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CS484/684 Computational Vision

Semantic Segmentation (outline)

• Fully-supervised CNN segmentation
 

- from image labeling to pixel labeling

- typical architectures
fully convolutional networks, encoder/decoder, downsampling/upsampling, skip connections, etc

- training loss function (cross entropy) 

- evaluation metrics (mIoU, pixel accuracy)

Next topic(s): 

       weakly-supervised semantic segmentation,

       self-supervision, noisy labels, etc



input remember last topic: 

image classification

somewhere in the image

there is a bicycle and a person

image-level class tags
(image labels or image tags)

predict

learn to
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Fully-supervised Semantic Segmentation

http://host.robots.ox.ac.uk/pascal/VOC

target (GT mask) input

Pascal dataset

pixel-accurate Ground Truth

learn to

(only) 11,530 fully-labeled images

Remember:

image-net has

>14,000,000

images with

image-level 

labels (tags)

pixel-level labels

training uses

predict
person

bicycle

background



pixel labels (object classes) used in Pascal dataset:

   0      -   background

1-20    -   airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, 

                dog, horse, motorbike, person, potted plant, sheep, sofa, train, TV monitor

 255    -   void   (class for pixel is undefined)
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Fully-supervised Semantic Segmentation
training uses

predict

- class label at each pixel p

pixel-level labels

person

bicycle

background
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(simplified) representative image classification CNN 

From Image to Pixel Labeling

Q: How do we go from here to image segmentation?

That is, how to extend NN methods for image classification

to classification of image pixels ?

label for

whole image 
image 

N
 x

 N

convolution

combined with

typical operations

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

fully connected

combined with

soft-max     

typical last layer(s)
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label for
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image 

classified pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

First (naïve) idea:  classify pixels using sliding windows

consider

larger image
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From Image to Pixel Labeling

First (naïve) idea:  classify pixels using sliding windows

(simplified) representative image classification CNN 

N x N

M x M image (              )

N
 x

 N

label for

whole image 
image 

classified pixels

Not bad for a start, but pixels are classified independently (one-at-a-time).  For example, such

   one-pixel classifying network can NOT learn large spatial patterns of the whole GT segmentation mask.

NOTE: here

classification CNN 

trained on 

image-level tags 

segments

image pixels

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

FISH

WATER semantic 

segmentation
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From Image to Pixel Labeling
(simplified) representative image classification CNN 

N
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label for

whole image 
image 

Better idea: convolutional kernel can be applied to input of any size!

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

larger input
larger output

(W+∆-m+1) x (H+∆ -m+1)

Key insight:
convolution

mxm

kernel

W x H   

input

(W-m+1) x (H-m+1)

output

(W+∆) x (H+∆)

using the same kernel
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(simplified) representative image classification CNN 
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tensor
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tensor

No problem:

Better idea: convolutional kernel can be applied to input of any size!

Assume all layers are convolutional. 

What about last (fully connected) layer? 

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

e.g. 50x50x20
e.g. 10x10x80

e.g. 10

e.g. 1x1x10

tensor
e.g. 1x1x200



e.g. 1x1x10(1+Δ) x (1+Δ) x 10

e.g. 1x1x200(1+Δ) x (1+Δ) x 200e.g. 10x10x80(10+Δ) x (10+Δ) x 80
e.g. 50x50x20(50+Δ) x (50+Δ) x 20
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(simplified) representative image classification CNN 
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tensor
tensor tensor

consider

larger

image

convolutional kernels (pre-) trained on image classification 

are directly applied to larger image  

Better idea: convolutional kernel can be applied to input of any size!

For simplicity, also assume no pooling and no stride (for now)

Assume all layers are convolutional. 

e.g. 50x50x20
e.g. 10x10x80

e.g. 200

e.g. 10



(1+Δ) x (1+Δ) x 10

(1+Δ) x (1+Δ) x 200(10+Δ) x (10+Δ) x 80
(50+Δ) x (50+Δ) x 20

Now, network output has some spatial resolution!

Intuition: K-class probabilities in the gray part of the output have  

 “receptive field” in the gray part of the input image, 

   while yellow output is supported by different 

                 NxN sections of the larger image 

From Image to Pixel Labeling

K-class

probabilities

tensor
3

(RGB)
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tensor
tensor tensor

convolutional kernels (pre-) trained on image classification 

are directly applied to larger image  



(1+Δ) x (1+Δ) x 10

(1+Δ) x (1+Δ) x 200(10+Δ) x (10+Δ) x 80
(50+Δ) x (50+Δ) x 20

NOTE:  input image size can be arbitrarily large
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probabilities

tensor
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probabilities

tensor
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tensor
tensor tensor

convolutional kernels (pre-) trained on image classification 

are directly applied to larger image  

COMMENT: similar idea was first used by Y. Lecun in the 90s for 

                      detecting digits in (large) images of hand-written text

Fully Convolutional Network (FCN)
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With stride/pooling,        varies across the network layers

but kernels still apply to images of arbitrary size 

3
(RGB)

M
 x

 M

NOTE:  input image size can be made arbitrarily large

Fully Convolutional Network (FCN)



Fully Convolutional Network (FCN)

K-class

probabilities

tensor

NOTE: since this network’s prediction/output has spatial resolution, 

it can be trained directly using (whole) segmentation masks/targets
(hmmm..., our earlier naïve one-pixel classifying network can also be trained using individual pixels from GT mask, 

the devil is in the details - extensions typically used in segmentation networks, as discussed in the following slides) 

Our first “proper” segmentation CNN 

end-to-end trainable by image segmentation GT masks

3
(RGB)

M
 x

 M

H x H x K

basic image segmentation CNN 



Fully Convolutional Network (FCN)

K-class

probabilities

tensor

Important practical matters:3
(RGB)

M
 x

 M

FCN can be initialized from network (kernels) pre-trained on 

huge image classification training datasets (e.g. ResNet trained on image net)

learning good high-dimensional features (embedding) at later layers     

Then can be re-trained (domain adaptation) to any specific 

segmentation dataset based on GT segmentation masks (targets)



Fully Convolutional Network (FCN)

K-class

probabilities

tensor

3
(RGB)

M
 x

 M

works better (after re-training) with pooling, stride, dilation

giving wider “receptive field” for output layer elements/pixels  

… even though such operations generally decrease output resolution 

therefore, requiring output up-sampling, skip connections, etc. 

to improve the resolution

Important practical matters:



Popular CNN architectures for segmentation

- FCN (2015)

fully convolutional network for segmentation

skip connections

- SegNet (2015)

      encoder / decoder 

- UNet (2015) 

encoder / decoder with symmetric skip connections

- DeepLab (2015) 

atrous convolutions, spatial pyramid pooling, etc.

Fully Convolutional Networks for Semantic Segmentation 

Long, Shelhamer, Darrell   - CVPR 2015

U-net: Convolutional networks for biomedical image segmentation 

Ronneberger, Fischer, Brox   -  MICCAI 2015 / Nature Methods 2019

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 

Atrous Convolutions, and Fully Connected CRFs

Chen, Papandreou, Kokkinos, Murphy, Yuille    –  TPAMI 2018 / ICLR 2015 

various ideas/details on 

pooling, stride, dilation

and upsampling

Segnet: A deep convolutional encoder-decoder 

architecture for image segmentation

Badrinarayanan, Kendall, Cipolla –  TPAMI 2017



Common Structure: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla –  TPAMI 2017

decoder 

(upsampling part)
encoder

decoder upsamples encoder-generated features 
(classification delayed to the network end)

important:

encoder convolutional layers are

typically pre-trained on image net

Encoder’s main goal is to learn 

good discriminative features 

Comment: feature dimensions at the encoder output could be 

gradually decreased with upsampling (too expensive, otherwise) 



Need for upsampling

soft-max applied directly to

encoder’s output features

Primary goal of the decoder is (to learn) to upsample

Predicted segmentationGround truth target

COMMENT: some upsampling steps in the decoder could be learned, while

                      some are hand-engineered.    (The same comment is also valid for the encoder) 



Methods for Upsampling
illustrations credit: Fei-Fei Li

(as on slide 23)



Methods for Upsampling
illustrations credit: Fei-Fei Li

Weights for such transpose convolution kernel (filter) can be learned.

Simpler 1D illustration:

Why should transpose convolution work well for upsampling?
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Note: this result is equivalent to Bilinear Interpolation
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Bilinear Interpolation is a special case of transpose convolution.
The corresponding transpose convolution kernels exists for any stride (code https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183)

V. Dumoulin, and F. Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Transpose Convolution: Example

https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183


Thus…

the transpose convolution should be at least as good as bilinear interpolation.

In particular, transpose convolution kernel can be initialized to replicate bilinear 

interpolation, but one might learn a “better’’ upsampling kernel during training. 

Transpose Convolution and Bilinear Interpolation



● Deconvolution:  not a very good name as it is commonly used for the inverse of 

convolution. Moreover, in image analysis, “deconvolution” also stands for a  

standard non-linear image reconstruction problem. 

● Backward convolution: If we think about convolution of an input image as a matrix 

multiplication operation, then transposed convolution could be related to the 

backward pass when the loss gradient is backpropagated though the standard 

convolutional layer.

● Fractionally-strided convolution: transposed convolution with stride s is equivalent 

to a standard convolution with stride 1/s, as follows: insert (s-1) zeros between 

pixels, then apply regular conv using the same kernel  (see example on the next slide).

illustrations credit: Soroosh Baselizadeh 

[1] – Vincent Dumoulin and Francesco Visin. "A guide to convolution arithmetic for deep learning." 

arXiv preprint arXiv:1603.07285 (2016).

[2] - Jonathan Long, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic 

segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Transpose Convolution: other names

see Sections 4 in [1] and 3.3 in [2]
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Now, apply standard convolution…

kernel=3x3

stride=½ 
(inserting one zero 

between pixels, then 

apply conv with stride=1)

padding=1

illustrations credit: Soroosh Baselizadeh 

Fractionally-strided Convolution

Standard 

Convolution
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6 6.5 7 7.5 8 8.5 9

8 8.5 9 9.5 10 10.5 11

10 10.5 11 11.5 12 12.5 13

12 12.5 13 13.5 14 14.5 15

Output

standard 

convolution

with

illustrations credit: Soroosh Baselizadeh 

Fractionally-strided Convolution



a 0 b

0 0 0

c 0 d

0

0

0

0

0 0 0 0 0

0

0

0

00 0 0

Transposed vs Fractionally-strided Convolution

Homework exercise: 

prove that for non-symmetric kernels one must use a “transposed” version of the kernel (flipped both horizontally & vertically) 

to get equivalence between the transposed convolution (as on slide 26) and the fractionally-strided convolution.

Upsampling Example:

transpose convolution (slide 26) fractionally-strided convolution

a b

dc

output of transpose convolution using k 

with stride 2 for the pixel in the center

output of standard convolution using k 

with stride 1/2 for the pixel in the center

kernel k

k0,0  

k1,1  

k-1,-1  k 0,-1  k 1,-1  

k-1,0  k1,0  

k-1,1  k0,1  

a b                                 

c d ?



Fully Convolutional Networks (FCNs)

Upsample segmentation using “deconvoluton”

Fully Convolutional Networks for Semantic Segmentation 

Long, Shelhamer, Darrell - CVPR 2015

transposed convolution



Upsamping using skip connections

feature maps 

concatenation

FCN-8sFCN-16sFCN-32s

Fully Convolutional Networks for Semantic Segmentation 

Long, Shelhamer, Darrell - CVPR 2015

encoder layers



Skip connections: concatenation

M

H
 x

 H

N M+N

feature map

“skipped”

from encoder

feature map

“upsampled”

insider decoder

feature vector for each point below

is a concatenation of feature vectors 

from the two maps on the left

H
 x

 H

feature vector dimensions
feature maps 

concatenation

NOTE: 

consequent

convolutional 

kernel can learn

how to combine

(e.g. “average”) 

individual features



U-net: expanding decoder with symmetry

and many skip connections

U-net: Convolutional networks for biomedical image segmentation 

Ronneberger, Fischer, Brox - MICCAI 2015 (now in Nature Methods 2019)



DeepLab

- encoder uses atrous convolutions (a.k.a. dilation)

     increasing receptive field  without increase in kernel size 
                                                         (or significant decrease in output resolution)      

standard 3x3 convolution

atrous 3x3 convolution
i.e. convolution with 

holes or gaps  (Fr. trous)

Key insight: encoder can still use any standard kernels

pre-trained on image-net classification (e.g. from ResNet)

For example, pre-trained 3x3 kernels can be “dilated” into

5x5 kernels (as above) by adding “holes”



DeepLab

- encoder uses atrous convolutions (a.k.a. dilation)

     increasing receptive field  without significant loss of resolution 
                                                                     (unlike stride and pooling)

- decoder uses bilinear interpolation (see topic 4) 

     for upsampling

- other ideas



(Training) Loss: Cross-Entropy
(GT mask)

pixel-precise target network prediction

Loss over 

image i :

cross entropy at p

image sample i

prediction at each pixel p

- class label at each pixel p

-  one-hot distribution at p

sum of 

negative log-likelihoods  (NLL)

Total loss should also sum over all images i



(Validation) Quality Metrics

• Mean intersection over union     mIoU  =

    (focus on segments/classes, object sizes are irrelevant)

• There are also accuracy measures focused on pixels 
        (what percentage of pixels is correctly classified)

network prediction

(GT mask)

pixel-precise target image sample i



Assignment 5

CNN trained on 

a single example

(“overfit CNN”)

untrained CNN

loss over 40 epochs 
(a few mins on CPU)

Training on a single example



Assignment 5

“overfit CNN” 

on the example

it was trained on

untrained CNN untrained CNN “overfit CNN” 

on an example

it did not see

Training on a single example



Assignment 5

loss over 2 epochs
for the whole training dataset 

(a few mins on GPU)CNN trained on all

images in training dataset

(“fully-trained CNN”)

Training on all images in the “training dataset”

“overfit CNN” 

on the example

it was trained on



Assignment 5

“overfit CNN” 

on an example 

it did not see

“fully-trained CNN”

Training on all images in the “training dataset”

“fully-trained CNN”“overfit CNN” 

on the example

it was trained on
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