
CS484/684 Computational Vision

Semantic Segmentation

dograbbitcat hamster

background

CS484/684 Computational Vision

Semantic Segmentation (outline)

• Fully-supervised CNN segmentation

- from image labeling to pixel labeling

- typical architectures
fully convolutional networks, encoder/decoder, downsampling/upsampling, skip connections, etc

- training loss function (cross entropy)

- evaluation metrics (mIoU, pixel accuracy)

Next topic(s):

 weakly-supervised semantic segmentation,

 self-supervision, noisy labels, etc

input remember last topic:

image classification

somewhere in the image

there is a bicycle and a person

image-level class tags
(image labels or image tags)

predict

learn to

Semantic Segmentation

input

learn to
predict

person

bicycle

background

pixel-level labels

Fully-supervised Semantic Segmentation

http://host.robots.ox.ac.uk/pascal/VOC

target (GT mask) input

Pascal dataset

pixel-accurate Ground Truth

learn to

(only) 11,530 fully-labeled images

Remember:

image-net has

>14,000,000

images with

image-level

labels (tags)

pixel-level labels

training uses

predict
person

bicycle

background

pixel labels (object classes) used in Pascal dataset:

 0 - background

1-20 - airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table,

 dog, horse, motorbike, person, potted plant, sheep, sofa, train, TV monitor

 255 - void (class for pixel is undefined)

input

0

0

0

0 15
15

15

15

15

15

2
2

2

2

2

15

0

15

15

15
15

target (GT mask)

learn to

pixel-accurate Ground Truth

255 (void/undefined)

Fully-supervised Semantic Segmentation
training uses

predict

- class label at each pixel p

pixel-level labels

person

bicycle

background

3
(RGB)

tensor
tensor

vector
K-class

probabilities

(simplified) representative image classification CNN

From Image to Pixel Labeling

Q: How do we go from here to image segmentation?

That is, how to extend NN methods for image classification

to classification of image pixels ?

label for

whole image
image

N
 x

 N

convolution

combined with

typical operations

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

fully connected

combined with

soft-max

typical last layer(s)

3
(RGB)

tensor
tensor

vector
K-class

probabilities

From Image to Pixel Labeling
(simplified) representative image classification CNN

N x N

M x M image ()

N
 x

 N

label for

whole image
image

classified pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

First (naïve) idea: classify pixels using sliding windows

consider

larger image

3
(RGB)

tensor
tensor

vector
K-class

probabilities

From Image to Pixel Labeling
(simplified) representative image classification CNN

N x N

M x M image ()

N
 x

 N

label for

whole image
image

classified pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

First (naïve) idea: classify pixels using sliding windows

3
(RGB)

tensor
tensor

vector
K-class

probabilities

From Image to Pixel Labeling
(simplified) representative image classification CNN

N x N

M x M image ()

N
 x

 N

label for

whole image
image

classified pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

First (naïve) idea: classify pixels using sliding windows

3
(RGB)

tensor
tensor

vector
K-class

probabilities

From Image to Pixel Labeling
(simplified) representative image classification CNN

N x N

M x M image ()

N
 x

 N

label for

whole image
image

classified pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

First (naïve) idea: classify pixels using sliding windows

3
(RGB)

tensor
tensor

vector
K-class

probabilities

From Image to Pixel Labeling

First (naïve) idea: classify pixels using sliding windows

(simplified) representative image classification CNN

N x N

M x M image ()

N
 x

 N

label for

whole image
image

classified pixels

Not bad for a start, but pixels are classified independently (one-at-a-time). For example, such

 one-pixel classifying network can NOT learn large spatial patterns of the whole GT segmentation mask.

NOTE: here

classification CNN

trained on

image-level tags

segments

image pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

FISH

WATER semantic

segmentation

3
(RGB)

tensor
tensor

vector
K-class

probabilities

From Image to Pixel Labeling
(simplified) representative image classification CNN

N
 x

 N

label for

whole image
image

Better idea: convolutional kernel can be applied to input of any size!

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

larger input
larger output

(W+∆-m+1) x (H+∆ -m+1)

Key insight:
convolution

mxm

kernel

W x H

input

(W-m+1) x (H-m+1)

output

(W+∆) x (H+∆)

using the same kernel

3
(RGB)

tensor
tensor

vector
K-class

probabilities

vector

From Image to Pixel Labeling
(simplified) representative image classification CNN

N
 x

 N

label for

whole image
image

K-class

probabilities

tensor
3

(RGB)

N
 x

 N

tensor
tensor

No problem:

Better idea: convolutional kernel can be applied to input of any size!

Assume all layers are convolutional.

What about last (fully connected) layer?

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

e.g. 50x50x20
e.g. 10x10x80

e.g. 10

e.g. 1x1x10

tensor
e.g. 1x1x200

e.g. 1x1x10(1+Δ) x (1+Δ) x 10

e.g. 1x1x200(1+Δ) x (1+Δ) x 200e.g. 10x10x80(10+Δ) x (10+Δ) x 80
e.g. 50x50x20(50+Δ) x (50+Δ) x 20

3
(RGB)

tensor
tensor

vector
K-class

probabilities

vector

From Image to Pixel Labeling
(simplified) representative image classification CNN

N
 x

 N

label for

whole image
image

K-class

probabilities

tensor
3

(RGB)

N
 x

 N

tensor
tensor tensor

consider

larger

image

convolutional kernels (pre-) trained on image classification

are directly applied to larger image

Better idea: convolutional kernel can be applied to input of any size!

For simplicity, also assume no pooling and no stride (for now)

Assume all layers are convolutional.

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

e.g. 10

(1+Δ) x (1+Δ) x 10

(1+Δ) x (1+Δ) x 200(10+Δ) x (10+Δ) x 80
(50+Δ) x (50+Δ) x 20

Now, network output has some spatial resolution!

Intuition: K-class probabilities in the gray part of the output have

 “receptive field” in the gray part of the input image,

 while yellow output is supported by different

 NxN sections of the larger image

From Image to Pixel Labeling

K-class

probabilities

tensor
3

(RGB)

N
 x

 N

tensor
tensor tensor

convolutional kernels (pre-) trained on image classification

are directly applied to larger image

(1+Δ) x (1+Δ) x 10

(1+Δ) x (1+Δ) x 200(10+Δ) x (10+Δ) x 80
(50+Δ) x (50+Δ) x 20

NOTE: input image size can be arbitrarily large

K-class

probabilities

tensor

3
(RGB)

M
 x

 M

K-class

probabilities

tensor
3

(RGB)

N
 x

 N

tensor
tensor tensor

convolutional kernels (pre-) trained on image classification

are directly applied to larger image

COMMENT: similar idea was first used by Y. Lecun in the 90s for

 detecting digits in (large) images of hand-written text

Fully Convolutional Network (FCN)

K-class

probabilities

tensor
3

(RGB)

N
 x

 N

tensor
tensor tensor

K-class

probabilities

tensor

With stride/pooling, varies across the network layers

but kernels still apply to images of arbitrary size

3
(RGB)

M
 x

 M

NOTE: input image size can be made arbitrarily large

Fully Convolutional Network (FCN)

Fully Convolutional Network (FCN)

K-class

probabilities

tensor

NOTE: since this network’s prediction/output has spatial resolution,

it can be trained directly using (whole) segmentation masks/targets
(hmmm..., our earlier naïve one-pixel classifying network can also be trained using individual pixels from GT mask,

the devil is in the details - extensions typically used in segmentation networks, as discussed in the following slides)

Our first “proper” segmentation CNN

end-to-end trainable by image segmentation GT masks

3
(RGB)

M
 x

 M

H x H x K

basic image segmentation CNN

Fully Convolutional Network (FCN)

K-class

probabilities

tensor

Important practical matters:3
(RGB)

M
 x

 M

FCN can be initialized from network (kernels) pre-trained on

huge image classification training datasets (e.g. ResNet trained on image net)

learning good high-dimensional features (embedding) at later layers

Then can be re-trained (domain adaptation) to any specific

segmentation dataset based on GT segmentation masks (targets)

Fully Convolutional Network (FCN)

K-class

probabilities

tensor

3
(RGB)

M
 x

 M

works better (after re-training) with pooling, stride, dilation

giving wider “receptive field” for output layer elements/pixels

… even though such operations generally decrease output resolution

therefore, requiring output up-sampling, skip connections, etc.

to improve the resolution

Important practical matters:

Popular CNN architectures for segmentation

- FCN (2015)

fully convolutional network for segmentation

skip connections

- SegNet (2015)

 encoder / decoder

- UNet (2015)

encoder / decoder with symmetric skip connections

- DeepLab (2015)

atrous convolutions, spatial pyramid pooling, etc.

Fully Convolutional Networks for Semantic Segmentation

Long, Shelhamer, Darrell - CVPR 2015

U-net: Convolutional networks for biomedical image segmentation

Ronneberger, Fischer, Brox - MICCAI 2015 / Nature Methods 2019

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,

Atrous Convolutions, and Fully Connected CRFs

Chen, Papandreou, Kokkinos, Murphy, Yuille – TPAMI 2018 / ICLR 2015

various ideas/details on

pooling, stride, dilation

and upsampling

Segnet: A deep convolutional encoder-decoder

architecture for image segmentation

Badrinarayanan, Kendall, Cipolla – TPAMI 2017

Common Structure: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla – TPAMI 2017

decoder

(upsampling part)
encoder

decoder upsamples encoder-generated features
(classification delayed to the network end)

important:

encoder convolutional layers are

typically pre-trained on image net

Encoder’s main goal is to learn

good discriminative features

Comment: feature dimensions at the encoder output could be

gradually decreased with upsampling (too expensive, otherwise)

Need for upsampling

soft-max applied directly to

encoder’s output features

Primary goal of the decoder is (to learn) to upsample

Predicted segmentationGround truth target

COMMENT: some upsampling steps in the decoder could be learned, while

 some are hand-engineered. (The same comment is also valid for the encoder)

Methods for Upsampling
illustrations credit: Fei-Fei Li

(as on slide 23)

Methods for Upsampling
illustrations credit: Fei-Fei Li

Weights for such transpose convolution kernel (filter) can be learned.

Simpler 1D illustration:

Why should transpose convolution work well for upsampling?

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

Input Image

Kernel

Output Image

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

First Element x Kernel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0

0 0 0

0 0 0

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Next Element x Kernel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0

0 0 0

0 0 0

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0.25 0.5 0.25

0 0 0.5 1 0.5

0 0 0.25 0.5 0.25

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Next Element x Kernel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0.5 1 0.5

1 2 1

0.5 1 0.5

0 0 0.25 0.5 0.25

0 0 0.5 1 0.5

0 0 0.25 0.5 0.25

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0.5 1 0.5

1 2 1

0.5 1 0.5

0 0 0.25 0.5 0.75 1 0.5

0 0 0.5 1 1.5 2 1

0 0 0.25 0.5 0.75 1 0.5

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Next Element x Kernel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0.75 1.5 0.75

1.5 3 1.5

0.75 1.5 0.75

0 0 0.25 0.5 0.75 1 0.5

0 0 0.5 1 1.5 2 1

0 0 0.25 0.5 0.75 1 0.5

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0.75 1.5 0.75

1.5 3 1.5

0.75 1.5 0.75

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Next Element x Kernel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

1 2 1

2 4 2

1 2 1

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

1 2 1

2 4 2

1 2 1

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 1.25 0.5 0.75 1 1.25 1.5 0.75

2 4 2

1 2 1

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

1.25 2.5 1.25

2.5 5 2.5

1.25 2.5 1.5

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 2 1 1.25 1.5 0.75

2 4 4.5 5 2.5

1 2 2.5 2.5 1.5

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

1.5 3 1.5

3 6 3

1.5 3 1.5

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 2.75 1.5 0.75

2 4 4.5 5 5.5 6 3

1 2 2.5 2.5 2.75 3 1.5

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

1.75 3.5 1.75

3.5 7 3.5

1.75 3.5 1.75

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 4.5 5 2.5

2 4 4.5 5 5.5 6 6.5 7 3.5

1 2 2.5 2.5 2.75 3 3.25 3.5 1.75

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

2 4 2

4 8 4

2 4 2

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 4.5 5 2.5

2 4 4.5 5 5.5 6 6.5 7 3.5

3 6 4.25 2.5 2.75 3 3.25 3.5 1.75

4 8 4

2 4 2

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Added Result

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

3.75 7.5 3.75

7.5 15 7.5

3.75 7.5 3.75

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 4.5 5 2.5

2 4 4.5 5 5.5 6 6.5 7 3.5

3 6 6.5 7 7.5 8 8.5 9 4.5

4 8 8.5 9 9.5 10 10.5 11 5.5

5 10 10.5 11 11.5 12 12.5 13 6.5

6 12 12.5 13 13.5 14 14.5 15 7.5

3 6 6.25 6.5 6.75 7 7.25 7.5 3.75

Input Image

Kernel

Output Image

Element x Kernel

kernel=3x3

stride=2

padding=1

Transpose Convolution: Example

illustrations credit: Soroosh Baselizadeh

Note: this result is equivalent to Bilinear Interpolation

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 4.5 5 2.5

2 4 4.5 5 5.5 6 6.5 7 3.5

3 6 6.5 7 7.5 8 8.5 9 4.5

4 8 8.5 9 9.5 10 10.5 11 5.5

5 10 10.5 11 11.5 12 12.5 13 6.5

6 12 12.5 13 13.5 14 14.5 15 7.5

3 6 6.25 6.5 6.75 7 7.25 7.5 3.75

Input Image

Kernel

Output Image

kernel=3x3

stride=2

padding=1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Bilinear Interpolation is a special case of transpose convolution.
The corresponding transpose convolution kernels exists for any stride (code https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183)

V. Dumoulin, and F. Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Transpose Convolution: Example

https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183

Thus…

the transpose convolution should be at least as good as bilinear interpolation.

In particular, transpose convolution kernel can be initialized to replicate bilinear

interpolation, but one might learn a “better’’ upsampling kernel during training.

Transpose Convolution and Bilinear Interpolation

● Deconvolution: not a very good name as it is commonly used for the inverse of

convolution. Moreover, in image analysis, “deconvolution” also stands for a

standard non-linear image reconstruction problem.

● Backward convolution: If we think about convolution of an input image as a matrix

multiplication operation, then transposed convolution could be related to the

backward pass when the loss gradient is backpropagated though the standard

convolutional layer.

● Fractionally-strided convolution: transposed convolution with stride s is equivalent

to a standard convolution with stride 1/s, as follows: insert (s-1) zeros between

pixels, then apply regular conv using the same kernel (see example on the next slide).

illustrations credit: Soroosh Baselizadeh

[1] – Vincent Dumoulin and Francesco Visin. "A guide to convolution arithmetic for deep learning."

arXiv preprint arXiv:1603.07285 (2016).

[2] - Jonathan Long, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic

segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Transpose Convolution: other names

see Sections 4 in [1] and 3.3 in [2]

Fractional Stride

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3 0

0 0 0 0 0 0 0 0 0

0 4 0 5 0 6 0 7 0

0 0 0 0 0 0 0 0 0

0 8 0 9 0 10 0 11 0

0 0 0 0 0 0 0 0 0

0 12 0 13 0 14 0 15 0

0 0 0 0 0 0 0 0 0

Input Image

Kernel

Zero-interleaved Image

(also zero-padded)

kernel=3x3

stride=2

padding=1

Transposed

Convolution

Now, apply standard convolution…

kernel=3x3

stride=½
(inserting one zero

between pixels, then

apply conv with stride=1)

padding=1

illustrations credit: Soroosh Baselizadeh

Fractionally-strided Convolution

Standard

Convolution

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3 0

0 0 0 0 0 0 0 0 0

0 4 0 5 0 6 0 7 0

0 0 0 0 0 0 0 0 0

0 8 0 9 0 10 0 11 0

0 0 0 0 0 0 0 0 0

0 12 0 13 0 14 0 15 0

0 0 0 0 0 0 0 0 0

kernel

Zero-interleaved Image

(also zero-padded)

0 0.5 1 1.5 2 2.5 3

2 2.5 3 3.5 4 4.5 5

4 4.5 5 5.5 6 6.5 7

6 6.5 7 7.5 8 8.5 9

8 8.5 9 9.5 10 10.5 11

10 10.5 11 11.5 12 12.5 13

12 12.5 13 13.5 14 14.5 15

Output

standard

convolution

with

illustrations credit: Soroosh Baselizadeh

Fractionally-strided Convolution

a 0 b

0 0 0

c 0 d

0

0

0

0

0 0 0 0 0

0

0

0

00 0 0

Transposed vs Fractionally-strided Convolution

Homework exercise:

prove that for non-symmetric kernels one must use a “transposed” version of the kernel (flipped both horizontally & vertically)

to get equivalence between the transposed convolution (as on slide 26) and the fractionally-strided convolution.

Upsampling Example:

transpose convolution (slide 26) fractionally-strided convolution

a b

dc

output of transpose convolution using k

with stride 2 for the pixel in the center

output of standard convolution using k

with stride 1/2 for the pixel in the center

kernel k

k0,0

k1,1

k-1,-1 k 0,-1 k 1,-1

k-1,0 k1,0

k-1,1 k0,1

a b

c d ?

Fully Convolutional Networks (FCNs)

Upsample segmentation using “deconvoluton”

Fully Convolutional Networks for Semantic Segmentation

Long, Shelhamer, Darrell - CVPR 2015

transposed convolution

Upsamping using skip connections

feature maps

concatenation

FCN-8sFCN-16sFCN-32s

Fully Convolutional Networks for Semantic Segmentation

Long, Shelhamer, Darrell - CVPR 2015

encoder layers

Skip connections: concatenation

M

H
 x

 H

N M+N

feature map

“skipped”

from encoder

feature map

“upsampled”

insider decoder

feature vector for each point below

is a concatenation of feature vectors

from the two maps on the left

H
 x

 H

feature vector dimensions
feature maps

concatenation

NOTE:

consequent

convolutional

kernel can learn

how to combine

(e.g. “average”)

individual features

U-net: expanding decoder with symmetry

and many skip connections

U-net: Convolutional networks for biomedical image segmentation

Ronneberger, Fischer, Brox - MICCAI 2015 (now in Nature Methods 2019)

DeepLab

- encoder uses atrous convolutions (a.k.a. dilation)

 increasing receptive field without increase in kernel size
 (or significant decrease in output resolution)

standard 3x3 convolution

atrous 3x3 convolution
i.e. convolution with

holes or gaps (Fr. trous)

Key insight: encoder can still use any standard kernels

pre-trained on image-net classification (e.g. from ResNet)

For example, pre-trained 3x3 kernels can be “dilated” into

5x5 kernels (as above) by adding “holes”

DeepLab

- encoder uses atrous convolutions (a.k.a. dilation)

 increasing receptive field without significant loss of resolution
 (unlike stride and pooling)

- decoder uses bilinear interpolation (see topic 4)

 for upsampling

- other ideas

(Training) Loss: Cross-Entropy
(GT mask)

pixel-precise target network prediction

Loss over

image i :

cross entropy at p

image sample i

prediction at each pixel p

- class label at each pixel p

- one-hot distribution at p

sum of

negative log-likelihoods (NLL)

Total loss should also sum over all images i

(Validation) Quality Metrics

• Mean intersection over union mIoU =

 (focus on segments/classes, object sizes are irrelevant)

• There are also accuracy measures focused on pixels
 (what percentage of pixels is correctly classified)

network prediction

(GT mask)

pixel-precise target image sample i

Assignment 5

CNN trained on

a single example

(“overfit CNN”)

untrained CNN

loss over 40 epochs
(a few mins on CPU)

Training on a single example

Assignment 5

“overfit CNN”

on the example

it was trained on

untrained CNN untrained CNN “overfit CNN”

on an example

it did not see

Training on a single example

Assignment 5

loss over 2 epochs
for the whole training dataset

(a few mins on GPU)CNN trained on all

images in training dataset

(“fully-trained CNN”)

Training on all images in the “training dataset”

“overfit CNN”

on the example

it was trained on

Assignment 5

“overfit CNN”

on an example

it did not see

“fully-trained CNN”

Training on all images in the “training dataset”

“fully-trained CNN”“overfit CNN”

on the example

it was trained on

	Slide 1: CS484/684 Computational Vision Semantic Segmentation
	Slide 2: CS484/684 Computational Vision Semantic Segmentation (outline)
	Slide 3
	Slide 4: Semantic Segmentation
	Slide 5: Fully-supervised Semantic Segmentation
	Slide 6: Fully-supervised Semantic Segmentation
	Slide 7: From Image to Pixel Labeling
	Slide 8: From Image to Pixel Labeling
	Slide 9: From Image to Pixel Labeling
	Slide 10: From Image to Pixel Labeling
	Slide 11: From Image to Pixel Labeling
	Slide 12: From Image to Pixel Labeling
	Slide 13: From Image to Pixel Labeling
	Slide 14: From Image to Pixel Labeling
	Slide 15: From Image to Pixel Labeling
	Slide 16: From Image to Pixel Labeling
	Slide 17: Fully Convolutional Network (FCN)
	Slide 18: Fully Convolutional Network (FCN)
	Slide 19: Fully Convolutional Network (FCN)
	Slide 20: Fully Convolutional Network (FCN)
	Slide 21: Fully Convolutional Network (FCN)
	Slide 22: Popular CNN architectures for segmentation
	Slide 23: Common Structure: Encoder/Decoder
	Slide 24: Need for upsampling
	Slide 25: Methods for Upsampling
	Slide 26: Methods for Upsampling
	Slide 27
	Slide 28: First Element x Kernel
	Slide 29: Added Result
	Slide 30: Next Element x Kernel
	Slide 31: Added Result
	Slide 32: Next Element x Kernel
	Slide 33: Added Result
	Slide 34: Next Element x Kernel
	Slide 35: Added Result
	Slide 36: Next Element x Kernel
	Slide 37: Added Result
	Slide 38: Added Result
	Slide 39: Added Result
	Slide 40: Added Result
	Slide 41: Added Result
	Slide 42: Added Result
	Slide 43: Note: this result is equivalent to Bilinear Interpolation
	Slide 44
	Slide 45
	Slide 46: Fractional Stride
	Slide 47
	Slide 48
	Slide 49: Fully Convolutional Networks (FCNs)
	Slide 50
	Slide 51
	Slide 52: U-net: expanding decoder with symmetry
	Slide 53: DeepLab
	Slide 54: DeepLab
	Slide 55: (Training) Loss: Cross-Entropy
	Slide 56: (Validation) Quality Metrics
	Slide 57
	Slide 58
	Slide 59
	Slide 60

