

Computational Vision

unsupervised and semi-supervised (interactive) image segmentation with <u>low-level features</u>

Low-level Segmentation

or grouping, partitioning, etc...

MAIN GOAL: in a simpler context of <u>basic low-dimensional image features</u>, e.g. colors or edges, understand **standard general techniques for grouping data points**, e.g. pixels, **with minimal supervision or unsupervised**

LATER: understand how to automatically build/learn <u>complex "deep" features</u> representing high-level (e.g. semantic) information in images and individual pixels. We will also discuss how to group them with or without supervision.

informal overview of

Image Segmentation

Goal:

find coherent "blobs" or specific "objects / classes"

(e.g. color-consistent region, smooth edge-aligned boundaries, coherent motion,...)

high-level / **semantic** segmentation (e.g. humans, trees, cars, ...)

computed from given image only, or also using a large training dataset?

unsupervised, semi-supervised, fully supervised?

Low-level Image Segmentation

- Examples
 - unsupervised (background subtraction, color quantization, superpixels)
 - *semi-supervised* (photo-shop, medical image analysis)
- □ "Naïve" low-level segmentation
 - thresholding, region growing, etc
- Loss functions for (low-level) segmentation
 - region-based, boundary-based (geometric or shape)
 - Clustering criteria for general data points (basics from ML)
 - K-means, K-medians, K-modes, mean-shift
 - variance and distortion clustering, robust metrics
 - hard vs. soft clustering, probabilistic formulations, entropy, likelihoods, EM, GMM
 - parametric & non-parametric methods, kernel/spectral clustering, data embeddings
 - Regularization of segments (surfaces/shapes)
 - graphical models, active contours, geometric (shape/surface) regularization
 - combining with likelihood models and clustering methods
 - interactive segmentation (seeds/scribbles, boxes)

part

part I

Two general groups of properties for (low-level) segmentation

- ☐ A: coherent segment's appearance (region)
 - consistent colors/texture, etc later: consistency with semantic class
 - agreement with known color distribution/density or likelihood model
- ☐ B: coherent segment's shape (boundary)
 - alignment to contrast edges later: consistency with semantic boundaries
 - boundary regularity / smoothness (low-level "shape prior")
 - consistency with expected shape (e.g. square, star, convex higher-level priors)

Low-level Image Segmentation

first

"Naïve" segmentation techniques

A [based on appearance/color]: thresholding, likelihood ratio test

B [based on boundaries/contrast-edges]: region growing

Szeliski, Sec 5.2

Other readings: Sonka et al. Ch. 5

Gonzalez and Woods, Ch. 10

Naive Approach to Appearance (A)

SEGMENT'S APPEARANCE

.

Coherent color "blobs"

■ Simplest way to define blob coherence is as similarity in brightness or color:

The tools become blobs

The house, grass, and sky make different blobs

Why is this useful?

AIBO RoboSoccer (VelosoLab)

Ideal Segmentation

can recognize objects with known

simple

color

Result of a naive segmentation method

(first learn how to get this, then how to get better results)

even if

known simple color

Basic ideas

low-level "appearance" features intensities / colors

partition intensity histogram:

- thresholding
- log-likelihood ratio test

properties, assumptions:

- point processing, location is ignored
- i.i.d. assumption for colors in each blob/region
- assumes good "separation" of colors in each blob

(segmentation ← intensities/colors)

Thresholding

□ Basic segmentation operation:

$$mask(x,y) = 1$$
 if $im(x,y) > T$
 $mask(x,y) = 0$ if $im(x,y) < T$

- □ T is threshold
 - user-defined
 - or automatic

Same as histogram partitioning:

a b c

FIGURE 10.28

(a) Original image.
(b) Image histogram.
(c) Result of global thresholding with T midway between the maximum and minimum gray levels.

Sometimes works well...

bronchoscopy, colonoscopy, etc.

Virtual bronchoscopy, colonoscopy, etc.

a) threshold CT volume -> binary mask

Sometimes works well...

$$r_p \coloneqq \log rac{P_1(I_p)}{P_0(I_p)} \stackrel{P_I}{\underset{ ext{bound}}{\text{and}}} rac{P_0}{\underset{ ext{bound}}{\text{are}}}$$
 known color models for object and background $r_p \ge 0 \implies \text{pixel p is object}$ $r_p < 0 \implies \text{pixel p is background}$

Sometimes works well...

background subtraction

Sometimes works well... more often not

background subtraction

problems when color models have overlapping support

Naive Approach to *Boundary* (B)

SEGMENT'S BOUNDARY

The most basic approaches attempt to find subsets of pixels completely surrounded by strong intensity edges

edges

Canny edges

- region growing
- watersheds

(segmentation \leftarrow contrast edges)

Region growing

- Interactive initialization: assumes some initial set of pixel(s) K (seeds)
- For any pixel p in K add all its neighbors q such that |Ip-Iq| < T
- Iterate the step above until no neighbors of points in K satisfy |Ip-Iq| < T
- **Breadth-First Search** (BFS) over grid neighbors (p,q) s.t. |Ip-Iq| < T
- \square Method stops at high-contrast edges (p,q) such that |Ip-Iq|>T

What can go wrong with region growing?

Region growth may "leak" through a single week spot in the boundary

Region growing

Breadth First Search (seeds):

$$/VI_p/< T$$

Region growing

From procedurally-defined towards "objective" segmentation

Should learn about **loss functions** (objectives) representing:

- Color/feature appearance consistency
 - replacing manually-selected thresholds by automatic partitioning of features
- Boundary/shape regularity
 - contrast edge continuation (fixing "leaks")
 - shape priors/regularization (addresses i.i.d. assumption)
- Combining multiple objectives (losses)

From procedurally-defined towards "objective" segmentation

Should learn about **objectives** (loss functions)

- □ Part I: Clustering criteria
 - general ML methods for unsupervised or weaklysupervised partitioning of data/features (low-level or deep)
 - can be used for image segmentation
- □ Part II: Shape regularization models
 - specific to image segmentation
 - appearance consistency
 - boundary/surface regularity (we focus on graphical formulations)

WATERLOO

Highly informal

comments on terminology

Clustering – general techniques (from ML) for partitioning arbitrary data/features $\{f_p\} \subset R^N$ (of any dimensions) where p is index of a data point

e.g. movies in some feature space (length, director, tags,...)

Image Segmentation – methods specifically designed for

partitioning image features $\{f_p\} \subset R^N$ where p are image grid pixels p = (x, y)

- instead of an arbitrary collection $\{f_p\}$ of data points, features are viewed as a sample from function $f(x,y): \mathbb{R}^2 \to \mathbb{R}^N$

NOTE: general clustering techniques can be adapted to image segmentation problems. Thus, the boundary between the terms **clustering** and image **segmentation** is fuzzy.

 f_p - e.g. intensity I_p or color RGB_p or some "deep" feature at pixel p = (x,y)

Alternative Views on Data Representation

Part I vs Part II

collection of feature vectors in \mathbb{R}^n

K-means, GMM, general graph clustering, ...

3D tensor

features embedded in a regular 2D grid common in computer vision

convolution, geometry, shape, spatial regularity, ...

We will learn: - clustering criteria and spatial regularization models

- how to combine different approaches

clustering objectives

Part I

Clustering Methods for General Data

(basics from ML with applications in Computer Vision)

clustering objectives

Part I

Clustering Methods for General Data

(basics from ML with applications in Computer Vision)

general criteria for unsupervised data clustering

- K-means, distortion clustering, probabilistic clustering, EM, GMM
- parametric vs non-parametric formulations
- kernel and spectral methods, graph clustering criteria

Szeliski, Sec 5.3

examples in image analysis

• color quantization, super-pixels, unsupervised segmentation

Motivation

- In 1D feature spaces (gray-scale intensities) it may be possible to set decision boundaries manually.

I

But, not easy in 3D feature space

R 20 40 60 80

Note: in N dimensional feature space, the closest analogue of thresholding is a linear decision boundary (a hyperplane) defined by N+1 parameters.

Bayesian decisions

- One can use log-likelihood ratio test if (color) distributions/densities for segments, e.g. P_1 and P_0 , are known.

 $\log \frac{P_1(f)}{P_0(f)} \ge 0$

can yield arbitrarily complex decision boundaries in any feature space

Does not work if distributions are not known

Motivation

decision boundaries for ND features could be arbitrarily complex (surfaces)

Example: break data points (e.g. RGB or RGBXY space) into a few clusters

- color quantization
- superpixels
- semantic segmentation (later topic)

Motivation

decision boundaries for ND features could be arbitrarily complex (surfaces)

Need automatic data *clustering* methods

Szeliski, Sec 5.3

- parametric methods: *e.g.* K-means, soft K-means, GMM ...
 - Note: many such methods are *generative* (estimate distribution parameters jointly with clustering the data)
- non-parametric: *e.g.* kernel K-means, graph partitioning, mean-shift ...

Time permitting, we may also cover some deep clustering methodologies at the end of the course.

General Grouping or Clustering

(a.k.a. unsupervised learning)

- Have data points (samples, a.k.a. feature vectors, examples, etc.) $f_1,...,f_p$,...
- Cluster similar points into groups
 - points are **not** pre-labeled
 - think of clustering as "discovering" labels

How does this Relate to Image Segmentation?

- Represent image pixels as feature vectors $f_1,...,f_p$,... or $\{f_p \mid p \in \Omega\}$
 - For example, each pixel can be represented as

set of all pixels or indices

- intensity, gives one dimensional (1D) feature vectors
- color, gives three-dimensional (3D) feature vectors, e.g. RGB
- color + coordinates, gives five-dimensional (5D) feature vectors, e.g. RGBXY
- Cluster them into **K** clusters, i.e. **K** segments

input	image
-------	-------

9 4 2	⁷ 3 ₁	8 6 8
8 2 4	5 8 5	³ 7 2
9 4 5	9 3	1 4 4

feature vectors for clustering based on color

RGB (or LUV) space clustering

How does this Relate to Image Segmentation?

- Represent image pixels as feature vectors $\mathbf{f}_1,...,\mathbf{f}_p$,... or $\{f_p \mid p \in \Omega\}$
 - For example, each pixel can be represented as

set of all pixels or indices

- intensity, gives one dimensional (1D) feature vectors
- color, gives three-dimensional (3D) feature vectors, e.g. RGB
- color + coordinates, gives five-dimensional (5D) feature vectors, e.g. RGBXY
- Cluster them into **K** clusters, i.e. **K** segments

innut	image
шриі	mnage

9 4 2	7 3 1	8 6 8
8 2 4	5 8 5	³ 7 2
9 4 5	9 3	1 4 4

feature vectors for clustering based on color and image coordinates

RGBXY (or LUVXY) space clustering

K-means Clustering: Objective Function

- Probably the most popular clustering algorithm
 - assumes the number of clusters is given K
- ullet optimizes (approximately) the following **objective function** for variables $\,S^{\,k}\,$ and $\,\mu_k$

$$SSE(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

sum of squared errors from cluster center μ_k (both S^k and μ_k are **unknown**, to be computed)

optimization "variables"

subsets
$$S=(S^1,...,S^K)$$
 centers $\mu=(\mu_1,...,\mu_K)$

Q: given cluster S^k , what best describes <u>optimal center</u> $\hat{\mu}_k = \arg\min_{\mu_k} \sum_{p \in S^k} \|f_p - \mu_k\|^2$? **A**: center of mass **B**: average **C**: median **D**: least squares solver

K-means Clustering: Objective Function

Good (tight) clustering => smaller value of SSE

Bad (loose) clustering => larger value of SSE

K-means Clustering: Algorithm

- Initialization step
 - 1. pick *K* cluster centers randomly (e.g. from data points)

- Initialization step
 - 1. pick **K** cluster centers randomly (e.g. from data points)

- Initialization step
 - 1. pick **K** cluster centers randomly
 - 2. assign each sample to its closest center

- Initialization step
 - 1. pick **K** cluster centers randomly
 - 2. assign each sample to its closest center

- Iteration steps
 - 1. compute centers as cluster means $\mu_k = \frac{1}{|S^k|} \sum_{p \in S^k} f_p$

- Initialization step
 - pick **K** cluster centers randomly 1.
 - 2. assign each sample to its closest center

- Iteration steps
 - compute centers as cluster means $\mu_k = \frac{1}{|S^k|} \sum_{p \in S^k} f_p$
 - re-assign each point f_p to the closest mean 2.

- Initialization step
 - pick **K** cluster centers randomly 1.
 - 2. assign each sample to its closest center

- Iteration steps
 - compute centers as cluster means $\mu_k = \frac{1}{|S^k|} \sum_{p \in S^k} f_p$
 - re-assign each point f_p to the closest mean
- Iterate until clusters stop changing

- Initialization step
 - pick **K** cluster centers randomly 1.
 - 2. assign each sample to its closest center

- Iteration steps
 - compute centers as cluster means $\mu_k=\frac{1}{|S^k|}\sum_{p\in S^k}f_p$ re-assign each point f_p to the closest center
- Iterate until clusters stop changing

- **Initialization step**
 - 1. pick K cluster centers randomly
 - 2. assign each sample to its closest center

- Iteration steps
 - compute centers as cluster means $\mu_k = \frac{1}{|S^k|} \sum_{p \in S^k} f_p$
 - re-assign each point f_p to the closest mean
- Iterate until clusters stop changing

Lloyd's algorithm (1957)

Each step decreases the value of the objective function

$$E(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

optimization variables

$$S = (S^1, ..., S^K)$$

$$\mu = (\mu_1, ..., \mu_K)$$

- **Initialization step**
 - 1. pick K cluster centers randomly
 - 2. assign each sample to its closest center

- Iteration steps
 - compute centers as cluster means $\mu_k = \frac{1}{|S^k|} \sum_{p \in S^k} f_p$
 - re-assign each point f_p to the closest mean
- Iterate until clusters stop changing

Lloyd's algorithm (1957)

Each step decreases the value of the objective function

$$E(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

optimization variables

$$S = (S^1, ..., S^K)$$

$$\mu = (\mu_1, ..., \mu_K)$$

K-means: Approximate Optimization

- K-means is fast and (sometimes) works well in practice
- But can get stuck in a local minimum of objective E_K
 - not surprising, since the exact optimization of its objective is NP-hard

initialization

O •

converged to local min

global minimum

K-means clustering examples: Segmentation

 $I_p \in R^1$

here K-means finds compact clusters of pixels' intensities

In this case K-means (K=2) implicitly finds a good threshold (between 2 clusters)

K-means for colors (RGB features): Segmentation?

k = 3

(mean color is used to show each segment/cluster)

k = 5

k = 10

K-means for colors (RGB features): Color Quantization

NOTE bias to equal-size clusters

Where "size" can mean both clusters' cardinalities and clusters' diameters in the feature space

K-means clustering examples: Adding XY features

color quantization

RGB features

superpixels

RGBXY features

Voronoi cells

XY features only

K-means clustering examples: Superpixels

Apply K-means to RGBXY features

[SLIC superpixels, Achanta et al., PAMI 2011]

K-means Properties

Works well when clusters are compact/tight blobs

Fails to find non-compact clusters

K-means can only produce <u>linear boundaries</u> between clusters (why?)

Thus, K-means does not work well if clusters can not be separated by a line/plane.

WATERLOO

K-means Properties

Sensitive to outliers

Explanation: squared distance error grows too fast making any outlier extremely costly. This also explains non-robustness of a "sample mean" statistic.

$$SSE(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

Possible solution: replace squared distances by absolute distances that grow at a slower pace. K

$$SAE(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||$$

Interestingly, in this case the optimal value of μ_k is the "median" of set S^k instead of its "mean"

(generalization)

Distortion Clustering

can use different "distortion" measures

$$E(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S_k} ||f_p - \mu_k||_d$$

examples of distortion measure $\ \cdot\ _d$			interpretation of parameters μ_k
	$\ \cdot\ _d = \ \cdot\ ^2$	squared L_2 norm	K-means
	$\ \cdot\ _d = \ \cdot\ $	absolute L_2 norm	K-medians
	$\ \cdot\ _d = 1 - \exp(- $	$ \cdot ^2$)	K-modes

NOTE: there are other generalizations of K-means using a **probabilistic interpretation of SSE**

K-means as probabilistic clustering

(probabilistic model parameter fitting)

For fixed clusters, optimization of parameters μ_k this can be seen as...

- maximum likelihood estimation of Gaussian density parameters μ_k
- Gaussian classifier estimation (see any intro Machine Learning courses)

Since clusters are also estimated...

K-means can be seen as *unsupervised Gaussian classification*

$$E(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

equivalent (easy to check)

sum of negative log-likelihoods (NLL loss)

probabilistic K-means

general formulation since any parametric density functions can be used

negative log-likelihoods (NLL loss) negative log-likelihood can be seen as "probabilistic" distortion measure
$$E(S,\mu) = -\sum_{k=1}^K \sum_{p \in S^k} \log P(f_p \mid \mu_k) + const$$

multi-variate (i.e.
$$x, \mu \in R^N$$
)

Gaussian distribution
(simple special case $\Sigma = \sigma^2 \mathbf{I}$)

$$P(x|\mu) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp{-\frac{\|x-\mu\|^2}{2\sigma^2}}$$

"probability

simplex"

Towards soft clustering...

Fuzzy K-means

NOTE:

$$\begin{array}{ccc} \text{optimal } S_p \text{ for this "relaxed" loss} \\ \text{are } \textbf{\textit{one-hot}} \text{ distributions } S_p \in \Delta_{\textbf{v}}^K \\ \textit{\textit{e.g.,}} & S_p = (0,1,0,0,0) \end{array} \quad \begin{array}{c} S_p \in \Delta_{\textbf{v}}^K \\ \text{\textit{\textit{vertices of probability simplex}} \end{array} \end{array}$$

Let's represents segmentation using relaxed segmentation variables \boldsymbol{S}_p

categorical distribution at point p over K clusters $m{S}_p := \{S_p^k: S_p^k \geq 0, \sum_k S_p^k = 1\} \in \Delta^K$

NOTE:

"probabilistic" formulation but clusters S^k are "hard"

$$E(S, \mu) = -\sum_{k=1}^{K} \sum_{p \in S^k} \log P(f_p \mid \mu_k)$$

$$P(x|\mu) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp{-\frac{\|x-\mu\|^2}{2\sigma^2}}$$

Fuzzy K-means

standard measure of "chaos" in any distribution $extbf{ extit{p}} \in \Delta^K$

$$H(\mathbf{p}) := -\sum_{k} p^k \log p^k$$

now, optimal S_p for positive temperatures T>0 are "soft" distributions in the interior of the simplex $S_p \in \Delta^K$

fuzzy or soft K-means

$$E(S,\mu) = -\sum_{k=1}^K \sum_p S_p^k \, \log P(f_p \, | \, \mu_k) - T \, \sum_p^{ ext{entropy of distribution } S_p} H(m{S}_p)$$

Let's represents segmentation using relaxed segmentation variables \boldsymbol{S}_p

categorical distribution at point p over K clusters

$$m{S}_p := \{S_p^k: \, S_p^k \geq 0, \, \sum_k S_p^k = 1\} \in \Delta^K$$

"probability simplex"

"**hard**" K-means

$$E(S, \mu) = -\sum_{k=1}^{K} \sum_{p \in S^k} \log P(f_p \mid \mu_k)$$

multi-variate (i.e.
$$x, \mu \in R^N$$
)
Gaussian distribution
(simple special case $\Sigma = \sigma^2 \mathbf{I}$)
$$P(x|\mu) = \frac{1}{\sqrt{(2\pi)^2}}$$

$$P(x|\mu) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp{-\frac{\|x-\mu\|^2}{2\sigma^2}}$$

Gaussian Mixture Models (GMM)

Consider another **probabilistically motivated** approach to soft clustering...

$$E(S, \mu) = -\sum_{p} \log \sum_{k=1}^{K} S_{p}^{k} P(f_{p} | \mu_{k})$$

Let's represents segmentation using relaxed segmentation variables S_n

categorical distribution at point p over
$$K$$
 clusters $m{S}_p := \{S_p^k: S_p^k \geq 0, \sum_k S_p^k = 1\} \in \Delta^K$

"hard" K-means

$$E(S, \mu) = -\sum_{k=1}^{K} \sum_{p \in S^k} \log P(f_p | \mu_k)$$

 $P(x|\mu) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp{-\frac{\|x-\mu\|^2}{2\sigma^2}}$ multi-variate (i.e. $x, \mu \in \mathbb{R}^N$) Gaussian distribution (simple special case $\Sigma = \sigma^2 \, \mathbf{I}$)

Gaussian Mixture Models (GMM)

Consider another **probabilistically motivated** approach to soft clustering...

point specific distributions S_p are replaced $\sum
ho_k P(x \mid \mu_k)$ by fixed "prior" distribution ρ over clusters

MLE estimation of GMM model parameters

sum of log-likelihoods (NLL) GMM density with K modes
$$E(\rho,\mu) = -\sum_{p} \log \sum_{k=1}^{K} \rho_k \, P(f_p \, | \, \mu_k)$$

segmentation variables S_p are **hidden** now 🕾

can estimate according to the Bayes rule

$$S_p^k = \frac{\rho_k P(f_p|\mu_k)}{\sum_{i=1}^K \rho_i P(f_p|\mu_i)}$$

"hard" K-means

sum of log-likelihoods (NLL)
$$_K$$
 K single mode Gaussians
$$E(S,\mu) \ = \ -\sum_{k=1}^K \sum_{p \in S^k} \log P(f_p \,|\, \mu_k)$$

multi-variate (i.e.
$$x, \mu \in R^N$$
)

Gaussian distribution
(simple special case $\Sigma = \sigma^2 \mathbf{I}$)

$$P(x|\mu) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp{-\frac{\|x-\mu\|^2}{2\sigma^2}}$$

Gaussian Mixture Models (GMM)

Consider another **probabilistically motivated** approach to soft clustering...

MLE estimation of GMM model parameters

$$E(\rho, \mu, \Sigma) = -\sum_{p} \log \sum_{k=1}^{K} \rho_k P(f_p \mid \mu_k, \Sigma_k)$$

sum of log-likelihoods (NLL)

segmentation variables S_n are **hidden** now 🕾

can estimate $S_p^k = \frac{\rho_k P(f_p|\mu_k)}{\sum_{i=1}^K \rho_i P(f_p|\mu_i)}$ according to the Bayes rule

"hard" K-means

sum of log-likelihoods (NLL)
$$_K$$
 K single mode Gaussians
$$E(S,\mu,\Sigma) = -\sum_{k=1}^{\infty}\sum_{p\in S^k}\log P(f_p\mid \mu_k,\Sigma_k)$$
 "elliptic K-means"

multi-variate (i.e.
$$x, \mu \in \mathbb{R}^N$$
)

Gaussian distribution
(general covariance matrix Σ)

$$P(x|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} \exp{-\frac{\|x-\mu\|_{\Sigma}^2}{2}}$$

Gaussian Mixture Models (GMM)

- Soft clustering using Gaussian Mixture Model (GMM)
 - no "hard" assignments of points to K distinct (Gaussian) clusters S^k
 - all points are used to estimate parameters of one complex K-mode distribution (GMM)

Gaussian Mixture Models (GMM)

- Soft clustering using Gaussian Mixture Model (GMM)
 - no "hard" assignments of points to K distinct (Gaussian) clusters S^k
 - all points are used to estimate parameters of one complex K-mode distribution (GMM)

Gaussian Mixture Models (GMM)

- Soft clustering using Gaussian Mixture Model (GMM)
 - no "hard" assignments of points to K distinct (Gaussian) clusters S^k
 - all points are used to estimate parameters of one complex K-mode distribution (GMM)

Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_p \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_k P(x_p \mid \mu_k, \sigma_k) \right)$$

In fact, **equality** holds specifically for

$$S_p^k = \frac{\rho_k P(x_p | \mu_k, \sigma_k)}{\sum_m \rho_m P(x_p | \mu_m, \sigma_m)}$$

(plug-in to check, very easy)

$$\stackrel{\forall S_p \in \Delta_K}{\equiv} - \sum_{p} \log \left(\sum_{k} S_p^k \frac{\rho_k P(x_p \mid \mu_k, \sigma_k)}{S_p^k} \right)$$

Jensen's inequality
move "log" inside expectation E

$$\leq -\sum_{p} \sum_{k} S_{p}^{k} \log \underbrace{P(x_{p} \mid \mu_{k}, \sigma_{k})}_{S_{p}^{k}}$$

$$= -\sum_{p \bowtie k} S_p^k \log(p_k) - \sum_{p \bowtie k} S_p^k \log(p(x_p \mid \mu_k, \sigma_k)) + \sum_{p \bowtie k} S_p^k \log(S_p^k)$$

$$= -\sum_{k} \left(\sum_{p} S_{p}^{k}\right) \log \rho_{k} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p})$$

Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_p \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_k P(x_p \mid \mu_k, \sigma_k) \right)$$

 $L(\theta|S)$ - for any S defines an upper bounds for $E_{gmm}(\theta)$

 $-\sum_{k} \left(\sum_{p} S_{p}^{k}\right) \log \rho_{k} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p})$

Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_p \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_k P(x_p \mid \mu_k, \sigma_k) \right)$$

 $L(\theta|S)$ - for any S defines an upper bounds for $E_{gmm}(\theta)$

 $\leq \frac{\text{cluster cardinality term}}{-\sum_{k} \left(\sum_{p} S_{p}^{k}\right) \log \rho_{k}} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p})$

Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_p \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_k P(x_p \mid \mu_k, \sigma_k) \right)$$

 $L(\theta|S)$ - for any S defines an upper bounds for $E_{gmm}(\theta)$

$$\leq \frac{\text{cluster cardinality term}}{-\sum_{k} \left(\sum_{p} S_{p}^{k}\right) \log \rho_{k}} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p})$$

for given $\tilde{\theta} = (\tilde{\mu}, \tilde{\sigma}, \tilde{\rho})$

can find tight upper bound

Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_p \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_k P(x_p \mid \mu_k, \sigma_k) \right)$$

Summary of EM algorithm:

- iterative **EM** steps
- converges to local minimum
- essentially, block-coordinate descent for fuzzy K-means loss $L(\theta \mid S)$
- "glorified" Lloyd's algorithm

 $L(\theta|S)$ - for any S defines an upper bounds for $E_{gmm}(\theta)$

 $L(\theta|S)$

cluster cardinality term fuzzy K-means loss (slide 54) $\leq \left| -\sum_{k} \left(\sum_{p} S_{p}^{k} \right) \log \rho_{k} \right| - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p}) \right|$

Gaussian clusters/modes in:

(basic) K-means

VS.

GMM (or fuzzy K-means)

- hard assignment to clusters
 - separates data points into multiple Gaussian blobs
- only estimates means μ_i
 - (co)variance Σ_i can also be treated as cluster parameter (*elliptic K-means*) if using Gaussian log-likelihoods

(elliptic) K-means

color indicates assigned cluster

- soft mode searching
 - estimates data distribution with multiple Gaussian modes
- estimates both mean μ_i and (co)variance Σ_i for each mode

GMM color indicates locally strongest mode

Gaussian clusters/modes in:

(basic) K-means

VS.

GMM (or fuzzy K-means)

- hard assignment to clusters
 - separates data points into multiple Gaussian blobs
- only estimates means μ_i
 - (co)variance Σ_i can also be treated as cluster parameter (*elliptic K-means*) if using Gaussian log-likelihoods

hard clustering may not work well when clusters overlap

(may not be a problem in image segmentation, since objects do not "overlap" in RGBXY)

- □ *soft* mode searching
 - estimates data distribution with multiple Gaussian modes
- estimates both mean μ_i and (co)variance Σ_i for each mode

While this is an optimal GMM, standard EM may converge to a bad solution (local minimum)

Gaussian clusters/modes in:

(basic) K-means

VS.

GMM

(or fuzzy K-means)

- hard assignment to clusters
 - separates data points into multiple
 Gaussian blobs
- \square only estimates means μ_i
 - (co)variance Σ_i can also be treated as cluster parameter (*elliptic K-means*) if using Gaussian log-likelihoods
- \square computationally cheap steps (block-coordinate descent, Lloyd's algorithm) unless estimating covariances Σ_k (elliptic case)
- sensitive to local minima
- □ (implicitly) extends to high dimensional features (kernel K-means, non-parametric clustering)

- □ *soft* mode searching
 - estimates data distribution with multiple Gaussian modes
- estimates both mean μ_i and (co)variance Σ_i for each mode

- \square expensive steps (mostly due to Σ_k) (iterative EM algorithm)
- sensitive to local minima
- floor becomes slow to estimate Σ from high dimensional data, also needs lots of points

just plug-in expression

K-means as non-parametric clustering

equivalent (easy to check)

$$E(S) = \sum_{k=1}^{K} \sum_{pq \in S^k} \frac{\|f_p - f_q\|^2}{2|S^k|}$$

equivalent criterion without parameters μ_k

sample variance:
$$\text{var}(S^k) = \frac{1}{|S^k|} \sum_{p \in S^k} ||f_p - \mu_k||^2 = \frac{1}{2|S^k|^2} \sum_{pq \in S^k} ||f_p - f_q||^2$$

K-means as variance clustering criteria

both formulas can be written as

$$f_q$$

$$E(S) = \sum_{k=1}^{K} |S^k| \operatorname{var}(S^k)$$

sample variance:
$$\operatorname{var}(S^k) = \frac{1}{|S^k|} \sum_{p \in S^k} ||f_p - \mu_k||^2 = \frac{1}{2|S^k|^2} \sum_{pq \in S^k} ||f_p - f_q||^2$$

K-means Summary

Good

- Principled (objective function) approach to clustering
- Simple to implement (the approximate iterative optimization)
- Fast

Not so good

- Only a local minimum is found (sensitive to initialization)
- May fail for non-blob like clusters
- Maybe sensitive to outliers
- How to choose K?

Can add **sparsity/complexity** term making K an additional variable

$$E(S, \mu, K) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2 + \gamma |K|$$

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC)

(summary of)

Standard extensions of K-means:

• Parametric: with arbitrary distortion measure $\|\cdot\|_d$ (distortion clustering)

$$\sum_{k=1}^{K} \sum_{p \in S^{k}} \| f_{p} - \mu_{k} \|_{d}$$

• **Parametric:** with arbitrary likelihoods $P(\cdot | \theta)$ (probabilistic K-means) [Kearns, Mansour & Ng, UAI'97]

Examples of $P(\cdot|\theta)$: Normal, gamma, exponential, Gibbs, etc.

Abasic or elliptic K-means

• Non-parametric: with any affinity or similarity measure, a.k.a. kernel k(x,y) (kernel K-means, average association, average distortion, normalized cut)

$$\sum_{k=1}^{K} \frac{\sum_{pq \in S^{k}} \left\| f_{p} - f_{q} \right\|^{2}}{2 \left| S^{k} \right|} = const - \sum_{k=1}^{K} \frac{\sum_{pq \in S^{k}} \left(f_{p}, f_{q} \right)}{\left| S^{k} \right|} - \sum_{k=1}^{K} \frac{\sum_{pq \in S^{k}} \left(f_{p}, f_{q} \right)}{\left| S^{k} \right|}$$

From basic K-means to *kernel K-means*

(example: Gaussian kernel and its robust metric story)

easy to show

same as a Problem in K-means part of HW4

$$\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} ||f_p - f_q||_K^2}{2|S^k|} = const - \sum_{k=1}^{K} \frac{\sum_{pq \in S^k} k(f_p, f_q)}{|S^k|}$$

for any kernel-induced metric:

NOTE: this is proper *metric* for any pos. def. kernels e.g. works for *inner products*

$$||f_p - f_q||_K^2 := k(f_p, f_p) + k(f_q, f_q) - 2k(f_p, f_q)$$

Examples:

$$k(f_p, f_q) = \langle f_p, f_q \rangle$$

pasic (linear) kernel

squared L2 distance in standard K-means

$$k(f_p,f_q) = \langle f_p,f_q \rangle \\ \text{basic (linear) kernel} \qquad \Longrightarrow \qquad ||f_p-f_q||^2 = \langle f_p,f_p \rangle + \langle f_q,f_q \rangle - 2\langle f_p,f_q \rangle = \langle f_p-f_q,f_p-f_q \rangle \\ \text{squared Euclidean distance}$$

$$k(f_p, f_q) = e^{-\frac{\|f_p - f_q\|^2}{2\sigma^2}} \Longrightarrow$$

$$k(f_p, f_q) = e^{-\frac{\|f_p - f_q\|^2}{2\sigma^2}} \Longrightarrow ||f_p - f_q||_K^2 = 2\left(1 - e^{-\frac{\|f_p - f_q\|^2}{2\sigma^2}}\right)$$
Gaussian kernel

distance in Gaussian kernel K-means

robust metric focuses on local distortion (deemphasizes larger distances)

From basic K-means to *kernel K-means*

(example: Gaussian kernel and its robust metric story)

For Gaussian kernel both clusters look **equally tight/compact** since it "inspects" only their **neighborhoods of size** σ .

robust metric focuses on **local distortion** (deemphasizes larger distances)

B: arc-shape gap D: thin/long cluster

Basic K-means vs kernel K-means

$$\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} ||f_p - f_q||_K^2}{2|S^k|} = const - \sum_{k=1}^{K} \frac{\sum_{pq \in S^k} k(f_p, f_q)}{|S^k|}$$

Basic K-means vs kernel K-means

$$\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} ||f_p - f_q||_K^2}{2|S^k|} = const - \sum_{k=1}^{K} \frac{\sum_{pq \in S^k} k(f_p, f_q)}{|S^k|}$$

linear separation

basic K-means

$$||f_p - f_q||_K = \bigvee$$

non-linear separation

kernel K-means

e.g. Gaussian kernel =>
$$\|f_p - f_q\|_K =$$

non-parametric (kernel) clustering

$$-\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} k(f_p, f_q)}{|S^k|} - \text{objective}$$

Kernel-based clustering (a.k.a. pairwise clustering):

- robustness to outliers
- non-parametric approach, arbitrary separation boundary, assumes only "local compactness" instead of fitting parameters of distributions (of known class) to clusters
- there are known biases, many variants addressing them
- **optimization?** (no block-coordinate descent as we dropped cluster parameters)

non-parametric (kernel) clustering

$$-\sum_{k=1}^{K} \quad \frac{\sum_{pq \in S^k} k(f_p, f_q)}{|S^k|} \quad \text{- objective}$$

non-parametric (kernel) clustering

$$-\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} A_{pq}}{|S^k|}$$

- objective

$$A_{pq} = k(f_p, f_q)$$

- features

explicit features f_p are no longer needed

 f_q

non-parametric (kernel) clustering

$$-\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} A_{pq}}{|S^k|}$$

- objective

only need affinity (or kernel) matrix

$$A = [A_{pq}]$$

(finite dimensional version of) MERCER THEOREM

if needed, can find "embedding" $\{\phi_p\}$

s.t.
$$A_{pq} = \langle \phi_p, \phi_q \rangle$$
 using eigen decomposition for p.s.d. A (problem from HW4)

non-parametric (kernel) clustering

$$-\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} A_{pq}}{|S^k|}$$

- objective

high-dimensional isometric *Euclidean* embedding "story"

if needed, can find "embedding" $\{\phi_p\}$

s.t.
$$A_{pq} = \langle \phi_p, \phi_q \rangle$$
 using eigen decomposition for p.s.d. A (problem from HW4)

Optimization for kernel clustering

(brief overview, details are left for homework 4)

□ Idea 1: find (Euclidean) embedding $\{\phi_p\}$ s.t.

$$\langle \phi_p, \phi_q
angle = A_{pq}$$
 eigen decomposition of $_{A\,(p.s.d)}$ (HW4 problem)

and use basic K-means (Lloyd's algorithm) over points $\{\phi_p\}$.

Problem: in general $\{\phi_p\}\subset \mathcal{R}^{|\Omega|}$ where $|\Omega|$ is the size of the data set

□ Idea 2 [spectral clustering]: find embedding $\{\tilde{\phi}_p\}$ s.t.

$$\langle \tilde{\phi}_p, \tilde{\phi}_q
angle = \tilde{A}_{pq}$$
 (HW4 problem)

where A is a <u>low rank approximation</u> of A (of any rank m).

[a la Eckart-Young-Mirsky theorem in Topic 7].

In this case can check $\{\tilde{\phi}_p\}\subset\mathcal{R}^m$ and K-means over $\{\tilde{\phi}_p\}$ is practical (for smaller m).

non-parametric (kernel) clustering

 $E(S) = -\sum_{k=1}^{K} \underbrace{\sum_{pq \in S^k} A_{pq}}^{\text{"self-association" of cluster } S^k}_{|S^k|}$

non-parametric (kernel) clustering

$$E(S) = -\sum_{k=1}^{K} \frac{\sum_{pq \in S^k} A_{pq}}{|S^k|} S^k A S^k$$
 in matrix notation:
$$S^k - \text{indicator vector}$$

- indicator vector ' means *transpose*

	node indices									
	1	2	3	4	5	6	7	8	9	
$S^{I} =$	[1	1	1	0	0	0	0	0	0]	
$S^2 =$	[0	0	0	1	1	1	0	0	0]	
$S^3 =$	[0	0	0	0	0	0	1	1	1]	
assume clusters are represented by										
indicator vectors S ^k										

non-parametric (kernel) clustering

$$E(S) = -\sum_{k=1}^{K} \frac{S^{k'}AS^{k}}{|S^{k}|}$$
 in matrix notation:
$$S^{k'} - \text{indicator vector}$$

` means transpose

	node indices								
	1	2	3	4	5	6	7	8	9
$S^{I} =$	[1	1	1	0	0	0	0	0	0]
$S^2 =$	[0	0	0	1	1	1	0	0	0]
$S^3 =$	[0	0	0	0	0	0	1	1	1]
assume clusters are represented by $indicator\ vectors\ S^k$									

non-parametric (kernel) clustering

$$E(S) = -\sum_{k=1}^{K} \frac{S^{k'} A S^k}{|S^k|}$$

in matrix notation:

S^k - indicator vector `means *transpose*

	node indices									
	1	2	3	4	5	6	7	8	9	
$S^1 =$	[1	1	1	0	0	0	0	0	0]	
$S^2 =$	[0	0	0	1	1	1	0	0	0]	
$S^3 =$	[0	0	0	0	0	0	1	1	1]	
assume clusters are represented by										

indicator vectors S^k

Convenient general notation

$$S^{i'}AS^{j} \equiv \sum_{p \in S^{i}, q \in S^{j}} A_{pq}$$

sum of all graph edge weights A_{pq} from set S^i to set S^j

	node indices								
	1	2	3	4	5	6	7	8	9
$S^{I} =$	[1	1	1	0	0	0	0	0	0]
$S^2 =$	[0	0	0	1	1	1	0	0	0]
$S^3 =$	[0	0	0	0	0	0	1	1	1]
assume clusters are represented by									

indicator vectors S^k

Other graph clustering objectives

related to Cheeger cut, spectral graph theory, isoperimetic constant, etc

Average Cut

"cut" for S^k

$$\sum_{k=1}^{K} \frac{S^{k'} A \left(1 - S^{k}\right)}{|S^{k}|}$$

so far only looked at

Average Association

"self-association" for S^k

$$-\sum_{k=1}^{K} \frac{S^{k'} A S^k}{|S^k|}$$

Other graph clustering objectives

Average Association

$$-\sum_{k=1}^{K} \frac{S^{k'} A S^k}{|S^k|}$$

■ Average Cut

$$\sum_{k=1}^{K} \frac{S^{k'} A \left(1 - S^k\right)}{|S^k|}$$

Normalized Cut

[Shi & Malik, 2000]

$$\sum_{k=1}^{K} \frac{S^{k'} A (1 - S^k)}{d'S^k} \equiv K - \sum_{k=1}^{K} \frac{S^{k'} A S^k}{d'S^k}$$

for d := A1

Basic K-means vs Kernel Clustering

$$E(S) = -\sum_{k=1}^{K} \frac{S^{k'} A S^k}{|S^k|}$$

[Achanta et al., PAMI 2011]

[Shi&Malik 2000]

"segments" in RGB**XY** space

not just super-pixels

basic K-means

for $A_{pq}=\langle f_p,f_q\rangle$

kernel K-means

e.g. for Gaussian kernel $A_{pq} = \exp{-\frac{\|f_p - f_q\|^2}{2\sigma^2}}$

From "means" towards "modes" clustering:

Optional Material

Kernel-based *mode clustering*

- □ Formulate clustering as *histogram partitioning*
 - look for **modes** in data histograms
 - assign points to modes

data points

data histogram and its modes

clustering

Finding Modes in a Histogram

- How Many Modes Are There?
 - Easy to see, not too obvious how to compute

Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

- Iterative Mode Search
- 1. Initialize random seed, and fixed window
- 2. Calculate center of gravity 'x' of the window (the "mean")
- 3. Translate the search window to the mean
- 4. Repeat Step 2 until convergence

Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

Multimodal Distributions

- Parallel processing of an initial tessellation.
- Pruning of mode candidates.
- Classification based on the basin of attraction.

Mean shift trajectories

Optional Material

[Salah, Mitche, Ben-Ayed 2010]

$$\sum_{k=1}^{K} \sum_{p \in S^{k}} \left\| f_{p} - \mu_{k} \right\|_{d} \quad \left\| \cdot \right\|_{d} \quad : \quad \begin{array}{c} \text{quadratic} \\ \text{quadratic} \\ \text{(K-means)} \end{array} \quad \begin{array}{c} \text{absolute} \\ \text{(K-modes)} \end{array}$$

Mean-shift segmentation relates to distortion clustering with a bounded loss (**K-modes**)

Mean shift trajectories

Mean-shift results for segmentation

RGB+XY clustering
[Comaniciu & Meer 2002]

Figure 2: The house image, 255×192 pixels, 9603 colors.

Mean-shift results for segmentation

RGB+XY clustering
[Comaniciu & Meer 2002]

Mean-shift results for segmentation

RGB+XY clustering
[Comaniciu & Meer 2002]

Issues for kernel clustering methods:

- □ *kernel bandwidth* selection
 - can not be too small or too large
 - indirectly controls the number of clusters (in *mean-shift*)
 - different width in RGB and XY parts of the space
- □ Biases (e.g. to equal size, to dense clumps, to sparse points, etc)
 can use adaptive bandwidths or weighted points, e.g. [Marin *et al.* TPAMI 2017]
- Color features may not be discriminant enough (e.g. color overlap between different objects)
- Boundary properties (geometry) are missing
 - contrast edge alignment could be a problem
 - smoothness or other shape priors