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CS484/684 Computational Vision

Supervised Classification (outline)

• Intro to Machine Learning (ML)
 

- ML types:  supervised, unsupervised, reinforcement learning

- Learning quality:  overfitting, underfitting, generalization

- Training and Testing

- Loss functions: quadratic, cross-entropy

- Optimization by gradient descent, learning rate, SGD, batches

- Towards non-linear classification

- multi-layered neural networks (NN) 

• Convolutional Neural Networks (CNNs)

- Convolutional and pooling layers 

- ReLU, drop-out, normalization, batch-normalization, etc

- Weights regularization

- Optimization by backpropagation

for simplicity, primarily discussed 

in the context of linear classification

non-linear classification



Intro to Machine Learning (ML)

• supervised linear classification

 - perceptron, single layer NNs

• towards non-linear classification

- multi-layer NNs



new image

?

new image

?

Example: supervised digit recognition

• Easy to collect images of digits with their correct labels 

• ML algorithm can use collected data to produce a program 

for recognizing previously unseen images of digits

0
1
2
3
4
5
6
7
8
9

image 

data
known 

labels

0
automatically

produced label

4
automatically

produced label
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Types of  Machine Learning 

Supervised Learning 

• given training examples with corresponding correct outputs, also 

called label, target, class, answer, etc.

• learn to produces correct output for a new example

Unsupervised Learning

• given unlabeled training examples

    find good data representation and “natural” clusters

• K-means is the most widely known example

• weak-supervision allows partially labeled training examples

• unsupervised deep learning                   time permitting, last slack lecture

Reinforcement Learning

• learn to select action that maximizes payoff 

our digit recognition example

many of our examples 

in topic 9

focus of this topic



6

Subtypes of supervised ML:

• Classification 
– output belongs to a finite set

– example:  age   {baby, child, adult, elder} 

– output is also called class or label

• Regression
– output is continuous

– examples:  age  [0,130],  pixel disparity  [0,20], 

• Difference mostly in design of loss functions

our digit recognition example

focus of this topic



Supervised Classification

salmon salmonsea bass sea bass

• Have training examples with corresponding outputs/labels

• For example: fish classification - salmon or sea bass?
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• Each example should be represented by  feature vector  xi 
• data may be given in vector form from the start

• if not, for each example i, extract useful features, put them as a vector

• fish classification example:

- extract two features,  fish length and average fish brightness

     (can extract any number of other features)

-  for images, can use raw pixel intensity or color as features

• yi   is the output (label or target) for example xi 

feature 

vector 

individual 

features
e.g. fish length

and brightness



• Training phase

-  estimate function  y = f(x)  from labeled data 

  where f(x) is called classifier, learning machine, prediction function,  etc.

•  Testing phase  (deployment)

• predict output   f(x)  for a new (unseen) sample x

• We are given 

1. Training examples x1, x2,…, xn

2. Target output for each sample y1, y2,…, yn labeled data

Supervised Classification



Training phase as parameter estimation

Estimate prediction function y = f(x) from labeled data

Typically, search for  f is limited to some type/group of 

classifiers (“hypothesis space”) parameterized by weights  w  

that must be estimated 

fw(x)     or     f(w,x)              w = ?

w*   =  arg minw    Σi  L(yi , f(w,xi))

where “as much as possible” is defined by              

a loss function L(y,f)  penalizing  f(w,xi) ≠ yi  

Goal: find classifier parameters (weights) w so that f(w,xi) = yi   

“as much as possible” for all training examples,



Linear classifier example: perceptron

m-dimensional 

feature vector xi

with m components

+

w1

w2

w3

w4

wm

…
weighted

      sum     

x2

x4

…

xm

x1

x3

here and later

sub-indices are for 

feature components

while

super-indices are for

data points (feature vectors)

NOTE: for simplicity, we omit 

super-indices (or sub-indices) 

assuming the context is “clear”

binary

decision
(sign function)

f(w,xi)

inspired by neurons

more on the next slides

label

Frank Rosenblatt, 1958

w0
“bias”



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

Is it possible to find a linear transformation onto 1D so that 

transformed 1D points can be separated (by a threshold)?

points of

two classes

can be

completely 

mixed

Question:

consider some

linear transformation

from 2D space to 1D

xi

xj



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2
* * *

“good” 

linear transformation

from 2D space to 1D
good 

separation

by simple

threshold

0

Is it possible to find a linear transformation onto 1D so that 

transformed 1D points can be separated (by a threshold)?

Question:Answer:

In this case, YES, because the data is linearly separable 

in the original feature space. So, what is the transformation?

xi

xj

NOTE

can always shift 

threshold to 0 

using weight w0  



Answer:

Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

- bias 

* * *

This 2D →1D linear transformation is a projection onto the 

normal of the separating hyper-plane.

“good” 

linear transformation

from 2D space to 1D

w0+w1x1+w2x2

good 

separation

by simple

threshold

0

signed distance to hyperplane w0+ w1x1+ w2x2 = 0  

                                                                                                                             (HW5 problem)

the normal 

(w1,w2)



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

* * *

In fact, any 2D →1D linear transformation w = (w0,w1,w2) is  

a projection onto normal of some hyper-plane. So, original 

question really asks if there is a hyper-plane separating data.

“good” 

linear transformation

from 2D space to 1D

w0+w1x1+w2x2

good 

separation

by simple

threshold

0

signed distance to hyperplane w0+ w1x1+ w2x2 = 0  

                                                                                                                             (HW5 problem)

the normal 

(w1,w2)

- bias 



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

good 

separation

by simple

threshold

* * *

“good” 

linear transformation

from 2D space to 1D
1

0

f(w,x)  =  u (w0+w1x1+w2x2) f(w,x) ϵ {0,1}thresholding

can be formally

represented by this

prediction function

0

1

0

u(t)

t

unit step function 
(a.k.a. Heaviside function)

label

label



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

x1

x2

f(w,x)  =  u (w0+w1x1+w2x2)

decision boundary

decision regions

• Classifier that makes decisions based on linear 

combination of features is called a linear classifier

Can use this function to 

classify any (new) point. 

1

0

• Can be generalized to feature vectors x of any dimension m :

                                           for                                     and
homogeneous representation 

of feature vector x

“bias”



Linear Classifiers

classification error 38% 

bad w

x1

x2

x1

x2

better w

classification error 4% 

w = (w0,w1,w2) 
w = (w0,w1,w2) 

projected points onto

normal line are all mixed-up
projected points onto

normal line are well separated
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• Classifier underfits the data if it can produce decision 
boundaries that are too simple for this type of data

 
- chosen classifier type (hypothesis space) is not expressive enough

Underfitting

For some data
no linear classifier

 
can separate the samples well
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More Complex (non-linear) Classifiers

classifier         where 

is a high-order polynomial defined by parameters w 

can achieve 0%  classification error 

x2

x1



The goal is to classify well on new data

Test “wiggly” classifier on new data: 25% error

More Complex (non-linear) Classifiers

x1

x2



Overfitting

• Amount of data for training is always limited

• Complex model often has too many parameters             

to fit reliably to limited data

• Complex model may adapt too closely to “random noise” 

in training data, rather than look at a “big picture”

x2

x1



Overfitting: Extreme Example

- Two class problem:  face  and  non-face images

- Memorize (i.e. store) all the “face” images

- For a new image, see if it is one of the stored faces

• if yes, output “face” as the classification result

• If no, output “non-face”

problem:

• zero error on stored data, 50% error on test (new) data

• decision boundary is very irregular

Such learning is memorization without generalization

slide is modified from Y. LeCun



Generalization
training data

• Ability to produce correct outputs on previously unseen examples 

is called generalization

• Big question of learning theory: how to get good generalization 

with a limited number of examples

• Intuitive idea: favor simpler classifiers

• William of Ockham (1284-1347): “entities are not to be multiplied without necessity”

• Simpler decision boundary may not fit ideally to training data but 

tends to generalize better to new data

new data
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Training and Testing

How to diagnose overfitting?

Divide all labeled samples x1,x2,…,xn  into 

training set and test set
 

     - Use training set (training samples) to tune weights w

      - Use test set (test samples) to check how well classifier  

     with tuned weights w work on unseen examples

Thus, two main phases in classifier design are: 

                1.    training 

  2.    testing



Training Phase

Find best weights  w*  such that  f(w,xi) = yi              

“as much as possible” for training samples xi

optimization

problem
loss function penalizes

whenever                      

- e.g. if                                 then the loss counts classification errors

Iverson 

brackets

- average classification error on training data is called training error



Testing Phase

- The goal is good performance on unseen examples

- Evaluate  performance of the trained classifier f(w,x) on the 

test samples (unseen labeled samples) 

- Testing on unseen labeled examples is an approximation of 

how well classifier will perform in practice 

- If testing results are poor, may have to go back to the training 

phase and redesign f(w,x)

- Average classification error on test data is called test error

- Side note

“deploying” the final classifier f(w,x) in practice is also called testing



Underfitting → Overfitting

underfitting “just right” overfitting

• high training error

• high test error

• low training error

• low test error 

• low training error

• high test error 

“generalizes” well

to unseen data



One can have more-complex or less-complex linear classification methods

Examples:   data representation may matter

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

R G B

alternatively

perceptron for binary classification of 2D feature vector

can be interpreted as “fully connected” one-layer binary NN

NOTE: both perceptrons are still linear classifiers

+
binary

decision

weighted

sum
w2

w1

w0

f(w,xi)

label

perceptron for binary classification of 

feature vector representing whole RGB image

w

f(w,xi)

+
binary

decision

weighted

sum

label

x2

x1



Training requires optimization of

Loss Function

w = ( w0, w1 , w2 ,…, wm)

NOTE: our loses are multi-variate functions 

total loss

single example loss

prediction on example xi



quick overview: 
optimization of multi-variate functions 

via

Gradient Descent



Optimization of continuous differentiable functions

How to minimize a function of a single variable

In practice, more often cannot find a closed form solution and 
need to solve numerically. 

Particularly true for complex (non-convex) multi-variate functions.

-   From calculus:  take derivative and set it to 0

-   May find a closed form solution, as in the simple example above



3D plot

x1

Remember some slides from topic 3

What is “slope” of  L(x1,x2) at a given point x=(x1,x2)?

x2

Multi-variate functions

Differentiation



Multi-variate functions

Differentiation

domain of L(x1,x2) in R2

“heat-map” visualization of  L

What is “slope” of  L(x1,x2) at a given point x=(x1,x2)?

range of  

L(x1,x2)

x1

x2

Remember some slides from topic 3



direction of the steepest

ascent at point x=(x1,x2)

gradient

“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of  L

range of  

L(x1,x2)

x1

x2

vector!

Remember some slides from topic 3



“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of  L

range of  

L(x1,x2)

x1

x2

direction of the steepest

descent at point x=(x1,x2)

negative

gradient

The most common optimization

method for continuous differentiable

(multi-variate) functions:

gradient descent
      take a step   

towards lower values 

of the function 
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- direction of (negative) gradient at point x=(x1,x2)  is direction 
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 
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Example: for a function of two variables

update equation for a point x=(x1,x2) 

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 

Stop at a local minima where 
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Example: for a function of two variables

sensitivity to initialisation !!

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 
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How to Set Learning Rate ?

• If   too large, may 
overshoot the local 
minimum and possibly 
never even converge

L(x)

x

• If   too small, too many 
iterations to converge

x(2) x(1)x(4) x(3)

L(x)



Variable Learning Rate

k = 1  

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1 

Some algorithms change learning rate  at each iteration

k = 1  

x(1) = any initial guess

choose  

while ||L(x(k))|| > 

 choose (k) 

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1 

fixed α 

gradient descent

variable α 

gradient descent



Learning Rate

• Monitor learning rate by looking at how fast the 
objective function decreases

L(x)

number of iterations

          or time

very high learning rate

high learning rate

low learning rate

good learning rate



Learning Rate: Loss Surface Illustration 

001.0=

updates 3~ k

updates 30.~ k

01.0=

1.0=



Back to 

Loss Functions
and

Loss Optimization



Training Perceptron - First Attempt

total count of classification errors 

(both  yi , u ϵ {0,1})

total loss

Consider perceptron:

perceptron’s prediction

on example xi

homogeneous representation of x

vector representation of w

single example loss

prediction on example xi

Error Counting Loss:

Iverson 

brackets



extreme case of (so-called) vanishing gradients 

Zero Gradients Problem

“error count” loss function cannot be optimized via gradient descent

W

L(W)

W*

(optimal weights)

NOTE 

in this case, the loss gradient  

is always either zero or does not exist

error count loss

Classification error loss function L(W) is piecewise constant:

COMMENT2: the original Rosenblatt’s algorithm does not use gradient descent (GD). It is based on an 

error correcting procedure that, similarly to GD, iteratively updates weights W using some learning rate. 

The updates use only incorrectly classified points. Assuming linear separability, it converges to a no-error 

solution for training data. But if data is not linearly separable, the iterations will run into an infinite cycle.

COMMENT1: So, what?! Theoretically, it is known that the optimum classifier for the error counting loss 

is “argmax” of Bayesian posterior                                .       . This is a generative approach to classification 

requiring estimation of probability densities               from training data. In general, this is a hard problem 

(for high-dim data). The decision boundary can be arbitrarily complex. We focus on a discriminative 

approach explicitly optimizing parametric decision model to minimize a given loss on training data.



Perceptron:

Work-around for Zero Gradients

1

0
t

u(t) - unit step function 
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

approximate decision function u using its softer version (relaxation) 

Ϭ(t) ≈ u(t)



Work-around for Zero Gradients

1

0
t

u(t) - unit step function 
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

Relaxed predictions are often interpreted as prediction “probabilities”

1-Ϭ(t) 

Perceptron:

approximate decision function u using its softer version (relaxation) 

Ϭ(t) ≈ u(t)

COMMENT: if data densities for each class are (equicovariant) Gaussians, Bayesian posterior is sigmoid             .



Training Perceptron - Second Attempt

Perceptron approximation:

1

0

Ϭ(t)

still piece-wise constant w.r.t. σ 
Error counting loss:

NOTE: 

To be able to use 

gradient descent we 

need to “soften” both 

the decision function 

and the loss function



Quadratic Loss

Perceptron approximation:

1

0

Ϭ(t)NOTE:

Loss                           

is now differentiable   

with respect to      

because               is

differentiable w.r.t. 

Consider quadratic loss:



1

0

Quadratic Loss

Perceptron approximation:

misclassified example

Ϭ(t)

Consider quadratic loss:



1

0

Quadratic Loss

Perceptron approximation:

another misclassified example

Ϭ(t)

Consider quadratic loss:



1

0

Quadratic Loss

Perceptron approximation:

correctly classified examples

Ϭ(t)

NOTE: loss function encourages

linear classifier  W  such that 

correctly classified points are

further from the decision boundary, 

i.e.                     and                    .

Consider quadratic loss:



Quadratic Loss

Perceptron approximation:

Sum of Squared Differences 

(SSD)

Total loss

approximation for 

perceptron’s prediction

on example xi

Consider quadratic loss:



(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Perceptron approximation:

“Distance” between two distributions 

can be evaluated via KL-divergence

Consider two probability distributions  

over two classes (e.g. bass or salmon) :                      and

salmonbass

is  0  if  p is one-hot



Perceptron approximation:

Consider two probability distributions  

over two classes (e.g. bass or salmon) :                      and

(binary) 

cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

general cross-entropy formula 
(for K-class distributions)



Perceptron approximation:

Consider two probability distributions  

over two classes (e.g. bass or salmon) :                      and

(binary) 

cross-entropy loss:

Each label  y  gives one-hot distribution                 that is  (1,0)  or  (0,1). 

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

This implies an equivalent alternative expression:



Perceptron approximation:

Consider two probability distributions  

over two classes (e.g. bass or salmon) :                      and

a.k.a. negative log-likelihoods (NLL) loss

Total loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)



Summary of loss functions (for K=2)

error counting

for positive examples (i.e.  y = 1)

quadratic

continuous

relaxation

binary cross entropy (or NLL)

, for negative examples y = 0 ,

is a symmetrical reflection around ½

0 1

1

σ
½

as function of

prediction value 



Summary of loss functions (for K=2)

error counting

for positive examples (i.e.  y = 1)

quadratic

binary cross entropy (or NLL)

continuous

relaxation

0 1

1

σ
½

as function of

prediction value 

let’s replace σ  by                   (sigmoid function)



let’s replace σ  by                   (sigmoid function)

0

1

t

Summary of loss functions (for K=2)

error counting

for positive examples (i.e.  y = 1)

quadratic

continuous

relaxation

as function of

raw output (logit)

binary cross entropy (or NLL)

½

convex logistic regression loss

due to convexity,

gradient descent finds

globally optimal  W

for BCE (NLL) loss
a.k.a. logistic regression

Not a closed-form solution as in 

linear regression (least-squares) 

but we still can get globally optimal

linear classifier:



Towards

Multi-label Classification



u (W   X)
T

+

w1

w2

w3

w4

wm

…
weighted

sum

x2

x4

…

xm

x1

x3

binary

decision

label

Towards Multi-label Classification

Remember:        basic perceptron

W

binary classification



w1

w2

w3

w4

wm

…
weighted

sum

x2

x4

…

xm

x1

x3

binary

decision

Towards Multi-label Classification

binary classification

Remember: “relaxed” perceptron

+
probability

W

salmonbass

not bass

distribution

(Ϭ, 1-Ϭ)

Ϭ(W   X)
T



Towards Multi-label Classification

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk  and sigmoids 

+

+

+

W1

W2

W3

“probability”
of class 1

“probability”
of class 2 

“probability”
of class 3

Such “probability scores” Ϭ1, Ϭ2, …, ϬK over K classes do not add up to 1

Ϭ(Wk X)
T



Common Approach: Soft-Max

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk  and soft-max 

+

+

+

W1

W2

W3

probability

distribution

salmonbass sturgeon

Notation: K rows of matrix  W  are  Wk so that vector  WX  has  K logits 

Ϭ

This is used for

mutually exclusive 

categories

(only one can be true)

some form of

normalization
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softmax

Soft-Max Function

Example:

Soft-max normalizes logits vector  a   converting it to distribution over classes

remember soft-max question in HW4

probability simplex 

for K classes

typically, soft max

in NN uses  T = 1

softmax
…

…

softer version of one-hot 

corresponding to argmax



softmax

Soft-Max Function

… softmax …

Perceptron’s 

example:

salmonbass sturgeon

…
…

Soft-max normalizes logits vector  a   converting it to distribution over classes



Soft-Max Function

… softmax …

salmonbass sturgeon

NOTE: 

soft-max generalizes sigmoid 

to multi-class predictions. Indeed, 

consider binary perceptron with scalar 

linear discriminator W TX  (e.g. for class 1)

sigmoid

class 1 output of soft-max for

a combination of two linear predictors: 

½W TX for class 1 and - ½W TX for class ¬1 (class 0) 

Soft-max normalizes logits vector  a   converting it to distribution over classes

Home exercise: prove that soft-max classifier            

for  K=2 (so that       has two rows            )  

is equivalent to sigmoid classifier  

Perceptron’s 

example:



Consider two probability distributions  

over K classes (e.g. bass, salmon, sturgeon) :            and

K-label perceptron’s output:                       for example

sum of Negative Log-Likelihoods  (NLL)

salmonbass sturgeon

Multi-valued label              gives one-hot distribution   

k-th 

index

Total loss:

cross entropy

NOTE: same as 

Seed Loss 

in interactive 

segmentation

(Topic 9B) 

(general multi-class case)

Cross-Entropy Loss



Define K linear transforms, from features X  to K “logits”  

          for  k = 1, 2, … K

R1

R2

R3

soft-max vs arg-max

Multi-label (linear) Classification

• arg-max assigns  X  to class  k  corresponding to the largest logit

• Let Rk be decision region for class k 
all points X assigned to class k by arg-max 

soft-max                      softens 

hard arg-max predictions 

similarly to how sigmoid 

softens unit-step function

iClicker Q: identify points X with soft-max prediction

A: (1, 0, 0)   B: (0, ½, ½)   C: (½, ½, 0)   D: (⅓,⅓,⅓)



Can be shown that decision regions are convex, spatially 

contiguous, with linear boundaries between any two classes

slide credit: O.Veksler

Limitation of single layer NN
(perceptron)

Summary

Multi-label (linear) Classification



picture credit:  Stanislav Ivashkevich 

Summary

Multi-label (linear) Classification

linear classifier

(decision boundaries)

quadratic 

Gaussian classifier 

(Bayes posterior)

for W optimal w.r.t. 

cross-entropy loss

softmax

(naturally appears in Gaussian posterior) 
“quadratic logits”

Mahalanobis distance 

Gaussian density

for MLE parameters 

estimated from labeled data

all negative, but only relative values matter in softmax

discriminative approach to classification

 directly estimates “posterior models” (decision functions)

generative approach to classification

 estimates “density models”



Towards

Multilayer Neural Networks

we focus on discriminative approach
time permitting, generative network ideas might 

be discussed in the last lectures



Remember:

Single layer multi-class NNs

“probability score”
for class 1

“probability score”
for class 2 

“probability score”
for class 3

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+



Remember:

Single layer multi-class NNs

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

Notation:

homogeneous representation of 

m-dimensional feature vector x

K x (m+1) matrix

where rows are
“bias”

feature vector (input)

we will use notation
 

emphasizing 

size of output and input

while implicitly assuming 

one extra dimension for bias

and 1 in homogeneous input

“probability scores”

(no normalization) 

computed by K perceptrons



x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

x2

x4

…

xm

x1

x3

W1

W2

W3

+

+

+

Remember:

Single layer multi-class NNs

“probability distribution”

(normalized) 

computed by soft max function 

applied to linear transform   

“probability scores”

(no normalization) 

computed by K perceptrons, 

that is, sigmoid function 

applied to linear transform   



Remember:

Single layer multi-class NNs

“probability scores”

(no normalization) 

“probability distribution”

(normalized) 

sigmoid

soft-max

linear transforms
non-linear 

functions



“probability scores”

(no normalization) 

“probability distribution”

(normalized) 

Motivated by neurons, can we link perceptrons? 

sigmoid

soft-max

linear transforms
non-linear 

functions

Multi-layer NNs ?



“probability scores”

(no normalization) 

“probability distribution”

(normalized) 

sigmoid

soft-max

linear transforms

Motivated by neurons, can we link perceptrons? 

non-linear 

functions this output can be treated as 

transformed feature vector

Multi-layer NNs ?



Motivated by neurons, can we link perceptrons? 

“probability scores”

(no normalization) 

“probability distribution”

(normalized) 

sigmoid

soft-max

linear transforms
this output can be treated as 

transformed feature vector

non-linear 

functions

Multi-layer NNs ?



Motivated by neurons, can we link perceptrons? 

NOTE: in the 60’s the idea of multi-layer NN was discredited by 

one (now notoriously famous) book based on their conjecture that 

a composition of linear classifiers can not produce a non-linear one.  

due to non-linear decision function (e.g. Ϭ)

this feature transformation is non-linear

Multi-layer NNs ?

output

probability vector

(over K classes)

input

feature vector

transformed

feature vector



this feature transformation is non-linear

Motivated by neurons, can we link perceptrons? 

input

feature vector

transformed

feature vector

output

probability vector

(over K classes)

NOTE: in the 60’s the idea of multi-layer NN was discredited by 

one (now notoriously famous) book based on their conjecture that 

a composition of linear classifiers can not produce a non-linear one.  

Multi-layer NNs ?

there is no equivalent

linear transformation



Multi-layer NN: Nonlinear Boundary Example

x1

x2

1 -2

-2

1

– 2x1 + x2 – 2 > 0      class 1

x1

x2

1 -2

1

-2

x1  - 2x2 – 2  > 0     class 1 

x1

x2

-1

2

x1

x2

-1

2

First, consider two single-layer perceptrons (each is a linear classifier) :

unit step unit step



-2

1
-2

x1

x2

1 -2

-2

1

Combine the same two perceptrons

Multi-layer NN: Nonlinear Boundary Example

non-linear boundary

between two classes

unit steps

iClicker Q:

what does

layer 2 do? 

(bias)

-0.5 

1

1
unit step

1

x1

x2

x1

x2

+ x1

x2

A:  multiply

B:    plus

C:     and

D:      or

inside 2-layer NN



Multi-layer NN: Non-Linear Feature Embedding

Interpretation:

• layer 1 maps input features to new (transformed) features

• layer 2 applies  linear classifier to the new features

input

feature vector

non-linearly

transformed

feature vector

output

probability vector

(over K classes)

new “embedding”

of the features



consider our earlier two-layer NN example:

can’t separate linearly

(with a single hyperplane) 

in the original feature space

y1

y2

linearly separable features 

in the new “embedding space”

y1

y2

Multi-layer NN: Non-Linear Feature Embedding

NOTE: unlike our kernel approach in topic 9 

              now we might learn such embeddings!

-2

1
-2

x1

x2

1 -2

-2

1

(bias)
-0.5 

1

1

1

x1

x2

and training data



Multi-layer NN: Activation Functions

• Ϭ() - sigmoid function allows 
  gradient descent

• u() – step function does not work    
  for gradient descent

• ReLU() - Rectified Linear Unit is popular

- the simplest kind of non-linear function (2-piecewise linear)  

- gradients do not saturate for positive half-interval

-   must be careful with learning rate, otherwise many 
units can become “dead”, i.e. always output 0

In the interior (hidden) layer, non-linear decision function is 

now called activation function (representing neuron “activation”)

NOTE: activation functions do not need to make 0-1 decisions



Multi-layer NNs 

• non-linear classification

• non-linear feature embedding (new features)

• optimization w.r.t. weights W by backpropagation

   (gradient w.r.t. different layers is computed via chain rule)

     [Rumelhart, Hinton, Williams 1986]

• automatic differentiation ☺

input layer 1 

activations

layer 2 

activations

decisions

layer 3 

activations

layer 1 layer 2 layer 3 



Toy (scalar) illustration of backpropagation 
i.e. chain rule for gradient descent updates of NN weights

input layer 1 

activations

layer 2 

activations

decisions

layer 3 

activations

scalar loss

layer 1 layer 2 layer 3 

Assume: scalar weights, scalar activation functions,

Scalar NN model (composition function) 

Optimization of loss

Backward pass updates weights

using part. derivatives                                                                                         implied by 

                                                                                                                          the chain rule

Forward pass updates activations for each example x

chain rule



Training/Optimization Protocols

“Full” Gradient Descent Protocol
• weights are updated only after gradients are computed on all training examples (epoch)

=

Batch Protocol
• Divide data in batches, and update weights  w after processing each batch

 - unlike “full” updates, updates of w from one batch can be computed in parallel (fit GPU memory)

• Batches are chosen randomly (Stochastic Gradient Descent)

- empirically, known to work better than fixed ordering, and full gradient descent protocol

• Network weights  w get changed more frequently than “full” gradient

- may be less stable, often requires smaller learning rate

 - helps to prevent over-fitting in practice, think of it as “noisy” gradient

• One iteration over all batches is called an epoch

NOTE: gradient of the total loss w.r.t. network weights w 

is the sum of gradients of  L w.r.t.  w on each training example

 
Q: why not in parallel?

... for large training datasets ?



Network Size

• Larger networks are more prone to overfitting

slide credits: O. Veksler



Network Regularization

• Less overfitting for sparser/simpler network with less units

• During gradient descent, subtract  λw  from each weight w
• also widely known as weight decay 

• Works better by adding weight regularization              to the loss 2

2
W



slide credits: O. Veksler



Convolutional 

Neural Networks    (CNNs)

for image classification

- convolutional layers, stride, à trous

- pooling (max and average)

- fully connected layers

- data augmentation

- class activation map (CAM)



Towards Convolutional Neural Networks 

…… convolution operation is defined …………

It is written as:  

fhg =

 
−= −=

−−=
k

ku

k

kv

vjuifvuhjig ],[],[],[

 
−= −=

++−−=
k

ku

k

kv

vjuifvuh ],[],[

Remember (slide from Topic 3):

- You should also remember that convolution is a linear operation

Thus, it can be written as 

- CNNs use convolutions as very sparse linear transformations.

- In the context of (large) images, such NN design is motivated by 

efficiency and neighborhood processing - we will learn filters



Early Work on CNNs

Fukushima (1980) – Neo-Cognitron

LeCun (1998) – Convolutional Networks (ConvNets)

• similarities to Neo-Cognitron

• success on character recognition

Other attempts at deeply layered Networks trained with 

backpropagation

• not much success  (e.g. very slow, diffusing/vanishing gradient)

After 2012 - significant training improvements 

• various tricks (batch normalization, drop-outs, residual links, etc.)

• better GPUs (faster, more units, bigger memory) 



ConvNets: Use Domain Knowledge for NN design

• Convnets exploit prior knowledge about image 

recognition tasks into network architecture design

   -  local spatial connectivity, grid structure, geometry

   -  weight constraints (translational invariance)

• Prejudices the network towards the particular way 

of solving the problem that we had in mind    

 - a form of “inductive bias” in the network model

Domain specific way of enforcing network 

regularization (network sparsity/simplicity)



Convolutional Network: Motivation

Consider a fully connected 

network (most weights W[i,j] ≠ 0)

Example: 200 by 200 image, 

4x104 connections to one 

hidden unit

For 105 hidden units → 4x109 

connections

But distant pixels are unrelated 

(correlations are mostly local)

Do not waste resources by 

connecting unrelated pixels

hidden layer

hidden units 
(neurons / perceptrons) 



Convolutional Network: Motivation

Connect only pixels in a local 

patch, say 10x10

For 200 by 200 image,  102 

connections to one hidden 

unit

For 105 hidden units → 107 

connections

• contrast with  4x109 for fully 

connected layer

• factor of 400 decrease



Convolutional Network: Motivation

• Intuitively, each neuron learns a 

good feature (a filter)  in one 

particular location 

neuron 1

neuron 2
• If a feature is useful in one image 

location, it should be useful in all other 
locations
• stationarity: statistics is similar                   

at different locations

• Idea: make all neurons detect the 
same feature at different positions 

• i.e. share parameters (network weights) 
across different locations

• greatly reduces the number of tunable 
parameters to learn red connections  have equal weight

green connections have equal weight

blue connections have equal weight

-1

2
-2
0

2
1

-2
0

0
1

2
2
1

2
-1

2
-1

1

3

2
2
2

2
-3

2
-1

2

neuron 3



ConvNets: Weight Sharing

Much fewer parameters to learn

For 105 hidden units and 10x10 patch

- 107 parameters to learn without sharing

- 102 parameters to learn with  sharing

Does not depend

on the number of

hidden units



*
-1 0 1

-1 0 1

-1 0 1
=

Filtering via Convolution Recap

Recall filtering with convolution for feature extraction



Convolutional Layer

Same as convolution with 

some fixed filter

But here the filter 

parameters 

    will be learned



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer

convolution kernel

size

input output



Convolutional Layer - Size Change

Output is usually slightly smaller because the borders of the 

image are left out

If want output to be the same size, zero-pad the input

W x H   
input size

(W-m+1) x (H-m+1)

m x m

kernel size

output size ?



Convolutional Layer - Stride

Can apply convolution only to some 

pixels (say, every second pixel)

• output layer is smaller

Example

• stride = 2 means apply convolution 

every second pixel

• makes output image approximately 

twice smaller in each dimension

– image not zero-padded in this example

strided convolution
minimizes information sharing/duplication

(overlap of kernel windows in the input) 

but also reduces spatial resolution of the output



Convolutional Layer - Dilation

Use only subset of points within the kernel’s window

atrous convolution 

a.k.a. dilated convolution
larger receptive field (5x5) for output elements 

while effectively using smaller kernels (3x3)

It maybe helpful to increase kernel size

to enlarge “receptive field ”

for each element of the output

But larger kernels could be expensive…

It often makes sense to combine atrous convolution with stride

(Fr. à trous – hole)



Convolutional Layer – Feature Depth

Input image is usually color, has 3 channels or depth 3



Convolve 3D image with 3D filter

Convolutional Layer – Feature Depth

75 parameters 



Convolutional Layer – Feature Depth

Each convolution step is a 75-dimensional dot product 

between the 5x5x3 filter and a piece of image of size 5x5x3

Can be expressed as  wTx, 75 parameters to learn (w)

Can add bias  wTx + b, 76 parameters to learn (w,b)



Convolutional Layer

Convolve 3D image with 3D filter

• result is a 28x28x1 activation map, no zero-padding used

input output
our notation for

such conv. layer

/ kernel



Convolutional Layer

One filter is responsible for 

one feature type

Learn multiple filters

Example:

• 10x10 patch

• 100 filters

• only 104 parameters to learn



Convolutional Layer

Consider one extra filter 

input output

our notation for

such conv. layer

with two filters

/ kernel

Output from 2 kernels

of shape 5x5x3



Convolutional Layer

• Stack them to get new 28x28x6 “image”

• If have 6 filters (each of size 5x5x3) get 6 activation 

maps, 28x28 each

input output

our notation for

such conv. layer

with six filters

a bank of 6 kernels

of shape 5x5x3



Convolutional Layer

Apply activation function (say ReLu) to the activation map

a bank of 6 kernels

of shape 5x5x3



Several Convolution Layers

Construct a sequence of convolution layers interspersed 

with activation functions



Convolutional Layer

1x1 convolutions make perfect sense

Example

• Input image of size 56x56x64

• Convolve with 32 filters, each of size 1x1x64

shape of each 

1x1x64 kernel

64

applying

a bank of 32 

1x1x64 filters/kernels



Convolutional Layer vs Fully Connected

For example, assume that we applied ReLU to the activation maps

The convolution is a linear transform. 

So, we can equivalently express it via 

matrix multiplication for some matrix W.

m = 32x32x3 
n = 28x28x6 

How large is W ?

vs. 450 parameters

for 6 kernels 5x5x3

1.4m parameters

=

a bank of 6 kernels

of shape 5x5x3

Convolution is highly

sparse special case.



GOOD BADBAD BAD

too noisy too
correlated structure

lack

Check Learned Convolutions

• Good training: learned filters exhibit structure and are 

uncorrelated



Convolutional Layer Summary

Local connectivity

Weight sharing

Handling multiple input/output channels

Retains location associations

Transforms 3D tensor into 3D tensor (tensor flow)    

# filters = #output (activation) maps # input channels

Local connectivity

Weight sharing

filter size,

stride



Pooling Layer

Say a filter is an eye detector

Want detection to be robust to precise eye location 



Pooling Layer

Pool responses at different locations 

• by taking max, average, etc.

• robustness to exact spatial location

• also larger receptive field (see more of the input)

• Usually pooling applied 

with stride > 1

• This reduces resolution 

of output map

• But  we already lost 

resolution (precision)    

by pooling anyway  



Pooling Layer: Max Pooling Example

our notation for

2 by 2 pooling layer

with stride 2

- pooling can be interpreted as downsampling

Hölder 

mean
- general forms of averaging can be used, e.g.

     where p=∞ implies max and p=1 arithmetic mean

NOTE: this is a non-trainable layer 

             (no parameters are trained)



Pooling Layer

Pooling usually applied to each activation map separately



Basic CNN example      (LeNet 5-1998)
3
2
x
3
2

1

greyscale

image

6
6 16

16

400
120

1
4
x
1
4

2
8

x
2

8

1
0
x
1
0

5
x
5

10-class

probabilities

84

NOTE: transformation of multi-dimensional arrays (tensors)

Only 2 convolutional layers + 3 fully connected layers



First CNN architectures for classification

- first CNNs (1982-89)
    (a.k.a. convNets)

Handwritten digit recognition with a back-propagation network

Y. LeCun et al   - NIPS 1989

Gradient-based learning applied to document recognition

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner  - Proc.of IEEE 1998

Neocognitron: A new algorithm for pattern recognition 

tolerant of deformations and shifts in position

K. Fukushima, S. Miyake   - Pattern Recognition 1982

- LeNet 1 (1989)

LeNet 5 (1998)

http://youtu.be/FwFduRA_L6Q


https://youtu.be/FwFduRA_L6Q

Handwritten digit recognition with a back-propagation network

Y. LeCun et al   - NIPS 1989

Neocognitron: A new algorithm for pattern recognition 

tolerant of deformations and shifts in position

K. Fukushima, S. Miyake   - Pattern Recognition 1982

First CNN architectures for classification

- first CNNs (1982-89)
    (a.k.a. convNets)

- LeNet 1 (1989)

http://youtu.be/FwFduRA_L6Q
https://youtu.be/FwFduRA_L6Q


Deep CNN architectures for classification

ImageNet classification with deep convolutional neural networks 

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton   - NIPS 2012.
- AlexNet (2012)

- VGG (2014)

- ResNet (2016)

Very Deep Convolutional Networks for Large-Scale Image Recognition 

K. Simonyan, A. Zisserman   - ICLR 2015

Deep residual learning for image recognition   

K. He, X. Zhang, S. Ren, J. Sun.   - CVPR 2016

http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

http://youtu.be/FwFduRA_L6Q
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html


VGG -16

Very Deep Convolutional Networks for 

Large-Scale Image Recognition 

K. Simonyan, A. Zisserman   - ICLR 2015

neurohive.io/en/popular-networks/vgg16/

picture credits

https://neurohive.io/en/popular-networks/vgg16/


ResNet

very deep ☺ 

key technical trick

resnet block

one of the 

state of the art

on image net

www.image-net.org 

- very large dataset

of labeled images

>14,000,000

Deep residual learning for image 

recognition.   K. He, X. Zhang, S. 

Ren, and J. Sun. CVPR 2016

“skip connection”

or 

“residual connection”

(residual link “helps” gradient descent)



FashionMNIST classification example
see  class MyNet in  Classification_Notebook_CS484_UW.ipynb

2
8
x
2
8

1

greyscale

image

20

20

50
50

800 500 10

1
2
x
1
2

2
4
x
2
4

8
x
8

4
x
4

10-class

probabilities



FashionMNIST classification example
see  class MyNet in  Classification_Notebook_CS484_UW.ipynb

In HW5 you design your own semantic segmentation network

that  classifies individual pixels (see next topic)

image-level classification



Class-activation Map (CAM)

CVPR 2016:  “Learning Deep Features for Discriminative Localization”

                           B.Zhou, A.Khosla, A. Lapedriza, A.Oliva, A.Torralba

soft-max

image-level 

prediction

(CE trained)linear

discriminator 

Wk =(w1 ,...,wn )

for “terrier”

image-level 

feature f

pixel-level 

features fp

NOTE: motivates ideas for object localization, as well as 

             image-level supervision for semantic segmentation

interpret as

pixel-level

network “attention”

terrier CAM

pixel-level logits 

logits

global

average 

pooling

last convolutional layer output

with spatial resolution



Practical Issues for NN training

• data augmentation 
- addresses limited training data

- e.g. transform available labeled data (domain and range 

transformations, deformations, cropping, etc.)

• stochastic gradient descent (SGD)
- batch size selection 

- batch normalization (subtract batch mean and divide by batch st.d.)

• hyper-parameter tuning (e.g. learning rate)

- break test data into “validation” data + (real) “testing” data

- real testing data is often hidden, and one must use validation 

data for internal testing purposes, as in assignment 5  

• debugging
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