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CS484/684 Computational Vision

Dense Stereo

towards dense 3D reconstruction

assumption: known camera motion, i.e. known epipolar lines

(dense) stereo is an example of dense correspondence

another example is dense motion estimation (optical flow)

But, stereo is simpler since the search for correspondences
is restricted to 1D epipolar lines (versus 2D search for non-rigid motion)
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CS484/684 Computational Vision

Dense Stereo Correspondence

1 camera rectification for stereo pairs
1 window-based (local) stereo

1 scan-line stereo correspondence
 optimization via DP, Viterbi, Dijkstra

0 Image-grid (global) stereo
 optimization via graph cuts

examples of loss functions with spatial/geometric regularization of image labels

Szeliski, Chapter 11
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Stereo vision

known

camera

viewpoints

Two views of the same scene from slightly different point of view
Also called, narrow baseline stereo.

Motivation: - smaller difference in views allows to find more matches (Why?)
- scene reconstruction is simply represented via depth map
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Stereo Image rectification
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Stereo Image rectification

the corresponding (rectified)
camera geometry is analogous to
“panning motion”

0 Image Reprojection
* reproject image planes onto common plane
parallel to the baseline (i.e. line connecting optical centers)

« homographies (3x3 transform)
applied to both input images (defined by R,T ?)
 pixel motion is horizontal after this transformation

e C.LoopandZ. Zhang. Computing Rectifying Homoagraphies for Stereo
Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
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Stereo Image rectification

the corresponding (rectified)

camera geometry is analogous to
“panning motion” k\

0 Epipolar constraint:
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Stereo Rectification

Note projective distortion.
— r— It will be much bigger
— L if images are taken from
' very different viewpoints
(large baseline).

in this example the base line C,C, is parallel to cube edges.
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Stereo as a correspondence problem

Left image | Right image

(After rectification) all correspondences are along the same horizontal scan lines

(epipolar lines)
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Rectified Cameras

//.-
y
z
. disparity (d)
*~ € >
,// / r \ /’/ .
left o right
image , . image
baseline
C; C,

epipolar lines are parallel to the x axis

difference between the x-coordinates of x; and x, is called the disparity
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Rectified Cameras
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Depth = |C,G,| * f/ d
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Stereo

Correspondences are described by shifts
along horizontal scan lines (epipolar lines)

which can be represented by scalars (disparities)
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Stereo

closer objects (smaller depths) correspond to larger disparities

Correspondences are described by shifts
along horizontal scan lines (epipolar lines)

which can be represented by scalars (disparities)
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Stereo

— Left image —_Right image

' 1 | 4| igd }s'

o If x-shifts (disparities) are known for all pixels in the left (or right) image then
we can visualize them as a disparity map — scalar valued function d(p)
e larger disparities correspond to closer objects



0 Human vision can solve it
(even for “random dot” stereograms)

0 Can computer vision solve 1t?

Maybe

see Middlebury Stereo Database
for the state-of-the art results

http://cat.middlebury.edu/stereo/
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Stereo

0 Window based
« Matching rigid windows around each pixel
» Each window is matched independently

0 Scan-line based approach
 Finding coherent correspondences for each scan-line

 Scan-lines are independent
— DP, shortest paths

0 Global (muti-scan-line) approach

 Finding coherent correspondences for all pixels (jointly)
— spatial regularization over R? (grid), e.g. graph cuts
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Stereo Correspondence problem
Window based approach

Left image

0 For any given point p in left image consider
window (or image patch) W, around it

0 Find the best matching wmdow W, on the same scan
line in the right image that looks most similar to W/,



IIIIIIIIIIII

naive implementation WATERLOO
has |I|*|d|*|W| operations

SSD (sum of squared differences) approach

computing SSD(p,d) = > U@y -I'—-dy)

(J),’y) EWP
left image (I) right image (I')
d
W, W4

for any given pixel p compute ssb between windows W, and W',
for all disparities d (in some interval [min_d, max_d1])

A

the best disparity for p can be defined as | d,, = arg mjn SSD(p,d)




computing SSD efficiently
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0 For each fixed d, compute sg. differences image A 73

left image (I)

d

/ "\

AIZ

W

[]

4
Wy

q

Wp

[]

4
W

shifted right image T4(I)

squared differences between the left image I and the shifted right image T4(I')
(I(z,y) = I'(x — d,y))’

Then, SSD(p,d) between W, and W' 4 is D AlLi(z.y)

AL (z,y)

(ZU,y)EWp
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computing SSD efficiently

Need to sum pixel values at all possible windows

d

2
left image (I) A [ d shifted right image T4(I")

Then, SSD(p,d) between W, and W’ 4 is > Ali(z.y)

(ZU,’y)EWp
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computing SSD efficiently

How to sum values at all possible rectangular windows
in any given image | efficiently ?

For SSD we just have special case  f(x,y) = Alc% (z,y)
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standard general trick: %Y WATERLOO

“Integral Images”  fint(P =) flqg

qER

0 Define integral image f. . (p) as the sum (integral)
of Image f over pixelsinrectangle R :={q| “¢g<p"}

W"\\

p p

R

D

f 1:int

o0 Can compute f;. (p) forall p inone or two passes over image f
(How?)



standard general trick:
“Integral Images”  fint(

0 Define integral image f.. (p) as the sum (integral)
of image f over pixels in rectangle R, =

=) fla)

q

{q9] “¢<p”}

tl

tr

bl

br

int

o Now, for any W the sum (integral) of 7 inside that window
can be computed as Y f(q) = i (br)- fin(D1)- Fine(tr)+ Fing(t1)

geW
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computing SSD efficiently

For SSD we have special case  f(x,y) = A[C% (z,y)

d

2
left image (I) A [ d shifted right image T4(I")

Now, the sum of AI: at any window
takes 4 operations independently of window size

=> O(|I|*|d|) window-based stereo algorithm
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Problems with Fixed Windows

A

disparity maps d, = arg mm SSD(p,d) for:
small window large W/ndow

better at boundarles better in low texture areas
0 noisy In low texture areas blurred boundaries

Q: what do we implicitly assume when using low SSD(d,p) at
a window around pixel p as a criteria for “good” disparity d ?



%) WATERLOO

window algorithms

0 Maybe variable window size (pixel specific)?

« What is the right window size?

 Correspondences are still found independently at each pixel (no
coherence)

o All window-based solutions can be though of as
“local” solutions - but very fast!

need priors
to compensate

(44 29 <
0 How to go to “global” solutions? . " " e

* Use objectives, a.k.a. energy or loss functions
— surface regularization or spatial coherence

* Optimization
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Stereo Correspondence problem
Scan-line approach

0 Scan-line stereo
« coherently match pixels in each scan line
« DP or shortest paths work (easy 1D optimization)
 Note: scan lines are still matched independently

— streaking artifacts
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—Left image

“Shortest paths” for
Scan-line stereo

e.g. Ohta&Kanade’85, Cox at.al.’96
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a path on this graph represents a matching function
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“Shortest paths” for

Scan-line stereo
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“Shortest paths” for
Scan-line stereo

3D interpretation:

grid of 3D points on
the epipolar plane

Sright
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a path on this graph represents a matching function
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7/ gcene

C;eft Cr/'g/n‘

This path corresponds to
an intersection of epipolar plane
with 3D scene surface
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“Shortest paths” for

Scan-line stereo

scene
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“Shortest paths” for

Scan-line stereo
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What is “occlusion” in general ?
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tereo

10N IN S
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3D scene
left image
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tereo

10N IN S

Occlus

background

3D scene

right image

left image
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Occlusion In stereo

background background area
area occluded occluded
in the right image  in the left image
j ‘ background
3D scene | T object
This left image pixel This right image pixel
has no corresponding has no corresponding
pixel in the right image pixel in the left image
due to occlusion due to occlusion
by the object by the object
left image o—— ——0— right image

Note: occlusions occur at depth discontinuities/jumps
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Stereo

yellow marks occluded points In different viewpolints
(points not visible from the central/base viewpoint).

Note: occlusions occur at depth discontinuities/jumps
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Occlusions vs disparity/depth jumps

NOTE: diagonal lines on this graph represent

disparity levels (shifts between corresponding pixels)
that can be seen as depth Iavers/

- - - - -

vvvvv

]

1] C;eft Cr/ght

horizontal and vertical edges on this graph describe occlusions,
as well as disparity jumps or depth discontinuities



Use Dijkstra to find the shortest path =
corresponding to certain edge costs

IS disparity (depth)
NS change
Nl = 1) - depth discontinuity penalty
q e T o e o (&5 horizontal and vertical edges
S N N =8 J, penalize disparity/depth
| { [
SN hala A ) a 2
adale b b S S ) (L, — 1q)
>0 bole dfee9e0 S . diagonal edges along each path
€ corresponding pixels
DO oo e]

S

Each path implies certain depth/disparity configuration. Dijkstra can find the best one.
But, the actual implementation in OK’85 and C’96 uses Viterbi algorithm (DP)

explicitly assigning “optimal” disparity labels d, to all pixels p as follows...
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More common representation of
disparity map in stereo algorithms

s d, =2

S, boooomoood alei=l lalei=l=i=l=Res o N,
p®d, T p o

variable representing ,
disparity at pixel p — Left image |

d = {d,|p € G}
configuration (map) of disparities
for pixels p on image grid

— Right image |
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More common representation of
disparity map in stereo algorithms

e d, =2

S, Bo000BOOOC0 Elaial lal=i=izial=is SE
p@d, T p o

variable representing ,
disparity at pixel p — Left image |

ds ={dp|p € S}
configuration (map) of disparities
for pixels p on ascan line

— Right image |




NOTE: Loss, Energy, Cost, and Objective function % WATERLOO

mean the same thing and are used indiscriminately in different contexts

DP for scan-line stereo
o d,

S, D0000mO00C noomoooooo g
p@d, p "9

—Left image

Viterbi algorithm can find an optimal
disparity configuration dg = (dy, da, ..., dp, -..
for pixels p on a given scan-line Srlght
minimizing the following loss function

=D Dp(dy) + 3 V(dy,dpi1) ZE(dp,d)

peS” M pES e {p.a}eN
Such pairwise loss can
| | Ip@d ‘ w |dp — derl‘ be optimized in O(nm?)
n non-| h
photo consistency spatial coherence N NoN-Ioopy grapns

(e.g., chains)
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Dynamic Programming (DP) 5 ViATERLSO

Consider pair-wise interactions between sites (pixels) on a chain (scan-line)

E(dl,...,dn) — El(dl,dQ)+E2(d2,d3)—|_"'+En—1(dn—ladn)

. E, (dy, d,) [ E, (d,, d3) Lo [E,(dy,d,) i [E,(d,,d
e e
states Y
o 1
(!
3 m
E, (k)

E,i1(k) = miin (Ep(i) + Ep(isk))

Complexity: O(nm?), worst case = best case >4z
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% WATERLOO

Dynamic Programming (DP)
Shortest paths Algorithm

Consider pair-wise interactions between sites (pixels) on a chain (scan-line)

E,(d,,d,) + E,(d,,dy) +..+ E, 4 (d, ;. d,)

Alternative:
E (d,,d E.(d,,d E.(d,,d . E,(d,,d,
shortest path ‘ ,(d,dy) ,(d;, d3) 2(d3,d,) .(d,

fromS to7
on the graph edge weights edge weights edge weights  edge weights
with two extra E4(1)) E,(1,)) Es(1,)) E,(1.))

terminals
<"0" S
L A
L ORSS R
Source V’A“V /
/, \\ / / Target

Complexity: O(nm?+nm log(nm)) - worst case
But, the best case could be better than Viterbi. Why?

5-43



Estimating (optimizing) disparities: =
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
={d, | p G} for pixels p on grid G

E(d= » D .(d)) + V(d,,d,)
géLﬂFJ Q%%Y N

‘Ip_lmmp‘ w |dy — dg|

photo consistency spatial coherence
Consider three different neighborhood systems N:
00000 00000 00000
00000 00000 00000
00000 00000 00000
00000 00000 00000
00000 00000 00000
N=g N ={{p,p+l} : pe G} N={{p.a}=G:|pg| <1}



Estimating (optimizing) disparities: =
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
d={d, | peG} for pixels p on grid G

E(d)= > D (d)) +
DZGC; N {p.axN)

[l
1, = 1heg, |
p pdd,
photo consistency spatial coherence

smoothness term disappears

CASE 1
8 g g g g Q: how to optimize E(d) in this case?
0000 Vpe G |dy = argminDy(d) | O(nm)
00000 | _

N=g Q: How does this relate to window-based stereo?



Estimating (optimizing) disparities:
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
d={d, | peG} for pixels p on grid G

E(d)= > D (d)) +
pzd; R {p.q}N)

[l
1, = 1heg, |
p pdd,
photo consistency spatial coherence

smoothness term disappears

CASE 1
00000 _ _ .
000 00 Nodes/pixels do not interact (are independent).
00000 (ptimization of the sum of unary terms,
00000 L
00000 e.g. Z D,(d,), is trivial: O(nm)

N=g peG



Estimating (optimizing) disparities:
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
d={d, | peG} for pixels p on grid G

[ )
E(d)= YD (d) + vV(d ,d)
[l I
“p_lé@dp‘ w‘dp_dq|
photo consistency \ spatial coherence /
CASE 2

Pairwise coherence is enforced,

disparity map

: : : but only between pixels on
000 the same scan line.
000 Q: how do we optimize such E(d) ?
o000

peG} O(nmz)



Estimating (optimizing) disparities:
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
d={d, | peG} for pixels p on grid G

P
E@d)= Y'D,(d,) + v(d,,d,)
pZe(; %/_/ {p%‘;@K ~ /)

1
“p_lé@dp‘ w‘dp_dq‘

photo consistency \ spatial coherence

\_

' o CASE 3
: disparity ma i - Pairwise smoothness
o L pcasteyz [ dlspcaar;teyénap of the disparity map ©-©-O-0-O
& is enforced both 00000
. horizontally and 00000
; £ ~ B vertically. 00000
: . = 00000
NOTE: depth map regularity/smoothness should be isotropic since _ )
3D scene surface is independent of scan-lines (epiplar lines) orientation. N = {{p,CI}C G: |pq| < 1}



Estimating (optimizing) disparities:
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
d={d, | peG} for pixels p on grid G

E(d)= > D,(d)) + V(d,,d,)
pZE(;%”f# {p%:e@\ N

| —I
| p p®dp‘ w ‘dp dq|
photo consistency spatial coherence

e E e W o=y CASE 3
How to optimize “pairwise” loss on loopy graphs? 00000
NOTE 1: Viterbi does not apply, but its extensions (e.g. 00000
message passing) provide approximate solutions on loopy graphs. ©-©-©-0-0O
NOTE 2: “Gradient descent” can find only local minima for a 00000
continuous relaxation of E(d) combining non-convex photo- 00000
consistency (isterm) and convex total variation of d 2 term). N = {{p,q}= G : |pq| < 1}



Estimating (optimizing) disparities:
over points vs. scan-lines vs. grid

Consider energy (loss) function over disparities
d={d, | peG} for pixels p on grid G

E(d)= > D,(d)) + V(d,,d,)
pZE(;%”f# {p%:e@\ ~

“p_l’p@dp‘ w |dp — dg|

photo consistency spatial coherence

(@)
>
2]
m

Can globally minimize
such pairwise losses
over any neighborhood N,
e.g. graph cut algorithms

(convex potentials V only [Ishikawa et al 1998]) N={{

00000
00000
00000
00000 w
00000

G:

&)
e’
N
=}
—3
A
[E—
——

q
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Useful extension:
local affinities w,, and “edge alignment”

Consider energy (loss) function over disparities
={d, | p G} for pixels p on grid G

E(d) = D_(d V(d,,
pzd;%fq {p;}eN ~ qj

1, Vs, | \dp—dq\

photo consistency Spatial coherence
In general, one can use o0 ‘ W, - weights of

nelghborhood edges
pairwise affinities w,, ONONO

specific to each pair of
neighboring pixels p and q © OO0




% WATERLOO

Useful extension:
local affinities w,, and “edge alignment”
visualization of weights w,,

reference (e.g. right) image / for horlzonal edges/nelghbors {p,q} for vertical edges/neighbors {p,q}
I i | RN H ) g
T Vi s/ 0 «r‘ i 2 -".':;.___ "_-Av\_- o /]
% (il ';‘\.t ,[ u' l | ! ’1\.’{";\'%\1,, ". l | 1 " " ey _“ .- R
KA | A k‘:' iy Sy R s s ——:.. . -
[ '§ i )"".‘-:u:-'" o f 2 ;!| : -‘\‘_T": :'/‘""‘..‘\"?7‘” : tfgf,
; l "::’;' }‘ b ‘ ‘.‘ ’ - =ity ‘ :j:n, 2
) gepfe =1 oPx
] 1] e
g | = s
Tvpical ||Ip — Iq ||2 Similar “edge aligning” affinity kernels are
YP 'wpq = )\ exp § — common in low-level segmentation (see topic 9).
example )\ I 20‘2 “Deep features” £, can replace 7, (topic 12).
of Wy, Gaussian (affinity) kernel

o O O @ W g - weights of

= Al =1, -1,

differences in the reference image nelgthI’hOOd edgeS
Motivation: such static cues (in ref. image) help to O O @
align depth boundaries to high contrast edges

since the loss function gets lower when disparity O O O
changes |d,-d,| happen near edges where |Al,y| > o

NOTE: parameter o is important, it works as (soft) edge detection threshold.
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optional sfides

Multi-scan-line stereo
with s-t graph cuts [Roy&Cox
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Multi-scan-line stereo
with s-t graph cuts [Roy&Cox

Minimum s/t cuts can be found in low-order
polynomial time on any graph G=<V,E>
[Ford-Fulkerson, Dinic, Goldberg-Tarjan] S S/ t CUt
.

e.g. O(VE?)=0(n*m?3) worst-case

more in “segmentation” topic

Disparity labels

°p
minimum cut corresponds to the

optimal disparity map d = {d_} for loss

E(d) = ZDP(dp) + Z Wpq|dp — dg]

nEG {pglteEN




Ishikawa&Geiger 98
What loss function do we

Concentrate on one pair of neighboring pixels {p,q}< N

p G

cost of vertical edges

E(,,d.)= | Dy(2) + Dy(5) +...

-6

+ W, | 3] +...

Disparity labels
. N oW AW

cost of horizontal edges

assuming cut has no folds (optional slides later shows how to make sure)
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Ishikawa&Geiger 98 optional s ldes

What loss function do we

Concentrate on one pair of neighboring pixels {p,q}< N

p G

cost of vertical edges

E(d;00,) = Dy(dy)+ Bydy) +..

+owld, —d, | +...

(<)}

Disparity labels
m N oW A O

cost of horizontal edges
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_ _ D
Ishikawa&Geiger 98 Ides

What loss function do we

The combined loss over the entire grid G is
t cut

(photo consistency, e.g. SSD)
cost of vertical edges

- ZDp(dp)

peG

prq°|dp _dq |
{p.q}eN

cost of horizontal edges
(spatial consistency)

_I_




Er@] YUNIVERSITY OF
AW MO0

optional sfides
(grad students)

optional material

How to avoid folding?

consider three pixels {p,q, r}

“severed” edges are shown in red
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optional slides
(grad students)

optional material

How to avoid folding?

consider three pixels {p,q, r}

introduce directed -/inks

NOTE: this directed -/inkis not “severed”
WHY?

Formally, s/t cut is a partitioning of graph nodes

C={S,T} anditscostis ||C| = i Cog
pa)e
peS
geT

only edges from S to T matter
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optional sfides
(grad students)

optional material

How to avoid folding?

consider three pixels {p,q, r}

Solution prohibiting folds:

add infinity cost t-links
in the “"up” direction

NOTE: folding cuts C={ST}
sever at least one of such t-links
making such cuts infeasible
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optional sfides
(grad students)

optional material

How to avoid folding?

consider three pixels {p,q, r}

Solution prohibiting folds:

add infinity cost t-links
in the “"up” direction

NOTE: non-folding cuts C={S,T}
do not sever such t-links
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Scan-line stereo vs.
Multi-scan-line stereo (on whole grid)

ap)s /\/\ p)
/
°p

—O ‘X ﬁkx

labels
labels

Dynamic Programming s-t Graph Cuts
(single scan line optimization) (grid optimization)
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Some results from Roy&Cox

minimum
cost s/t cut

single scan-line stereo multi scan line stereo
(DP) (graph cuts)
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Some results from Roy&Cox

minimum
t cost s/t cut

L 4
L 4

- g
S __ £ \”;"' &

single scan-line stereo multi scan line stereo
(DP) (graph cuts)
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Simple Examples:
Stereo with only 2 depth layers

binary stereo

essentially,
depth-based binary

~ segmentation

[Kolmogorov et al. CVPR 2005, [JCV 2008]
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Simple Examples:
Stereo with only 2 depth layers

background
substitution
essentially,
depth-based binary
segmentation

[Kolmogorov et al. CVPR 2005, [JCV 2008]
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Features and .
Spatial Regularization " oo °

/ (epipolar lines):

photo-consistency term

BW) = Y-l

pEG : photoconsistent photoconsistentl
| 3D points 3D points!

+ Z w |dp — dg

pgeEN
regularization term

regularized depth map

- regularization helps to find smooth
depth map consistent with points ©
uniquely matched by photoconsistency

- regularization propagates information

from textured regions (features) . o
to ambiguous textureless regions ////%*ﬁffﬁ -

e e T e e e T s e e e e T, e

3D volume where surface is being reconstfﬂcted
More features/texture always helps! (epipolar plane)
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Active Stereo
(with structured light)

Li Zhang’s one-shot stereo

camera 1l camera 1l
projector projector
camera 2

0 Project “structured” light patterns onto the object
 simplifies the correspondence problem



Active Stereo
(with structured light)

[TTluminant

Surface

i

i+1

N

~4

Camera

IIIIIIIIIIII
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Laser scanning

Object

Direction of travel
———

%\ CCD image plane

& Y Cylindrical lens 4
Laser CCD

Laser sheet

Digital Michelangelo Project [Levoy et al.]
http://graphics.stanford.edu/projects/mich/

o Optical triangulation
» Project a single stripe of laser light
« Scan it across the surface of the object
« This Is a very precise version of structured light scanning


http://graphics.stanford.edu/projects/mich/
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Laser scanning

basic laser scanner

Digital Michelangelo Project [Levoy et al.]


http://graphics.stanford.edu/projects/mich/

BRITISH
»

PATHE



https://youtu.be/jS_rcwG9mxU?si=JcrzZs2VSZb6yvuS
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3D scanning

e Stereo

- uses photo sensors
- requires ambient light, does not work in dark environment

- ambiguous in textureless regions, noisy on specular surfaces

augmented

engineering

« Active Stereo
- uses photo sensors and active light sources (e.g. laser)

- problems with specular or non-reflective surfaces
- problems with bright ambient light

« Lidar
- uses time-of-flight sensors and active light (laser)

- good range, no baseline required
- problems with specular or non-reflective surfaces

- problems with bright ambient light _
- relatively sparse output (cloud of points) : ' ) e

To produce dense scene reconstruction, all methods should address noise and ambiguities
by fitting various dense surface models, typically using surface regularization techniques

Disparity map d(p) is an example of (regularised) surface model, more in Topic 9B
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further considerations:
Robust error/penalty functions

E(d) = D, (d,) + V dp,dq
ng%f—/ {qu}eN ( Z

photo-consistency | I I p@d ‘ qu' ‘ dp — dq | Cjﬁgféance

e

The last term is an example of convex regularization potential (loss). k
- easier to optimize, but

- tend to over-smooth _
practically preferred

robust regularization
(non convex — harder to optimize)

Note: once deviation/error 4 is “large enough”,
there is no reason to keep increasing the penalty
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further considerations:
Robust error/penalty functions

E(d) = D, (d,) + V dp,dq
ng%f—/ {qu}eN ( 2

photo-consistency | I I p@d ‘ qu' ‘ dp — dq | Cjﬁgféance

\

Similarly, robust losses are needed for photo-consistency
to handle occlusions & “specularities”

practically preferred
robust regularization
(non convex — harder to optimize)

Note: once deviation/error 4 is “large enough”,
there is no reason to keep increasing the penalty
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further considerations:
Higher-order regularization

E(d) = D _(d V
(d) Zép(“p) + Y Vi)

1p.a}eN

] _ N L higher-order
p,q,7r € N

»

 Example: curvature

need 3 points to estimate
surface curvature

Many state-of-the-art methods
use higher-order regularizers

Disparity values

Q: why penalizing depth curvature
instead of depth change?

v




IIIIIIIIIIII

From 1D correspondence (stereo)
to 2D correspondence problems (motion)

1D shifts along epipolar lines.

Assumption
for stereo:

only camera moves,
3D scene is stationary

vector field (motion) with a priori known direction
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From 1D correspondence (stereo)
to 2D correspondence problems (motion)

1D shifts along epipolar lines.

Assumption
for stereo:

only camera moves,
3D scene is stationary

vector field (motion) with a priori known direction
:> We estimate only magnitude represented by a scalar field (disparity map)
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From 1D correspondence (stereo)
to 2D correspondence problems (motion)

In general, correspondences between two images
may not be described by global models (like homography) or
by shifts along known epipolar lines.

e i - o 3L e o e e T R R T e
; B s ot i i e

L - R P

if 3D scene  ERESEEC—HEo oo SRR T
is NOT stationary e S e
motion is LA g
vector field
with arbitrary

directions
(no epipolar line constraints)

SocleTy OF RoBOTS


http://www.societyofrobots.com/
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From 1D correspondence (stereo)
to 2D correspondence problems (motion)

In general, correspondences between two images
may not be described by global models (like homography) or
by shifts along known epipolar lines.

For (non-rigid) motion the correspondences between
two video frames are described by a general optical flow

e e ,,',;;][,;,;,d___,_; _______ L
b & RN SRR (0 TR L N e
11111 TRIEHE] TSR oy o e o e
if 3D Scene e - i : - W e s L et L, e R g g 0 T
et . Fos - e T T v i, o, e g g i e e i i e e i i ™ g
is NOT stationary T P TR S —
motion IS 4 '

vector field
with arbitrary

directions
(no epipolar line constraints)

SocleTy OF RoBOTS


http://www.societyofrobots.com/
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From 1D correspondence (stereo)
to 2D correspondence problems (motion)

color-consistency regularity
E(v) = E - Dp(vp) + E , V U’pvvq)
Horn-Schunck 1981  pc G N {p, q}EN
optical flow regularization I fi1 o ” )
- 2" order optimization ([ — —I_; ) w - H’Up — VUq ||
(pseudo Newton) pTUp
- Rox/Cox/Ishikawa’s method only .
works for scalar-valued variables OptICa| fIOW
St g V= {y)
 iF3Dscene  SRESRfpe RSt TS = more difficult problem
is NOT stationary e — & % _ Vv
motion is - o s - need 2D shift vectors D

vector field
with arbitrary

directions
(no epipolar line constraints)

(no epipolar line constraint)

(robust regularization losses
can preserve sharp changes
in motion between objects)

SocleTy OF RoBOTS


http://www.societyofrobots.com/
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From 1D correspondence (stereo)
to 2D correspondence problems (motion)

We will disc_uss
State-of-the-art methods Seggpggmon

independently moving objects next

optical flow
v s e V= {Vp}

B iy s o S T T e

: It 3D >cene - & nore difficult problem
is NOT stationary | v
motion is need 2D shift vectors D

vector field
with arbitrary

directions
(no epipolar line constraints)

(no epipolar line constraint)

(robust regularization losses
can preserve sharp changes
in motion between objects)

SocleTy OF RoBOTS


http://www.societyofrobots.com/

	part 1
	Slide 1: CS484/684 Computational Vision Dense Stereo
	Slide 2: CS484/684 Computational Vision Dense Stereo
	Slide 3: CS484/684 Computational Vision Dense Stereo Correspondence
	Slide 4: Stereo vision
	Slide 5: Stereo image rectification
	Slide 6: Stereo image rectification
	Slide 7: Stereo image rectification
	Slide 8: Stereo Rectification
	Slide 9: Stereo as a correspondence problem
	Slide 10
	Slide 11
	Slide 12: Stereo
	Slide 13: Stereo
	Slide 14: Stereo
	Slide 15: Stereo Correspondence problem
	Slide 16: Stereo
	Slide 17: Stereo Correspondence problem Window based approach
	Slide 18: SSD (sum of squared differences) approach
	Slide 19: computing SSD efficiently
	Slide 20: computing SSD efficiently
	Slide 21: computing SSD efficiently
	Slide 22:     standard general trick:  “Integral Images” 
	Slide 23:     standard general trick:  “Integral Images” 
	Slide 24: computing SSD efficiently
	Slide 25: Problems with Fixed Windows

	part 2
	Slide 26: window algorithms
	Slide 27: Stereo Correspondence problem Scan-line approach
	Slide 28: “Shortest paths” for    Scan-line stereo
	Slide 29: “Shortest paths” for    Scan-line stereo
	Slide 30: “Shortest paths” for    Scan-line stereo
	Slide 31: “Shortest paths” for    Scan-line stereo
	Slide 32: “Shortest paths” for    Scan-line stereo
	Slide 33: Occlusion in stereo
	Slide 34: Occlusion in stereo
	Slide 35: Occlusion in stereo
	Slide 36: Stereo
	Slide 37: Occlusions  vs  disparity/depth jumps
	Slide 38: Use Dijkstra to find the shortest path corresponding to certain edge costs
	Slide 39: More common representation of  disparity map in stereo algorithms
	Slide 40: More common representation of  disparity map in stereo algorithms
	Slide 41: DP for scan-line stereo
	Slide 42: Dynamic Programming (DP) Viterbi Algorithm
	Slide 43: Dynamic Programming (DP) Shortest paths Algorithm
	Slide 44: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 45: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 46: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 47: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 48: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 49: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 50: Estimating (optimizing) disparities:  over points vs. scan-lines vs. grid
	Slide 51:  Useful extension:  local affinities wpq and “edge alignment” 
	Slide 52:  Useful extension:  local affinities wpq and “edge alignment” 
	Slide 53: Multi-scan-line stereo  with s-t graph cuts [Roy&Cox’98, Ishikawa 98]
	Slide 54: Multi-scan-line stereo  with s-t graph cuts [Roy&Cox’98, Ishikawa 98]
	Slide 55: Ishikawa&Geiger 98  What loss function do we minimize this way?
	Slide 56: Ishikawa&Geiger 98  What loss function do we minimize this way?
	Slide 57: Ishikawa&Geiger 98  What loss function do we minimize this way?
	Slide 58:  How to avoid folding?
	Slide 59:  How to avoid folding?
	Slide 60:  How to avoid folding?
	Slide 61:  How to avoid folding?
	Slide 62: Scan-line stereo vs.  Multi-scan-line stereo (on whole grid) 
	Slide 63: Some results from Roy&Cox
	Slide 64: Some results from Roy&Cox
	Slide 65: Simple Examples: Stereo with only 2 depth layers
	Slide 66: Simple Examples: Stereo with only 2 depth layers
	Slide 67: Features and  Spatial Regularization
	Slide 68: Features and  Spatial Regularization
	Slide 69: Active Stereo  (with structured light)
	Slide 70: Active Stereo  (with structured light)
	Slide 71: Laser scanning
	Slide 72: Laser scanning
	Slide 73: Photo Sculpture (1939)

	part 3
	Slide 74: 3D scanning
	Slide 75: further considerations: Robust error/penalty functions
	Slide 76: further considerations: Robust error/penalty functions
	Slide 77: further considerations: Higher-order regularization
	Slide 78: From 1D correspondence (stereo) to 2D correspondence problems (motion)
	Slide 79: From 1D correspondence (stereo) to 2D correspondence problems (motion)
	Slide 80: From 1D correspondence (stereo) to 2D correspondence problems (motion)
	Slide 81: From 1D correspondence (stereo) to 2D correspondence problems (motion)
	Slide 82: From 1D correspondence (stereo) to 2D correspondence problems (motion)
	Slide 83: From 1D correspondence (stereo) to 2D correspondence problems (motion)


