

image segmentation objectives

Part II

Spatial Regularization for Image Segmentation

alternative views about data representation

collection of feature vectors in \mathbb{R}^n

3D tensor

general features common in ML

features embedded in a regular 2D grid common in computer vision

convolution, geometry, shape, spatial regularity, ...

K-means, GMM, general graph clustering, ...

image segmentation objectives

Part II

Spatial Regularization

- Graphical Models on grids
 - boundary regularity (from shortest path to graph cut)
 - weakly-supervised and unsupervised segmentation
 - 3D shape reconstruction
 - losses: smoothness, edge-alignment, color-consistency, seed/label consistency, NLL
- Spatial regularization + feature clustering
 - joint shape regularization and color model fitting
 - variance clustering vs entropy clustering

Intelligent Scissors (a.k.a. live-wire)

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $(t_0, t_1, and t_2)$ are shown in green.

[Eric Mortensen, William Barrett, 1995]

Intelligent Scissors

- ☐ This approach answers a basic question
 - Q: how to find a path from seed to mouse that follows object boundary as closely as possible?
 - A: define a path that stays as close as possible to edges

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $(t_0, t_1, and t_2)$ are shown in green.

Intelligent Scissors

- Basic Idea
 - find **lowest cost path** from seed to mouse on a graph (e.g. N_8 pixel grid) weighted by intensity contrast

simple example:

seed

some local "contrast" measure based on magnitude of intensity gradient

$$c_p = \frac{25}{1 + |\nabla I_p|}$$

Use node-weighted version of "shortest paths" (Dijkstra)

Shortest Path Search (Dijkstra)

□ Computes minimum cost path from the seed to *all other pixels*

(once all paths are pre-computed, each path can be instantly shown as mouse moves around)

$$w_{pq} = 11$$
 V_{q}

11 13 12 9 5 8 3 1 2 4 10

14 11 7 4 2 5 8 4 6 8 8

11 6 3 5 7 9 12 11 10 7

7 4 6 11 13 18 17 14 8 5

6 2 7 10 15 15 21 19 8 5 6

11 5 2 8 3 4 7 9 13 14 15 9 6 6

11 5 2 8 3 4 5 7 2 5 9

12 4 2 1 5 6 3 2 4 8 12

10 9 7 5 9 8 5 3 7 8 15

Same as edge-weighted "shortest paths" (Dijkstra) using directed edge weights $w_{pq} = c_p$ $(w_{qp} = c_q)$

Shortest Path Search (Dijkstra)

☐ Computes minimum cost path from the seed to *all other pixels* (once all paths are pre-computed, each path can be instantly shown as mouse moves around)

Can also define edge weights w_{pq} directly from

intensity contrast across edge pq, e.g. $w_{pq} =$

$$\frac{25}{1 + \|\nabla I \times \bar{pq}\|}$$

Graph cuts vs Shortest paths for 2D segmentation

Example:

find the shortest closed contour on a graph in the shaded domain

Shortest-path approach

Compute the *shortest path* $p \rightarrow p$ for a point p.

Repeat for all points on the gray line. Then choose the optimal contour.

Graph-cut approach

Compute the minimum cut that separates red region from blue region

Graph cuts for optimal boundary detection

simple example [a la B&J, ICCV'01]

cut's cost = the sum of severed edges weights

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Graph cuts for optimal boundary detection

simple example [a la B&J, ICCV'01]

cut's cost = the sum of severed edges weights

The number of seeds (hard constraints) could be arbitrary - graph cut completes user labeling (a la "Intelligent paint")

$$w_{pq} = \lambda \exp\left\{-\frac{\|I_p - I_q\|^2}{2\sigma^2}\right\}$$

$$\Delta I_{pq} = I_p - I_q$$

Image contrast weighted *n-links*

Optimal separation boundary (min cut) in 2D

graph cuts

with hard constrains and contrast-weighted n-links

note alignment of segmentation boundary with intensity contrast edges (image edges)

$$w_{pq} = \lambda \exp\left\{-\frac{\|I_p - I_q\|^2}{2\sigma^2}\right\}$$

$$\Delta I_{pq} = I_p - I_q$$

WARNING: "massive" abuse of notation S_p but most of the time it should be clear from context if we mean (random) class index or its distribution

s-t graph cut as an example of algorithm for

Loss optimization

cut's cost = the sum of severed edges weights

First question:

How can one represent **segmentation as variables?** (remember K-means)

$$S_p = \left(\begin{array}{c} S_p^1 \\ S_p^0 \end{array}\right) \in \Delta^2 \qquad \text{OR} \qquad S_p \in \{0,1\}$$

categorical distribution (includes *one-hot* case $\Delta_{\mathbf{v}}^2$)

$$S_p \in \{0, 1\}$$

discrete label (i.e. corresponding random variable)

binary case, easily generalizes to $K \ge 2$ categories

Loss optimization

cut's cost = the sum of severed edges weights

loss encouraging smooth segmentation boundary aligned with contrast edges

$$\sum_{pq \in N} w_{pq} \left[S_p \neq S_q \right]$$

cost of severed n-links

$$[x] := \left\{ \begin{array}{ll} 1 & \text{if } x = True \\ 0 & \text{if } x = False \end{array} \right.$$
 brackets

Loss optimization

 $\{y_p \mid p \in \Omega_{\mathcal{L}}\}$ - seed labels (ground truth)

cut's cost = the sum of severed edges weights

 $\Omega_{\mathcal{L}}$ - set of seeded (user-labeled) pixels

Q: What loss function can represent consistency of S with user labels?

cost of severed n-links

$$[x] := \left\{ \begin{array}{ll} 1 & \text{if } x = True \\ 0 & \text{if } x = False \end{array} \right.$$
 brackets

probability that pixel p

Supervision loss:

Similar "NLL" loss is commonly used for supervised training of neural networks (topics 10,11,12)

consistency with ground truth labels y_n

For generality, assume K classes and ground truth label $y_p \in \{1, \ldots, K\}$

$$S_p = \left(egin{array}{c} S_p^1 & ext{probability that pixel } p \ ext{belongs to category } k \end{array}
ight)$$
 segmentation variable $S_p^K = \left(egin{array}{c} S_p^k \ ext{order} \end{array}
ight)$

categorical distribution over *K* classes at point p

one-hot distribution consistent with given ground truth label value $y_p = k$

How to enforce supervision constraint $\ S_n^{y_p} = 1$?

Standard supervision (or seed) **loss:**

that works for <u>discrete</u> or <u>relaxed</u> segmentation

$$S_p^k \in \{0,1\} \quad S_p^k \in [0,1]$$

 $-\log(S_n^{y_p})$ $\Pr(S_n = y_n)$ here S_n is interpreted as random variable

constraint for S_n that represents known ground truth label y_n

Loss optimization

 $\{y_p \,|\, p \in \Omega_{\mathcal{L}}\}$ - seed labels (ground truth) cut's cost = the sum of severed edges weights

 $\Omega_{\mathcal{L}}$ - set of seeded (user-labeled) pixels

Seed loss enforcing consistency of S with user labels

$$\sum_{p \in \Omega_{\mathcal{L}}} -\log S_p^{y_p}$$

cost of severed t-links

$$-\log x := \begin{cases} 0 & \text{if } x = 1\\ \infty & \text{if } x = 0 \end{cases}$$

$$\sum_{p \in \Omega_{\mathcal{L}}} -\log S_p^{y_p} + \sum_{pq \in N} w_{pq} \left[S_p \neq S_q \right]$$

cost of severed n-links

$$[x] := \left\{ \begin{array}{ll} 1 & \text{if } x = True \\ 0 & \text{if } x = False \end{array} \right.$$
 brackets

Loss optimization

 $\{y_p \,|\, p \in \Omega_{\mathcal{L}}\}$ - seed labels (ground truth) cut's cost = the sum of severed edges weights

 $\Omega_{\mathcal{L}}$ - set of seeded (user-labeled) pixels

node indices

$$S^{I} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ S^{O} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

pixel "beliefs" about two classes

cost of any cut $\{S^1, S^0\}$

$$\sum_{p \in \Omega_{\mathcal{L}}} -\log S_p^{y_p} \quad + \quad \sum_{pq \in N} w_{pq} \left[S_p \neq S_q \right]$$

cost of severed t-links

$$-\log x := \left\{ \begin{array}{ll} 0 & \text{if } x = 1 \\ \infty & \text{if } x = 0 \end{array} \right. \qquad \begin{subarray}{l} [x] := \begin{cases} 1 & \text{if } x = True \\ 0 & \text{if } x = False \\ \end{array} \right.$$

$$[x] := \left\{ \begin{array}{ll} 1 & \text{if } x = True \\ 0 & \text{if } x = False \end{array} \right.$$
 brackets

Loss optimization

 $\{y_p \mid p \in \Omega_{\mathcal{L}}\}$ - seed labels (ground truth) cut's cost = the sum of severed edges weights

 $\Omega_{\mathcal{L}}$ - set of seeded (user-labeled) pixels

node indices

$$S^{I} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 $S^{O} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$
 S_{p}

minimum cut outputs S optimizing total loss L(S)

 $\sum_{p \in \Omega_{\mathcal{L}}} -\log S_p^{y_p} \quad + \quad \sum_{pq \in N} w_{pq} \left[S_p \neq S_q \right]$ penalty for cost of inconsistency with seeds segmentation boundary

seed loss - special case of

example of **regularization loss**

Loss optimization

cut's cost = the sum of severed edges weights $\{y_p \mid p \in \Omega_{\mathcal{L}}\}$ - seed labels (ground truth)

 $\Omega_{\mathcal{L}}$ - set of seeded (user-labeled) pixels

total loss L(S)

node indices

 $-\log S_p^{y_p}$ $p \in \Omega_{\mathcal{L}}$ penalty for inconsistency with seeds

segmentation networks $+ \sum_{pq} ||S_p - S_q||^2$ $pq \in N$

relaxations are also used,

e.g. weakly-supervised

cost of segmentation boundary

seed loss - special case of

example of regularization loss

pixel "beliefs" about two classes

Unlike shortest paths, graph cut works for 3D segmentation:

Optimal separation boundary (min cut) in 3D

Extra correcting seeds can be added **interactively** and new optimal cut will respect them

(new cut respecting extra constraints is faster due to hot start in the algorithm)

Example where

minimum cut representing minimal surface

(surface regularization)

3D bone segmentation (real time screen capture from early 2000)

Some standards methodologies for

Surface Representation and Regularization

mesh, spline

explicit representation of surface/boundary continuous variables S_p explicitly represent surface locations

level-set

implicit representation of surface/boundary

surface is a zero-level set of continuous function f(x,y) $S = \{ (x,y) : f(x,y)=0 \}$

grid labeling

Graph cut is just one discrete approach to optimizing labels S_p for boundary regularization.

Many alternatives also use relaxed indicator variable S_n

implicit representation of surface/boundary

surface is an implicit interface between subsets or segments represented by set/class/object indicators S_p (discrete or relaxed)

Surface representation dictates specific optimization methodology, but common **surface regularization objectives** are closely related: typically, they **minimize surface area and/or curvature**

active contours:
elasticity and bending
(physics)

geodesic active contours:
surface area and curvature
(Riemannian geometry)

graphical models, MRF/CRF:
pairwise and higher-order smoothness
(relates to minimal surfaces via integral geometry)

Graph Cuts Basics (see Cormen's book) Simple 2D example

Goal: divide the graph into two parts separating red and blue nodes

A graph with two terminals *S* and *T*

- Cut cost is a sum of severed edge weights
- Minimum cost *s-t* cut can be found in polynomial time

s/t min cut algorithms are widely studied (combinatorial optimization)

Augmenting paths [Ford & Fulkerson, 1962]

Push-relabel [Goldberg-Tarjan, 1986]

"Augmenting Paths"

A graph with two terminals

- ☐ Find a path from S to T along non-saturated edges
- Increase flow along this path until some edge saturates

"Augmenting Paths"

A graph with two terminals

- Find a path from S to T along non-saturated edges
- Increase flow along this path until some edge saturates
- □ Find next path...
- ☐ Increase flow...

"Augmenting Paths"

A graph with two terminals

MAX FLOW ⇔ MIN CUT

- Find a path from S to T along non-saturated edges
- Increase flow along this path until some edge saturates

Iterate until ... all paths from S to T have at least one saturated edge

Optimal boundary in 2D

"min-cut = max-flow"

like "region growing"

like "region growing"

like "region growing"

iteration 2

shorter paths give faster algorithms (in theory and practice)

Graph cuts 3

Graph cut is an old standard problem with lots of applications outside vision

From Harris & Ross [1955]

declassified RAND report that originally inspired Ford and Fulkerson

Problem: find gas/oil pipelines or railways network bottleneck in Eastern Europe

Graph cut is an old standard problem with lots of applications outside vision

From Harris & Ross [1955]

declassified RAND report that originally inspired Ford and Fulkerson

Problem: find gas/oil pipelines or railways network bottleneck in Eastern Europe

Applications of max-flow (min cut) algorithms

- Matrix rounding
- Perfect matching
- Vertex cover
- Routing (airline scheduling)
- Baseball elimination
- Economics (circulation—demand problem)
- Computer vision

Multi-view volumetric photo-reconstruction

Calibrated images of Lambertian scene

3D model of scene

first pass at dense volumetric multi-view reconstruction:

use silhouettes => visual hull

- Assume known cameras $P_i = K_i [R_i | T_i]$ (including position/orientation)
- □ Assume that each camera knows object's 2D silhouette S_i
 - binary image segmentation problem
 - ideas on how to solve it?
- □ Project each camera's silhouette into space to obtain a 3D *cone*.
- ☐ Intersection of the *cones* generated by silhouettes in each image gives the *visual hull* of the object
- visual hull is the smallest 3D shape consistent with all silhouettes.
- object is a subset of its visual hull

Visual hull of a human face

Can refine visual hull using photoconsistency

Estimating visibility

only over cameras *i* that "see" voxel P

Graph cuts applied to multi-view reconstruction

Graph cuts applied to multi-view reconstruction

surface of good photoconsistency

Graph cuts for video textures

Graph-cuts video textures

(Kwatra, Schodl, Essa, Bobick 2003)

What is left to discuss in topic 9:

Combining appearance & boundary in segmentation loss function

- **A**. known color/appearance + boundary regularization
- **B**. color model fitting (K-means) + boundary regularization
- C. kernel clustering objectives + boundary regularization

combining color & boundary objectives

"agreement" with given color likelihoods model defines appearance consistency

A: combining known color model and boundary regularization

or

another example of negative log-likelihood loss (NLL) for observed (low-level) features, e.g. colors

Adding regional properties another segmentation example [B&J'01]

"regional" hard constrains (seeds) are replaced with "regional" **soft constraints**

regional bias example 1

assume **known**"expected" intensities
for object and background

e.g.
$$\theta_1 = 57$$
 and $\theta_0 = 213$

$$D_p(s) = ||I_p - \theta_1||^2 = w_{pt}$$

$$D_p(t) = ||I_p - \theta_0||^2 = w_{ps}$$

penalties/costs (e.g. *squared errors*) for assigning labels *s* or *t* to pixel *p*

Adding regional properties

another segmentation example [B&J'01]

"regional" hard constrains (seeds) are replaced with "regional" **soft constraints**

regional bias example 2

known probability distributions for object and background colors/intensities

example 1 is a special case for $\|I_p - \theta_k\|^2 <=$ Gaussian pdf

$$D_p(s) = -\ln \Pr(I_p|\theta_1) = w_{pt}$$

$$D_p(t) = -\ln \Pr(I_p|\theta_0) = w_{ps}$$

penalties/costs ($neg.\ log-likelihoods$) for assigning labels s or t to pixel p

What are *t-links* about?

(for now, assume no *n-links*)

A: sever the cheaper t-link at every pixel independently trivial problem, no fancy algorithms needed

$$\min_{S_p \in \{s,t\}} D_p(S_p)$$

altogether, we optimize the sum of unary (pixelwise) terms

$$\min_{S} \sum_{p} D_{p}(S_{p})$$

Q: What is the <u>minimum cut</u> on a graph if there are only *t-links* (no *n-links*)?

What are *t-links* about?

(for now, assume no *n-links*)

WARNING: below we use both integer-valued indicators or one-hot distributions, as convenient.

The exact interpretation should be clear from context.

with discrete (hard) segmentation (as graph cuts) we can use either class indicator variables (integers)

$$S_p \in \{0, 1\}$$

or
$$S_p \in \{1, ..., K\}$$

OR (equivalently) one-hot distributions, e.g. (1,0) and (0,1)

$$S_p = (S_p^1, S_p^0) \in \Delta_{\mathbf{v}}^2$$
 or $S_p = (S_p^1, \dots, S_p^K) \in \Delta_{\mathbf{v}}^K$

or
$$S_p = (S_p^1, \dots, S_p^K) \in \Delta_{\mathbf{v}}^K$$

For continuous/relaxed segmentation, it is common to use (soft) categorical distributions (as was in fuzzy K-means)

$$S_p = (S_p^1, \dots, S_p^K) \in \Delta^K$$

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}}^{\text{cost of severed t-links}} D_p(S_p)$$

What are *t-links* about?

(for now, assume no *n-links*)

t-links describe individual pixel preferences or likelihoods of labels (*s* and *t*)

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}}^{\text{cost of severed t-links}} D_p(S_p)$$

cut C

What are *t-links* about?

(for now, assume no *n-links*)

t-links describe individual pixel preferences or likelihoods of labels (*s* and *t*)

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}}^{\text{cost of severed t-links}} D_p(S_p)$$

NOTE: the second formulation of D allows relaxed segmentation $S_p \in \Delta^2$ (D(S) is **linear** w.r.t. S as in K-means)

minimizing squared errors

cut C

What are *t-links* about?

(for now, assume no *n-links*)

t-links describe individual pixel preferences or likelihoods of labels (s and t)

remember example 2 with **neg. log-likelihoods**

$$D_p(S_p) = -\ln \Pr(I_p|\theta_{S_p}) \equiv -\sum_{k=0}^{\infty} S_p^k \ln \Pr(I_p|\theta_k)$$
 lower cost label $S_p \in \{0,1\}$ selects higher likelihood model θ_k $S_p \in \Delta_{\mathbf{v}}^2$

"NLL"

1 example (slide 52)

$$\sum_{k=0}^{\infty} S_p^k \ln \Pr(I_p | \theta_k)$$

$$S_p \in \Delta^2_{\mathbf{v}}$$

NOTE: the second formulation of *D* allows relaxed segmentation $S_p \in \Delta^2$ (**linear** for S as in probabilistic K-means)

maximizing log-likelihoods (of features/colors)

cut C

What are *t-links* about?

(for now, assume no *n-links*)

t-links describe individual pixel preferences or likelihoods of labels (s and t)

remember earlier example with **hard constraints** / seed labels y_p $D_p(S_p) = \begin{cases} 0 & \text{if } S_p = y_p \\ \infty & \text{if } S_p \neq y_p \end{cases}$

lower cost label $S_p \in \{0, 1\}$ selects feasible solution

NOTE: for $p \notin \Omega_L$ $D_p(0) = D_p(1) = 0$ $\equiv -\ln \Pr(S_p = y_p)$

example (slide 16) $S_n \in \Delta^2_{\mathbf{v}}$

cost of severed t-links

NOTE: the second formulation of *D* allows relaxed segmentation $S_p \in \Delta^2$ (non-inear function $-log(S_p^{y_p})$ w.r.t S)

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}} D_p(S_p)$$

maximizing log-probabilities (of correct labeling)

Summary:

(putting *t-links* and *n-links* back together again)

t-links describe individual pixel preferences or likelihoods of labels (*s* and *t*)

n-links describe

pairwise pixel correlations or

structural regularization, which
can be interpreted as (MRF) prior

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}}^{\text{cost of severed t-links}} L(S) + \sum_{\substack{p \ \text{segmentation S}}}^{\text{cost of severed n-links}} w_{pq} \left[S_p \neq S_q\right]$$

no longer a trivial optimization problem

Summary:

(putting *t-links* and *n-links* back together again)

Comment on (so-called) regularization constant

$$w_{pq} = \lim_{N \to \infty} \left\{ -\frac{\|I_p - I_q\|^2}{2\sigma^2} \right\}$$

Important **hyper-parameter** of the (joint) energy since it determines relative weight of the two terms:

regional (unary) vs. boundary (pairwise)

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}}^{\text{cost of severed t-links}} D_p(S_p) + \sum_{\substack{pq \in N}}^{\text{cost of severed n-links}} w_{pq} \left[S_p \neq S_q\right]$$

no longer a trivial optimization problem

Extensions for segmentation energy/loss optimization:

submodular set functions

(discrete/combinatorial optimization)

$$E(S) = \sum_{A} E_{A}(S_{A})$$
 for $S_{A} = \{S_{p} / p \in A\}$ factors (unary, pairwise, high-order)

multi-label problems

(e.g. multi-way cuts, relaxation)

$$S_p \in \{1, 2, \dots, K\}$$
 class indices

or $S_p \in \Delta^K$ categorical distributions

MRF/CRF MAP estimation loss

log-likelihoods + log prior

geometric surface functionals

(continuous optimization, PDEs) minimum surfaces (area, curvature, shape)

e.g.
$$\int_S d(v)dv + \int_{\partial S} w(s)ds$$

$$\|C(S)\| \equiv L(S) = \sum_{\substack{\text{loss for segmentation S}}} D_p(S_p) + \sum_{\substack{pq \in N}} w_{pq} \left[S_p \neq S_q\right]$$

no longer a trivial optimization problem

Graph cut vs Thresholding

$$E(S) = \sum_{p} D_{p}(S_{p}) + \sum_{pq \in N} w_{pq} [S_{p} \neq S_{q}]$$

thresholding

(naive Bayesian classification, iid pixels) (correlated pixels, MRF/CRF inference)

$$S_p = \begin{cases} 1 & \text{if } D_p(1) < D_p(0) \\ 0 & \text{O.W.} \end{cases}$$

result of optimizing unary potentials D_p (only)

Given Color Models

Appearance color distributions θ_0 and θ_1 can be estimated from user seeds

e.g. histograms or GMM distributions (as in HW4) estimated from RGB colors of pixels in the seeded regions

Comparison:

color likelihoods only (thresholding)

with boundary regularization

Even in examples (as here) where object colors are discriminative, boundary regularization is useful

In this image, adding color models helps a lot. Our earlier result (**slide 12**) with n-links only required more seeds. It also required n-link weighting function w significantly more sensitive to intensity contrast (significantly smaller σ).

Comparison (less trivial example):

Low-level features (like RGB colors) are discriminative only in simple cases

Includes higher-order features (shape boundary, contrast edges)

In the context of CNN segmentation (topics 11 & 12) we will discuss methods to automatically learn discriminative high-level (semantic or deep) features from many fully- or weakly-supervised examples

Adding regional properties another segmentation example

Threshold intensities

Adding regional properties

(example: regularized background subtraction)

thresholding

graph cuts

Threshold intensities $S = \{ p : I_p > T \}$

optimal cut

What is left to discuss in topic 9:

Combining appearance & boundary in segmentation loss function

A. known color/appearance + boundary regularization

B. color model fitting (K-means) + boundary regularization

C. kernel clustering objectives + boundary regularization

we will do only a quick overview; the detailed slides are left for optional reading

What if models $Pr(I | \theta_i)$ are <u>not known</u>?

What if models $Pr(I | \theta_i)$ are <u>not known</u>?

$$E(S) = \sum_{p} D_{p}(S_{p}) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_{p} \neq S_{q}]$$

$$= -\sum_{p} \sum_{k} S_{p}^{k} \ln \Pr(I_{p}|\theta_{k}) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_{p} \neq S_{q}]$$

see NLL loss on slides 52,57

What if models $Pr(I | \theta_i)$ are <u>not known</u>?

$$E(S) = \sum_{p} D_p(S_p) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$

$$= -\sum_{k} \sum_{p} S_p^k \ln \Pr(I_p | \theta_k) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$
see NLL loss on slides 52,57

What if models $Pr(I | \theta_i)$ are <u>not known</u>?

$$E(S) = \sum_{p} D_p(S_p) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$

$$= -\sum_{k} \sum_{p} S_p^k \ln \Pr(I_p | \theta_k) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$
see NLL loss on slides 52,57

Let's switch to K-class segmentation, but optimization w.r.t. segmentation S is more difficult, e.g. no polynomial solver for K>2 even for fixed models θ_k

What if models $Pr(I | \theta_i)$ are not known?

approach

A:

$$E(S,\theta) = \sum_{p} D_p(S_p) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$

$$-\sum_k \sum_p S_p^k \ln \Pr(I_p| heta_k) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p
eq S_q]$$

probabilistic K-means over color features I_p if unknown K distributions Θ_k are treated as <u>additional optimization variables</u>

 $pq \in \mathcal{N}$

segmentation boundary regularization

Approximate Optimization Idea (greedy iterations)

- for fixed Θ_i (back to "known" models) optimize over $\{S_n\}$
- for fixed $\{S_p\}$ optimize over model parameters Θ_i

 $\Pr(\mathbf{I}|\theta_{\mathbf{k}})$

Segmentation combining color model fitting and boundary regularization

What if models $Pr(I | \theta_i)$ are <u>not known</u>?

approach

B:

k-th segment indicator vector

$$S_p \in \Delta_{\mathbf{v}}^K$$

$$S^k = (S_p^k | p \in \Omega) = (S_1^k, \dots, S_{|\Omega|}^k)$$

$$E(S) = -\sum_{k} \frac{S^{k'}AS^{k}}{|S^{k}|} + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$

non-parametric clustering (e.g. kernel K-means) using any pixel features f_p or affinities $[A_{pq}]$

segmentation boundary regularization

Approximate Optimization Idea: use spectral decomposition of A to convert the first term to basic K-means over low-dimensional Euclidean embedding $\{\tilde{\phi}_p\}$ such that $\langle \tilde{\phi}_p, \tilde{\phi}_q \rangle = \tilde{A}_{pq}$. Then, iterate similar two optimization steps (e.g. graph cuts and mean estimation)

similar t

Segmentation combining kernel clustering of image features and boundary regularization

Examples: clustering + spatial regularization

□ Unsupervised segmentation [Zhu&Yuille, 1996]

$$E(S, \theta_1, \dots, \theta_K) = -\sum_{k=1}^K \sum_p S_p^k \ln \Pr(I_p | \theta_k) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q] + |labels|$$

initialize models θ_0 , θ_1 , θ_2 , ... from randomly sampled boxes

iterate segmentation and model re-estimation until convergence

Examples: clustering + spatial regularization

□ Box-supervised segmentation [GrabCut, Rother et al SIGGRAPH'04]

$$E(S, \theta_1, \theta_0) = -\sum_{k=0}^{1} \sum_{p} S_p^k \ln \Pr(I_p | \theta_k) + \sum_{pq \in \mathcal{N}} w_{pq} \cdot [S_p \neq S_q]$$

DEMO: "Remove Background" tool directly inside "Picture Format" tab of MS Power Point software

Examples: clustering + spatial regularization

□ Self-supervised segmentation [KernelCut, Tang et al ECCV'16]

RGBXY M (motion sensor) RGBXYM + contrast edges

combining color & boundary objectives

(probabilistic) K-means defines appearance/color consistency

A. Appearance model fitting and boundary regularization

(in the context of image segmentation)

This last portion of topic 9 is OPTIONAL

Remember simple example

(one color appearance)

assume **known**"expected" intensities
for object and background

$$D_{p}(0) = (I^{0} - I_{p})^{2}$$

$$D_{p}(1) = (I^{1} - I_{p})^{2}$$

$$E(S|I^0,I^1) = \sum_{p:S_p=1} (I^1-I_p)^2 + \sum_{p:S_p=0} (I^0-I_p)^2 + \sum_{\substack{p:S_p=0}} w_{pq} \cdot [S_p \neq S_q]$$

Remember simple example

(one color appearance)

"expected" intensities of object and background I^1 and I^0 can be re-estimated

K-means (SSE) loss

K-means (SSE) loss with boundary regularization
$$E(S, \underline{I^0, I^1}) = \sum_{p:S_p=1} (I^1 - I_p)^2 + \sum_{p:S_p=0} (I^0 - I_p)^2 + \sum_{\{pq\} \in N} w_{pq} \cdot [S_p \neq S_q]$$
 extra variables

Block-coordinate descent for $E(S, I^0, I^1)$

 \square Minimize over labeling S for fixed I^0 , I^1

$$E(S, \mathcal{N}, \mathcal{I}^{\dagger}) = \sum_{p:S_p=0} (I^0 - I_p)^2 + \sum_{p:S_p=1} (I^1 - I_p)^2 + \sum_{\{pq\} \in N} w_{pq} \cdot [S_p \neq S_q]$$
optimal S can be computed using graph cuts

optimal S can be computed using graph cuts

 \square Minimize over I^0 , I^1 for fixed labeling S

$$E(\mathcal{S}, I^{0}, I^{1}) = \sum_{p:S_{p}=0} (I^{0} - I_{p})^{2} + \sum_{p:S_{p}=1} (I^{1} - I_{p})^{2} + \sum_{\{pq\} \in N} w_{pq} \cdot [S_{p} \neq S_{q}]$$

optimal I^1 , I^0 can be computed by minimizing squared errors inside object and background segments

$$\hat{I}^{0} = \frac{1}{|\bar{S}|} \cdot \sum_{p:S_{p}=0} I_{p}$$
 $\hat{I}^{1} = \frac{1}{|S|} \cdot \sum_{p:S_{p}=1} I_{p}$

$$\hat{I}^1 = \frac{1}{|S|} \cdot \sum_{p:S_p=1} I$$

mean colors in two segments

(binary case $S_p \in \{0,1\}$)

K-means in RGB space

combined with boundary smoothness in XY

$$E(S, I^{0}, I^{1}) = \sum_{p:S_{p}=0} (I_{p} - I^{0})^{2} + \sum_{p:S_{p}=1} (I_{p} - I^{1})^{2} + \sum_{p:S_{p}=1} w_{pq} \cdot [S_{p} \neq S_{q}]$$

$$+ \sum_{\{pq\} \in N} w_{pq} \cdot [S_{p} \neq S_{q}]$$

(binary case $S_p \in \{0,1\}$)

K-means in RGB space

combined with boundary smoothness in XY

$$E(S, I^{0}, I^{1}) = \sum_{k=0}^{1} \sum_{p:S_{p}=k} (I_{p} - I^{k})^{2} + \sum_{\substack{pq \in N}} w_{pq} \cdot [S_{p} \neq S_{q}]$$

(could be used for more than 2 labels $S_p \in \{0,1,2,...\}$)

$$E(S, I^0, I^1, ...) = \sum_{k=0}^{K} \sum_{p:S_p=k} (I_p - I^k)^2$$

$$+ \sum w_{pq} \cdot [S_p \neq S_q]$$

{ *pq*}∈*N*

multi-terminal graph cuts are needed for segmentation step [BVZ, PAMI 2001]

(could be used for more than 2 labels $S_p \in \{0,1,2,...\}$)

$$E(S, I^0, I^1, ...) = \sum_{k=0}^{K} \sum_{p:S_p=k} (I_p - I^k)^2$$

without the smoothing term, this is like "K-means" clustering in the color space

(could be used for more than 2 labels $S_p \in \{0,1,2,...\}$)

$$E(S, I^0, I^1, ...) = \sum_{k=0}^{K} \sum_{p:S_p=k} (I_p - I^k)^2$$

Works well mainly for objects with simple appearance (approximately one color per segment)

General appearance example

(remember fixed color model example)

$$E(S \mid \theta_0, \theta_1) = \sum_{p} -\ln \Pr(I_p \mid \theta_{S_p}) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

 $S_p \in \{0,1\}$

assuming known

general models (e.g. histograms)

(region)

Log-Likelihoods Spatial smoothness (boundary)

 $I_n \in RGB$

image segmentation, graph cut [Boykov&Jolly, ICCV2001]

Beyond fixed appearance models

probabilistic K-means loss

with boundary regularization

$$E(S, \theta_0, \theta_1) = \sum_{p} -\ln \Pr(I_p \mid \theta_{S_p}) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

$$S_p \in \{0,1\}$$

extra variables

Log-Likelihoods (region)

Spatial smoothness (boundary)

general models (e.g. histograms)

$$I_p \in RGB$$

Models θ_0 , θ_1 can be iteratively re-estimated

iterative image segmentation, Grabcut (block coordinate descent $S \leftrightarrow \theta_0, \theta_1$) [Rother, et al. SIGGRAPH'2004]

Block-coordinate descent for $E(S, \theta_0, \theta_1)$

 \square Minimize over segmentation S for fixed θ_0 , θ_1

$$E(S, \theta_{0}, \theta_{1}) = \sum_{p} -\ln \Pr(I_{p} | \theta_{S_{p}}) + \sum_{pq \in N} w_{pq} \cdot [S_{p} \neq S_{q}]$$

optimal *S* can be computed using graph cuts

 \square Minimize over θ_0 , θ_1 for fixed labeling S

$$E(\mathcal{S}, \theta_0, \theta_1) = \sum_{p:S_p=0} -\ln \Pr(I_p \mid \theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p \mid \theta_1) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

$$\hat{\theta}_0 = p^{\bar{S}}$$

 $\hat{\theta}_1 = p^S$

distribution of intensities in current bkg. Segment $S = \{p: S_p = 0\}$ current obj. segment $S = \{p: S_p = 1\}$

distribution of intensities in urrent obj. segment
$$S = \{p:S_n = 1\}$$

not hard to prove when θ_k are histograms

optimal θ_0 , θ_1 can be computed by minimizing the sums of log-likelihoods

Iterative learning of color models

(binary case $S_p \in \{0,1\}$)

☐ GrabCut: <u>iterated</u> graph cuts [Rother et al., SIGGRAPH 04]

$$E(S, \theta_0, \theta_1) = \sum_{p} -\ln \Pr(I_p \mid \theta_{S_p}) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

start from models $\ensuremath{\theta_0}$, $\ensuremath{\theta_1}$ based on colors inside and outside some given box

iterate graph cut segmentation and model re-estimation until convergence

Iterative learning of color models

(could be used for more than 2 labels $S_p \in \{0,1,2,...\}$)

□ Unsupervised segmentation [Zhu&Yuille, 1996]

$$E(S, \theta_0, \theta_1, \theta_2...) = \sum_{p} -\ln \Pr(I_p \mid \theta_{S_p}) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q] + |labels|$$

iterate segmentation and model re-estimation until convergence

BCD minimization of $E(S, \theta_{\theta}, \theta_{I})$ converges to a local minimum

$$E(S, \theta_0, \theta_1) = \sum_{p:S_p=0} -\ln \Pr(I_p \mid \theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p \mid \theta_1) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

Q: Interpretation of this segmentation/clustering energy where θ_i are extra variables?

Statistical answer: it gives maximum likelihood (ML) estimation of parameters θ_i

Information theoretic answer: *entropy-based* clustering (...see next slides....)

$$-\sum_{p \in S} \ln \Pr(I_p | \theta) = -|S| \sum_{i} p_i^S \ln p_i^{\theta}$$

 $H(S \mid \theta)$

cross entropy of distribution p^S (intensities in S) w.r.t. distribution θ

$$S_i = \{ p \in S \mid I_p = i \}$$
 pixiels of color i in S

$$p_i^s = \frac{|S_i|}{|S|}$$
 probability of color i in S

$$-\sum_{p\in S} \ln \Pr(I_p|\theta) \underset{min\,\theta}{\to} -|S| \sum_{i} p_i^S \ln p_i^S$$

H(S)

entropy of distribution p^S (intensities in S)

$$S_i = \{ p \in S \mid I_p = i \}$$
 pixiels of color i in S

$$p_i^s = \frac{|S_i|}{|S|}$$
 probability of color i in S

$$\sum_{p:S_p=0} -\ln \Pr(I_p \mid \theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p \mid \theta_1) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

$$E(S) = |\overline{S}| \cdot H(\overline{S}) + |S| \cdot H(S) + \sum_{pq \in N} w_{pq} [S_p \neq S_q]$$

information theoretic energy: Minimum Description Length (MDL)

can be interpreted as the number of bits

break image into 2 coherent segments with low entropy of intensities

high entropy segmentation

low entropy segmentation

unsupervised image segmentation (like in *Chan-Vese*)

$$\sum_{p:S_p=0} -\ln \Pr(I_p \mid \theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p \mid \theta_1) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

$$E(S) = |\overline{S}| \cdot H(\overline{S}) + |S| \cdot H(S) + \sum_{pq \in N} w_{pq} [S_p \neq S_q]$$

break image into 2 coherent segments with low entropy of intensities

more general than *Chan-Vese* (colors can vary within each segment)

Model Fitting and Color Clustering:

Gaussian models vs Histograms

segments' appearance consistency

edge alignment/regularization

$$\sum_{p:S_p=0} -\ln \Pr(I_p \mid \theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p \mid \theta_1) + \sum_{pq \in N} w_{pq} \cdot [S_p \neq S_q]$$

$$\sum_{p:S_p=0} (I_p - \mu_0)^2 + \sum_{p:S_p=1} (I_p - \mu_1)^2$$

$$\sum_{p:S_p=0} -\ln \Pr(I_p \mid \theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p \mid \theta_1)$$

$$|S| \cdot \text{var}(S) + |\overline{S}| \cdot \text{var}(\overline{S})$$

variance clustering criteria (K-means)

one color segments

entropy clustering criteria

"simpler" appearance segments

combining color & boundary objectives

Kernel/affinity clustering objectives define (color) appearance consistency

B. General feature consistency and boundary regularization

(in the context of image segmentation)

Remember: K-means clustering objective as appearance consistency criterion

• (probabilistic) K-means or model fitting with **simple models** (e.g. Normal/Gaussian) **work fine when data supports such models**.

for more complex objects, fitting highly descriptive models (e.g. histograms)
 is prone to overfitting; it barely works even for RGB features:

Particularly for higher dimensional features, non-parametric **kernel clustering objectives** are more robust choice for representing "appearance consistency"

Alternative approach: can use <u>pairwise/kernel clustering</u>

overfitting

fitting 2 histograms in RGB (GrabCut without edges)

non-parametric clustering (Normalized Cut in RGB)

Non-parametric kernel clustering with boundary regularization

space of features f_n

Kernel Cut [M.Tang et al. ECCV 2016]

segmentation S optimizing E(S)

Normalized cut in RGBXYM space

combined with boundary regularization in XY

$$E(S) = -\sum_{k} \frac{S^{k} \cdot A_{f} S^{k}}{d'_{f} S^{k}} + \sum_{\{pq\} \in N} w_{pq} \cdot [S_{p} \neq S_{q}]$$

 $A_f[p,q]$ - affinities between all pairs of features f_p in RGBXYM $d_f[p]$ - a "degree" vector (sum of affinities for each p)

Non-parametric kernel clustering with boundary regularization

Kernel Cut [M.Tang et al. ECCV 2016]

RGBXY M (motion sensor) RGBXYM + contrast edges

