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Multi-View Geometry

...with materials from H&Z and Carl Olsson
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Motivation: why do we have two eyes?

Cyclope VS. Odysseus



Motivation: two Is better than one
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"Just checking.”
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Motivation: triangulation gives depth

C
d =
2tan(a/2)
., ° a e
Large Angle Small Angle
=> (Close => Far

d,

d,

Human performance: up to 6-8 feet
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Motivation: reconstruction problems

Multi-view reconstruction: shape from two or more images

. to “triangulate”
camera
viewpoints

need to learn about
multi-camera geometry
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Summary:

* Projective Camera Model
 Intrinsic and extrinsic parameters
« projection matrix (a.k.a. camera matrix)

e camera calibration (from known 3D points)
* resection problem
 estimating intrinsic/extrinsic parameters

« Two cameras (epipolar geometry)
« essential and fundamental matrices: E and F
« estimating E (from matched features)
« computing projection matrices from E

« Structure-from-Motion (SfM) problem - quick overview
at the same{‘ estimating “motion”. camera positions (projection matrices)
time estimating “structure”: scene points in 3D space

(both are unknown)
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Additional readings:

- Hartley and Zisserman “Multiple View Geometry”
Cambridge University Press, Ed.2

- Heyden and Pollefeys “Multiple View Geometry”
short course at CVPR 2001

https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPRO1.pdf



https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPR01.pdf
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Towards projective camera model

First, if there Is only one camera, can use a
camera-centered 3D coordinate system (X,y,2):

H\
Z

camera-centered

coordinate
system
image
coordinate ] .
system as seen In topic 2

optical center is point (0,0,0)

x and y axis are parallel to the image plane

x and y axis parallel to u and v axis of the image coordinate system
optical axis (z) intersects image plane at image point ¢ = (0,0)
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Camera-centered coordinate system

X, V,7Z
For simplicity, (u,v) ( Y, 2)
illustration below assumes |

world point (X,y,X) — Z

© f |c=(0.0)

IS inside x-z plane

H\ o (©y,>2 (fg,fg)

camera-centered — ——
coordinate 9 u v
system (X, ¥,2)
Image-based coordinates
image of the projection point
coordinate . )
system as seen In topic 2

optical center is point (0,0,0)

x and y axis are parallel to the image plane

x and y axis parallel to u and v axis of the image coordinate system
optical axis (z) intersects image plane at image point ¢ = (0,0)
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Camera-centered coordinate system

In general, image coordinate center
can be anywhere (often in image corner).

(X,Y,2)

Thus, optical axis may intersect image plane
at a point with image coordinates c=(u. ,v.)

" . ) 0 2 Z
contributing additional shift f TC—(UC Ve)
L Y
y'T‘ Vv (xayaz)%(f__'_ucaf__l'vc)
Z \ < J\ < J
camera-centered g/ Y Y
g c u
y Image-based coordinates
C u image of the projection point
X coordinate

system
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Camera-centered coordinate system

camera projection
can be represented as
matrix multiplication

£z
using homoge_)neous re_presentation (3;7 Y, z) Sy (f— + U, fg + ”UC)
for image points Z R
Y Y
// u V

Image-based coordinates

) — 0 f Ve Y of the projection point
W L 0O 0 1 | [ =z ]
N NOTE: w =12z (depth
N (depth)
K. camera centered coordinates

matrix of intrinsic for 3D world points
camera parameters



%) WATERLOO

Camera-centered coordinate system

Generally, anisotropic or skewed pixels result in
- different f, and T,

- . an anisotropic
- skew coefficient s and skewed
pixel
using homogeneous representation i
for image points s - skew/tilt
/ , I= . aspect ratio
A S Ty
WU fz s U T
wov | =1 0 f, v Y
| w 0 0 1 ] [ 2z ]
y \
~
) K o camera centered coordinates
matrix of intrinsic for 3D world points

camera parameters
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Camera-centered coordinate system

In general, matrix K of intrinsic camera parameters
IS 3x3 upper triangular. It has 5 degrees of freedom.
For square pixels, K has 3 d.o.f.

using homogeneous representation
for image points

/

WU fo 8 uc x NOTE: here matrix K
wv | =1 0 fy v Y maps R3 to R? (P?)
L w | 0 0 1 ] [ 2z ] (not a homography p? — p?)

J \
~
_ K o camera centered coordinates
matrix of intrinsic for 3D world points

camera parameters
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What If there are more than one camera?

Projecting 3D scene onto images with different view-points

scene point

Image 1

Image 2

Only one camera can serve for world coordinate system.
Other cameras will have their camera-centered 3D coordinates
different from the world coordinate system.
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Camera projection matrix

world
coordinate
system

Z translation

T

camera-centered
coordinate f

system
y c 7

rotation

X R

In case of two or more cameras, 3D world coordinate system
maybe different from a camera-based coordinate system:

* T Isa (translation) vector defining relative position of camera’s center
» orientation of x,y,z-axis of the camera-based coordinate system can be

related to the axis of the world coordinate system via rotation matrix R
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Camera projection matrix

camera-centered
coordinate
system

Converting world coordinates of a point
into camera-based 3D coordinate system

camera-based
3D coordinates

(here vector T is world’s center in camera’s coordinates)

1

C

\Z
A
f
X

X
Y | +T
Z

world

3D coordinates

3D world point

(X,Y.2) world
coordinate

system

using homogeneous representation for
3D points in world coordinate system

. X
Y
;g = R T 7
\ ) 1
Y - —
3x1 3x4 4x1

we get linear transformation (matrix multiplication)
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Camera projection matrix

3D world point

(X,Y,2) or (x,y,2) world
X coordinate
tem
y A Vj\\ SyS
camera-centered u ,Z,., Y 0
coordinate
system
y C 7
X
R

xr
camera-based
Yy 3D coordinates
Z
A

Remember, projecting to 2D 1image coordinates... {

wu i WU 5d.0.f 3d.o.f 3d.o.f ‘})f
wv = K- Yy — WU — . R T 0
Z
w 2 o \
homogeneous camera-based - ~ ) L 1 _
image coordinates 3D coordinates 3x3 3x3 3x4 \ 4x1

project rotate translate
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Camera projection matrix

iy

camera-centered u p
coordinate ’
system
C
X
projection matrix P
wu
wy | = K - R T
w
homogeneous
2D (ljr_nage intrinsic extrinsic
coor —lnates camera camera

p parameters parameters

3D world point

(X,Y.2) world
coordinate
system
Y 0
Z
_ X -
Y —
Z < p=P-X
| 1 i 3x1 3x4 4x1
homogeneous
3D world
coor_tiinates
X
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Homogeneous coordinates in 2D an:
Trick of adding one more coordinate
- translation becomes matrix multiplication
- 2D points become 3D rays S
- _ X wX
u wul in RS v Wy | s
iIn RZ2 (uyv) = |v wv | in p? (X.¥Y.2) = 7| Tl wz Ine
1w 1 w

homogeneous 2D image

coordinates

homogeneous 3D scene

coordinates

Converting from homogeneous coordinates

= (%0
i

n R?

T

Y
VA
w

in p3

= (%A YA ZAn )

in R3
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Camera calibration

Goal: estimate Intrinsic camera parameters
- focal length f, image center (u,,v,), other elements of matrix K

Motivation:

 If Kis known, only 6 d.o.f remains in projection matrix P = K- (R|T)
(3 d.o.f. for each rotation R and translation T))

=> It becomes easier to estimate projection matrices
corresponding to different viewpoints as camera(s) move around

« using calibrated camera(s) is a way to remove projective ambiguity
In structure from motion 3D reconstruction (more later)
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Camera calibration

Basic calibration technique:

assume a set of 3D points {X;}

] ] calibration pattern
with known world coordinates and tied 3D coordinates
and a set of matching image points {p;} \

i}na;g‘;e T
X

find camera matrix P from known matches X, & pi
(resection problem)

- then, find Intrinsic and extrinsic parameters

(use matrix factorization)
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Camera calibration

NOTE: should not use 3D points
{X;} on asingle plane

(“degenerate configurations™, see H&Z Sec 7.1)

Basic calibration technique:

assume a set of 3D points {X;}

_ _ calibration rig
with known world coordinates (Tsai grid)
and a set of matching image points {p; }

find camera matrix P from known matches X; < i
(resection problem)

- then, find Intrinsic and extrinsic parameters

(use matrix factorization)
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Camera projection matrix (estimating from X, < ;)

wu
wv

Image 1

a
= | e
1

Ol

b c
/g
7k

.
ho| -
l —

estimate unknown
projection matrix P

(resection problem)

3D world

X
— system
Y

— N <

point world
coordinate

Z

P has 12 entries, 11 d.o.f.

Q: How many matched pairs
Xi <> D
are needed? A: 55 ©
Q: Solving for a,b,...kl ?
A similar to estimating
homographies
(see Topic 3, or H&Z p.179)

Exercise: prove that coplanar {X;} give
undetermined system of equations for P.
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Camera projection matrix (estimating from X, < ;)

3D world
point world
Image 1 X coordinate
Vj\\ X system
P Y
Z
_ i, _ - [ x 7 * Use more than 6 matched pairs
wu a b ¢ d ~ -
Y Xi € D
wv | =1 e f g h |-
W i ko Z to compensate for errors
- - T estimate unknown 1 (homogeneous least squares)

projection matrix P

(resection problem)



Extracting Intrinsic parameters from P
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Now, assume that 3x4 projection matrix P is already estimated

~

/" 3x3 3x4
o b ¢ d | T |
P = e f g h =| K- R
ik
~ known N
unknown

How can we get K (aswellasR,T) from P ?
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Extracting intrinsic parameters from P

S

T O

.-
h
l —

?
- K-| R |T

matrix factorization: Hsaz secs24 (p. 163)

Theorem [ax or «a factorization]: for any nxn matrix A there is an orthogonal
matrix @ and an upper (or right) triangular matrix « such that A = qa.

(If A is invertible and the diagonal elements in R are chosen positive than the factorization is unique.)

a b ¢l d

P = e f gl h
_'jkl

A a

A RO
R - Q R 1a

L

) L ) \ )
) ) Y
scale ® to make

element equal 1
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Calibrated Camera (camera normalization)

Once Intrinsic parameters K are known

- can “normalize” the camera:
switch to a new image coordinate system (, ) defined as

[ - } _ g1 { ! } Q: what kind of transform

wv (%
w 1 is this for camera’s 1mage?

then, camera’s new projection matrix P becomes

1T

rotation and translation only

P=K'P=K\K.

R
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Calibrated (Normalized) Camera

After normalization, “effective” intrinsic
parameters form an identity matrix

- [N -

K =1 parameters

R

Geometric interpretation:
camera-centered

coordinate
system

focal length f =1

point (0,0) = intersection of
X ormalized image 1Mage plane with optical axis

embedded in rR3
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one
needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix

still 3x4 matrix
= o but only 6 d.o.f

Property for normalized camera:
(homogeneous) image coordinates for
any pixel coincide with this pixel’s

camera-centered world coordinates
(can treat “normalized” pixels as points in R3)

camera-centered
coordinate
system

1]
L
$ 8

normalized image
embedded in rR3
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one
needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix

still 3x4 matrix
Po= BT but only 6 d.o.f
Y A from normalized back to original camera:
u use Kasawarp p=Kj (p? -> p?)
JA

camera-centered
coordinate
system

= K can be interpreted as
a homography mapping normalized image
embedded in R3to the “digital space”
(i.e. pixels in the original image)

normalized image

ermbedded in n3 Q- Why restrict K to upper triangular ?

hint: K=® in ®Q decomposition
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one
needs only its position (translation+rotation) in world coordinates

camera-centered
coordinate
system

calibrated/normalized camera’s projection matrix

P

R

still 3x4 matrix
I but only 6 d.o.f

normalized image
embedded in rR3

The main point of
calibration/normalization:
converts any camera to a
“standardized” pin hole camera
model shown on the left. After
calibration, images are independent of
how the camera is made and depend

only on camera’s location/orientation.
NOTE: in general, “calibration” process also
correct for lens distortions (barrel, etc.)
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one
needs only its position (translation+rotation) in world coordinates

camera-centered
coordinate
system

calibrated/normalized camera’s projection matrix

P

still 3x4 matrix
- o but only 6 d.o.f

Estimating multiple camera viewpoints
\ or poses P, Is the “motion” part of the
JA

structure-from-motion problem

NOTE: camera calibration uses known 3D points { X; }

The “structure” part of SfM problem estimates

normalized image unknown 3D scene points { X }.

embedded in rR3 (later in this topic)
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Calibrated (Normalized) Camera

For simplicity, the rest of this topic assumes
that all images are normalized (calibrated cameras)

unless explicitly stated otherwise
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Two cameras geometry

Epipolar geometry

essential & fundamental matrices

Motivation: helps reconstruction
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Stereo reconstruction

From 2D images back to 3D scene

/

Triangulation: can reconstruct a point as an intersection of two rays, assuming...

- known projection matrix (camera position)
- known point correspondence
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Epipolar lines

* Find pairs of corresponding pixels (that come from the same 3D scene point)

— not trivial (remember mosaicing) A rhetorical question:

unknown 3D scene does any ray from C,
point intersect ray C, p, ?

epipolar line
in the left image

for point p, ? / —
corresponding point I P>

must be somewhere // e
1

on this line =

“baseline”

left image epipole
(definition: point where optical center C, projects onto left image plane)

Any right image point p, corresponds to a line passing though epipole e,.

It is a projection of ray C, — p, (ray C,— unknown 3D scene point).



Epipolar lines
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Example [from Carl Olsson]
(two stationary cameras)

' pfojettion OfES
right cameracenterC,
1g0nto LETt image
z ¥
Z ,

ALL EPIPQLAR LINES
PASS T-RQU THE EPIPOLE

left camera image
(contains the right camera)

consider some features
In the right image
(projections of some 3D points)

(7

right camera image

Any right image point p, corresponds to some left image epipolar line.

It is a projection of ray C, — p, (ray C,— unknown 3D scene point).
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Epipolar lines

Similarly, for any given point p, in the left image...

unkown 3D scene

epipolar line
in the right image
for point p,

corresponding point
must be on this line

C,

“baseline”

epipoles
(points where base line C, C, intersects two image planes)

epipolar constraint for the right image: for any point P, in the left
Image, the corresponding point in the right image must be on the line

where plane P, C, C, intersects the right image (right image epipolar line)

- reduces correspondence problem to 1D search along conjugate epipolar lines
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Epipolar lines

System of corresponding epipolar lines depends only on
camera set up and it does not depend on 3D scene.

epipolar lines : :
epipolar lines
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Epipolar lines

System of corresponding epipolar lines depends only on
camera set up and it does not depend on 3D scene.

/—\

epipolar lines : :
epipolar lines

C, C,

- Intersection of epipolar planes (pianes containing baseline ¢,c,) With
Image planes define a system of corresponding epipolar lines

« Corresponding points can be only on corresponding epipolar lines
important to know such lines when searching for corresponding pairs of points




WATERLOO

Epipolar lines

epipolar lines : :
epipolar lines

« How can we compute epipolar lines for a given pair of images?
- If known, camera projection matrices P, and P, contain all information
e=P,C, e=P,C,; X;= P X X,= P, X (X—any 3D point)

- but only relative position of two cameras really matters:
can estimate a single 3x3 essential matrix rather than two 3x4 matrices P = (R|T) ...
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Essential matrix E (definition)

The system of corresponding epipolar lines
Is fully described by a 3x3 matrix E in equation below

3x3 matrix
TE . O for any pair of pixels/points x, and x,
372 Lr1 = on the corresponding epipolar lines
N (assuming calibrated cameras)

CYH.
NOTE: given x, in image 1 vector |,= Ex, givesequation x,-I,=0 (a line in image 2)

given x, in image 2 vector |, = E™x, gives equation x,-1,=0 (aline in image 1)
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Essential matrix E  (proof of existence)
Recall: assuming calibrated cameras,
pixels x, and x, in (homogeneous) image coordinates
can be treated as 3D points (vectors) in the
corresponding camera-centered coordinates of 3D space

Pr=[1]0]

image 1

P,=|R|T]

C,
use camera 1 for
“world coordinates”

C,

rotation R and translation T convert
camera 1 (world) coordinates to camera 2

dot product  cross product

\ J for any pair of pixels/points x, and x,
L - [T X (Ril?l )] = 0 | on the corresponding epipolar lines
(assuming calibrated cameras)

co-planarity constraint for x, and x,
treating x, and x, as vectors in R3

NOTE: Rx, is vector x, in camera 2 coordinates and TxRX, is the green plane’s normal (camera 2 coordinates)
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Essential matrix E  (proof of existence)

NOTE: cross product axb can be represented as matrix multiplication

al bl 0 —as a9
a = as b = bs $ axXb= as 0 —aq
as b3 —a9 an 0

( J
/

axb = [axb| L=l

3x3 skew-symmetric matrix, rank 2
(a.k.a. antisymmetric matrix M =-MT)

Q: example of a null vector for [a], ?

dot product  cross product

\ l T
co-planarity constraint for x, and x, matrix expression

treating x, and x, as vectors in R3
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Essential matrix E  (proof of existence)

NOTE: due to homogeneous
coordinates, scale of E is arbitrary

r3 Bz =0

L)

essential
matrix

E

x5 [T]« Rx1 =0

matrix expression
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Essential matrix E

NOTE: due to homogeneous

Theorem [existence and uniqueness of essential matrix]: coordinates, scale of E is arbitrary
Assume two calibrated cameras with non-zero baseline.

There exists (unique up to scale) 3x3 matrix E such that
Torany XeP> o r3 Bz =0
zi1 Exzg = 0 2 1

where z1,z2 € P? are projections of X on two cameras,
i.e. z; = ;X for cameras' projection matrices P, and P,.

nontrivial exercise: prove up-to-scale uniqueness of E

essential
matrix
COMMENT: In practice (as discussed later) E is estimated from observed projections of E
(a given (finite) cloud of 3D points {X}Jonto two cameras (that is, a given set of matched
pairs of pixels in two images {(x;,X,)}. One can construct certain critical configurations of
point cloud {X} and camera positions allowing multiple essential matrices E such that T

a:fEa:Q ~ ( for all given matched pairs. Examples: entire point cloud {X} and 332 [T] >< R.T ]_ - O

camera centers lie on one plane or on a cone, see [Kahl & Hartley, “Critical Curves and
Surfaces for Euclidean Reconstruction”, ECCV’02,]

For general 3D scenes and camera positions, critical configurations are unlikely to matrix expression
happen in practice, particularly when sets of matched pairs of pixels are sufficiently large.
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Essential matrix E

NOTE: due to homogeneous

Theorem [existence and uniqueness of essential matrix]: coordinates, scale of E is arbitrary
Assume two calibrated cameras with non-zero baseline.

There exists (unique up to scale) 3x3 matrix E such that T

forany X e p3 —

where z1,z2 € P? are projections of X on two cameras,

i.e. z; = ;X for cameras' projection matrices P, and P,.

nontrivial exercise: prove up-to-scale uniqueness of E _
essential
matrix
E is defined by a relative position E

of two cameras (R and T), as expected T

E __ [T]XR Lo [T]XRZEl =(

matrix expression
Q: How many d.o.f InE?
A: 5 =3 (rotation) + 3-1 (scale of T is arbitrary)
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Essential matrix E

NOTE: due to homogeneous

Theorem [existence and uniqueness of essential matrix]: coordinates, scale of E is arbitrary
Assume two calibrated cameras with non-zero baseline.

There exists (unique up to scale) 3x3 matrix E such that T

forany X € p3 —

where z1,z2 € P? are projections of X on two cameras,

i.e. z; = ;X for cameras' projection matrices P, and P,.

nontrivial exercise: prove up-to-scale uniqueness of E _
essential
matrix
E is defined by a relative position E

of two cameras (R and T), as expected T

E __ [T]XR Lo [T]XRZEl =(

matrix expression
Q: What is the rank of E ?
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Fundamental matrix F

Question: are there epipolar lines in uncalibrated cameras?

Answer: baseline, epipoles, epipolar planes & lines exist due to 3D geometry.
(camera normalization or specific image coordinate system can only change their representation)

rs Exy =0
Remember: 1 — K_lgj assuming calibrated
calibrated original image camera coordinates
(normalized) coordinates
coordinates
Ta 71
[ : \ ( A \
_ _ T
=> IgK TEK 1.1']_ — O E:> 332 Fﬂjl — O
‘ Y ’ defines epipolar lines for

F-- fundamental matrix  uncalibrated cameras
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Example

camera

"t ooy 2
N4 :}/_.". N

riht

left camera

)

camera set-up
(bird-eye view)

castle

optical
center

baselin® optical
center
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Estimating F or E from N >8 matches
8-point method

Assume corresponding points X; < X; in two images
(matched pair corresponding to a projection of unknown 3D point X ; )

They must lie on the corresponding epipolar lines, thus

)_(?F X,; = O (use E for calibrated images)

If X; = (x%ayZJZZ) and )_(’L — (a_j%agzazz) then

x; Fx; = Fnziz, + Froxy, + Fi3%z;
+ Foyixi + Foouiys 4+ Fosyiz
+ Fsiziwy + Fzeziyi + Faszizg = 0

One matching pair X; <+ X; gives only one linear equation.

Eight is enough to determine elements of 3x3 matrix F (as scale is arbitrary)
Note: enforcing known properties (e.g. rank=2) allows to use fewer points.
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Estimating F or E from N >8 matches

In matrix form: one row for each of N > § correspondences

Nx9 Ox1 Nx1
11 T1Yy1r  T121 - 2121 Fiy 0
ToXog  ToYa  TaRe -+ Z9Z9 Fio 0
T3r3  T3Ys T3z - 2323 Fiz3 | — |0
| INTN INYN INZN -+ ZNZN | | F33 | | 0
\ ]
Y

If matched points

» A f — O have some errors

(not exact locations) ?
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Estimating F or E from N >8 matches

solve homogeneous least squares _ gi; _
Fq3
min ||Af| 5.
HfH:]_ for E use e
Instead of f

as in homography estimation,
constraint ||f||=1 fixes the scale of f (i.e. F)

Use eigen vector for the smallest eigen value of 9x9 matrix ATA

Need N >8 to get a unique minimizer f (up to sign, —f also works).

If N =8 then perfect (zero) least squares loss is achieved at a unique solution (up to sign).
- dim(A)=8x9, rank(A)=8, and fis (unit norm) right null vector of A

If N <7 then the problem is under-constrained. The (right) null space of A has dimension > 2
and there are many unit norm solutions f achieving zero loss.
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What's left to cover

« More on Estimation of E and F

» propertiesof E and F
 limitations of 8-point method (no enforcement of rank or other constraints for E or F)
« more advanced 5-point method (see H&Z book, we do not cover this in class)

 similarly to homography estimation in previous topics, we cover only least
squares for algebraic errors (reprojection errors use more advanced optimization)



Properties of E and F

Note that rank (E) =2 since E = [T|x R and rank(|T]x) =2

Theorem: 3x3 matrix E is essential (3R, T : E = [T|«R) if and only if

two of its singular values are equal, and the third is zero.
[H&Z. Sec 9.6 p.257]

Then, SVD for essential matrixis | = U
(scale ambiguity allows to use 1 for singular values)

OO =
o = O
o O O

For the fundamental matrix F we only have rank (F) =2 constraint,
while two non-zero singular values of F can be different.
Of course, the third singular value is still zero.
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Summary of properties

essential matrix E fundamental matrix F

« epipolar lines x, YExy=0] - epipolar lines x5 PFxy =0

(for two calibrated cameras)

rank 2 E=|T|«R

epipoles e, and e, are right
and left null vectors for E

Ee, =0 ey E=0"
e 5d.0f (6fromR&T,-scaleofT)

 two equal non-zero
singular values

(for two arbitrary cameras)
rank2 F=K TEK™!

epipoles e, and e, are right
and left null vectors for F

F€1:O egF:OT

e 7d.0f (9par,-scale & det F=0)

* {wo0 non-zero

singular values
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Limitations of 8-point method

homogeneous least squares

min ||Af|]
If]|=1

Issue: optimal F may not satisfy det(F)=0 and rank(F)=2.



Example [Carl Olsson]
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rrrrrrrrrrrrrrr

WATERLOO

Naive solution

homogeneous least squares

min ||Af|]
If]l=1

Issue: optimal F may not satisfy det(F)=0 and rank(F)=2.

One “solution”: find the “closest” rank 2 matrix F' s.t.

min  |[F'— F[| where |F-F| = [S (5 - Fy)?
’I“CL?’L]{J(F)ZQ Frobenius norm ij
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Naive solution

Theorem (low rank approximation) [Eckart-Young-Mirsky]:

Assuming SVD for mxn matrix A = U diag(sy, S2, ..., Sn) vt

I’:l(igln) k||A—A|| s solvedby A = U diag(s1, .., 8x,0,..,0) V'

I
k largest singular values of A

the minimizer is unique iff Sk11 7# Sk

Issue: optimal F may not satisfy det(F)=0 and rank(F)=2.

One “solution”: find the “closest” rank 2 matrix F' s.t.

min  |[F'— F[| where |F-F| = [S (5 - Fy)?
’I“CL?’L]{J(F)ZQ Frobenius norm ij
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Naive solution

Theorem (low rank approximation) [Eckart-Young-Mirsky]:

Assuming SVD for mxn matrix A = U diag(sy, S2, ..., Sn) vt

I;l(ijln) k||A—A|| s solvedby A = U diag(s1, .., 8x,0,..,0) V'

I
k largest singular values of A

the minimizer is unique iff Sk11 7# Sk

Issue: optimal F may not satisfy det(F)=0 and rank(F)=2.

~

One “solution”: find the “closest” rank 2 matrix F' s.t.

min F—F . N )
rank(F)=2 H H —> F=U 8 so 0 | V!




UNIVERSITY OF

WATERLOO

Naive solution

If point matches X; <> X; are in normalized camera images,
solve homogeneous least squares

min ||Ae|
lef|=1 5

Issue: optimal E may not have SVD £ = U v,

o = o
o O O

! o O =

.6 o 99 (44 29 : 1
One “solution”: find the “closest” essential matrix £ (H&Z, Sec.11.7.3, p.294]

[ Ss1+82 0 0

o

min ||[E—E| = |f-v

S1=82, 83:0

S1+S82 T
=== 0|V

0 0

-]
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Much better solution

use 5-point method (see H&Z book)

« amore principled approach directly enforcing the necessary
constraints on matrix E during estimation, rather than trying to fix
the 1ssue by “post-processing’” the problematic matrix.

e not covered in CS484/684
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The Fundamental Matrix Song

Go here if video does not play automatically:
https://www.youtube.com/watch?v=DgGV3I82NTk&feature=emb logo



https://www.youtube.com/watch?v=DgGV3l82NTk&feature=emb_logo
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What's left to cover

« Extraction of camera pose (projection matrices) from E

e Structure from Motion

 triangulate (estimate structure)
* bundle adjustment
 reconstruction ambiguities



Motion and Epipolar lines

example: camera translation
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equivalently, assume a stationary camera,
but all 3D scene points translate by vector C,C,

parallel
. motion
i lines in 3D

_______

-
(]
3
o
(]
& “vanishing point”
E (focus of expansion)
here, all objects .%/# Where the epipolar lines

areslidingalong %  are projections of the
the epipolar lines € parallel motion lines

The epipole is the projection of the point at
Infinity for all parallel motion lines in 3D

* aSsume no camera rotation £ = [T
* vector of camera translation
IS the same as the base line T=C,C,

camera position

initial camera after translation

position

* epipoles and epipolar lines are

Identical in both images
hint: £ = [T« is antisymmetric

e.g. equal left/right null vectors e, =e,~ T
note: easy to estimate T from E (up to scale)

a 0 —c b
e~T = b < B o= [T]X = C 0 —a
© —b a 0
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example: camera translation

Example: forward camera motion
(i.e. along the optical axis) N

camera position
initial camera after forward
position translation

* epipole e, = e, = e ~ T is at the image
center where the camera’s optical axis
Intersects the image plane

(images from &Z .2
note how objects slide along the epipolar lines

o
I
o
&y
I
)

X

I
o= o
oo
o oo




Motion and Epipolar lines

example: camera translation
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Example: panning camera motion

note how objects slide along the epipolar lines

initial camera
position

camera position
after panning camera
horizontally
(along x-axis)

<<
~,
~
~
~
~
~
S
S
~
~
~
~
~
~,
~,
~
~
~o
)

e

* epipole e, = e, =€ ~ T is a point at
infinity for the image pane
» epipolar lines are parallel lines|y,= v,
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Motion and Epipolar lines &' WATERLGO

example: camera translation and rotation R # |

Epipolar lines depend on both translation and rotationas £ = [T]«R.

Camera rotation is responsible for different positions of
the epipoles and epipolar lines in two images (e.g. for e, #e,).

Question: Is it possible to estimate motion (R, T) from E ?

NOTES:
T is still the left null vector (e,) of E = [T« R, e.g. since 7" [T]x = 0". Thus, it is easy to find T, e.g. using SVD of E.

Thus, the main remaining problem is how to recover rotation R ?
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Extracting cameras from essential matrix E

Now assume essential matrix E is given, need to find P, and P,

Pl =170 S 3
T10] : R 3 P,=|R|T|
N
LB 2! > J
can choose camera 1 as to estimate projection matrix for camera 2
“world coordinates” need rotation R and translation T converting

camera 1 (world) coordinates to camera 2

0

1 0
Given essentialmatrix £ = U | 0 1 1744
0O O

0
0_

find rotation R and translation T such that F = [T, R

mathematical formulation of the problem
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Extracting cameras from essential matrix E

Four distinct R, T solutions
(up to scale)

(1 0 0|
Assume SVD decomposition E = U [0 1 0
0 0 0

such that det(UVT) = 1 (if det(UVT) = -1 switch the sign of the last column in V).

VT

Then, using special matrix w - { o
0

o = O
— o O

] we have

E = [T« R for any combinationof R = vwv”" or UW V"

and T = 4Us (scaleis arbitrary)

/ t

. /
see [H&Z:sec 9.6.2, p.258] for proof the last column of U \

corresponding to zero singular value .
(the left null-vector for E) Q - Why’)
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Extracting cameras from essential matrix E

Four distinct R, T solutions

translate the second camera
(up to scale of T) along the baseline...

/—\

E

[T]« R for any combinationof R = UWVT or UWTVT

and T = =£Us (scaleis arbitrary)
T

|
Q: Why?
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Extracting cameras from essential matrix E

Four distinct R,T solutions baseline length |T|
does not change
(up to scale of T) epipole or epipolar lines
/\ in the images
same
epipolar
planes
give same
epipolar
lines

C,

T« R for any combination of R =TwWV7’ or UWTV
and T @ scale is arbltrary)

Moreover, epipolar lines cannot distinguish
“left” vs “right” relative position of camera 2 on baseline Q Whyrp

“front” vs “back” orientation of camera 2

E
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Extracting cameras from essential matrix E

Two modifications below change viewpoints (i.e. optical centers)
but all epipolar lines (i.e. essential matrix) remain the same!!!

C,

T = +Us order reversal
(“left-right” flip of two cameras)

R = UwWvVT or UWTVT orientation reversal

(“front-back” flip of camera 2)
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Extracting cameras from essential matrix E

Let’s focus on some fixed baseline plane

and the corresponding epipolar lines... P Ca;:g:;:i;gllz)tr:gf![ihpe aseline
order

reversal
T = +U;

=

3D reconstruction flips symmetrically

orientation “front-back” flip
reversal

R =UWVT

or UWTy?T

=

of camera 2 viewpoint w.r.t. its image plane

3D reconstruction is fundamentally different

Two types of “viewpoint flip” can be combined => fo_ur distinct motlons-and
different reconstructions
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Extracting cameras from essential matrix E

Four distinct R, T solutions
(up to scale of T)

Two given views of a chair

Example:
[from Carl Olsson]

800
1000 1000
1200 1200
1400 1400
1600 1600
1800 1800

2000 2000

200 400 600 800 1000 1200 200 400 600 800 1000 1200

14 known correspondences (for 14 non-coplanar 3D points)
allow to estimate essential matrix E
assuming K is known
(e.g. 8 point method)
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Extracting cameras from essential matrix E

Four distinct R, T solutions
(up to scale of T)

baseline reversal (T=xU,)

.
25 : 0.5 -
- - *
: . . A
.
.
4 B

Example: S

-1.6 ]

[from Carl Olsson]

- - - DZ: AHB 1 ' + : : r ’

- four distinct relative camera g ) ce
ns 29 %7 b oas ~ 05 f

positions (motion R, T) LS Ui
computed from E (up to scale) > Tﬁ B :
. A 25
- 3D structure {X;} computed from ’ . .
correspondences X; <> X; P 1
by triangulation (more soon...) ‘ N
up to a similarity transformation o ) LB A
(i.e. scale+position+orientation) R e

(LA M0  AMA=y) sdifj UOITEIUSLIO g BISWED
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Causes for 3D reconstruction ambigwty.

» scale remember: epipolar geometry can not help to estimate baseline length |T|

C,

_ larger baseline
paseline [’ = 0102 T Clc/
T 2
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Causes for 3D reconstruction ambigwty.

e scale

- position+orientation ?

epipolar geometry determines only relative camera positions
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Extracting cameras from fundamental matrix F

One can also estimate camera projection matrices from
fundamental matrix, but there are more ambiguities [see H&Z]

Examples
[from Carl Olsson]

S a5 e o 3D recqnst_:r,("j}'éhtiq‘n W|th
“projective” ambiguity similarity transform ambiguity
(cameras estimated from F) (cameras estimated from E)
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Triangulation

Now, assume known projection matrices P, , P, and a match X1 <> Xo

? > X e
Pr=[1]0] 2. /X P,=[R|T]

c, \ / .

wauU2
wavy | = Po -
w2

6 equations with 5 unknown (X,Y, Z, w1, ws)
But, we do not care about w; & w, — eliminate them (a la slide 15 topic 6)

=> 4 equations with 3 unknown (X,Y,Z2)

projection A
. — 1°-
constraints

~ N
~ N




Triangulation

Now, assume known projection matrices P, , P, and a match X1 <> Xo

Pr=[1]0]

projection
constraints

?—)X'

~ N

wauU2
W2V2

w2

}p,

One equation is redundant onl3; If p_oints X1, X, are exactly_on the
corresponding epipolar lines (the corresponding rays intersect in 3D).
Due to errors, use least squares.
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Structure-from-Motion workflow

Basic sequential reconstruction

For the first two images, use 8-point algorithm to estimate
essential matrix E, cameras, and triangulate some points {X}.

Each new view should see some previously reconstructed
scene points {X} (“feature matches” with previous cameras). Use such
points to estimate new camera position (resection problem).

Add new scene points using triangulation, e.g. for new “matches’
with previously non-matched (and non-triangulated) features in earlier views.

If there are more cameras, iterate previous two steps.

Issues
* errors can accumulate

* new views are used only to add new 3D points, but they can help to
Improve accuracy for previously reconstructed scene
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Structure-from-Motion workflow

“Bundle adjustment”

i-th “feature track” tri 1= {‘k < m}
- T

rssgttjiroenl set of Images
. where feature |
In Image K

IS VISible

min Tir. — PrX;
e D D e — PXi]

i keV (i) re-projection error




Structure-from-Motion workflow

from Carl Olsson


https://www.youtube.com/watch?v=i7ierVkXYa8
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Applications of multi-view geometry.

Pose estimation

Rigid motion segmentation

Augmented reality

Special effects in video

Volumetric 3D reconstruction

Depth reconstruction (stereo-next topic)



Examples:

We were fitting a single essential/fundamental matrix to
a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one
fundamental matrix?
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Examples:

We were fitting a single essential/fundamental matrix to
a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one
fundamental matrix?

Hint: we assumed that the scene is stationary and only camera moved or,
equivalently, that the camera is stationary but the whole 3D scene moved (R,T).
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Examples:

We were fitting a single essential/fundamental matrix to
a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one
fundamental matrix?

multi-model fitting with
fundamental matrices
(UFL, previous topic)
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Examples: Rigid Motion Estimation

We were fitting a single essential/fundamental matrix to
a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one
fundamental matrix?

SRS Rt A, .,
‘* f 3 Av ‘.

“‘. RO TO

multi-model fitting with
fundamental matrices
(UFL, previous topic)
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Examples: Augmented Reality

« if camera position C and orientation R are known (in addition to K) then
can insert “new’’ objects into the 3D scene

« particularly useful for movies: camera path can be computed
- can generate correct views of new objects

https://www.youtube.com/watch?v=aPl1aBw x4M https://www.youtube.com/watch?v=Te2ZJzbuw5l

Cinema 4D Camera Motion Tracking
(“boujou”)


https://www.youtube.com/watch?v=aPl1aBw_x4M
https://www.youtube.com/watch?v=Te2ZJzbuw5I
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Examples: Dense 3D Reconstruction

Sparse reconstruction (cloud of points in 3D) is done by
triangulating point correspondences (part of Structure-from-Motion problem)

How about dense (surface in 3D) reconstruction from n views?
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Examples: Dense 3D Reconstruction

A. computing Surfaces in 3D Volumes B. computing dense Depth Maps
(volumetric reconstruction) (stereo)

.

two narrow baseline views

Relates to volumetric segmentation (topic 9)

will discuss in topic 8: stereo
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From sparse features to dense reconstructions

« Assume known relative position of cameras (epipolar lines)
 Now, we can move towards denser reconstruction
- find many more matches (correspondences) using

known epipolar lines: constrained search space
significantly reduces ambiguity for feature matching

- use “regularization” to estimate surfaces or depth maps
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