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CS484/684 Computational Vision

Dense Stereo

towards dense 3D reconstruction

• (dense) stereo is an example of dense correspondence

But, stereo is simpler since the search for correspondences
is restricted to 1D epipolar lines (versus 2D search for non-rigid motion)

• another example is dense motion estimation (optical flow)

    

assumption: known camera motion, i.e. known epipolar lines



examples of loss functions with spatial/geometric regularization of image labels

camera rectification for stereo pairs

window-based (local) stereo

scan-line stereo correspondence

• optimization via DP, Viterbi, Dijkstra

image-grid (global) stereo

• optimization via graph cuts

Szeliski, Chapter 11

CS484/684 Computational Vision

Dense Stereo Correspondence



Stereo vision

known

camera

viewpoints

Two views of the same scene from slightly different point of view

Also called, narrow baseline stereo.

Motivation: - smaller difference in views allows to find more matches (Why?)

- scene reconstruction is simply represented via depth map

iClicker:  Humans have similar positioning of eyes because as a species we ...     

A.  ... are smarter        B.  ... are omnivores        C.  ... see better       D: ... are predators



Stereo image rectification



Stereo image rectification

Image Reprojection

• reproject image planes onto common plane 

     parallel to the baseline (i.e. line connecting optical centers)

• homographies (3x3 transform)
applied to both input images (defined by R,T ?)

• pixel motion is horizontal after this transformation
• C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo 

Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

the corresponding (rectified) 
camera geometry is analogous to

“panning motion” 

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Stereo image rectification

Epipolar constraint:

T

the corresponding (rectified) 
camera geometry is analogous to

“panning motion” 



Stereo Rectification

in this example the base line C1C2 is parallel to cube edges.

Note projective distortion.
It will be much bigger 

if images are taken from  
very different viewpoints

(large baseline).



Stereo as a correspondence problem

(After rectification) all correspondences are along the same horizontal scan lines

Right imageLeft image

(epipolar lines)



C1 C2

xl xr

epipolar lines are parallel to the x axis

Rectified Cameras

xl

disparity (d)

difference between the x-coordinates of xl  and xr is called the disparity

left
image

right
image

x

y

z

baseline



C1 C2

xl xr

Rectified Cameras

xl

disparity (d)

left
image

right
image

Depth = |C1C2 | · f / d 

Depth

f

x

y

z

baseline



Stereo

Correspondences are described by shifts 
along horizontal scan lines (epipolar lines) 
                                           
which can be represented by scalars (disparities) 



Stereo

closer objects (smaller depths) correspond to larger disparities

Correspondences are described by shifts 
along horizontal scan lines (epipolar lines) 
                                           
which can be represented by scalars (disparities) 



Stereo

•  If x-shifts (disparities) are known for all pixels in the left (or right) image then 
 we can visualize them as a disparity map – scalar valued function d(p) 

•  larger disparities correspond to closer objects

Disparity map
(Depth map)

Right imageLeft image

d = 0

d =15

d = 5

d =10



Stereo Correspondence problem

Human vision can solve it
(even for “random dot” stereograms)

Can computer vision solve it?

Maybe

see Middlebury Stereo Database
for the state-of-the art results

http://cat.middlebury.edu/stereo/



Stereo

Window based 

• Matching rigid windows around each pixel

• Each window is matched independently

Scan-line based approach

• Finding coherent correspondences for each scan-line

• Scan-lines are independent

– DP, shortest paths

Global (muti-scan-line) approach

• Finding coherent correspondences for all pixels (jointly) 

– spatial regularization over R2 (grid), e.g. graph cuts



Right imageLeft image

Find the best matching window Wq on the same scan 
line in the right image that looks most similar to Wp

W2 W3W1

Stereo Correspondence problem

Window based approach

Wp

p

For any given point p in left image consider        
window (or image patch)  Wp  around it

?



SSD (sum of squared differences) approach

d

Wp
W’p-d

for any given pixel p compute SSD between windows Wp and W’p-d  
for all disparities d  (in some interval [min_d, max_d ])

left image (I) right image (I’)

computing SSD(p,d )

naïve implementation
has |I|*|d|*|W| operations 

the best disparity for p can be defined as



computing SSD efficiently

For each fixed d, compute sq. differences image

d

shifted right image Td(I’)

squared differences between the left image  I  and the shifted right image Td(I’)

Then, SSD(p,d) between Wp  and  W’p-d  is

left image (I)

Wp

W’p-d

Wq

W’q-d



computing SSD efficiently

d

left image (I) shifted right image Td(I’)

Wp

Wq

Then, SSD(p,d) between Wp  and  W’p-d  is

Need to sum pixel values at all possible windows



computing SSD efficiently

For SSD we just have special case

Wp

Wq

How to sum values at all possible rectangular windows

in any given image   f   efficiently ?



standard general trick: 

“Integral Images” 

Define integral image  fint (p)  as the sum (integral)     

of image  f  over  pixels in rectangle  Rp := {q | “q ≤ p”}

Can compute  fint(p)  for all  p  in one or two passes over image  f 

   (How?)

p

Rp

f 

p

fint 



standard general trick: 

“Integral Images” 

Define integral image  fint (p)  as the sum (integral)     

of image  f  over  pixels in rectangle  Rp := {q | “q ≤ p”}

Now, for any W the sum (integral) of f  inside that window 

can be computed as                  fint(br)- fint(bl)- fint(tr)+ fint(tl)

W brbl

trtl

f 

br

fint 

bl

trtl



computing SSD efficiently

=>    O(|I|*|d|) window-based stereo algorithm 

Now, the sum of        at any window
takes 4 operations independently of window size

d

left image (I) shifted right image Td(I’)

Wp

Wq

For SSD we have special case



Problems with Fixed Windows

small window large window

better at boundaries 

noisy in low texture areas

◼ better in low texture areas

◼ blurred boundaries

Q: what do we implicitly assume when using low SSD(d,p) at 
a window around pixel p as a criteria for “good” disparity d ?

disparity maps                                           for:

d = 0

d =15

d = 5

d =10



window algorithms

Maybe variable window size (pixel specific)?
• What is the right window size?

• Correspondences are still found independently at each pixel (no 
coherence)

All window-based solutions can be though of as 
“local” solutions  - but very fast!

How to go to “global” solutions?

• use objectives, a.k.a. energy or loss functions

– surface regularization  or spatial coherence

• optimization

need priors
to compensate 

for local data ambiguity



Scan-line stereo 

• coherently match pixels in each scan line

• DP or shortest paths work (easy 1D optimization)

• Note: scan lines are still matched independently

– streaking artifacts 

 

Stereo Correspondence problem

Scan-line approach



“Shortest paths” for 

  Scan-line stereo

Left image

Right image

q

p

e.g. Ohta&Kanade’85, Cox at.al.’96
I

I

a path on this graph represents a matching function

Sleft

Sright



“Shortest paths” for 

  Scan-line stereo

q

p

3D interpretation: 

left 
epipolar line

right 
epipolar line

Cleft Cright

grid of 3D points on 
the epipolar plane

a path on this graph represents a matching function

epipolar (baseline) plane

Sleft

Sright



“Shortest paths” for 

  Scan-line stereo

q

p

3D interpretation: 

left 
epipolar line

right 
epipolar line

Cleft Cright

grid of 3D points on 
the epipolar plane

q
p

a path on this graph represents a matching function

This path corresponds to
an intersection of epipolar plane 

with 3D scene surface

Sleft

Sright

scene



“Shortest paths” for 

  Scan-line stereo

q

p

t

s
Cleft Cright

grid of 3D points on 
the epipolar plane

s

Sleft

Sright

3D interpretation: 

t

horizontal and vertical edges on the path imply “no correspondence” (occlusion) 

scene



“Shortest paths” for 

  Scan-line stereo

Left image

Right image

q

p

t

s

e.g. Ohta&Kanade’85, Cox at.al.’96

occlC

occlC

I

I

What is “occlusion” in general ?

Sleft

Sright

le
ft

 
o
cc

lu
si

o
n

Edge weights:

right
occlusion



Occlusion in stereo

right imageleft image

object

background

3D scene

camera
centers



Occlusion in stereo

right imageleft image

object

background

??

3D scene

camera
centers



Occlusion in stereo

right imageleft image

object

background

background area 
occluded 

in the left image

background
area occluded 

in the right image

Note: occlusions occur at depth discontinuities/jumps

3D scene

This right image pixel 
has no corresponding 
pixel in the left image

due to occlusion
by the object 

This left image pixel 
has no corresponding 
pixel in the right image

due to occlusion
by the object  

camera
centers



Stereo

yellow marks occluded points in different viewpoints 
(points not visible from the central/base viewpoint).

Note: occlusions occur at depth discontinuities/jumps



Occlusions  vs  disparity/depth jumps

q

p

t

s
Cleft Cright

NOTE: diagonal lines on this graph represent

disparity levels  (shifts between corresponding pixels)

horizontal and vertical edges on this graph describe occlusions, 
as well as disparity jumps or depth discontinuities

scene

d=2

that can be seen as depth layers

Sleft

Sright



Use Dijkstra to find the shortest path

corresponding to certain edge costs

Left image

Right image

Each path implies certain depth/disparity configuration. Dijkstra can find the best one.

q

p

d
is

p
a
ri
ty

 (
d
e
p
th

) 
ch

a
n
g
e

t

disparity (depth) 
change

s

e.g. Ohta&Kanade’85, Cox at.al.’96
I

I

- depth discontinuity penalty

diagonal edges along each path 
integrate SSD between 
corresponding pixels 

horizontal and vertical edges 
penalize disparity/depth 

discontinuities 

But, the actual implementation in OK’85 and C’96 uses Viterbi algorithm (DP)

explicitly assigning “optimal” disparity labels  dp  to all pixels  p as follows…

Sleft

Sright



More common representation of 

disparity map in stereo algorithms

Left image

Right image

rightS
pleftS

2=pd

pdp

I

I

configuration (map) of disparities 

for pixels  p on image grid

variable representing
disparity at pixel p

d = 0

d =15

d = 5

d =10



More common representation of 

disparity map in stereo algorithms

Left image

Right image

rightS
pleftS

2=pd

pdp

I

I

configuration (map) of disparities 

for pixels  p on a scan line

variable representing
disparity at pixel p

d = 0

d =15

d = 5

d =10

1  2  3 ....        ... p ...



Viterbi algorithm can find an optimal 

disparity configuration                                  

for pixels p on a given scan-line            

minimizing the following loss function 

DP for scan-line stereo

Left image

Right image

rightS
pleftS

2=pd

pdp

I

I

rightS

||
pdpp II 

−
spatial coherencephoto consistency

NOTE:     Loss, Energy, Cost, and Objective function

mean the same thing and are used indiscriminately in different contexts

iClicker    Q:  number of 

distinct configurations 
for 

  A: nm     B: nm2 
  C:  mn     D:  nm




=
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Such pairwise loss can 
be optimized in O(nm2) 

on non-loopy graphs 
(e.g., chains)
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Dynamic Programming (DP)

Viterbi Algorithm

),( 322 ddE

)1(2E

)2(2E

),( 211 ddE

Complexity: O(nm2),  worst case = best case
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e
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Consider pair-wise interactions between sites (pixels) on a chain (scan-line) 
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),( 44 nddE),( 433 ddE

Dynamic Programming (DP)

Shortest paths Algorithm

),(...),(),( 11322211 nnn ddEddEddE −−+++

),( 322 ddE),( 211 ddE

Complexity: O(nm2+nm log(nm)) - worst case

Consider pair-wise interactions between sites (pixels) on a chain (scan-line) 

1d 2d 3d 4d nd
Alternative: 

shortest path 

from S  to T 
on the graph 

with two extra
terminals

Source

Target

E3(i,j)
edge weights

E1(i,j) E2(i,j)
edge weights edge weights edge weights

E4(i,j)

But, the best case could be better than Viterbi. Why?

0

0

0

0

0

0

0

0



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid




+=
Nqp

qp

Gp

pp ddVdDE
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||
pdpp II 

−
spatial coherencephoto consistency

Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

Consider three different neighborhood systems N:

N = {{p,p±1} : p ϵ G} N = {{p,q}⸦ G : |pq| ≤ 1}N = ø



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid




+=
Nqp

qp

Gp

pp ddVdDE
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),()()(d

||
pdpp II 

−
spatial coherencephoto consistency

Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

N = ø

CASE 1 smoothness term disappears

Q: how to optimize E(d) in this case?

Q: How does this relate to window-based stereo?

O(nm)



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid



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spatial coherencephoto consistency

Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

N = ø

CASE 1 smoothness term disappears

Nodes/pixels do not interact (are independent).
Optimization of the sum of unary terms,
    e.g.                  , is trivial: O(nm)



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid



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Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

N = {{p,p±1} : p ϵ G}

CASE 2
Pairwise coherence is enforced,

but only between pixels on          
the same scan line.

Q: how do we optimize such E(d) ?

O(nm2)

disparity map
case 2



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid




+=
Nqp

qp

Gp

pp ddVdDE
},{

),()()(d

||
pdpp II 
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spatial coherencephoto consistency

Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

N = {{p,q}⸦ G : |pq| ≤ 1}

CASE 3
disparity map

case 2
disparity map

case 3

NOTE: depth map regularity/smoothness  should be isotropic since 
3D scene surface is independent of scan-lines (epiplar lines) orientation.  

Pairwise smoothness 
of the disparity map
is enforced both 
horizontally and 
vertically.



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid


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Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

N = {{p,q}⸦ G : |pq| ≤ 1}

CASE 3
How to optimize “pairwise” loss on loopy graphs? 

NOTE 2: “Gradient descent” can find only local minima for a 
continuous relaxation of E(d) combining non-convex photo-
consistency (1st term) and convex  total variation of d (2nd term).

NOTE 1: Viterbi does not apply, but its extensions (e.g. 
message passing) provide approximate solutions on loopy graphs. 



Estimating (optimizing) disparities: 

over points vs. scan-lines vs. grid




+=
Nqp

qp

Gp

pp ddVdDE
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||
pdpp II 

−
photo consistency

Can globally minimize 
such pairwise losses 

over any neighborhood N, 

e.g. graph cut algorithms

Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

N = {{p,q}⸦ G : |pq| ≤ 1}

CASE 3

spatial coherence

(convex potentials V only [Ishikawa et al 1998])



Useful extension: 

local affinities wpq and “edge alignment” 



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Nqp
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pp ddVdDE
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pdpp II 

− || qppq ddw −
spatial coherencephoto consistency

pqw - weights of 
neighborhood edges 
(e.g. may be assigned 

according to local 
intensity contrast in

the reference image)

In general, one can use 
pairwise affinities wpq

specific to each pair of 
neighboring pixels p and q

Consider energy (loss) function over disparities  

          for pixels p on grid G}|{ Gpd p =d

p

q



qppq III −=


pqw - weights of 
neighborhood edges 
(e.g. may be assigned 

according to local 
intensity contrast in 

the reference image)

Motivation: such static cues (in ref. image) help to 

align depth boundaries to high contrast edges 
since the loss function gets lower when disparity 
changes |dp-dq| happen near edges where                 .   

visualization of weights wpq

NOTE: parameter σ is important, it works as (soft) edge detection threshold.

for horizonal edges/neighbors {p,q}          for vertical edges/neighbors {p,q}reference (e.g. right) image I

Gaussian (affinity) kernel

Similar “edge aligning” affinity kernels are 
common in low-level segmentation (see topic 9).
“Deep features” fp  can replace Ip (topic 12).

p

q

Useful extension: 

local affinities wpq and “edge alignment” 

Typical
example
of wpq

differences in the reference image



Multi-scan-line stereo 

with s-t graph cuts [Roy&Cox’98, Ishikawa 98]

x

y



Multi-scan-line stereo 

with s-t graph cuts [Roy&Cox’98, Ishikawa 98]

t

s s/t cut

d(p)

p

“cut”

x

y

la
b
e
ls

x

yD
is

p
a
ri
ty

 l
a
b
e
ls

Minimum s/t cuts can be found in low-order 
polynomial time on any graph G=<V,E> 

[Ford-Fulkerson, Dinic, Goldberg-Tarjan] 

minimum cut corresponds to the

optimal disparity map  d = {dp} for loss

more in “segmentation” topic

e.g. O(VE2)=O(n3m3) worst-case



Ishikawa&Geiger 98 

What loss function do we minimize this way?

Concentrate on one pair of neighboring pixels Nqp },{

p q

++= )5()2(),( qpqp DDddE

++ |3|pqw

cost of horizontal edges

cost of vertical edges

D
is

p
a
ri
ty

 l
a
b
e
ls

- 0

- 1

- 2

- 3

- 4

- 5

- 6

assuming cut has no folds (optional slides later shows how to make sure)



Concentrate on one pair of neighboring pixels Nqp },{

++= )()(),( qqppqp dDdDddE

+−+ || qppq ddw

cost of horizontal edges

cost of vertical edges
p q

D
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p
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 l
a
b
e
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- 0

- 1

- 2

- 3

- 4

- 5

- 6

Ishikawa&Geiger 98 

What loss function do we minimize this way?



The combined loss over the entire grid  G  is




=
Gp

pp dDE )()(d




−+
Nqp

qppq ddw
},{

||

cost of horizontal edges
(spatial consistency)

(photo consistency, e.g. SSD)
cost of vertical edges

s

t cut

Ishikawa&Geiger 98 

What loss function do we minimize this way?



How to avoid folding?

s

t

consider three pixels },,{ rqp

p r
“severed” edges are shown in red

q

optional material



S

T

How to avoid folding?

s

t

p r
introduce directed t-links







=

Tq
Sp
Npq

pqcC
)(

||||

Formally, s/t cut is a partitioning of graph nodes 

C={S,T}  and its cost is

q

consider three pixels },,{ rqp

NOTE: this directed t-link is not “severed”

WHY?

only edges from S to T matter

optional material



S

T

How to avoid folding?

s

t

p q r
Solution prohibiting folds:

add infinity cost t-links 
in the “up” direction

NOTE:   folding cuts C = {S,T } 

sever at least one of such t-links
making such cuts infeasible 

consider three pixels },,{ rqp

optional material



S

T

How to avoid folding?

s

t

p q r

NOTE:   non-folding cuts  C = {S,T } 

do not sever such t-links

consider three pixels },,{ rqp

Solution prohibiting folds:

add infinity cost t-links 
in the “up” direction

optional material



Scan-line stereo vs. 

Multi-scan-line stereo (on whole grid) 

d(p)

p

“cut”

x

y

la
b
e
ls

la
b
e
ls

x

d(p)

p

Dynamic Programming
(single scan line optimization)

s-t Graph Cuts
(grid optimization)



Some results from Roy&Cox

s

t

minimum
cost s/t cut

multi scan line stereo
(graph cuts)

single scan-line stereo 
(DP)



Some results from Roy&Cox

multi scan line stereo
(graph cuts)

single scan-line stereo 
(DP)

s

t

minimum
cost s/t cut



Simple Examples:

Stereo with only 2 depth layers

binary stereo

[Kolmogorov et al. CVPR 2005, IJCV 2008]

essentially,
depth-based binary

segmentation



Simple Examples:

Stereo with only 2 depth layers

background 

substitution

[Kolmogorov et al. CVPR 2005, IJCV 2008]

essentially,
depth-based binary

segmentation



Features and 

Spatial Regularization
camera 

B

. .camera 
A

unknown true
surface 

photoconsistent
3D points

photoconsistent
3D points

photoconsistent
3D points

photoconsistent
3D points

3D volume where surface is being reconstructed
(epipolar plane)

photo-consistency term

photoconsistent depth map

(epipolar lines)



Features and 

Spatial Regularization
camera 

B

. .camera 
A

photoconsistent
3D points

photoconsistent
3D points

photoconsistent
3D points

photoconsistent
3D points

regularized depth map

3D volume where surface is being reconstructed
(epipolar plane)

- regularization propagates information 
   from textured regions (features)  
   to ambiguous textureless regions

photo-consistency term

regularization term

- regularization helps to find smooth
 depth map consistent with points 
 uniquely matched by photoconsistency

unknown true
surface 

(epipolar lines)

More features/texture always helps!



Active Stereo 

(with structured light)

Project “structured” light patterns onto the object

• simplifies the correspondence problem

camera 2

camera 1

projector

camera 1

projector

Li Zhang’s one-shot stereo



Active Stereo 

(with structured light)



Laser scanning

Optical triangulation

• Project a single stripe of laser light

• Scan it across the surface of the object

• This is a very precise version of structured light scanning

Digital Michelangelo Project  [Levoy et al.]

http://graphics.stanford.edu/projects/mich/

http://graphics.stanford.edu/projects/mich/


Laser scanning

Digital Michelangelo Project  [Levoy et al.]

http://graphics.stanford.edu/projects/mich/

basic laser scanner

http://graphics.stanford.edu/projects/mich/


Photo Sculpture (1939)

https://youtu.be/jS_rcwG9mxU?si=JcrzZs2VSZb6yvuS

https://youtu.be/jS_rcwG9mxU?si=JcrzZs2VSZb6yvuS


augmented 
engineering

3D scanning

• Stereo 
- uses photo sensors
- requires ambient light, does not work in dark environment
- ambiguous in textureless regions, noisy on specular surfaces 

• Active Stereo 
- uses photo sensors and active light sources (e.g. laser)
- problems with specular or non-reflective surfaces
- problems with bright ambient light

• Lidar 
     - uses time-of-flight sensors and active light (laser)

      - good range, no baseline required
      - problems with specular or non-reflective surfaces
      - problems with bright ambient light
      - relatively sparse output (cloud of points)

To produce dense scene reconstruction, all methods should address noise and ambiguities
by fitting various dense surface models, typically using surface regularization techniques 

Disparity map d(p) is an example of (regularised) surface model, more in Topic 9B



further considerations:

Robust error/penalty functions
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The last term is an example of convex regularization potential (loss).
- easier to optimize, but
- tend to over-smooth

practically preferred

robust regularization
(non convex – harder to optimize)

spatial 
coherence

Note: once deviation/error Δ is “large enough”,

there is no reason to keep increasing the penalty



further considerations:

Robust error/penalty functions
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Similarly, robust losses are needed for photo-consistency 
to handle occlusions & “specularities”

spatial 
coherence

practically preferred

robust regularization
(non convex – harder to optimize)

Note: once deviation/error Δ is “large enough”,

there is no reason to keep increasing the penalty



further considerations:

Higher-order regularization
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Many state-of-the-art methods 
use higher-order regularizers 

higher-order
“coherence”

Q: why penalizing depth curvature   
instead of depth change?
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Example: curvature
need 3 points to estimate

surface curvature

κ



From 1D correspondence (stereo)

to 2D correspondence problems (motion)

1D shifts along epipolar lines.

Assumption 
for stereo:

only camera moves,
3D scene is stationary

vector field (motion) with a priori known direction



From 1D correspondence (stereo)

to 2D correspondence problems (motion)

1D shifts along epipolar lines.

d = 0

d =15

d = 5

d =10

We estimate only magnitude represented by a scalar field (disparity map)

Assumption 
for stereo:

only camera moves,
3D scene is stationary

vector field (motion) with a priori known direction



From 1D correspondence (stereo)

to 2D correspondence problems (motion)

In general, correspondences between two images 
may not be described by global models (like homography) or

by shifts along known epipolar lines.

Society of Robots

motion is
vector field

with arbitrary
directions

(no epipolar line constraints) 

if 3D scene 
is NOT stationary

http://www.societyofrobots.com/


From 1D correspondence (stereo)

to 2D correspondence problems (motion)

In general, correspondences between two images 
may not be described by global models (like homography) or

by shifts along known epipolar lines.

For (non-rigid) motion the correspondences between 

two video frames are described by a general optical flow

Society of Robots

motion is
vector field

with arbitrary
directions

(no epipolar line constraints) 

if 3D scene 
is NOT stationary

http://www.societyofrobots.com/


From 1D correspondence (stereo)

to 2D correspondence problems (motion)

optical flow

Society of Robots

more difficult problem 

need 2D shift vectors vp

v = {vp}

Horn-Schunck 1981 
optical flow regularization

- 2nd order optimization
(pseudo Newton)

- Rox/Cox/Ishikawa’s method only 
works for scalar-valued variables 

(no epipolar line constraint)

color-consistency regularity

motion is
vector field

with arbitrary
directions

(no epipolar line constraints) 

if 3D scene 
is NOT stationary

over-smoothed vector field
(robust regularization losses 
can preserve sharp changes 
in motion between objects)

http://www.societyofrobots.com/


From 1D correspondence (stereo)

to 2D correspondence problems (motion)

optical flow

Society of Robots

more difficult problem 

need 2D shift vectors vp

v = {vp}

State-of-the-art methods segment 
independently moving objects 

We will discuss 
segmentation 

problem
next

(no epipolar line constraint)

motion is
vector field

with arbitrary
directions

(no epipolar line constraints) 

if 3D scene 
is NOT stationary

over-smoothed vector field
(robust regularization losses 
can preserve sharp changes 
in motion between objects)

http://www.societyofrobots.com/
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