
Many slides are from Olga Veksler (UW) and Y. LeCun (Facebook)

CS484/684 Computational Vision

Supervised Classification

rabbit

dog cat

rabbit

?

dog

CS484/684 Computational Vision

Supervised Classification (outline)

• Intro to Machine Learning (ML)

- ML types: supervised, unsupervised, reinforcement learning

- Learning quality: overfitting, underfitting, generalization

- Training and Testing

- Loss functions: quadratic, cross-entropy

- Optimization by gradient descent, learning rate, SGD, batches

- Towards non-linear classification

- multi-layered neural networks (NN)

• Convolutional Neural Networks (CNNs)

- Convolutional and pooling layers

- ReLU, drop-out, normalization, batch-normalization, etc

- Weights regularization

- Optimization by backpropagation

for simplicity, primarily discussed

in the context of linear classification

non-linear classification

Intro to Machine Learning (ML)

• supervised linear classification

 - perceptron, single layer NNs

• towards non-linear classification

- multi-layer NNs

new image

?

new image

?

Example: supervised digit recognition

• Easy to collect images of digits with their correct labels

• ML algorithm can use collected data to produce a program

for recognizing previously unseen images of digits

0
1
2
3
4
5
6
7
8
9

image

data
known

labels

0
automatically

produced label

4
automatically

produced label

5

Types of Machine Learning

Supervised Learning

• given training examples with corresponding correct outputs, also

called label, target, class, answer, etc.

• learn to produces correct output for a new example

Unsupervised Learning

• given unlabeled training examples

 find good data representation and “natural” clusters

• K-means is the most widely known example

• weak-supervision allows partially labeled training examples

• unsupervised deep learning time permitting, last slack lecture

Reinforcement Learning

• learn to select action that maximizes payoff

our digit recognition example

many of our examples

in topic 9

focus of this topic

6

Subtypes of supervised ML:

• Classification
– output belongs to a finite set

– example: age  {baby, child, adult, elder}

– output is also called class or label

• Regression
– output is continuous

– examples: age  [0,130], pixel disparity  [0,20],

• Difference mostly in design of loss functions

our digit recognition example

focus of this topic

Supervised Classification

salmon salmonsea bass sea bass

• Have training examples with corresponding outputs/labels

• For example: fish classification - salmon or sea bass?

x1 x2 x3 x4








=

7.5

3.3








=

7.8

3.6








=

7.1

3.2








=

0.7

4.6

y1=0 y2=1 y3 = 0 y4=1

• Each example should be represented by feature vector xi
• data may be given in vector form from the start

• if not, for each example i, extract useful features, put them as a vector

• fish classification example:

- extract two features, fish length and average fish brightness

 (can extract any number of other features)

- for images, can use raw pixel intensity or color as features

• yi is the output (label or target) for example xi

feature

vector

individual

features
e.g. fish length

and brightness

• Training phase

- estimate function y = f(x) from labeled data

 where f(x) is called classifier, learning machine, prediction function, etc.

• Testing phase (deployment)

• predict output f(x) for a new (unseen) sample x

• We are given

1. Training examples x1, x2,…, xn

2. Target output for each sample y1, y2,…, yn labeled data

Supervised Classification

Training phase as parameter estimation

Estimate prediction function y = f(x) from labeled data

Typically, search for f is limited to some type/group of

classifiers (“hypothesis space”) parameterized by weights w

that must be estimated

fw(x) or f(w,x) w = ?

w* = arg minw Σi L(yi , f(w,xi))

where “as much as possible” is defined by

a loss function L(y,f) penalizing f(w,xi) ≠ yi

Goal: find classifier parameters (weights) w so that f(w,xi) = yi

“as much as possible” for all training examples,

Linear classifier example: perceptron

m-dimensional

feature vector xi

with m components

+

w1

w2

w3

w4

wm

…
weighted

 sum

x2

x4

…

xm

x1

x3

here and later

sub-indices are for

feature components

while

super-indices are for

data points (feature vectors)

NOTE: for simplicity, we omit

super-indices (or sub-indices)

assuming the context is “clear”

binary

decision
(sign function)

f(w,xi)

inspired by neurons

more on the next slides

label

Frank Rosenblatt, 1958

w0
“bias”

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

Is it possible to find a linear transformation onto 1D so that

transformed 1D points can be separated (by a threshold)?

points of

two classes

can be

completely

mixed

Question:

consider some

linear transformation

from 2D space to 1D

xi

xj

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2
* * *

“good”

linear transformation

from 2D space to 1D
good

separation

by simple

threshold

0

Is it possible to find a linear transformation onto 1D so that

transformed 1D points can be separated (by a threshold)?

Question:Answer:

In this case, YES, because the data is linearly separable

in the original feature space. So, what is the transformation?

xi

xj

NOTE

can always shift

threshold to 0

using weight w0

Answer:

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

- bias

* * *

This 2D →1D linear transformation is a projection onto the

normal of the separating hyper-plane.

“good”

linear transformation

from 2D space to 1D

w0+w1x1+w2x2

good

separation

by simple

threshold

0

signed distance to hyperplane w0+ w1x1+ w2x2 = 0

 (HW5 problem)

the normal

(w1,w2)

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

* * *

In fact, any 2D →1D linear transformation w = (w0,w1,w2) is

a projection onto normal of some hyper-plane. So, original

question really asks if there is a hyper-plane separating data.

“good”

linear transformation

from 2D space to 1D

w0+w1x1+w2x2

good

separation

by simple

threshold

0

signed distance to hyperplane w0+ w1x1+ w2x2 = 0

 (HW5 problem)

the normal

(w1,w2)

- bias

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

good

separation

by simple

threshold

* * *

“good”

linear transformation

from 2D space to 1D
1

0

f(w,x) = u (w0+w1x1+w2x2) f(w,x) ϵ {0,1}thresholding

can be formally

represented by this

prediction function

0

1

0

u(t)

t

unit step function
(a.k.a. Heaviside function)

label

label

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

f(w,x) = u (w0+w1x1+w2x2)

decision boundary

decision regions

• Classifier that makes decisions based on linear

combination of features is called a linear classifier

Can use this function to

classify any (new) point.

1

0

• Can be generalized to feature vectors x of any dimension m :

 for and
homogeneous representation

of feature vector x

“bias”

Linear Classifiers

classification error 38%

bad w

x1

x2

x1

x2

better w

classification error 4%

w = (w0,w1,w2)
w = (w0,w1,w2)

projected points onto

normal line are all mixed-up
projected points onto

normal line are well separated

18

• Classifier underfits the data if it can produce decision
boundaries that are too simple for this type of data

- chosen classifier type (hypothesis space) is not expressive enough

Underfitting

For some data
no linear classifier

can separate the samples well

19

More Complex (non-linear) Classifiers

classifier where

is a high-order polynomial defined by parameters w

can achieve 0% classification error

x2

x1

The goal is to classify well on new data

Test “wiggly” classifier on new data: 25% error

More Complex (non-linear) Classifiers

x1

x2

Overfitting

• Amount of data for training is always limited

• Complex model often has too many parameters

to fit reliably to limited data

• Complex model may adapt too closely to “random noise”

in training data, rather than look at a “big picture”

x2

x1

Overfitting: Extreme Example

- Two class problem: face and non-face images

- Memorize (i.e. store) all the “face” images

- For a new image, see if it is one of the stored faces

• if yes, output “face” as the classification result

• If no, output “non-face”

problem:

• zero error on stored data, 50% error on test (new) data

• decision boundary is very irregular

Such learning is memorization without generalization

slide is modified from Y. LeCun

Generalization
training data

• Ability to produce correct outputs on previously unseen examples

is called generalization

• Big question of learning theory: how to get good generalization

with a limited number of examples

• Intuitive idea: favor simpler classifiers

• William of Ockham (1284-1347): “entities are not to be multiplied without necessity”

• Simpler decision boundary may not fit ideally to training data but

tends to generalize better to new data

new data

24

Training and Testing

How to diagnose overfitting?

Divide all labeled samples x1,x2,…,xn into

training set and test set

 - Use training set (training samples) to tune weights w

 - Use test set (test samples) to check how well classifier

 with tuned weights w work on unseen examples

Thus, two main phases in classifier design are:

 1. training

 2. testing

Training Phase

Find best weights w* such that f(w,xi) = yi

“as much as possible” for training samples xi

optimization

problem
loss function penalizes

whenever

- e.g. if then the loss counts classification errors

Iverson

brackets

- average classification error on training data is called training error

Testing Phase

- The goal is good performance on unseen examples

- Evaluate performance of the trained classifier f(w,x) on the

test samples (unseen labeled samples)

- Testing on unseen labeled examples is an approximation of

how well classifier will perform in practice

- If testing results are poor, may have to go back to the training

phase and redesign f(w,x)

- Average classification error on test data is called test error

- Side note

“deploying” the final classifier f(w,x) in practice is also called testing

Underfitting → Overfitting

underfitting “just right” overfitting

• high training error

• high test error

• low training error

• low test error

• low training error

• high test error

“generalizes” well

to unseen data

One can have more-complex or less-complex linear classification methods

Examples: data representation may matter

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

alternatively

perceptron for binary classification of 2D feature vector

can be interpreted as “fully connected” one-layer binary NN

NOTE: both perceptrons are still linear classifiers

+
binary

decision

weighted

sum
w2

w1

w0

f(w,xi)

label

perceptron for binary classification of

feature vector representing whole RGB image

w

f(w,xi)

+
binary

decision

weighted

sum

label

x2

x1

Training requires optimization of

Loss Function

w = (w0, w1 , w2 ,…, wm)

NOTE: our loses are multi-variate functions

total loss

single example loss

prediction on example xi

quick overview:
optimization of multi-variate functions

via

Gradient Descent

Optimization of continuous differentiable functions

How to minimize a function of a single variable

In practice, more often cannot find a closed form solution and
need to solve numerically.

Particularly true for complex (non-convex) multi-variate functions.

- From calculus: take derivative and set it to 0

- May find a closed form solution, as in the simple example above

3D plot

x1

Remember some slides from topic 3

What is “slope” of L(x1,x2) at a given point x=(x1,x2)?

x2

Multi-variate functions

Differentiation

Multi-variate functions

Differentiation

domain of L(x1,x2) in R2

“heat-map” visualization of L

What is “slope” of L(x1,x2) at a given point x=(x1,x2)?

range of

L(x1,x2)

x1

x2

Remember some slides from topic 3

direction of the steepest

ascent at point x=(x1,x2)

gradient

“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of L

range of

L(x1,x2)

x1

x2

vector!

Remember some slides from topic 3

“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of L

range of

L(x1,x2)

x1

x2

direction of the steepest

descent at point x=(x1,x2)

negative

gradient

The most common optimization

method for continuous differentiable

(multi-variate) functions:

gradient descent
 take a step

towards lower values

of the function

5-36

- direction of (negative) gradient at point x=(x1,x2) is direction
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

5-37

Example: for a function of two variables

update equation for a point x=(x1,x2)

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

Stop at a local minima where

5-38

Example: for a function of two variables

sensitivity to initialisation !!

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

x

How to Set Learning Rate ?

• If  too large, may
overshoot the local
minimum and possibly
never even converge

L(x)

x

• If  too small, too many
iterations to converge

x(2) x(1)x(4) x(3)

L(x)

Variable Learning Rate

k = 1

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1

Some algorithms change learning rate  at each iteration

k = 1

x(1) = any initial guess

choose 

while ||L(x(k))|| > 

 choose (k)

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1

fixed α

gradient descent

variable α

gradient descent

Learning Rate

• Monitor learning rate by looking at how fast the
objective function decreases

L(x)

number of iterations

 or time

very high learning rate

high learning rate

low learning rate

good learning rate

Learning Rate: Loss Surface Illustration

001.0=

updates 3~ k

updates 30.~ k

01.0=

1.0=

Back to

Loss Functions
and

Loss Optimization

Training Perceptron - First Attempt

total count of classification errors

(both yi , u ϵ {0,1})

total loss

Consider perceptron:

perceptron’s prediction

on example xi

homogeneous representation of x

vector representation of w

single example loss

prediction on example xi

Error Counting Loss:

Iverson

brackets

extreme case of (so-called) vanishing gradients

Zero Gradients Problem

“error count” loss function cannot be optimized via gradient descent

W

L(W)

W*

(optimal weights)

NOTE

in this case, the loss gradient

is always either zero or does not exist

error count loss

Classification error loss function L(W) is piecewise constant:

COMMENT2: the original Rosenblatt’s algorithm does not use gradient descent (GD). It is based on an

error correcting procedure that, similarly to GD, iteratively updates weights W using some learning rate.

The updates use only incorrectly classified points. Assuming linear separability, it converges to a no-error

solution for training data. But if data is not linearly separable, the iterations will run into an infinite cycle.

COMMENT1: So, what?! Theoretically, it is known that the optimum classifier for the error counting loss

is “argmax” of Bayesian posterior . . This is a generative approach to classification

requiring estimation of probability densities from training data. In general, this is a hard problem

(for high-dim data). The decision boundary can be arbitrarily complex. We focus on a discriminative

approach explicitly optimizing parametric decision model to minimize a given loss on training data.

Perceptron:

Work-around for Zero Gradients

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

approximate decision function u using its softer version (relaxation)

Ϭ(t) ≈ u(t)

Work-around for Zero Gradients

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

Relaxed predictions are often interpreted as prediction “probabilities”

1-Ϭ(t)

Perceptron:

approximate decision function u using its softer version (relaxation)

Ϭ(t) ≈ u(t)

COMMENT: if data densities for each class are (equicovariant) Gaussians, Bayesian posterior is sigmoid .

Training Perceptron - Second Attempt

Perceptron approximation:

1

0

Ϭ(t)

still piece-wise constant w.r.t. σ
Error counting loss:

NOTE:

To be able to use

gradient descent we

need to “soften” both

the decision function

and the loss function

Quadratic Loss

Perceptron approximation:

1

0

Ϭ(t)NOTE:

Loss

is now differentiable

with respect to

because is

differentiable w.r.t.

Consider quadratic loss:

1

0

Quadratic Loss

Perceptron approximation:

misclassified example

Ϭ(t)

Consider quadratic loss:

1

0

Quadratic Loss

Perceptron approximation:

another misclassified example

Ϭ(t)

Consider quadratic loss:

1

0

Quadratic Loss

Perceptron approximation:

correctly classified examples

Ϭ(t)

NOTE: loss function encourages

linear classifier W such that

correctly classified points are

further from the decision boundary,

i.e. and .

Consider quadratic loss:

Quadratic Loss

Perceptron approximation:

Sum of Squared Differences

(SSD)

Total loss

approximation for

perceptron’s prediction

on example xi

Consider quadratic loss:

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Perceptron approximation:

“Distance” between two distributions

can be evaluated via KL-divergence

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

salmonbass

is 0 if p is one-hot

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

(binary)

cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

general cross-entropy formula
(for K-class distributions)

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

(binary)

cross-entropy loss:

Each label y gives one-hot distribution that is (1,0) or (0,1).

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

This implies an equivalent alternative expression:

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

a.k.a. negative log-likelihoods (NLL) loss

Total loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Summary of loss functions (for K=2)

error counting

for positive examples (i.e. y = 1)

quadratic

continuous

relaxation

binary cross entropy (or NLL)

, for negative examples y = 0 ,

is a symmetrical reflection around ½

0 1

1

σ
½

as function of

prediction value

Summary of loss functions (for K=2)

error counting

for positive examples (i.e. y = 1)

quadratic

binary cross entropy (or NLL)

continuous

relaxation

0 1

1

σ
½

as function of

prediction value

let’s replace σ by (sigmoid function)

let’s replace σ by (sigmoid function)

0

1

t

Summary of loss functions (for K=2)

error counting

for positive examples (i.e. y = 1)

quadratic

continuous

relaxation

as function of

raw output (logit)

binary cross entropy (or NLL)

½

convex logistic regression loss

due to convexity,

gradient descent finds

globally optimal W

for BCE (NLL) loss
a.k.a. logistic regression

Not a closed-form solution as in

linear regression (least-squares)

but we still can get globally optimal

linear classifier:

Towards

Multi-label Classification

u (W X)
T

+

w1

w2

w3

w4

wm

…
weighted

sum

x2

x4

…

xm

x1

x3

binary

decision

label

Towards Multi-label Classification

Remember: basic perceptron

W

binary classification

w1

w2

w3

w4

wm

…
weighted

sum

x2

x4

…

xm

x1

x3

binary

decision

Towards Multi-label Classification

binary classification

Remember: “relaxed” perceptron

+
probability

W

salmonbass

not bass

distribution

(Ϭ, 1-Ϭ)

Ϭ(W X)
T

Towards Multi-label Classification

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk and sigmoids

+

+

+

W1

W2

W3

“probability”
of class 1

“probability”
of class 2

“probability”
of class 3

Such “probability scores” Ϭ1, Ϭ2, …, ϬK over K classes do not add up to 1

Ϭ(Wk X)
T

Common Approach: Soft-Max

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk and soft-max

+

+

+

W1

W2

W3

probability

distribution

salmonbass sturgeon

Notation: K rows of matrix W are Wk so that vector WX has K logits

Ϭ

This is used for

mutually exclusive

categories

(only one can be true)

some form of

normalization



















=

26760

72750

0050

.

.

.

()
() () ()

()
() () ()

()
() () ()

























++−

++−

++−

−

123

1exp

123

2exp

123

3exp

expexpexp

expexpexp

expexpexp





















−

1

2

3

softmax

Soft-Max Function

Example:

Soft-max normalizes logits vector a converting it to distribution over classes

remember soft-max question in HW4

probability simplex

for K classes

typically, soft max

in NN uses T = 1

softmax
…

…

softer version of one-hot

corresponding to argmax

softmax

Soft-Max Function

… softmax …

Perceptron’s

example:

salmonbass sturgeon

…
…

Soft-max normalizes logits vector a converting it to distribution over classes

Soft-Max Function

… softmax …

salmonbass sturgeon

NOTE:

soft-max generalizes sigmoid

to multi-class predictions. Indeed,

consider binary perceptron with scalar

linear discriminator W TX (e.g. for class 1)

sigmoid

class 1 output of soft-max for

a combination of two linear predictors:

½W TX for class 1 and - ½W TX for class ¬1 (class 0)

Soft-max normalizes logits vector a converting it to distribution over classes

Home exercise: prove that soft-max classifier

for K=2 (so that has two rows)

is equivalent to sigmoid classifier

Perceptron’s

example:

Consider two probability distributions

over K classes (e.g. bass, salmon, sturgeon) : and

K-label perceptron’s output: for example

sum of Negative Log-Likelihoods (NLL)

salmonbass sturgeon

Multi-valued label gives one-hot distribution

k-th

index

Total loss:

cross entropy

NOTE: same as

Seed Loss

in interactive

segmentation

(Topic 9B)

(general multi-class case)

Cross-Entropy Loss

Define K linear transforms, from features X to K “logits”

 for k = 1, 2, … K

R1

R2

R3

soft-max vs arg-max

Multi-label (linear) Classification

• arg-max assigns X to class k corresponding to the largest logit

• Let Rk be decision region for class k
all points X assigned to class k by arg-max

soft-max softens

hard arg-max predictions

similarly to how sigmoid

softens unit-step function

iClicker Q: identify points X with soft-max prediction

A: (1, 0, 0) B: (0, ½, ½) C: (½, ½, 0) D: (⅓,⅓,⅓)

Can be shown that decision regions are convex, spatially

contiguous, with linear boundaries between any two classes

slide credit: O.Veksler

Limitation of single layer NN
(perceptron)

Summary

Multi-label (linear) Classification

picture credit: Stanislav Ivashkevich

Summary

Multi-label (linear) Classification

linear classifier

(decision boundaries)

quadratic

Gaussian classifier

(Bayes posterior)

for W optimal w.r.t.

cross-entropy loss

softmax

(naturally appears in Gaussian posterior)
“quadratic logits”

Mahalanobis distance

Gaussian density

for MLE parameters

estimated from labeled data

all negative, but only relative values matter in softmax

discriminative approach to classification

 directly estimates “posterior models” (decision functions)

generative approach to classification

 estimates “density models”

Towards

Multilayer Neural Networks

we focus on discriminative approach
time permitting, generative network ideas might

be discussed in the last lectures

Remember:

Single layer multi-class NNs

“probability score”
for class 1

“probability score”
for class 2

“probability score”
for class 3

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

Remember:

Single layer multi-class NNs

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

Notation:

homogeneous representation of

m-dimensional feature vector x

K x (m+1) matrix

where rows are
“bias”

feature vector (input)

we will use notation

emphasizing

size of output and input

while implicitly assuming

one extra dimension for bias

and 1 in homogeneous input

“probability scores”

(no normalization)

computed by K perceptrons

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

Remember:

Single layer multi-class NNs

“probability distribution”

(normalized)

computed by soft max function

applied to linear transform

“probability scores”

(no normalization)

computed by K perceptrons,

that is, sigmoid function

applied to linear transform

Remember:

Single layer multi-class NNs

“probability scores”

(no normalization)

“probability distribution”

(normalized)

sigmoid

soft-max

linear transforms
non-linear

functions

“probability scores”

(no normalization)

“probability distribution”

(normalized)

Motivated by neurons, can we link perceptrons?

sigmoid

soft-max

linear transforms
non-linear

functions

Multi-layer NNs ?

“probability scores”

(no normalization)

“probability distribution”

(normalized)

sigmoid

soft-max

linear transforms

Motivated by neurons, can we link perceptrons?

non-linear

functions this output can be treated as

transformed feature vector

Multi-layer NNs ?

Motivated by neurons, can we link perceptrons?

“probability scores”

(no normalization)

“probability distribution”

(normalized)

sigmoid

soft-max

linear transforms
this output can be treated as

transformed feature vector

non-linear

functions

Multi-layer NNs ?

Motivated by neurons, can we link perceptrons?

NOTE: in the 60’s the idea of multi-layer NN was discredited by

one (now notoriously famous) book based on their conjecture that

a composition of linear classifiers can not produce a non-linear one.

due to non-linear decision function (e.g. Ϭ)

this feature transformation is non-linear

Multi-layer NNs ?

output

probability vector

(over K classes)

input

feature vector

transformed

feature vector

this feature transformation is non-linear

Motivated by neurons, can we link perceptrons?

input

feature vector

transformed

feature vector

output

probability vector

(over K classes)

NOTE: in the 60’s the idea of multi-layer NN was discredited by

one (now notoriously famous) book based on their conjecture that

a composition of linear classifiers can not produce a non-linear one.

Multi-layer NNs ?

there is no equivalent

linear transformation

Multi-layer NN: Nonlinear Boundary Example

x1

x2

1 -2

-2

1

– 2x1 + x2 – 2 > 0  class 1

x1

x2

1 -2

1

-2

x1 - 2x2 – 2 > 0  class 1

x1

x2

-1

2

x1

x2

-1

2

First, consider two single-layer perceptrons (each is a linear classifier) :

unit step unit step

-2

1
-2

x1

x2

1 -2

-2

1

Combine the same two perceptrons

Multi-layer NN: Nonlinear Boundary Example

non-linear boundary

between two classes

unit steps

iClicker Q:

what does

layer 2 do?

(bias)

-0.5

1

1
unit step

1

x1

x2

x1

x2

+ x1

x2

A: multiply

B: plus

C: and

D: or

inside 2-layer NN

Multi-layer NN: Non-Linear Feature Embedding

Interpretation:

• layer 1 maps input features to new (transformed) features

• layer 2 applies linear classifier to the new features

input

feature vector

non-linearly

transformed

feature vector

output

probability vector

(over K classes)

new “embedding”

of the features

consider our earlier two-layer NN example:

can’t separate linearly

(with a single hyperplane)

in the original feature space

y1

y2

linearly separable features

in the new “embedding space”

y1

y2

Multi-layer NN: Non-Linear Feature Embedding

NOTE: unlike our kernel approach in topic 9

 now we might learn such embeddings!

-2

1
-2

x1

x2

1 -2

-2

1

(bias)
-0.5

1

1

1

x1

x2

and training data

Multi-layer NN: Activation Functions

• Ϭ() - sigmoid function allows
 gradient descent

• u() – step function does not work
 for gradient descent

• ReLU() - Rectified Linear Unit is popular

- the simplest kind of non-linear function (2-piecewise linear)

- gradients do not saturate for positive half-interval

- must be careful with learning rate, otherwise many
units can become “dead”, i.e. always output 0

In the interior (hidden) layer, non-linear decision function is

now called activation function (representing neuron “activation”)

NOTE: activation functions do not need to make 0-1 decisions

Multi-layer NNs

• non-linear classification

• non-linear feature embedding (new features)

• optimization w.r.t. weights W by backpropagation

 (gradient w.r.t. different layers is computed via chain rule)

 [Rumelhart, Hinton, Williams 1986]

• automatic differentiation ☺

input layer 1

activations

layer 2

activations

decisions

layer 3

activations

layer 1 layer 2 layer 3

Toy (scalar) illustration of backpropagation
i.e. chain rule for gradient descent updates of NN weights

input layer 1

activations

layer 2

activations

decisions

layer 3

activations

scalar loss

layer 1 layer 2 layer 3

Assume: scalar weights, scalar activation functions,

Scalar NN model (composition function)

Optimization of loss

Backward pass updates weights

using part. derivatives implied by

 the chain rule

Forward pass updates activations for each example x

chain rule

Training/Optimization Protocols

“Full” Gradient Descent Protocol
• weights are updated only after gradients are computed on all training examples (epoch)

=

Batch Protocol
• Divide data in batches, and update weights w after processing each batch

 - unlike “full” updates, updates of w from one batch can be computed in parallel (fit GPU memory)

• Batches are chosen randomly (Stochastic Gradient Descent)

- empirically, known to work better than fixed ordering, and full gradient descent protocol

• Network weights w get changed more frequently than “full” gradient

- may be less stable, often requires smaller learning rate

 - helps to prevent over-fitting in practice, think of it as “noisy” gradient

• One iteration over all batches is called an epoch

NOTE: gradient of the total loss w.r.t. network weights w

is the sum of gradients of L w.r.t. w on each training example

Q: why not in parallel?

... for large training datasets ?

Network Size

• Larger networks are more prone to overfitting

slide credits: O. Veksler

Network Regularization

• Less overfitting for sparser/simpler network with less units

• During gradient descent, subtract λw from each weight w
• also widely known as weight decay

• Works better by adding weight regularization to the loss 2

2
W



slide credits: O. Veksler

Convolutional

Neural Networks (CNNs)

for image classification

- convolutional layers, stride, à trous

- pooling (max and average)

- fully connected layers

- data augmentation

- class activation map (CAM)

Towards Convolutional Neural Networks

…… convolution operation is defined …………

It is written as:

fhg =

 
−= −=

−−=
k

ku

k

kv

vjuifvuhjig],[],[],[

 
−= −=

++−−=
k

ku

k

kv

vjuifvuh],[],[

Remember (slide from Topic 3):

- You should also remember that convolution is a linear operation

Thus, it can be written as

- CNNs use convolutions as very sparse linear transformations.

- In the context of (large) images, such NN design is motivated by

efficiency and neighborhood processing - we will learn filters

Early Work on CNNs

Fukushima (1980) – Neo-Cognitron

LeCun (1998) – Convolutional Networks (ConvNets)

• similarities to Neo-Cognitron

• success on character recognition

Other attempts at deeply layered Networks trained with

backpropagation

• not much success (e.g. very slow, diffusing/vanishing gradient)

After 2012 - significant training improvements

• various tricks (batch normalization, drop-outs, residual links, etc.)

• better GPUs (faster, more units, bigger memory)

ConvNets: Use Domain Knowledge for NN design

• Convnets exploit prior knowledge about image

recognition tasks into network architecture design

 - local spatial connectivity, grid structure, geometry

 - weight constraints (translational invariance)

• Prejudices the network towards the particular way

of solving the problem that we had in mind

 - a form of “inductive bias” in the network model

Domain specific way of enforcing network

regularization (network sparsity/simplicity)

Convolutional Network: Motivation

Consider a fully connected

network (most weights W[i,j] ≠ 0)

Example: 200 by 200 image,

4x104 connections to one

hidden unit

For 105 hidden units → 4x109

connections

But distant pixels are unrelated

(correlations are mostly local)

Do not waste resources by

connecting unrelated pixels

hidden layer

hidden units
(neurons / perceptrons)

Convolutional Network: Motivation

Connect only pixels in a local

patch, say 10x10

For 200 by 200 image, 102

connections to one hidden

unit

For 105 hidden units → 107

connections

• contrast with 4x109 for fully

connected layer

• factor of 400 decrease

Convolutional Network: Motivation

• Intuitively, each neuron learns a

good feature (a filter) in one

particular location

neuron 1

neuron 2
• If a feature is useful in one image

location, it should be useful in all other
locations
• stationarity: statistics is similar

at different locations

• Idea: make all neurons detect the
same feature at different positions

• i.e. share parameters (network weights)
across different locations

• greatly reduces the number of tunable
parameters to learn red connections have equal weight

green connections have equal weight

blue connections have equal weight

-1

2
-2
0

2
1

-2
0

0
1

2
2
1

2
-1

2
-1

1

3

2
2
2

2
-3

2
-1

2

neuron 3

ConvNets: Weight Sharing

Much fewer parameters to learn

For 105 hidden units and 10x10 patch

- 107 parameters to learn without sharing

- 102 parameters to learn with sharing

Does not depend

on the number of

hidden units

*
-1 0 1

-1 0 1

-1 0 1
=

Filtering via Convolution Recap

Recall filtering with convolution for feature extraction

Convolutional Layer

Same as convolution with

some fixed filter

But here the filter

parameters

 will be learned

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer

convolution kernel

size

input output

Convolutional Layer - Size Change

Output is usually slightly smaller because the borders of the

image are left out

If want output to be the same size, zero-pad the input

W x H
input size

(W-m+1) x (H-m+1)

m x m

kernel size

output size ?

Convolutional Layer - Stride

Can apply convolution only to some

pixels (say, every second pixel)

• output layer is smaller

Example

• stride = 2 means apply convolution

every second pixel

• makes output image approximately

twice smaller in each dimension

– image not zero-padded in this example

strided convolution
minimizes information sharing/duplication

(overlap of kernel windows in the input)

but also reduces spatial resolution of the output

Convolutional Layer - Dilation

Use only subset of points within the kernel’s window

atrous convolution

a.k.a. dilated convolution
larger receptive field (5x5) for output elements

while effectively using smaller kernels (3x3)

It maybe helpful to increase kernel size

to enlarge “receptive field ”

for each element of the output

But larger kernels could be expensive…

It often makes sense to combine atrous convolution with stride

(Fr. à trous – hole)

Convolutional Layer – Feature Depth

Input image is usually color, has 3 channels or depth 3

Convolve 3D image with 3D filter

Convolutional Layer – Feature Depth

75 parameters

Convolutional Layer – Feature Depth

Each convolution step is a 75-dimensional dot product

between the 5x5x3 filter and a piece of image of size 5x5x3

Can be expressed as wTx, 75 parameters to learn (w)

Can add bias wTx + b, 76 parameters to learn (w,b)

Convolutional Layer

Convolve 3D image with 3D filter

• result is a 28x28x1 activation map, no zero-padding used

input output
our notation for

such conv. layer

/ kernel

Convolutional Layer

One filter is responsible for

one feature type

Learn multiple filters

Example:

• 10x10 patch

• 100 filters

• only 104 parameters to learn

Convolutional Layer

Consider one extra filter

input output

our notation for

such conv. layer

with two filters

/ kernel

Output from 2 kernels

of shape 5x5x3

Convolutional Layer

• Stack them to get new 28x28x6 “image”

• If have 6 filters (each of size 5x5x3) get 6 activation

maps, 28x28 each

input output

our notation for

such conv. layer

with six filters

a bank of 6 kernels

of shape 5x5x3

Convolutional Layer

Apply activation function (say ReLu) to the activation map

a bank of 6 kernels

of shape 5x5x3

Several Convolution Layers

Construct a sequence of convolution layers interspersed

with activation functions

Convolutional Layer

1x1 convolutions make perfect sense

Example

• Input image of size 56x56x64

• Convolve with 32 filters, each of size 1x1x64

shape of each

1x1x64 kernel

64

applying

a bank of 32

1x1x64 filters/kernels

Convolutional Layer vs Fully Connected

For example, assume that we applied ReLU to the activation maps

The convolution is a linear transform.

So, we can equivalently express it via

matrix multiplication for some matrix W.

m = 32x32x3
n = 28x28x6

How large is W ?

vs. 450 parameters

for 6 kernels 5x5x3

1.4m parameters

=

a bank of 6 kernels

of shape 5x5x3

Convolution is highly

sparse special case.

GOOD BADBAD BAD

too noisy too
correlated structure

lack

Check Learned Convolutions

• Good training: learned filters exhibit structure and are

uncorrelated

Convolutional Layer Summary

Local connectivity

Weight sharing

Handling multiple input/output channels

Retains location associations

Transforms 3D tensor into 3D tensor (tensor flow)

filters = #output (activation) maps # input channels

Local connectivity

Weight sharing

filter size,

stride

Pooling Layer

Say a filter is an eye detector

Want detection to be robust to precise eye location

Pooling Layer

Pool responses at different locations

• by taking max, average, etc.

• robustness to exact spatial location

• also larger receptive field (see more of the input)

• Usually pooling applied

with stride > 1

• This reduces resolution

of output map

• But we already lost

resolution (precision)

by pooling anyway

Pooling Layer: Max Pooling Example

our notation for

2 by 2 pooling layer

with stride 2

- pooling can be interpreted as downsampling

Hölder

mean
- general forms of averaging can be used, e.g.

 where p=∞ implies max and p=1 arithmetic mean

NOTE: this is a non-trainable layer

 (no parameters are trained)

Pooling Layer

Pooling usually applied to each activation map separately

Basic CNN example (LeNet 5-1998)
3
2
x
3
2

1

greyscale

image

6
6 16

16

400
120

1
4
x
1
4

2
8

x
2

8

1
0
x
1
0

5
x
5

10-class

probabilities

84

NOTE: transformation of multi-dimensional arrays (tensors)

Only 2 convolutional layers + 3 fully connected layers

First CNN architectures for classification

- first CNNs (1982-89)
 (a.k.a. convNets)

Handwritten digit recognition with a back-propagation network

Y. LeCun et al - NIPS 1989

Gradient-based learning applied to document recognition

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner - Proc.of IEEE 1998

Neocognitron: A new algorithm for pattern recognition

tolerant of deformations and shifts in position

K. Fukushima, S. Miyake - Pattern Recognition 1982

- LeNet 1 (1989)

LeNet 5 (1998)

http://youtu.be/FwFduRA_L6Q

https://youtu.be/FwFduRA_L6Q

Handwritten digit recognition with a back-propagation network

Y. LeCun et al - NIPS 1989

Neocognitron: A new algorithm for pattern recognition

tolerant of deformations and shifts in position

K. Fukushima, S. Miyake - Pattern Recognition 1982

First CNN architectures for classification

- first CNNs (1982-89)
 (a.k.a. convNets)

- LeNet 1 (1989)

http://youtu.be/FwFduRA_L6Q
https://youtu.be/FwFduRA_L6Q

Deep CNN architectures for classification

ImageNet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton - NIPS 2012.
- AlexNet (2012)

- VGG (2014)

- ResNet (2016)

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman - ICLR 2015

Deep residual learning for image recognition

K. He, X. Zhang, S. Ren, J. Sun. - CVPR 2016

http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

http://youtu.be/FwFduRA_L6Q
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

VGG -16

Very Deep Convolutional Networks for

Large-Scale Image Recognition

K. Simonyan, A. Zisserman - ICLR 2015

neurohive.io/en/popular-networks/vgg16/

picture credits

https://neurohive.io/en/popular-networks/vgg16/

ResNet

very deep ☺

key technical trick

resnet block

one of the

state of the art

on image net

www.image-net.org

- very large dataset

of labeled images

>14,000,000

Deep residual learning for image

recognition. K. He, X. Zhang, S.

Ren, and J. Sun. CVPR 2016

“skip connection”

or

“residual connection”

(residual link “helps” gradient descent)

FashionMNIST classification example
see class MyNet in Classification_Notebook_CS484_UW.ipynb

2
8
x
2
8

1

greyscale

image

20

20

50
50

800 500 10

1
2
x
1
2

2
4
x
2
4

8
x
8

4
x
4

10-class

probabilities

FashionMNIST classification example
see class MyNet in Classification_Notebook_CS484_UW.ipynb

In HW5 you design your own semantic segmentation network

that classifies individual pixels (see next topic)

image-level classification

Class-activation Map (CAM)

CVPR 2016: “Learning Deep Features for Discriminative Localization”

 B.Zhou, A.Khosla, A. Lapedriza, A.Oliva, A.Torralba

soft-max

image-level

prediction

(CE trained)linear

discriminator

Wk =(w1 ,...,wn)

for “terrier”

image-level

feature f

pixel-level

features fp

NOTE: motivates ideas for object localization, as well as

 image-level supervision for semantic segmentation

interpret as

pixel-level

network “attention”

terrier CAM

pixel-level logits

logits

global

average

pooling

last convolutional layer output

with spatial resolution

Practical Issues for NN training

• data augmentation
- addresses limited training data

- e.g. transform available labeled data (domain and range

transformations, deformations, cropping, etc.)

• stochastic gradient descent (SGD)
- batch size selection

- batch normalization (subtract batch mean and divide by batch st.d.)

• hyper-parameter tuning (e.g. learning rate)

- break test data into “validation” data + (real) “testing” data

- real testing data is often hidden, and one must use validation

data for internal testing purposes, as in assignment 5

• debugging

	part 1
	Slide 1: CS484/684 Computational Vision Supervised Classification
	Slide 2: CS484/684 Computational Vision Supervised Classification (outline)
	Slide 3: Intro to Machine Learning (ML)
	Slide 4: Example: supervised digit recognition
	Slide 5: Types of Machine Learning
	Slide 6: Subtypes of supervised ML:
	Slide 7: Supervised Classification
	Slide 8
	Slide 9: Training phase as parameter estimation
	Slide 10: Linear classifier example: perceptron
	Slide 11: Linear classifier example: perceptron
	Slide 12: Linear classifier example: perceptron
	Slide 13: Linear classifier example: perceptron
	Slide 14: Linear classifier example: perceptron
	Slide 15: Linear classifier example: perceptron
	Slide 16: Linear classifier example: perceptron
	Slide 17: Linear Classifiers
	Slide 18: Underfitting
	Slide 19: More Complex (non-linear) Classifiers
	Slide 20
	Slide 21: Overfitting
	Slide 22: Overfitting: Extreme Example
	Slide 23: Generalization
	Slide 24: Training and Testing
	Slide 25: Training Phase
	Slide 26: Testing Phase
	Slide 27: Underfitting → Overfitting
	Slide 28
	Slide 29: Training requires optimization of Loss Function
	Slide 30: quick overview: optimization of multi-variate functions via Gradient Descent
	Slide 31: Optimization of continuous differentiable functions
	Slide 32: Multi-variate functions Differentiation
	Slide 33: Multi-variate functions Differentiation
	Slide 34: Multi-variate functions Differentiation
	Slide 35: Multi-variate functions Differentiation
	Slide 36: Multi-variate functions Gradient Descent
	Slide 37: Multi-variate functions Gradient Descent
	Slide 38: Multi-variate functions Gradient Descent
	Slide 39: How to Set Learning Rate ?
	Slide 40: Variable Learning Rate
	Slide 41: Learning Rate
	Slide 42: Learning Rate: Loss Surface Illustration

	part 2
	Slide 43: Back to Loss Functions and Loss Optimization
	Slide 44: Training Perceptron - First Attempt
	Slide 45: extreme case of (so-called) vanishing gradients Zero Gradients Problem
	Slide 46: Work-around for Zero Gradients
	Slide 47: Work-around for Zero Gradients
	Slide 48: Training Perceptron - Second Attempt
	Slide 49: Quadratic Loss
	Slide 50: Quadratic Loss
	Slide 51: Quadratic Loss
	Slide 52: Quadratic Loss
	Slide 53: Quadratic Loss
	Slide 54: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 55: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 56: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 57: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 58: Summary of loss functions (for K=2)
	Slide 59: Summary of loss functions (for K=2)
	Slide 60: Summary of loss functions (for K=2)
	Slide 61: Towards Multi-label Classification
	Slide 62: Towards Multi-label Classification
	Slide 63: Towards Multi-label Classification
	Slide 64: Towards Multi-label Classification
	Slide 65: Common Approach: Soft-Max
	Slide 66
	Slide 67
	Slide 68
	Slide 69: (general multi-class case) Cross-Entropy Loss
	Slide 70
	Slide 71
	Slide 72

	part 3
	Slide 73: Towards Multilayer Neural Networks
	Slide 74: Remember: Single layer multi-class NNs
	Slide 75: Remember: Single layer multi-class NNs
	Slide 76: Remember: Single layer multi-class NNs
	Slide 77: Remember: Single layer multi-class NNs
	Slide 78: Multi-layer NNs ?
	Slide 79: Multi-layer NNs ?
	Slide 80: Multi-layer NNs ?
	Slide 81: Multi-layer NNs ?
	Slide 82: Multi-layer NNs ?
	Slide 83: Multi-layer NN: Nonlinear Boundary Example
	Slide 84: Multi-layer NN: Nonlinear Boundary Example
	Slide 85: Multi-layer NN: Non-Linear Feature Embedding
	Slide 86
	Slide 87: Multi-layer NN: Activation Functions
	Slide 88: Multi-layer NNs
	Slide 89: Toy (scalar) illustration of backpropagation i.e. chain rule for gradient descent updates of NN weights
	Slide 90: Training/Optimization Protocols
	Slide 91: Network Size
	Slide 92: Network Regularization
	Slide 93: Convolutional Neural Networks (CNNs) for image classification
	Slide 94: Towards Convolutional Neural Networks
	Slide 95: Early Work on CNNs
	Slide 96: ConvNets: Use Domain Knowledge for NN design
	Slide 97: Convolutional Network: Motivation
	Slide 98: Convolutional Network: Motivation
	Slide 99: Convolutional Network: Motivation
	Slide 100: ConvNets: Weight Sharing
	Slide 101: Filtering via Convolution Recap
	Slide 102: Convolutional Layer
	Slide 103: Convolutional Layer
	Slide 104: Convolutional Layer
	Slide 105: Convolutional Layer
	Slide 106: Convolutional Layer
	Slide 107: Convolutional Layer
	Slide 108: Convolutional Layer
	Slide 109: Convolutional Layer
	Slide 110: Convolutional Layer
	Slide 111: Convolutional Layer
	Slide 112: Convolutional Layer
	Slide 113: Convolutional Layer
	Slide 114: Convolutional Layer
	Slide 115: Convolutional Layer
	Slide 116: Convolutional Layer - Size Change
	Slide 117: Convolutional Layer - Stride
	Slide 118: Convolutional Layer - Dilation

	pat 4
	Slide 119: Convolutional Layer – Feature Depth
	Slide 120: Convolutional Layer – Feature Depth
	Slide 121: Convolutional Layer – Feature Depth
	Slide 122: Convolutional Layer
	Slide 123: Convolutional Layer
	Slide 124: Convolutional Layer
	Slide 125: Convolutional Layer
	Slide 126: Convolutional Layer
	Slide 127: Several Convolution Layers
	Slide 128: Convolutional Layer
	Slide 129: Convolutional Layer vs Fully Connected
	Slide 130: Check Learned Convolutions
	Slide 131: Convolutional Layer Summary
	Slide 132: Pooling Layer
	Slide 133: Pooling Layer
	Slide 134: Pooling Layer: Max Pooling Example
	Slide 135: Pooling Layer
	Slide 136: Basic CNN example (LeNet 5-1998)
	Slide 137: First CNN architectures for classification
	Slide 138: First CNN architectures for classification
	Slide 139: Deep CNN architectures for classification
	Slide 140: VGG -16
	Slide 141: ResNet
	Slide 142: FashionMNIST classification example
	Slide 143: FashionMNIST classification example
	Slide 144: Class-activation Map (CAM)
	Slide 145: Practical Issues for NN training

