
image segmentation objectives

Part II

Spatial Regularization 
for Image Segmentation

alternative views about data representation
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image segmentation objectives

Part II

Spatial Regularization 

❑Graphical Models on grids

- boundary regularity (from shortest path to graph cut)

- weakly-supervised and unsupervised segmentation

- 3D shape reconstruction

- losses: smoothness, edge-alignment, color-consistency, seed/label consistency, NLL  

❑ Spatial regularization  +  feature clustering

    - joint shape regularization and color model fitting 

     - variance clustering vs entropy clustering

OPTIONAL MATERIAL



Intelligent Scissors (a.k.a. live-wire)

[Eric Mortensen, William Barrett, 1995]

scissors/toboggan_scissors.mov
scissors/toboggan_scissors.mov


Intelligent Scissors

This approach answers a basic question

• Q:  how to find a path from seed to mouse that follows 
object boundary as closely as possible?

• A:  define a path that stays as close as possible to edges

toboggan_scissors.mov
toboggan_scissors.mov


Intelligent Scissors

Basic Idea

• find lowest cost path from seed to mouse 

    on a graph (e.g. N8 pixel grid) weighted by intensity contrast

seed

mouse

Use node-weighted version of 

“shortest paths” (Dijkstra)

||1

25

p

p
I

c
+

=

simple example:

some local “contrast” 
measure based on

magnitude of
intensity gradient 



Shortest Path Search (Dijkstra)

Computes minimum cost path from the seed to all other pixels 

    (once all paths are pre-computed, each path can be instantly shown as mouse moves around)

Same as edge-weighted “shortest paths” (Dijkstra) using 
directed edge weights wpq = cp 

wpq = 11   Ɐq

(wqp = cq )



Shortest Path Search (Dijkstra)

Computes minimum cost path from the seed to all other pixels 

    (once all paths are pre-computed, each path can be instantly shown as mouse moves around)

Can also define edge weights wpq  directly from

intensity contrast across edge pq, e.g.



Shortest-path
approach

Graph cuts vs Shortest paths 

for 2D segmentation

Example: 
find the shortest 

closed contour on a graph 
in the shaded domain

Compute the shortest path  
p ->p  for a point p. 

p

Graph-cut
approach

Compute the 
minimum cut  that 

separates red region 
from blue region

Repeat for all points on the 
gray line. Then choose the 

optimal contour.

Tue., Nov 9



Graph cuts for optimal boundary detection
simple example [a la B&J, ICCV’01]

n-links

s

t a cuthard 
constraint

(t-link)

hard 
constraint

(t-link)

Minimum cost cut can be 
computed in polynomial time

(max-flow/min-cut algorithms)

cut’s cost  =  the sum of severed edges weights  

qppq III −=





Graph cuts for optimal boundary detection
simple example [a la B&J, ICCV’01]

n-links

s

t a cuthard 
constraints

(t-links)

hard 
constraints

(t-links)

The number of seeds (hard constraints) 

could be arbitrary - graph cut completes 
user labeling (a la “Intelligent paint”)

cut’s cost  =  the sum of severed edges weights  

qppq III −=





Image contrast weighted n-links

qppq III −=





Optimal separation boundary (min cut) in 2D

graph cuts
with hard constrains
and 
contrast-weighted n-links

qppq III −=



note alignment of 
segmentation boundary
with intensity contrast edges
(image edges)



s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cut

cut’s cost  =  the sum of severed edges weights  

[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices

S1

S0

pixel labels/indicators

First question:
 

     How can one represent 
     segmentation as variables?

S

categorical distribution
discrete label

OR

binary case, easily generalizes to K≥2 categories

(remember K-means)

(includes one-hot case     )
(i.e. corresponding 

random variable)



s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cut

cut’s cost  =  the sum of severed edges weights  

[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices

S1

S0

pixel labels/indicators

cost of severed n-links

Iverson
brackets

loss encouraging smooth segmentation 
boundary aligned with contrast edges

S



s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cut

cut’s cost  =  the sum of severed edges weights  

[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices

S1

S0

pixel labels/indicators

hard 
constraints

(t-links)

hard 
constraints

(t-links)

Q:  What loss function can represent 
      consistency of  S with user labels?

- set of seeded (user-labeled) pixels      

yp=1yq=0

- seed labels (ground truth)

cost of severed n-links

Iverson
brackets

S



Supervision loss:

consistency with ground truth labels  yp

For generality, assume K classes and ground truth label

categorical distribution 
over K classes 

at point p

one-hot distribution 
consistent with given

ground truth label value yp = k
 

yp = k

How to enforce supervision constraint                     ?

Standard supervision (or seed) loss:

10

constraint for  Sp

that represents known 
ground truth label yp

that works for discrete or relaxed segmentation

here Sp is interpreted  

as random variable

probability that pixel p
belongs to category k

segmentation
variable

probability that pixel p
belongs to category yp



s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cut

cut’s cost  =  the sum of severed edges weights  

[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices

S1

S0

pixel labels/indicators

cost of severed n-links

Iverson
brackets

hard 
constraints

(t-links)

hard 
constraints

(t-links)

Seed loss enforcing 
consistency of S with user labels

- set of seeded (user-labeled) pixels      

yp=1yq=0

- seed labels (ground truth)

cost of severed t-links

+



pixel “beliefs” about two classes

s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cuthard 
constraints

(t-links)

hard 
constraints

(t-links)

[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices
cost of any cut {S1, S0}

cost of severed t-links

S1

S0

cost of severed n-links

Iverson
brackets

yp=1yq=0

- set of seeded (user-labeled) pixels 

cut’s cost  =  the sum of severed edges weights  - seed labels (ground truth)

+



s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cuthard 
constraints

minimum cut outputs  S  optimizing total loss L(S)

cost of 
segmentation boundary

example of regularization loss 
(shape smoothness, contrast alignment)

penalty for      
inconsistency with seeds

seed loss - special case of
negative log-likelihood loss (NLL loss)

+
[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices

S1

S0

- set of seeded (user-labeled) pixels 

yp=1yq=0

pixel “beliefs” about two classes

cut’s cost  =  the sum of severed edges weights  

hard 
constraints

- seed labels (ground truth)



s-t graph cut as an example of algorithm for 

Loss optimization

n-links

s

t a cuthard 
constraints

total loss L(S)

cost of 
segmentation boundary

example of regularization loss 
(shape smoothness, contrast alignment)

penalty for      
inconsistency with seeds

seed loss - special case of
negative log-likelihood loss (NLL loss)

+
[1   1   1    1   0   0   0   0   0]S1 =

S0 = [0   0   0    0   1   1   1   1   1]  

1 2    3    4    5    6    7   8    9

node indices

S1

S0

- set of seeded (user-labeled) pixels 

yp=1yq=0

pixel “beliefs” about two classes

cut’s cost  =  the sum of severed edges weights  

hard 
constraints

- seed labels (ground truth)



Optimal separation boundary (min cut) in 3D

3D bone segmentation 
(real time screen capture from early 2000)

Unlike shortest paths, graph cut works for 3D segmentation:

Extra correcting seeds      
can be added interactively  

and new optimal cut               
will respect them

(new cut respecting extra 
constraints is faster due to 
hot start in the algorithm)

Example where 

minimum cut 
representing

minimal surface
(surface regularization) 



mesh, spline level-set

active contours:

elasticity and bending

(physics)

geodesic active contours:

surface area and curvature

(Riemannian geometry)

graphical models, MRF/CRF:

pairwise and higher-order smoothness

(relates to minimal surfaces via integral geometry)

grid labeling

Some standards methodologies for

Surface Representation and Regularization

explicit representation 
of surface/boundary

implicit representation 
of surface/boundary

implicit representation 
of surface/boundary

Surface representation dictates specific optimization methodology,
but common surface regularization objectives are closely related: 

typically, they minimize surface area and/or curvature

continuous variables Sp

explicitly represent 
surface locations

surface is an implicit interface between
subsets or segments represented by 
set/class/object indicators Sp  (discrete or relaxed)

surface is a zero-level set 
of continuous function f(x,y)

 S = { (x,y) :  f(x,y)=0 }

Graph cut  is just one 

discrete approach to 
optimizing labels Sp for 

boundary regularization.

Many alternatives also use 
relaxed indicator variable Sp 



Graph Cuts Basics (see Cormen’s book)

Simple 2D example

s-t graph cut

A graph with two terminals S and T

“source”

S T

“sink”

• Cut cost is a sum of severed edge weights 

• Minimum cost s-t cut can be found in polynomial time

Goal: divide the graph into two parts separating red and blue nodes



s/t min cut algorithms are widely studied 

(combinatorial optimization)

Augmenting paths [Ford & Fulkerson, 1962]

Push-relabel [Goldberg-Tarjan, 1986]



“Augmenting Paths”

Find a path from S to 

T along non-saturated 

edges
“source”

A graph with two terminals

S T

“sink”

Increase flow along 

this path until some 

edge saturates



“Augmenting Paths”

Find a path from S to 

T along non-saturated 

edges
“source”

A graph with two terminals

S T

“sink”

Increase flow along 

this path until some 

edge saturates

Find next path…

Increase flow…



“Augmenting Paths”

Find a path from S to 

T along non-saturated 

edges
“source”

A graph with two terminals

S T

“sink”

Increase flow along 

this path until some 

edge saturates

Iterate until …      all 

paths from S to T have at 

least one saturated edge
MAX FLOW  MIN CUT



Optimal boundary in 2D

“min-cut     =      max-flow”



Graph cuts vs Region Growing

like “region growing”



Graph cuts vs Region Growing

like “region growing”



Graph cuts vs Region Growing

like “region growing”



Graph cuts vs Region Growing

like “region growing”



Graph cuts

iteration 2



Graph cuts 2



Graph cuts 2

Any paths would work, but
shorter paths give faster algorithms 

(in theory and practice)



Graph cuts 3



Graph cuts 3

Finds optimal boundary 
(e.g. least number of holes)

best value of a 
an objective function



Graph cut is an old standard problem

with lots of applications outside vision

From 
Harris & 
Ross 
[1955]

declassified
RAND
report
that
originally
inspired 
Ford and 
Fulkerson 

Problem: find gas/oil pipelines or railways network bottleneck in Eastern Europe
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From 
Harris & 
Ross 
[1955]

Graph cut is an old standard problem

with lots of applications outside vision

declassified
RAND
report
that
originally
inspired 
Ford and 
Fulkerson 

Problem: find gas/oil pipelines or railways network bottleneck in Eastern Europe



Applications of 

max-flow (min cut) algorithms

Matrix rounding

Perfect matching

Vertex cover

Routing (airline scheduling)

Baseball elimination 

Economics (circulation–demand problem)

Computer vision



Multi-view volumetric 

photo-reconstruction

Calibrated 

images of 

Lambertian 

scene

3D model of 

scene

CVPR’05 slides from Vogiatzis, Torr, Cippola



first pass at dense volumetric multi-view reconstruction: 

use silhouettes   =>  visual hull

Assume known cameras Pi  = Ki [Ri|Ti]    
(including position/orientation)

Assume that each camera knows 
object’s 2D silhouette Si

• binary image segmentation problem

• ideas on how to solve it?

Project each camera’s silhouette 
into space to obtain a 3D cone.

Intersection of the cones generated 
by silhouettes in each image gives 
the visual hull of the objectvisual hull

object

- visual hull is the smallest 3D shape 
consistent with all silhouettes.

- object is a subset of its visual hull



Visual hull of a human face

CVPR’05 slides from Vogiatzis, Torr, Cippola

visual hull
(from silhouettes)



only over cameras i  
that “see” voxel P

Can refine visual hull using 

photoconsistency

CVPR’05 slides from Vogiatzis, Torr, Cippola

photo-consistency
for voxel P

visual hull surface

)(1 PI)(3 PI

)(2 PI

 −=
i

i IPIP 2|)(|)( P

Find the best
photo-consistent surface
minimizing



Estimating visibility

CVPR’05 slides from Vogiatzis, Torr, Cippola

1. Get nearest point 

on outer surface

2. Use outer surface 

for occlusions

2. Discard occluded 

views

 −=
i

i IPIP 2|)(|)(

P

only over cameras i  
that “see” voxel P



Graph cuts applied to multi-view  

reconstruction

CVPR’05 slides from Vogiatzis, Torr, Cippola

Source

Sink

The cost of the cut integrates
photoconsistency over the whole space



Graph cuts applied to multi-view  

reconstruction

CVPR’05 slides from Vogiatzis, Torr, Cippola

visual hull
(silhouettes)

surface of good photoconsistency



Graph cuts for video textures

Graph-cuts video textures 
(Kwatra, Schodl, Essa, Bobick 2003)

Short video clip

21

Long video clip

a cut
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What is left to discuss in topic 9:

Combining appearance & boundary 

in segmentation loss function

A. known color/appearance  +  boundary regularization

B. color model fitting (K-means) + boundary regularization

C. kernel clustering objectives  +  boundary regularization



A: combining known color model 

and boundary regularization

combining color & boundary objectives

or

another example of 
negative log-likelihood loss (NLL)

for observed (low-level) features, e.g. colors 



Adding regional properties
another segmentation example [B&J’01]

pqw

n-links

s

t a cutptw

psw

penalties/costs (e.g. squared errors) 

for assigning labels  s  or  t  to pixel p 

ptw=

psw=

“regional” hard constrains (seeds) are replaced 
with “regional” soft constraints

p

regional bias example 1

assume known
“expected” intensities 

for object and background

e.g.                     and 

optimal 
segmentation

minimizes 
a combination 

of  SSE  & 
boundary costs



Adding regional properties
another segmentation example [B&J’01]

pqw

n-links

s

t a cutptw

psw

regional bias example 2

known probability distributions
for object and background

colors/intensities

“regional” hard constrains (seeds) are replaced 
with “regional” soft constraints

p

I
)|Pr( 1pI

)|Pr( 0pI

pI

ptw=

psw=

<= Gaussian pdf

example 1 is a special case for

optimal 
segmentation

minimizes 
a combination of 
log-likelihoods & 
boundary costs

penalties/costs (neg. log-likelihoods) 

for assigning labels  s  or  t  to pixel p 



What are t-links about?
(for now, assume no n-links) 

pqw

n-links

s

t

Q: What is the minimum cut on a graph 
    if there are only t-links  (no n-links) ?

t

s

p

sever the cheaper t-link
at every pixel  independently

A:

trivial problem, no fancy algorithms needed 

altogether, we optimize the sum 
of unary (pixelwise) terms 

cut C



What are t-links about?
(for now, assume no n-links) 

pqw

n-links

s

t
cut C

cost of cut C loss for 
segmentation S

cost of severed t-links 

with discrete (hard) segmentation (as graph cuts)
we can use either class indicator variables (integers)
                          

OR (equivalently) one-hot distributions, e.g. (1,0) and (0,1)  

WARNING: below we use both integer-valued indicators 
           or one-hot distributions, as convenient. 
The exact interpretation should be clear from context.

For continuous/relaxed segmentation, it is common to use 
(soft) categorical distributions (as was in fuzzy K-means)



What are t-links about?
(for now, assume no n-links) 

pqw

n-links
t

s

cut C

loss for 
segmentation S

cost of cut C

cost of severed t-links 

t-links describe
individual pixel preferences or 
likelihoods of labels (s and t )



What are t-links about?
(for now, assume no n-links) 

pqw

n-links
t

s

cut C

loss for 
segmentation S

cost of cut C

cost of severed t-links 

remember example 1 
with squared errors

lower cost label 

selects closer “center” θk 

minimizing squared errors

t-links describe
individual pixel preferences or 
likelihoods of labels (s and t )

NOTE: the second formulation of D
allows relaxed segmentation
(D(S) is linear w.r.t. S as in K-means)



What are t-links about?
(for now, assume no n-links) 

pqw

n-links
t

s

cut C

loss for 
segmentation S

cost of cut C

cost of severed t-links 

remember example 2 
with neg. log-likelihoods

lower cost label                      
selects higher likelihood model θk 

maximizing log-likelihoods (of features/colors)

“NLL”
example (slide 52)

t-links describe
individual pixel preferences or 
likelihoods of labels (s and t )

NOTE: the second formulation of D
allows relaxed segmentation
(linear for S as in probabilistic K-means)



What are t-links about?
(for now, assume no n-links) 

loss for 
segmentation S

cost of cut C

cost of severed t-links 

remember earlier example with
hard constraints / seed labels yp

n-links
t

s

cut C

NOTE:

(seeds)

lower cost label                      
selects feasible solution

“NLL”
example
(slide 16)

maximizing log-probabilities (of correct labeling)

t-links describe
individual pixel preferences or 
likelihoods of labels (s and t )

NOTE: the second formulation of D
allows relaxed segmentation
(non-inear function              w.r.t S)



n-links describe 
pairwise pixel correlations or 
structural regularization, which 
can be interpreted as (MRF) prior

Summary:
(putting t-links and n-links back together again)

pqw

n-links
t

s

cut C

cost of cut C loss for 
segmentation S

cost of severed t-links cost of severed n-links 

no longer a trivial optimization problem

t-links describe
individual pixel preferences or 
likelihoods of labels (s and t )



Comment on (so-called) 
regularization constant

Summary:
(putting t-links and n-links back together again)

pqw

n-links
t

s

cut C

cost of cut C loss for 
segmentation S

cost of severed t-links cost of severed n-links 

no longer a trivial optimization problem

Important hyper-parameter of the (joint) energy 
since it determines relative weight of the two terms:

 

regional (unary)   vs.   boundary (pairwise)



Extensions for 

segmentation energy/loss optimization:

cost of cut C loss for 
segmentation S

no longer a trivial optimization problem

submodular set functions    
(discrete/combinatorial optimization)

=
A

AA SESE )()( }{ Ap|SS pA =for

factors  (unary, pairwise, high-order)

multi-label problems
(e.g. multi-way cuts, relaxation)

or
categorical distributions

class indices

MRF/CRF
MAP estimation loss

log-likelihoods + log prior

surface functionals  
(continuous optimization, PDEs)

minimum surfaces (area, curvature, shape)

            e.g. 

geometric



Graph cut vs Thresholding

S

thresholding optimal graph cut

I
)|Pr( 1pI

)|Pr( 0pI

pI

= =

result of optimizing unary potentials Dp (only)

(naive Bayesian classification, iid pixels) (correlated pixels, MRF/CRF inference) 



Given Color Models

Appearance color distributions        and       can  be 
estimated from user seeds

e.g. histograms or GMM distributions (as in HW4) 
estimated from RGB colors of pixels in the seeded regions

0 1



Comparison: 

color likelihoods only (thresholding) with boundary regularization

Even in examples (as here) where object colors are discriminative,
boundary regularization is useful

In this image, adding color models helps a lot.
Our earlier result (slide 12) with n-links only
required more seeds. It also required n-link 

weighting function w significantly more sensitive 

to intensity contrast (significantly smaller σ).



Comparison (less trivial example): 

color likelihoods only (thresholding) with boundary regularization

Low-level features (like RGB colors) 
are discriminative only in simple cases

Includes higher-order features 
(shape boundary, contrast edges)

In the context of CNN segmentation (topics 11 & 12) 
we will discuss methods to automatically learn

discriminative high-level (semantic or deep) features
from many fully- or weakly-supervised examples



Background 
Subtraction

?- =
I= Iobj - Ibkg

Threshold intensities S={ p : Ip > T }

)|Pr( objI p

)|Pr( bkgI p

T

Adding regional properties
another segmentation example

0

1



- =
I= Iobj - Ibkg

Threshold intensities S={ p : Ip > T } optimal cut

thresholding graph cuts

Adding regional properties
(example: regularized background subtraction)
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What is left to discuss in topic 9:

Combining appearance & boundary 

in segmentation loss function

A. known color/appearance  +  boundary regularization

B. color model fitting (K-means) + boundary regularization

C. kernel clustering objectives  +  boundary regularization

we will do only a quick overview; the detailed slides are left for optional reading 



What if models  Pr( I | θi ) are not known?

(preview)

I



What if models  Pr( I | θi ) are not known?

(preview)

I

see NLL loss on slides 52,57



What if models  Pr( I | θi ) are not known?

(preview)

I

see NLL loss on slides 52,57



What if models  Pr( I | θi ) are not known?

(preview)

Let’s switch to K-class segmentation, but optimization w.r.t. segmentation S 
is more difficult, e.g. no polynomial solver for K > 2 even for fixed models θk 

I

see NLL loss on slides 52,57



segmentation boundary 
regularization

What if models  Pr( I | θi ) are not known?

probabilistic K-means over color features Ip 
if unknown  K distributions  ϴk  are treated 

as additional optimization variables

Segmentation combining
color model fitting

and boundary regularization

Approximate Optimization Idea  (greedy iterations)       
– for fixed ϴi  (back to “known” models) optimize over {Sp}          
– for fixed {Sp} optimize over model parameters ϴi 

(preview)

approach 

A:

I

see K-means loss, Topic 9A, slide 55



segmentation boundary 
regularization

What if models  Pr( I | θi ) are not known?

non-parametric clustering (e.g. kernel K-means) 
using any pixel features fp or affinities [Apq]

Segmentation combining
kernel clustering of image features

and boundary regularization

Approximate Optimization Idea: use spectral decomposition of A 

to convert the first term to basic K-means over low-dimensional 
Euclidean embedding          such that                          . Then, iterate 
similar two optimization steps  (e.g. graph cuts and mean estimation) 

(preview)

approach 

B:
k-th segment indicator vector



Unsupervised segmentation [Zhu&Yuille, 1996]

initialize models  0  , 1 , 2  ,   
from randomly sampled boxes  

iterate segmentation
and model re-estimation

until convergence 

|| labels+

Examples: clustering + spatial regularization

(preview)



Examples: clustering + spatial regularization

Box-supervised segmentation [GrabCut, Rother et al SIGGRAPH’04]

start from models  0  , 1   
based on colors 

inside and outside some given box  

iterate graph cut segmentation
and model re-estimation

until convergence 

(preview)

DEMO: “Remove Background” tool directly inside “Picture Format” tab of MS Power Point software 



RGBXY M (motion sensor) RGBXYM + contrast edges

Examples: clustering + spatial regularization

(preview)

Self-supervised segmentation [KernelCut, Tang et al ECCV’16]



A. Appearance model fitting 

and boundary regularization

combining color & boundary objectives

(in the context of image segmentation)

This last portion of
topic 9 is OPTIONAL



Remember simple example
(one color appearance)

pqw

n-links

s

t a cut)1(pD

)0(pD

21 )()1( pp IID −=

20 )()0( pp IID −=

=
p

pp SDIISE )(),|( 10 


+
Npq

qppq SSw
}{

][

unary potentials pairwise potentials


==

−+−=
0:

20

1:

2110 )()(),|(
pp Sp

p

Sp

p IIIIIISE

optimal 
segmentation

minimizes 
a combination 

of  SSE  & 
boundary costs

regional bias example 1

assume known
“expected” intensities 

for object and background

remember



with boundary regularizationK-means (SSE) loss

“expected” intensities of
object and background

can be re-estimated

01   and II

Remember simple example
(one color appearance)
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Block-coordinate descent for

Minimize over labeling  S  for fixed  I
 0, I

 1 

Minimize over  I
 0, I

 1  for fixed labeling  S
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fixed for S=const

optimal  S  can be computed using graph cuts

optimal  I 1
, I 0

  can be computed by minimizing 
squared errors inside object and background segments
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Chan-Vese segmentation
(binary case                  )
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K-means in RGB space combined with boundary smoothness in XY



Chan-Vese segmentation
(binary case                  )
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K-means in RGB space combined with boundary smoothness in XY
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Chan-Vese segmentation
(could be used for more than 2 labels                       )
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can be used for segmentation,  to reduce color-depth,
or to create a cartoon
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multi-terminal graph cuts are needed
for segmentation step [BVZ, PAMI 2001]

 
= =

−=
K

k kSp

k

p

p

IIIISE
0 :

210 )(,...),,(



without the smoothing term, this is like 
“K-means” clustering in the color space 

Chan-Vese segmentation
(could be used for more than 2 labels                       )

can be used for segmentation,  to reduce color-depth,
or to create a cartoon
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Chan-Vese segmentation
(could be used for more than 2 labels                       )

can be used for segmentation,  to reduce color-depth,
or to create a cartoon
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Works well mainly for objects with simple appearance 
(approximately one color per segment) 
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General appearance example
(remember fixed color model example)
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Spatial smoothness
(boundary)assuming known

[Boykov&Jolly, ICCV2001]

image segmentation, graph cut
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with boundary regularizationprobabilistic K-means loss

Beyond fixed appearance models
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Spatial smoothness
(boundary)

[Rother, et al. SIGGRAPH’2004]

iterative image segmentation, Grabcut
(block coordinate descent  S            )

RGBI p 

Log-Likelihoods
(region)
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Models  0  , 1 
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extra variables
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general models (e.g. histograms)



Minimize over segmentation S  for fixed 0  , 1 

Minimize over  0  , 1   for fixed labeling  S

Block-coordinate descent for

fixed for S=const

optimal  S  can be computed using graph cuts
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optimal  0  , 1  can be computed by minimizing 
the sums of log-likelihoods

Sp=0̂ Sp=1̂
distribution of intensities in

current bkg. Segment     ={p:Sp=0} 
distribution of intensities in

current obj. segment   S={p:Sp=1} 

not hard to prove
when θk are histogramsS



Iterative learning of color models
(binary case                 )

GrabCut: iterated graph cuts   [Rother et al., SIGGRAPH 04]

start from models  0  , 1   
based on colors 

inside and outside some given box  

iterate graph cut segmentation
and model re-estimation

until convergence 
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Iterative learning of color models
(could be used for more than 2 labels                       ) 

Unsupervised segmentation [Zhu&Yuille, 1996]

initialize models  0  , 1 , 2  ,   
from randomly sampled boxes  

iterate segmentation
and model re-estimation

until convergence 
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BCD minimization of                       converges to a local minimum  )( 10  ,,SE

E=2.37×106E=2.41×106E=1.39×106E=1.410×106
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Q: Interpretation of this segmentation/clustering energy 
     where θi  are extra variables?

Statistical answer: it gives  maximum likelihood  (ML) estimation of parameters θi 

Information theoretic answer:     entropy-based clustering

                                                          (…see next slides….)



Interpretation of log-likelihoods: 

entropy of segment intensities
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Interpretation of log-likelihoods: 

entropy of segment intensities
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Interpretation of log-likelihoods: 

entropy of segment intensities
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information theoretic energy:
Minimum Description Length

(MDL)
can be interpreted as the number of bits

unsupervised image segmentation (like in Chan-Vese)

high  entropy segmentation

break image into 2 coherent segments 
with low entropy of intensities

S

S

low entropy segmentation

S

SS

S
S

S



Interpretation of log-likelihoods: 

entropy of segment intensities

more general than Chan-Vese  (colors can vary within each segment)

break image into 2 coherent segments 
with low entropy of intensities
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Model Fitting and Color Clustering:

Gaussian models vs Histograms
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B. General feature consistency 

and boundary regularization

combining color & boundary objectives

(in the context of image segmentation)



• (probabilistic) K-means or model fitting with simple models (e.g. Normal/Gaussian) 
     work fine when data supports such models.

• for more complex objects, fitting highly descriptive models (e.g. histograms) 
     is prone to overfitting; it barely works even for RGB features:

fitting 2 histograms in RGB
(GrabCut without edges)

Remember: K-means clustering objective as 
appearance consistency criterion



fitting 2 histograms in RGB
(GrabCut without edges)

non-parametric clustering
(Normalized Cut in RGB)

Alternative approach:
can use pairwise/kernel clustering

overfitting

Particularly for higher dimensional features, non-parametric
kernel clustering objectives are more robust choice  

for representing “appearance consistency”



space of 
features fp

Non-parametric kernel clustering 

with boundary regularization
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Normalized cut combined with boundary regularization in XY

segmentation S optimizing E(S)

RGBXY M (motion sensor)

df [p] - a “degree” vector (sum of affinities for each p) 

Af [p,q]  -  affinities between all pairs of features fp in RGBXYM 

Kernel Cut
[M.Tang et al. ECCV 2016]

in RGBXYM space



Non-parametric kernel clustering 

with boundary regularization
Kernel Cut

[M.Tang et al. ECCV 2016]

RGBXY M (motion sensor) RGBXYM + contrast edges
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