0

1| 2

3

4

5 | 6

v

8

9 |10

11

12

13 | 14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Output Image

0 0 | 025 05 | 075 1 1.25 | 1.5 | 0.75
0 0 0.5 1 1.5 2 2.5 3 1.5
Element x Kernel 1 2 2.5 3 2 1 1.25 | 1.5 | 0.75
1.25 | 25 | 1.25 2 4 4.5 5 2.5
25 | 5 | 25 1 2 25 | 25 | 15
125 | 25 | 15
kernel=3x3
stride=2
padding=1

illustrations credit: Soroosh Baselizadeh



Transpose Convolution: Example

WATERLOO

Added Result

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Output Image

0 0 025 | 05 | 0.75 1.25 | 15 | 0.75
0 0 0.5 1 1.5 2.5 3 1.5
Element x Kernel 1 2 2.5 3 35 275 15 | 075
1.5 3 15 2 4 45 5 5.5 3
3 6 3 1 2 2.5 25 | 275 1.5
1.5 3 1.5
kernel=3x3
stride=2
padding=1

illustrations credit: Soroosh Baselizadeh



Transpose Convolution: Example

UNIVERSITY OF

WATERLOO

Added Result

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Output Image

0 0 0.25 | 05 | 0.75 125 | 1.5 | 0.75
0 0 0.5 1 1.5 2.5 3 1.5
Element x Kernel 1 2 25 3 3.5 45 5 2.5
1.75 | 35 | 1.75 2 4 4.5 5 5.5 6.5 7 35
3.5 7 3.5 1 2 2.5 25 | 275 325 | 35 | 175
1.75 | 35 | 1.75
kernel=3x3
stride=2
padding=1

illustrations credit: Soroosh Baselizadeh



Transpose Convolution: Example

UNIVERSITY OF

WATERLOO

Added Result

0

1

2

3

4

5

6

v

8

9

10

11

12

13

14

15

Input Image

Kernel

0.25

0.5

0.25

0.5

0.5

0.25

0.5

0.25

Element x Kernel

2 4 2
4 8 4

2 4 2
kernel=3x3
stride=2
padding=1

0 | 025
0 0.5
2 2.5
4 4.5
6 | 425
8 4

4 2

Output Image

0.5

2.5

0.75

15

3.5

55

2.75

1.25

2.5

4.5

6.5

3.25

1.5

3.5

0.75

15

2.5

3.5

1.75

illustrations credit: Soroosh Baselizadeh



WATERLOO

Transpose Convolution: Example

Added Result Output Image
0 1 2 3 0 0 025 05 | 075 1 1.25 | 15 | 0.75
4|5 6 7 0 0 0.5 1 1.5 2 2.5 3 1.5
8 9 10| 11 Element x Kernel 1 2 2.5 3 3.5 4 4.5 5 2.5
12113 (14| 15 375 | 75 | 375 2 4 | 45 5 55 6 65 7 35
Input Image

75 | 15 | 75 3 6 6.5 7 7.5 8 8.5 9 4.5

Kernel

375 | 75 | 3.75 4 8 8.5 9 9.5 10 10.5 11 55

025 | 05 | 0.25
5 10 10.5 11 11.5 12 12.5 13 6.5

0.5 1 0.5

kernel=3x3 6 12 12.5 13 13.5 14 14.5 15 7.5
025 | 05 | 0.25 )

stride=2

padding=1 3 6 625 65 | 6.75 7 725 75 | 375

illustrations credit: Soroosh Baselizadeh



UNIVERSITY OF

2 WATERLOO

Transpose Convolution: Example

Note: this result is equivalent to Bilinear Interpolation
Output Image

Input Image

Kernel

025 | 05 | 0.25

0.5 1 0.5

kernel=3x3
stride=2
padding=1 3

025 | 05 (025

Bilinear Interpolation is a special case of transpose convolution.

The corresponding transpose convolution kernels exists for any stride (code https://gist.github.com/mistevens777/9d6771c45f444843f9e3dce6a401b183)

V. Dumoulin, and F. Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).


https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183

IIIIIIIIIIII

Transpose Convolution and Bilinear Interpolation

Thus...
the transpose convolution should be at least as good as bilinear interpolation.

In particular, transpose convolution kernel can be initialized to replicate bilinear
interpolation, but one might learn a “better’” upsampling kernel during training.



UNIVERSITY OF
% WATERLOO

Transpose Convolution: other names

e Deconvolution: not a very good name as it is commonly used for the inverse of
convolution. Moreover, in image analysis, “deconvolution” also stands for a
standard non-linear image reconstruction problem.

e Backward convolution: If we think about convolution of an input image as a matrix
multiplication operation, then transposed convolution could be related to the
backward pass when the loss gradient is backpropagated though the standard
convolutional layer.

e Fractionally-strided convolution: transposed convolution with stride s is equivalent
to a standard convolution with stride 1/s, as follows: insert (s-1) zeros between
pixels, then apply regular conv using the same kernel (see example on the next slide).

see Sections 4 in [1] and 3.3 in [2]
[1] — Vincent Dumoulin and Francesco Visin. "A guide to convolution arithmetic for deep learning."
arXiv preprint arXiv:1603.07285 (2016).

[2] - Jonathan Long, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic
segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

illustrations credit: Soroosh Baselizadeh



WATERLOO

Fractionally-strided Convolution

Zero-interleaved Image

Fractional Stride (also zero-padded)
ol11213 Standard_ 0 0 0 0 0 0 0 0 0
Convolution
415167 kernel=3x3 0 0 0 1 0 2 0 3 0
stride=%
8 9 10| 11 (inserting one zero 0 0 0 0 0 0 0 0 0
between pixels, then
1211314 | 15 apply conv with stride=1) 0 4 0 5 0 6 0 7 0
padding=1
Input Image
0 0 0 0 0 0 0 0 0
Kernel
0 8 0 9 0 10 |0 11 0
0.25 | 0.5 | 0.25
0 0 0 0 0 0 0 0 0
0.5 1 0.5 Transposed
Convolution 0 12 |0 13 |0 14 |0 15 |0
0.25 | 05 | 0.25 kernel=3x3
stride=2 0 0 0 0 0 0 0 0 0
padding=1

Now, apply standard convolution...

illustrations credit: Soroosh Baselizadeh



UNIVERSITY OF

WATERLOO

A
@

<h

Fractionally-strided Convolution

Zero-interleaved Image

(also zero-padded)

0 0 0 0 0 0 0
0 0 1 0 2 0 3
0 0 0 0 0 0 0 standard
convolution
4 |0 5 0 6 0 7 |
with
0 0] 0 0 0 0 0 kernel
8 |0 |9 |0 (100 |11 025 | 05 | 025
0 0 0 0 0 0 0 0.5 1 0.5
12 |0 13|10 14 {0 15
0.25 | 0.5 | 0.25 Output
0 0 0 0 0 0 0

illustrations credit: Soroosh Baselizadeh



UNIVERSITY OF
% WATERLOO

Transposed vs Fractionally-strided Convolution

Upsampling Example: ~ =+> & _:?

transpose convolution (slide 26) fractionally-strided convolution
kernel k 0 0 0 0 0
@[ [® kiiko kia | O1{la] 0Bl O
_“ k-llo k0,0 kl,O O O @ O O
Q@[ [ L] [olle olldf
o[ololo]o0
output of transpose cornvolution using k output of standard convolution using k
with stride 2 for the pixel in the center with stride 1/2 for the pixel in the center
akiq +bk_11+cki 1 +dk_1 ak_1, -1 +bky 1+ ck_11+dkia

Homework exercise:

prove that for non-symmetric kernels one must use a “transposed” version of the kernel (flipped both horizontally & vertically)
to get equivalence between the transposed convolution (as on slide 26) and the fractionally-strided convolution.




UNIVERSITY OF
% WATERLOO

Fully Convolutional Networks (FCNSs)

forward /inference

<

backward /learning

o o0 21
N Q" °
= /3%0‘ 20 166 BV b
qfa

v

Upsample segmentation using “decenveluten” transposed convolution

Fully Convolutional Networks for Semantic Segmentation
Long, Shelhamer, Darrell - CVPR 2015



UNIVERSITY OF
% WATERLOO

Upsamping using skip connections

FCN-32s FCN-16s FCN-8s

2x upsampled Zx upsampled lix upsampled 2x upsampled Ex upsampled
prediction [ FUN-32s) prediction prediction | FCN-16s) prediction prediction | FCN-8s)

encoder Iayers 4 - -
= T = Pt poaty :I poald :‘1._—-_:_-_-’..'.' poald ‘v_—-_
. "!r [ prediction 4,—-

prediction

. A
-------- * /

Fully Convolutional Networks for Semantic Segmentation _
Long, Shelhamer, Darrell - CVPR 2015 concatenation



UNIVERSITY OF

% WATERLOO

Skip connections: concatenation

feature map feature map feature vector for each point below
“skipped” “upsampled” IS a concatenation of feature vectors
from encoder insider decoder from the two maps on the left

NOTE:
consequent
convolutional
kernel can learn
how to combine
(e.g. “average”)
individual features

HxH

+

HxH

M N M+N

T _—

feature vector dimensions

concatenation



% WATERLOO

U-net: expanding decoder with symmetry

and many skip connections

input
image |u= LA A=
tile

output
segmentation
map

— — .F r
: "’L""i ] : |:|""| "":I = conv 3x3, RelLU
' "" t copy and crop

4 _ .
Tl el SR # max pool 2x2
X x

$ up-conv 2x2

[ .

- CONY 1x1

U-net: Convolutional networks for biomedical image segmentation
Ronneberger, Fischer, Brox - MICCAI 2015 (now in Nature Methods 2019)



UNIVERSITY OF

WATERLOO

DeeplLab

- encoder uses atrous convolutions (a.k.a. dilation)

Increasing receptive field without increase in kernel size
(or significant decrease in output resolution)

Output feature

Convolution
kernel = 3
stride = 1

standard 3x3 convolution

pad=1
Input feature
(a) Sparse feature extraction
Gonvauon 0 m o O atrous 3x3 convolution
stide - 1 I.e. convolution with

rate =2
(insert 1 zero)

A

holes or gaps (Fr. trous)

(b) Dense feature extraction

Key insight: encoder can still use any standard kernels
pre-trained on image-net classification (e.g. from ResNet)
For example, pre-trained 3x3 kernels can be “dilated” into
5x5 kernels (as above) by adding “holes”



IIIIIIIIIIII

DeeplLab

- encoder uses atrous convolutions (a.k.a. dilation)

Increasing receptive field without significant loss of resolution
(unlike stride and pooling)

- decoder uses bilinear interpolation (see topic 4)
for upsampling

- other ideas



o %Y WATERLOO
(Training) Loss: Cross-Entropy

(GT mask)
pixel-precise target

image sample i network prediction

v

o¥ = (01,02,...,0K)
prediction at each pixel p

...} - class label at each pixel p

..,0) - one-hot distribution at p

sumof OSleriors
Cross entropy at p negative log-[iketkends (NLL)
L_oss over | b _p _
: . ZZ—yilnai = —Zlnaf,p
Image I . = pels

Total loss should also sum over all images |



IIIIIIIII

(Validation) Quality Metrics

(GT mask)
pixel-precise target

network prediction

image sample i

7
|

- - . 1 |S§t M Sgred
* Mean Intersection over union mloU = — ——r— € 10,1]
K L ‘Sgt U Spred‘

(focus on segments/classes, object sizes are irrelevant)

« There are also accuracy measures focused on pixels
(what percentage of pixels is correctly classified)



Assignment 5

% WATERLOO

image sample

200

UNTRAINED_NET prediction

400

untrained CN

) 4
some number of
D D D—> upsampler—» concat —» convs, ReLUs, BN5_> upsample

resnet
ground truth (target) Training loss curve for OVERFIT_NET
~———training loss
30
25
v 20
2
o
>
%
o
[ . . | 15
0 100 200 300 400
o OVERFIT_NET prediction (for its training image)
mloU = 0.950245 10
50 ) B2
100
05
=0 T T T T T
0 5 10 15 20 25 30 35 40

iterations

loss over 40 epochs
(a few mins on CPU)

" CNIN trained on
a single example
(“overfit CNN™)



100

150

200

250

300

350

100

150

200

250

300

350

Assignment 5

UNIVERSITY OF

WATERLOO

image sample

200

UNTRAINED_NET prediction

100 200 300 400

untrained CN

A

4

concat —» —»|upsample

some number of
convs, ReLUs, BNs

resnet

100

150

200

250

300

350

Training on a single example

ground truth (target)

100 200 300 400
OVERFIT_NET prediction (for its training image)

mloU = 0.950245

«Sverfit CNN”
on the example
It was trained on

image sample

UNTRAINED_NET prediction
mioU = 0.010305

100
150
200
250
300

350

100 200 300

untrained CNN

ground truth (target)

100
150
200
250
300

350
0 100 200 300 400

6 OVERFIT_NET prediction (for image it has not seen)
miloU = 0.224359

“overfit CNN”
on an example
it did not see



Assignment 5

UNIVERSITY OF
% WATERLOO

some number of
convs, ReLUs, BNs

—»| upsample

h 4
|:| D—P upsample —» concat

resnet

Trammg on all images in the “training dataset”

image sample

0 100 200 300 400

OVERFIT_NET prediction (for its training image
mloU = 0.950245

“<overfit CNN”
on the example
it was trained on

ground truth (target)

100
150
200
250
o
3
300 T
"
&
350 12
0 100 200 300 400
TRAINED NETp ediction (for of its training images)
50
100

200

CNN tralned on all
Images in training dataset
(“fully-trained CNN”)

Training loss curve for TRAINED_NET

100 200 300 400 500 600 700
iterations

loss over 2 epochs
for the whole training dataset
(a few mins on GPU)



100

150

200

Assignment 5

UNIVERSITY OF

% WATERLOO

Y

upsample —»|

concat

some number of

— | convs, ReLUs, BNs

Jllisy

resnet

upsample

Trammg on all images in the “training dataset”

image sample

250 TN

300 T

350

100 200

OVERFIT_NET prediction (for its training image)
mloU = 0.950245

200

| ““overfit CNN”

on the example
it was trained on

ground truth (target)

100

150

200

250

300

r’ :

0 100 200 300 400

350

TRAINED NET prediction (for one of its training images)
mloU = 0.885377

“fully-trained CNN”

image sample

100 300

“overfit CNN”
on an example
it did not see

ground truth (target)

200 300 400

6 TRAINED_NET prediction (for image it has not seen)

mioU = 0.492638

200
250
300

350

“fully-trained CNN”



	Slide 1: CS484/684 Computational Vision Semantic Segmentation
	Slide 2: CS484/684 Computational Vision Semantic Segmentation (outline)
	Slide 3
	Slide 4: Semantic Segmentation
	Slide 5: Fully-supervised Semantic Segmentation
	Slide 6: Fully-supervised Semantic Segmentation
	Slide 7: From Image to Pixel Labeling
	Slide 8: From Image to Pixel Labeling
	Slide 9: From Image to Pixel Labeling
	Slide 10: From Image to Pixel Labeling
	Slide 11: From Image to Pixel Labeling
	Slide 12: From Image to Pixel Labeling
	Slide 13: From Image to Pixel Labeling
	Slide 14: From Image to Pixel Labeling
	Slide 15: From Image to Pixel Labeling
	Slide 16: From Image to Pixel Labeling
	Slide 17: Fully Convolutional Network (FCN)
	Slide 18: Fully Convolutional Network (FCN)
	Slide 19: Fully Convolutional Network (FCN)
	Slide 20: Fully Convolutional Network (FCN)
	Slide 21: Fully Convolutional Network (FCN)
	Slide 22: Popular CNN architectures for segmentation
	Slide 23: Common Structure: Encoder/Decoder
	Slide 24: Need for upsampling
	Slide 25: Methods for Upsampling
	Slide 26: Methods for Upsampling
	Slide 27
	Slide 28: First Element x Kernel 
	Slide 29: Added Result 
	Slide 30: Next Element x Kernel 
	Slide 31: Added Result
	Slide 32: Next Element x Kernel 
	Slide 33: Added Result
	Slide 34: Next Element x Kernel 
	Slide 35: Added Result
	Slide 36: Next Element x Kernel 
	Slide 37: Added Result
	Slide 38: Added Result
	Slide 39: Added Result
	Slide 40: Added Result
	Slide 41: Added Result
	Slide 42: Added Result
	Slide 43: Note: this result is equivalent to Bilinear Interpolation
	Slide 44
	Slide 45
	Slide 46: Fractional Stride
	Slide 47
	Slide 48
	Slide 49: Fully Convolutional Networks (FCNs)
	Slide 50
	Slide 51
	Slide 52: U-net: expanding decoder with symmetry
	Slide 53: DeepLab
	Slide 54: DeepLab
	Slide 55: (Training) Loss: Cross-Entropy
	Slide 56: (Validation) Quality Metrics
	Slide 57
	Slide 58
	Slide 59
	Slide 60

