
CS484

Computational Vision

Low-level Segmentation

unsupervised and semi-supervised (interactive)
image segmentation with low-level features

MAIN GOAL: in a simpler context of basic low-dimensional image features, e.g. colors or edges,
 understand standard general techniques for grouping data points, e.g. pixels,
 with minimal supervision or unsupervised

LATER: understand how to automatically build/learn complex “deep” features
 representing high-level (e.g. semantic) information in images and individual pixels.
 We will also discuss how to group them with or without supervision.

or grouping, partitioning, etc...

Goal:

find coherent “blobs” or specific “objects / classes”

low-level segmentation
(e.g. color-consistent region, smooth

edge-aligned boundaries, coherent motion,...)

high-level / semantic segmentation
(e.g. humans, trees, cars, …)

informal overview of

Image Segmentation

unsupervised, semi-supervised, fully supervised ?
this topic later topics 11 & 12

computed from given image only, or also using a large training dataset?

CS484 Computational Vision

Low-level Image Segmentation

Examples
• unsupervised (background subtraction, color quantization, superpixels)

• semi-supervised (photo-shop, medical image analysis)

“Naïve” low-level segmentation
• thresholding, region growing, etc

Loss functions for (low-level) segmentation
• region-based, boundary-based (geometric or shape)

• Clustering criteria for general data points (basics from ML)

- K-means, K-medians, K-modes, mean-shift
- variance and distortion clustering, robust metrics
- hard vs. soft clustering, probabilistic formulations, entropy, likelihoods, EM, GMM
- parametric & non-parametric methods, kernel/spectral clustering, data embeddings

• Regularization of segments (surfaces/shapes)
- graphical models, active contours, geometric (shape/surface) regularization
- combining with likelihood models and clustering methods
- interactive segmentation (seeds/scribbles, boxes)

p
a

rt I
p

a
rt II

Two general groups of properties

for (low-level) segmentation

A: coherent segment’s appearance (region)

 - consistent colors/texture, etc

 - agreement with known color distribution/density or likelihood model

B: coherent segment’s shape (boundary)

 - alignment to contrast edges

 - boundary regularity / smoothness (low-level “shape prior”)

 - consistency with expected shape (e.g. square, star, convex - higher-level priors)

later: consistency with semantic class

later: consistency with semantic boundaries

CS484 Computational Vision

Low-level Image Segmentation

“Naïve” segmentation techniques

A [based on appearance/color]: thresholding, likelihood ratio test

B [based on boundaries/contrast-edges]: region growing

Other readings: Sonka et al. Ch. 5
 Gonzalez and Woods, Ch. 10

Szeliski, Sec 5.2

first

SEGMENT’S APPEARANCE

Naive Approach to Appearance (A)

.

Simplest way to define blob coherence is as

similarity in brightness or color:

The tools become blobs
The house, grass, and sky make

 different blobs

Coherent color “blobs”

Why is this useful?

AIBO

RoboSoccer

(VelosoLab)

Ideal Segmentation

can
recognize
objects
with
known
simple
color
models

?

?

?

Result of a naive segmentation method
(first learn how to get this, then how to get better results)

even
 if

known
simple
color

Basic ideas

intensities / colors

low-level “appearance” features

T0 255

properties, assumptions:

 - point processing, location is ignored
 - i.i.d. assumption for colors in each blob/region
 - assumes good “separation” of colors in each blob

partition intensity histogram:

 - thresholding
 - log-likelihood ratio test

(segmentation ← intensities/colors)

Thresholding

Basic segmentation operation:

 mask(x,y) = 1 if im(x,y) > T

 mask(x,y) = 0 if im(x,y) < T

T is threshold
• user-defined

• or automatic

 Same as
histogram
partitioning:

Sometimes works well…

Virtual
bronchoscopy,
colonoscopy,

etc.

from real device to
non-invasive virtual test

a) threshold CT volume -> binary mask

b) extract surface mash from binary mask
(fast marching cubes method)

bronchoscopy, colonoscopy, etc.

Sometimes works well…

T

)(

)(
log:

0

1

p

p

p
IP

IP
r =

 0pr

 0pr pixel p is object

pixel p is background

P1 and P0 are

known color models for
object and background

Here thresholding could be derived as
likelihood ratio test

),(11 NP =

),(00 NP =

Example: assume known

probability distributions

μ1μ0

TIr  0

2

01  +
=T

Bayesian classification

Bayesian classification based on Bayes posterior Pr(k|I)~Pr(I|k) assuming given data density models, i.i.d., equal priors

- =
I= Iobj - Ibkg

Sometimes works well…

background
subtraction

T

),0(1 NP =

UP =0

0 255

- =
I= Iobj - Ibkg

Threshold intensities below T problems when color models

have overlapping support

Sometimes works well… more often not

background
subtraction

),0(1 NP =

UP =0

T0 255

SEGMENT’S BOUNDARY

The most basic approaches attempt to find subsets of

pixels completely surrounded by strong intensity edges

- region growing

- watersheds

Naive Approach to Boundary (B)

Canny edges

(segmentation ← contrast edges)

Region growing

Breadth-First Search (BFS) over grid neighbors (p,q) s.t. |Ip-Iq|<T

Method stops at high-contrast edges (p,q) such that |Ip-Iq|>T

• Interactive initialization: assumes some initial set of pixel(s) K (seeds)

• For any pixel p in K add all its neighbors q such that |Ip-Iq| < T

• Iterate the step above until no neighbors of points in K satisfy |Ip-Iq| < T

contrast edges

What can go wrong

with region growing ?

Region growth may “leak”
through a single week spot

in the boundary

Region growing

- =
I= Iobj - Ibkg

| Ip|

Breadth First Search (seeds) :

| Ip| < T

seeds

Region growing

See region leaks into sky

due to a weak boundary

between them

From procedurally-defined

towards “objective” segmentation

Color/feature appearance consistency

• replacing manually-selected thresholds

by automatic partitioning of features

Boundary/shape regularity

• contrast edge continuation (fixing “ leaks”)

• shape priors/regularization (addresses i.i.d. assumption)

Combining multiple objectives (losses)

Should learn about loss functions (objectives) representing:

From procedurally-defined

towards “objective” segmentation

Part I: Clustering criteria

– general ML methods for unsupervised or weakly-

supervised partitioning of data/features (low-level or deep)

– can be used for image segmentation

Part II: Shape regularization models

– specific to image segmentation

– appearance consistency

– boundary/surface regularity (we focus on graphical formulations)

Should learn about objectives (loss functions)

Highly informal

comments on terminology

Clustering – general techniques (from ML) for partitioning
arbitrary data/features { fp } ⸦ RN (of any dimensions)
where p is index of a data point

Image Segmentation – methods specifically designed for
partitioning image features { fp } ⸦ RN

where p are image grid pixels p = (x , y)

NOTE: general clustering techniques can be adapted to image segmentation problems.
Thus, the boundary between the terms clustering and image segmentation is fuzzy.

e.g. movies in some
feature space

(length, director, tags,…)

- instead of an arbitrary collection { fp} of data points,

features are viewed as a sample from function

Alternative Views on Data Representation
pf - e.g. intensity Ip or color RGBp or some “deep” feature at pixel p = (x,y)

We will learn: - clustering criteria and spatial regularization models
 - how to combine different approaches

Part I vs Part II

x

y

f

3D tensor

e.g. RGB

features embedded in a regular 2D grid
common in computer vision

pixel grid
(XY space)

convolution, geometry, shape, spatial regularity, ...K-means, GMM, general graph clustering, ...

collection of
feature vectors in Rn

general features
common in ML

e.g. points
in RGB or

RGBXY space collection of
1D tensors

f1

f2

f3

f4

f5

f6

clustering objectives

Part I

Clustering Methods
for General Data

(basics from ML with applications in Computer Vision)

clustering objectives

Part I

general criteria for unsupervised data clustering
• K-means, distortion clustering, probabilistic clustering, EM, GMM

• parametric vs non-parametric formulations

• kernel and spectral methods, graph clustering criteria

examples in image analysis

• color quantization, super-pixels, unsupervised segmentation

Szeliski, Sec 5.3

Clustering Methods
for General Data

(basics from ML with applications in Computer Vision)

Motivation

- In 1D feature spaces (gray-scale
intensities) it may be possible to set
decision boundaries manually.

But, not easy in 3D feature space

- One can use log-likelihood ratio test
if (color) distributions/densities for
segments, e.g. P1 and P0 , are known.

Does not work if distributions are not known

T

I

R G

B

can yield arbitrarily complex decision
boundaries in any feature space

0
)(

)(
log

0

1 
fP

fP
P0 P1

f

Bayesian decisions

Note: in N dimensional feature
space, the closest analogue of
thresholding is a linear decision
boundary (a hyperplane)
defined by N+1 parameters.

Motivation

- color quantization
- superpixels
- semantic segmentation (later topic)

Example: break data points (e.g. RGB or RGBXY space) into a few clusters

?

decision boundaries for ND features
could be arbitrarily complex (surfaces)

R G

B

Motivation

Need automatic data clustering methods

parametric methods: e.g. K-means, soft K-means, GMM ...
• Note: many such methods are generative (estimate distribution parameters jointly with clustering the data)

non-parametric: e.g. kernel K-means, graph partitioning, mean-shift ...

Szeliski, Sec 5.3

?

decision boundaries for ND features
could be arbitrarily complex (surfaces)

Time permitting, we may also cover some deep clustering methodologies at the end of the course.

General Grouping or Clustering
(a.k.a. unsupervised learning)

• Have data points (samples, a.k.a. feature vectors, examples, etc.) f1,…, fp ,…

• Cluster similar points into groups

• points are not pre-labeled

• think of clustering as “discovering” labels

horror movies

documentaries

sci-fi movies

slides from Olga Veksler

How does this Relate to Image Segmentation?

• Represent image pixels as feature vectors f1,…, fp ,… or

• For example, each pixel can be represented as

• intensity, gives one dimensional (1D) feature vectors

• color, gives three-dimensional (3D) feature vectors, e.g. RGB

• color + coordinates, gives five-dimensional (5D) feature vectors, e.g. RGBXY

• Cluster them into K clusters, i.e. K segments

8

4
2

5

5
8

3

2
7

9

2
4

7

1
3

8

8
6

9

5
4

2

3
9

1

4
4

input image feature vectors for clustering

based on color

[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

RGB (or LUV) space clustering

}|{ pf p

set of all pixels or indices

How does this Relate to Image Segmentation?

8

4
2

5

5
8

3

2
7

9

2
4

7

1
3

8

8
6

9

5
4

2

3
9

1

4
4

input image
feature vectors for

clustering based on color

and image coordinates

[9 4 2 0 0] [7 3 1 0 1] [8 6 8 0 2]

[8 2 4 1 0] [5 8 5 1 1] [3 7 2 1 2]

[9 4 5 2 0] [2 9 3 2 1] [1 4 4 2 2]

RGBXY (or LUVXY) space clustering

• Represent image pixels as feature vectors f1,…, fp ,… or

• For example, each pixel can be represented as

• intensity, gives one dimensional (1D) feature vectors

• color, gives three-dimensional (3D) feature vectors, e.g. RGB

• color + coordinates, gives five-dimensional (5D) feature vectors, e.g. RGBXY

• Cluster them into K clusters, i.e. K segments

}|{ pf p

set of all pixels or indices

K-means Clustering: Objective Function

• Probably the most popular clustering algorithm

• assumes the number of clusters is given - K

• optimizes (approximately) the following objective function for variables S k and µk

S1 S2

S3

3

1

2

=SSE
+ +

sum of squared errors from cluster center µk

),...,(1 KSSS =
),...,(1 K =

optimization “variables”

subsets

centers

fp

assume
given K=3

(both Sk and µk are unknown, to be computed)

Q: given cluster Sk, what best describes optimal center ?
 A: center of mass B: average C: median D: least squares solver

consider
some fixed
clusters Sk

consider
their

centers μk

K-means Clustering: Objective Function

3

1

2

=SSE
+ +

3

1

2

Good (tight) clustering

=> smaller value of SSE

Bad (loose) clustering

=> larger value of SSE

=SEE
+ +

S1

S2

S3

S1

S2

S3

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly (e.g. from data points)

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly (e.g. from data points)

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means 


=
k

k

Sp

pSk f
||

1

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each point fp to the closest mean



=
k

k

Sp

pSk f
||

1

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each point fp to the closest mean

• Iterate until clusters stop changing




=
k

k

Sp

pSk f
||

1

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each point fp to the closest center

• Iterate until clusters stop changing




=
k

k

Sp

pSk f
||

1

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each point fp to the closest mean

• Iterate until clusters stop changing

block-coordinate descent: step 1 optimizes {µk} for fixed {Sk}, step 2 optimizes {Sk} for fixed {µk}




=
k

k

Sp

pSk f
||

1

Lloyd’s algorithm (1957)

• Each step decreases the value of the objective function

),...,(1 KSSS =

),...,(1 K =

optimization variables

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each point fp to the closest mean

• Iterate until clusters stop changing

block-coordinate descent: step 1 optimizes {µk} for fixed {Sk}, step 2 optimizes {Sk} for fixed {µk}




=
k

k

Sp

pSk f
||

1

Lloyd’s algorithm (1957)

• Each step decreases the value of the objective function

),...,(1 KSSS =

),...,(1 K =

optimization variables

K-means: Approximate Optimization
• K-means is fast and (sometimes) works well in practice

• But can get stuck in a local minimum of objective EK
• not surprising, since the exact optimization of its objective is NP-hard

converged to local min

initialization

global minimum

μ1μ2

In this case K-means (K=2) implicitly finds a good
threshold (between 2 clusters)

T

K-means clustering examples:

Segmentation

here K-means finds
compact clusters

of pixels’ intensities

k = 3

k = 10k = 5

K-means for colors (RGB features):

Segmentation?

(mean color is used to show each segment/cluster)

K-means for colors (RGB features):

Color Quantization

NOTE
bias to
equal-size
clusters

Where “size” can
mean both

clusters’ cardinalities
and

clusters’ diameters
in the feature space

T
E
C
H

N
IC

A
L
 N

O
T
E

K-means clustering examples:

Adding XY features

RGB features

color quantization

RGBXY features

superpixels

XY features only

Voronoi cells

for

can be fixed or estimated, see “elliptic” K-means estimating (co)variances, later

a simple special case of

Mahalanobis distance

Apply K-means to RGBXY features

K-means clustering examples:

Superpixels

[SLIC superpixels, Achanta et al., PAMI 2011]

K-means Properties

• Works well when clusters are compact/tight blobs

• Fails to find non-compact clusters

K-means can only produce linear boundaries between clusters (why?)

impossible

The “decision boundary” between two clusters is always an orthogonal bisector for their centers.Thus, K-means does not work well if clusters can not be separated by a line/plane.

K-means Properties

• Sensitive to outliers

Interestingly, in this case the optimal value of is the “median” of set instead of its “mean”

Explanation: squared distance error grows too fast making any outlier extremely costly.
This also explains non-robustness of a “sample mean” statistic.

Possible solution: replace squared distances by absolute distances
that grow at a slower pace.

an outlier point

NOTE: there are other generalizations of K-means
 using a probabilistic interpretation of SSE

can use different “distortion” measures

(generalization)

Distortion Clustering

K-modes

K-means

K-medians

squared
L2 norm

absolute
L2 norm

interpretation of parameters μkexamples of distortion measure d|||| 

For fixed clusters, optimization of parameters μk this can be seen as...

o maximum likelihood estimation of Gaussian density parameters μk

equivalent (easy to check)

K-means as probabilistic clustering
(probabilistic model parameter fitting)

sum of negative log-likelihoods (NLL loss)

multi-variate (i.e.)

Gaussian distribution
(simple special case)

negative log-likelihood can be seen as
“probabilistic” distortion measure

probabilistic
K-means

general formulation since any
parametric density functions

can be used

Since clusters are also estimated...

o K-means can be seen as unsupervised Gaussian classification

o Gaussian classifier estimation (see any intro Machine Learning courses)

Towards soft clustering…
 Fuzzy K-means

Let’s represents segmentation using

relaxed segmentation variables Sp

categorical distribution at point p over K clusters

NOTE:
“probabilistic”
formulation

but clusters Sk

are “hard”
 (“deterministic”)

multi-variate (i.e.)

Gaussian distribution
(simple special case)

“probability

simplex”

Why ?
vertices of

probability simplex

optimal Sp for this “relaxed” loss

are one-hot distributions
e.g.,

NOTE:

NOTE:
“probabilistic”
formulation

but clusters Sk

are “hard”
 (“deterministic”)

Towards soft clustering…
 Fuzzy K-means

Let’s represents segmentation using

relaxed segmentation variables Sp

entropy of
distribution Spfuzzy or soft

K-means

multi-variate (i.e.)

Gaussian distribution
(simple special case)

“hard”
K-means

“probability

simplex”

standard measure of “chaos” in any distribution p

categorical distribution at point p over K clusters

now, optimal Sp for positive temperatures T > 0

are “soft” distributions in the interior of the simplex

Towards soft clustering…
 Gaussian Mixture Models (GMM)

Let’s represents segmentation using

relaxed segmentation variables Sp

Consider another probabilistically motivated approach to soft clustering…

multi-variate (i.e.)

Gaussian distribution
(simple special case)

“probability

simplex”

categorical distribution at point p over K clusters

“hard”
K-means

segmentation variables Sp

are hidden now 

Towards soft clustering…
 Gaussian Mixture Models (GMM)

GMM density with K modes

MLE estimation
of GMM model

parameters

K single mode Gaussians

multi-variate (i.e.)

Gaussian distribution
(simple special case)

can estimate
according to
the Bayes rule

point specific distributions Sp are replaced

by fixed “prior” distribution ρ over clusters

sum of log-likelihoods (NLL)

sum of log-likelihoods (NLL)

Consider another probabilistically motivated approach to soft clustering…

“hard”
K-means

Towards soft clustering…
 Gaussian Mixture Models (GMM)

sum of log-likelihoods (NLL)

sum of log-likelihoods (NLL) K single mode Gaussians

multi-variate (i.e.)

Gaussian distribution
(general covariance matrix)

can estimate
according to
the Bayes rule

Using Mahalanobis distance

GMM density with K modes

MLE estimation
of GMM model

parameters

segmentation variables Sp

are hidden now 

Consider another probabilistically motivated approach to soft clustering…

“elliptic K-means”

“hard”
K-means

GMM distribution:

• Soft clustering using Gaussian Mixture Model (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

1

1

2

2

3

3

x

three Gaussian modes (K=3)
of the mixture PGMM

simple
1D example:

GMMs estimate “true” data distributions
(continuous density analog of histograms)

mixing
coefficients

means and
variances of
Gaussian modes

Towards soft clustering…
 Gaussian Mixture Models (GMM)

• Soft clustering using Gaussian Mixture Model (GMM)

1

1

2

2

3

3

x

three Gaussian modes (K=3)
of the mixture PGMM

approximate
optimization

via EM algorithm

see Szeliski
Sec. 5.3.1

or
Christopher Bishop

“Pattern Recogn and
Machine Learning”, Ch.9

as Lloyd algorithm,
sensitive to local

minima

Towards soft clustering…
 Gaussian Mixture Models (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMM distribution:

maximum likelihood
estimation of θ

(NLL loss)

r

g

b

• Soft clustering using Gaussian Mixture Model (GMM)

Towards soft clustering…
 Gaussian Mixture Models (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMM distribution:

maximum likelihood
estimation of θ

(NLL loss)

GMM estimation overview

Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

Jensen’s inequality
move “log” inside expectation E

entropy

In fact, equality holds specifically for

(plug-in to check, very easy)

GMM estimation overview

Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

L (θ|S) - for any S defines an upper bounds for Egmm(θ)

fuzzy K-means loss (slide 54)

θ = (μ,σ,ρ)

with arbitrary S

upper bound L (θ|S)

cluster cardinality term

GMM estimation overview

Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

fuzzy K-means loss (slide 54) cluster cardinality term

θ = (μ,σ,ρ)

E-step

for given
can find tight upper bound

L (θ|S) - for any S defines an upper bounds for Egmm(θ)

GMM estimation overview

Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

fuzzy K-means loss (slide 54) cluster cardinality term

θ = (μ,σ,ρ)
M-step

given , compute minimizing

L (θ|S) - for any S defines an upper bounds for Egmm(θ)

E-step

for given
can find tight upper bound

GMM estimation overview

Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

fuzzy K-means loss (slide 54) cluster cardinality term

θ = (μ,σ,ρ)
M-step

given , compute minimizing

L (θ|S) - for any S defines an upper bounds for Egmm(θ)

E-step

Summary of EM algorithm:
- iterative EM steps
- converges to local minimum
- essentially, block-coordinate descent
 for fuzzy K-means loss L (θ | S)

- “glorified” Lloyd’s algorithm

for given
can find tight upper bound

GMM(elliptic) K-means

color indicates locally strongest mode color indicates assigned cluster

k=6 k=6

hard assignment to clusters

- separates data points into multiple

Gaussian blobs

only estimates means μi

soft mode searching

- estimates data distribution with

multiple Gaussian modes

estimates both mean μi and

(co)variance Σi for each mode

- (co)variance Σi can also be treated as

cluster parameter (elliptic K-means)

if using Gaussian log-likelihoods

Gaussian clusters/modes in:

 (basic) K-means vs. GMM (or fuzzy K-means)

hard clustering may not work well
when clusters overlap

k=4 k=4

(may not be a problem in image segmentation,
since objects do not “overlap” in RGBXY)

While this is an optimal GMM,
standard EM may converge to

a bad solution (local minimum)

hard assignment to clusters

- separates data points into multiple

Gaussian blobs

only estimates means μi

soft mode searching

- estimates data distribution with

multiple Gaussian modes

estimates both mean μi and

(co)variance Σi for each mode

Gaussian clusters/modes in:

 (basic) K-means vs. GMM (or fuzzy K-means)

- (co)variance Σi can also be treated as

cluster parameter (elliptic K-means)

if using Gaussian log-likelihoods

soft mode searching

- estimates data distribution with

multiple Gaussian modes

estimates both mean μi and

(co)variance Σi for each mode

expensive steps (mostly due to Σk)
(iterative EM algorithm)

sensitive to local minima

becomes slow to estimate Σ

from high dimensional data,

also needs lots of points

hard assignment to clusters

- separates data points into multiple

Gaussian blobs

only estimates means μi

- Σi can also be added as a cluster

parameter (elliptic K-means)

computationally cheap steps
(block-coordinate descent, Lloyd’s algorithm)

sensitive to local minima

(implicitly) extends to high

dimensional features (kernel K-

means, non-parametric clustering)

unless estimating covariances Σk (elliptic case)

Gaussian clusters/modes in:

 (basic) K-means vs. GMM (or fuzzy K-means)

- (co)variance Σi can also be treated as

cluster parameter (elliptic K-means)

if using Gaussian log-likelihoods

K-means as non-parametric clustering

equivalent (easy to check)




−=−=
k

k

k

k

Spq

qpS
Sp

kpS

k fffS 2

||2

12

||

1 ||||||||)var(2sample variance:

just plug-in
expression




=
k

k

Sq

qSk f
||

1

k

Sk

Sk

equivalent
criterion without
parameters µk

qf

pf

pf

K-means as variance clustering criteria

k

Sk

Sk

both formulas can be written as




−=−=
k

k

k

k

Spq

qpS
Sp

kpS

k fffS 2

||2

12

||

1 ||||||||)var(2sample variance:

qf

pf

pf

Not so good

• Only a local minimum is found (sensitive to initialization)

• May fail for non-blob like clusters

• Maybe sensitive to outliers

• How to choose K ?

K-means Summary

Good

• Principled (objective function) approach to clustering

• Simple to implement (the approximate iterative optimization)

• Fast

Can add sparsity/complexity term
making K an additional variable

Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC)

(summary of)

Standard extensions of K-means:

 
= 

−
K

k Sp
dkp

k

f
1



• Parametric: with arbitrary likelihoods P(ˑ|θ)

 (probabilistic K-means) [Kearns, Mansour & Ng, UAI’97]
 

= 

−
K

k Sp

kp
k

fP
1

)|(log 

Examples of P (ˑ|θ) : Normal, gamma, exponential, Gibbs, etc.

• Parametric: with arbitrary distortion measure

 (distortion clustering)

d|||| 

• Non-parametric: with any affinity or similarity measure, a.k.a. kernel

 (kernel K-means, average association, average distortion, normalized cut)

),(yxk

Examples of : quadratic absolute bounded
 (K-means) (K-medians) (K-modes)

d|||| 




=



−
K

k
k

Spq

qp

S

ff
k

1

2

||2




=


−

K

k
k

Spq

qp

S

ffk
k

1 ||

),(

generalize from dot-product to “inner product” or arbitrary affinity measure or kernel k




=


−=

K

k
k

Spq

qp

S

ff

const
k

1 ||

,

basic or elliptic K-means

robust metric focuses on local distortion (deemphasizes larger distances)

basic (linear) kernel


Examples:

squared Euclidean distance

squared L2 distance in standard K-means

Gaussian kernel



distance in Gaussian kernel K-means
2|||| 

0

2|||| k

From basic K-means to kernel K-means
(example: Gaussian kernel and its robust metric story)

easy to show
same as a Problem in
K-means part of HW4

for any kernel-induced metric:

minimize distances within clusters maximize affinities within clusters

NOTE: this is proper metric for any pos. def. kernels
 e.g. works for inner products

robust metric focuses on local distortion (deemphasizes larger distances)

2|||| 

0

2|||| k

From basic K-means to kernel K-means
(example: Gaussian kernel and its robust metric story)

S1
S2

σ

For Gaussian kernel both clusters look equally tight/compact

since it “inspects” only their neighborhoods of size σ.

e.g. Gaussian kernel =>

kernel K-meansbasic K-means

iClicker

Why?

local “compactness”global “compactness”

Basic K-means vs kernel K-means

σ

A: local minima C: circular cluster

B: arc-shape gap D: thin/long cluster

kernel K-meansbasic K-means

non-linear separationlinear separation

Basic K-means vs kernel K-means

σ
e.g. Gaussian kernel =>

kernel K-means
non-parametric (kernel) clustering

- objective

Kernel-based clustering (a.k.a. pairwise clustering):

 - robustness to outliers

 - non-parametric approach, arbitrary separation boundary,
 assumes only “local compactness” instead of fitting
 parameters of distributions (of known class) to clusters

- there are known biases, many variants addressing them

- optimization? (no block-coordinate descent as we dropped cluster parameters)

kernel K-means
non-parametric (kernel) clustering

fp

fq

Apq = k(fp ,fq)

- objective

- features

kernel K-means
non-parametric (kernel) clustering

fp

fq

Apq = k(fp ,fq)

- objective

explicit features fp are no longer needed

- features

kernel K-means
non-parametric (kernel) clustering

only need
affinity (or kernel) matrix

A = [Apq]

p

q

if needed, can find “embedding”

 s.t.

 using eigen decomposition for p.s.d. A
(problem from HW4)

(finite dimensional version of) MERCER THEOREM

Essentially, we formulated a

graph clustering problem

- objective

- graph nodes

kernel K-means
non-parametric (kernel) clustering

p

q

if needed, can find “embedding”

 s.t.

 using eigen decomposition for p.s.d. A
(problem from HW4)

Essentially, we formulated a

graph clustering problem

high-dimensional isometric Euclidean embedding “story”

e.g. Gaussian kernel linear/Euclidean kernel
=

- objective

- graph nodes

Optimization for kernel clustering
(brief overview, details are left for homework 4)

Idea 1: find (Euclidean) embedding s.t.

 and use basic K-means (Lloyd’s algorithm) over points .

eigen decomposition of A (p.s.d)

(HW4 problem)

Problem: in general where is the size of the data set

Idea 2 [spectral clustering]: find embedding s.t.

 where is a low rank approximation of A (of any rank m).
[a la Eckart-Young-Mirsky theorem in Topic 7].

(HW4 problem)

In this case can check and K-means over is practical (for smaller m).

NOTE (relation to PCA): low-rank approximation Ã keeps the most significant (m largest) eigen values of A.

kernel K-means or average association
non-parametric (kernel) clustering

S1

S3

S2

“self-association” of cluster Sk

kernel K-means or average association
non-parametric (kernel) clustering

S1

S3

S2

in matrix notation:

 Sk - indicator vector

‘ means transpose

[1 1 1 0 0 0 0 0 0]S1 =

S2 =

S3 =

[0 0 0 1 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1]

1 2 3 4 5 6 7 8 9

node indices

assume clusters are represented by

indicator vectors Sk

kernel K-means or average association
non-parametric (kernel) clustering

S1

S3

S2

in matrix notation:

 Sk - indicator vector

‘ means transpose

[1 1 1 0 0 0 0 0 0]S1 =

S2 =

S3 =

[0 0 0 1 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1]

1 2 3 4 5 6 7 8 9

node indices

assume clusters are represented by

indicator vectors Sk

kernel K-means or average association
non-parametric (kernel) clustering

S1

S3

S2

in matrix notation:

 Sk - indicator vector

‘ means transpose

[1 1 1 0 0 0 0 0 0]S1 =

S2 =

S3 =

[0 0 0 1 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1]

1 2 3 4 5 6 7 8 9

node indices

assume clusters are represented by

indicator vectors Sk

Convenient general notation

[1 1 1 0 0 0 0 0 0]S1 =

S2 =

S3 =

[0 0 0 1 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1]

1 2 3 4 5 6 7 8 9

node indices

assume clusters are represented by

indicator vectors Sk

sum of all graph
edge weights Apq

from set Si to set Sj

S1

S2

S3

Other graph clustering objectives

“cut” for Sk

S1

S3

S2

S1

S3

S2

“self-association” for Sk

so far only looked at

Average AssociationAverage Cut

related to Cheeger cut,
spectral graph theory,

isoperimetic constant, etc

Other graph clustering objectives

Normalized Cut

Average Cut

Average Association

for

[Shi & Malik, 2000]

Typically, approximately optimized via spectral methods
 using strongest eigenvalues / eigenvectors of A

vector of node degrees (connectivity)

?

Basic K-means vs Kernel Clustering

“segments” in
RGBXY space

not just
super-pixels

compact “blobs”
in RGBXY space

[Achanta et al., PAMI 2011]

super-pixels

[Shi&Malik 2000]

segmentation

basic K-means
for

kernel K-means

e.g. for Gaussian kernel

From “means” towards “modes” clustering:

Kernel-based mode clustering

Formulate clustering as histogram partitioning

• look for modes in data histograms

• assign points to modes

data points data histogram and its modes clustering

Finding Modes in a Histogram

How Many Modes Are There?

• Easy to see, not too obvious how to compute

Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

1. Initialize random seed, and fixed window

2. Calculate center of gravity ‘x’ of the window (the“mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

It
er

a
ti

v
e

M
o

d
e

S
ea

rc
h

x xo x

mode

Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

img005

http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Mean Shift as K-modes
[Salah, Mitche, Ben-Ayed 2010]

img005

Mean-shift segmentation relates to
distortion clustering with a bounded loss (K-modes)

 
= 

−
K

k Sp
dkp

k

f
1


: quadratic absolute bounded

 (K-means) (K-medians) (K-modes)
d|||| 

http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Mean-shift results

for segmentation
RGB+XY clustering
[Comaniciu & Meer 2002]

Mean-shift results

for segmentation
RGB+XY clustering
[Comaniciu & Meer 2002]

RGB+XY clustering
[Comaniciu & Meer 2002]

Mean-shift results

for segmentation

works well for
segments with

near-consistent color

Issues for kernel clustering methods:

kernel bandwidth selection

 - can not be too small or too large

 - indirectly controls the number of clusters (in mean-shift)

 - different width in RGB and XY parts of the space

Biases (e.g. to equal size, to dense clumps, to sparse points, etc)

 - can use adaptive bandwidths or weighted points, e.g. [Marin et al. TPAMI 2017]

Color features may not be discriminant enough

(e.g. color overlap between different objects)

Boundary properties (geometry) are missing

• contrast edge alignment could be a problem

• smoothness or other shape priors

	Part 1
	Slide 1: CS484 Computational Vision
	Slide 2: Goal: find coherent “blobs” or specific “objects / classes”
	Slide 3: CS484 Computational Vision Low-level Image Segmentation
	Slide 4
	Slide 5: CS484 Computational Vision Low-level Image Segmentation
	Slide 6: Segment’s APPEARANCE
	Slide 7: Coherent color “blobs”
	Slide 8: Why is this useful?
	Slide 9: Ideal Segmentation
	Slide 10: Result of a naive segmentation method (first learn how to get this, then how to get better results)
	Slide 11: Basic ideas
	Slide 12: (segmentation ← intensities/colors) Thresholding
	Slide 13: Sometimes works well…
	Slide 14: Sometimes works well…
	Slide 15: Sometimes works well…
	Slide 16: Sometimes works well… more often not
	Slide 17: Segment’s BOUNDARY
	Slide 18: (segmentation ← contrast edges) Region growing
	Slide 19: What can go wrong with region growing ?
	Slide 20: Region growing
	Slide 21: Region growing
	Slide 22: From procedurally-defined towards “objective” segmentation
	Slide 23: From procedurally-defined towards “objective” segmentation
	Slide 24
	Slide 25: Alternative Views on Data Representation

	part 2
	Slide 26: clustering objectives Part I
	Slide 27: clustering objectives Part I
	Slide 28: Motivation
	Slide 29: Motivation
	Slide 30: Motivation
	Slide 31: General Grouping or Clustering (a.k.a. unsupervised learning)
	Slide 32: How does this Relate to Image Segmentation?
	Slide 33: How does this Relate to Image Segmentation?
	Slide 34: K-means Clustering: Objective Function
	Slide 35: K-means Clustering: Objective Function
	Slide 36: K-means Clustering: Algorithm
	Slide 37: K-means Clustering: Algorithm
	Slide 38: K-means Clustering: Algorithm
	Slide 39: K-means Clustering: Algorithm
	Slide 40: K-means Clustering: Algorithm
	Slide 41: K-means Clustering: Algorithm
	Slide 42: K-means Clustering: Algorithm
	Slide 43: K-means Clustering: Algorithm
	Slide 44: K-means Clustering: Algorithm
	Slide 45: K-means: Approximate Optimization
	Slide 46: K-means clustering examples: Segmentation
	Slide 47: K-means for colors (RGB features): Segmentation?
	Slide 48: K-means for colors (RGB features): Color Quantization
	Slide 49: K-means clustering examples: Adding XY features
	Slide 50: K-means clustering examples: Superpixels
	Slide 51: K-means Properties
	Slide 52: K-means Properties
	Slide 53: (generalization) Distortion Clustering
	Slide 54
	Slide 55
	Slide 56

	part 3
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Soft clustering using Gaussian Mixture Model (GMM)
	Slide 61: Soft clustering using Gaussian Mixture Model (GMM)
	Slide 62: Soft clustering using Gaussian Mixture Model (GMM)
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Gaussian clusters/modes in: (basic) K-means vs. GMM (or fuzzy K-means)
	Slide 69: Gaussian clusters/modes in: (basic) K-means vs. GMM (or fuzzy K-means)
	Slide 70: Gaussian clusters/modes in: (basic) K-means vs. GMM (or fuzzy K-means)
	Slide 71: K-means as non-parametric clustering
	Slide 72
	Slide 73: K-means Summary
	Slide 74: (summary of) Standard extensions of K-means:
	Slide 75: From basic K-means to kernel K-means (example: Gaussian kernel and its robust metric story)
	Slide 76: From basic K-means to kernel K-means (example: Gaussian kernel and its robust metric story)
	Slide 77: Basic K-means vs kernel K-means
	Slide 78: Basic K-means vs kernel K-means
	Slide 79: kernel K-means non-parametric (kernel) clustering
	Slide 80: kernel K-means non-parametric (kernel) clustering
	Slide 81: kernel K-means non-parametric (kernel) clustering
	Slide 82: kernel K-means non-parametric (kernel) clustering
	Slide 83: kernel K-means non-parametric (kernel) clustering
	Slide 84: Optimization for kernel clustering (brief overview, details are left for homework 4)
	Slide 85: kernel K-means or average association non-parametric (kernel) clustering
	Slide 86: kernel K-means or average association non-parametric (kernel) clustering
	Slide 87: kernel K-means or average association non-parametric (kernel) clustering
	Slide 88: kernel K-means or average association non-parametric (kernel) clustering
	Slide 89: Convenient general notation
	Slide 90: Other graph clustering objectives
	Slide 91: Other graph clustering objectives
	Slide 92: Basic K-means vs Kernel Clustering
	Slide 93: From “means” towards “modes” clustering: Kernel-based mode clustering
	Slide 94: Finding Modes in a Histogram
	Slide 95: Mean Shift [Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]
	Slide 96: Mean Shift [Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]
	Slide 97: Mean Shift as K-modes [Salah, Mitche, Ben-Ayed 2010]
	Slide 98: Mean-shift results for segmentation
	Slide 99: Mean-shift results for segmentation
	Slide 100: Mean-shift results for segmentation
	Slide 101: Issues for kernel clustering methods:

