
CS484/684 Computational Vision

Multi-View Geometry

…with materials from H&Z and Carl Olsson



Motivation: why do we have two eyes?

Cyclope  vs.                      Odysseus



Motivation: two is better than one



Motivation: triangulation gives depth

Human performance: up to 6-8 feet



Motivation: reconstruction problems

Multi-view reconstruction: shape from two or more images

to “triangulate”

should estimate

camera

viewpoints

need to learn about

multi-camera geometry



Summary:

• Projective Camera Model

• intrinsic and extrinsic parameters

• projection matrix (a.k.a. camera matrix) 

• camera calibration (from known 3D points)

• resection problem

• estimating intrinsic/extrinsic parameters

• Two cameras   (epipolar geometry)

• essential and fundamental matrices: E and F

• estimating  E (from matched features)

• computing projection matrices from E

• Structure-from-Motion (SfM) problem  - quick overview

• estimating “motion”:   camera positions (projection matrices)

• estimating “structure”:   scene points in 3D space

at the same 

time
(both are unknown)



Additional readings:

- Hartley and Zisserman “Multiple View Geometry”
Cambridge University Press, Ed.2

- Heyden and Pollefeys “Multiple View Geometry” 
short course at CVPR 2001

https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPR01.pdf

https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPR01.pdf


Towards projective camera model

First, if there is only one camera, can use a 

camera-centered 3D coordinate system (x,y,z):

-   optical center is point (0,0,0)

-    x and y  axis are parallel to the image plane

- x and y  axis parallel to u and v axis of the image coordinate system

- optical axis (z) intersects image plane at image point  c = (0,0) 
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as seen in topic 2



Camera-centered coordinate system
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u       v
image-based coordinates

of the projection point

-   optical center is point (0,0,0)

-    x and y  axis are parallel to the image plane

- x and y  axis parallel to u and v axis of the image coordinate system

- optical axis (z) intersects image plane at image point  c = (0,0) 

For simplicity, 

illustration below assumes

world point (x,y,x) 

is inside x-z plane

),,( zyx(u,v)

v

as seen in topic 2



Camera-centered coordinate system

(u,v)

f

),,( zyx

ZO

u               v

c=(uc ,vc)
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of the projection point

In general, image coordinate center 

can be anywhere (often in image corner).

Thus, optical axis may intersect image plane

at a point with image coordinates c=(uc ,vc)

contributing additional shift



Camera-centered coordinate system

K
matrix of intrinsic 

camera parameters

u               v
image-based coordinates

of the projection point

using homogeneous representation 

for image points

camera centered coordinates 

for 3D world points

camera projection

can be represented as

matrix multiplication

NOTE:  w = z  (depth)



Camera-centered coordinate system

K
matrix of intrinsic 

camera parameters

camera centered coordinates 

for 3D world points

Generally, anisotropic or skewed pixels result in

     - different fx and  fy 

     - skew coefficient  s
an anisotropic                          

and skewed 

pixel

using homogeneous representation 

for image points s  -  skew/tilt

   -  aspect ratio



Camera-centered coordinate system

matrix of intrinsic 

camera parameters

camera centered coordinates 

for 3D world points

In general, matrix K of intrinsic camera parameters  

is 3x3 upper triangular. It has 5 degrees of freedom. 

For square pixels, K has 3 d.o.f.

using homogeneous representation 

for image points

NOTE: here matrix K
maps  R3  to  R2 (P2) 

(not a homography P2 → P2)

Correction: Tue. Oct. 5

K



What if there are more than one camera?

scene point

Image 1

Projecting 3D scene onto images with different view-points

Only one camera can serve for world coordinate system.

Other cameras will have their camera-centered 3D coordinates 

different from the world coordinate system.

C1
C2

Image 2



Camera projection matrix

In case of two or more cameras, 3D world coordinate system 

maybe different from a camera-based coordinate system: 

• T  is a (translation) vector defining relative position of camera’s center

• orientation of x,y,z-axis of the camera-based coordinate system can be  

related to the axis of the world coordinate system via rotation matrix  R 
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Camera projection matrix
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Converting world coordinates of a point 

into camera-based 3D coordinate system

                                                             

                                                                 

camera-based

3D coordinates 

world

3D coordinates 

T

3x4 4x13x1

we get linear transformation (matrix multiplication)

using  homogeneous representation  for 

3D points in world coordinate system

                                                             

                                                                 

(here vector T is world’s center in camera’s coordinates)



Camera projection matrix

Remember, projecting to 2D image coordinates…
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projection matrix  P

Camera projection matrix
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Homogeneous coordinates in 2D and 3D

Trick of adding one more coordinate

 - translation becomes matrix multiplication

 - 2D points become 3D rays

homogeneous 2D image 

coordinates

Converting from homogeneous coordinates
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Goal: estimate intrinsic camera parameters 
- focal length f, image center (uc,vc), other elements of matrix K

- if needed, corrections for lens distortions (radial distortion in fish eye lenses)

Motivation:

• if K is known, only 6 d.o.f  remains in projection matrix  P = K (R|T)   

 (3 d.o.f. for each rotation R and translation T )

     =>     it becomes easier to estimate projection matrices 

corresponding to different viewpoints as camera(s) move around

not represented by K

Camera calibration

• using calibrated camera(s) is a way to remove projective ambiguity 

in structure from motion 3D reconstruction   (more later) 



Camera calibration

assume a set of 3D points

with known world coordinates

Basic calibration technique:

X

Y

Z

calibration pattern

and tied 3D coordinates

and a set of matching image points

image

- find camera matrix P from known matches

   (resection problem)

- then, find intrinsic and extrinsic parameters

       (use matrix factorization)



Camera calibration

assume a set of 3D points

with known world coordinates

- find camera matrix P from known matches

   (resection problem)

- then, find intrinsic and extrinsic parameters

       (use matrix factorization)

Basic calibration technique:

X

Y

Z

calibration rig

(Tsai grid)

and a set of matching image points

image

NOTE: should not use 3D points             

        on a single plane
(“degenerate configurations”, see H&Z Sec 7.1)



Camera projection matrix   (estimating from              )

estimate unknown 

projection matrix  P

Image 1
world 

coordinate 

system

3D world 

point

p~

X
~

Q:  How many matched pairs 

 are needed ?

P  has 12 entries, 11 d.o.f.

A:  5.5  ☺ 

Q: Solving for  a,b,…,k,l     ?

A: similar to estimating 

homographies
(see Topic 3, or H&Z p.179)

X

Y

Z

(resection problem)

u

v

Exercise: prove that coplanar           give 

undetermined system of equations for  P.



Camera projection matrix   (estimating from              )

world 

coordinate 

system

3D world 

point

p~

X
~

• Use more than 6 matched pairs

   to compensate for errors

   (homogeneous least squares)

Image 1 X

Y

Z

estimate unknown 

projection matrix  P

(resection problem)

u

v



Extracting intrinsic parameters from P

Now, assume that 3x4  projection matrix P is already estimated

How can we get  K (as well as R,T)  from  P ?

known
unknown

3x3 3x4



Extracting intrinsic parameters from P

H&Z  Sec 6.2.4  (p. 163)  matrix factorization:

Theorem [QR or RQ factorization]: for any nn matrix A there is an orthogonal 

matrix Q and an upper (or right) triangular matrix R such that A = RQ.

(If A is invertible and the diagonal elements in R are chosen positive than the factorization is unique.)

?

A a
R TK

scale R to make 

bottom right 

element equal 1 



rotation and translation only 

Calibrated Camera   (camera normalization)

Once intrinsic parameters  K are known

- can “normalize” the camera:  

    switch to a new image coordinate system          defined as

- then, camera’s new projection matrix  P  becomes 
~

Q: what kind of transform

  is this for camera’s image? 



Calibrated (Normalized) Camera

After normalization, “effective” intrinsic 

parameters form an identity matrix 

extrinsic 

parameters

Geometric interpretation:

focal length  f  = 1

point (0,0)  =  intersection of 

image plane with optical axis 
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 

needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix
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u
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(0,0)1

Property for normalized camera:

(homogeneous) image coordinates for 

any pixel coincide with this pixel’s 

camera-centered world coordinates
(can treat “normalized” pixels as points in R3) 

still 3x4 matrix

but only 6 d.o.f

normalized image 
embedded in R3

~

~

~

~

~



Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 

needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix

C

x
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z
camera-centered

coordinate 

system

u

v

(0,0)1

~
from normalized back to original camera:
     use K as a warp p = Kp     (P2  -> P2)

still 3x4 matrix

but only 6 d.o.f

    K can be interpreted as

a homography mapping normalized image 
embedded in R3 to the “digital space”                

(i.e. pixels in the original image)

normalized image 
embedded in R3 Q: why restrict K to upper triangular ?

hint:  K=R  in RQ decomposition

~

~



Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 

needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix

C
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z
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system

u

v

(0,0)1

The main point of 

calibration/normalization:

converts any camera to a 

“standardized” pin hole camera

model shown on the left. After 

calibration, images are independent of 

how the camera is made and depend 

only on camera’s location/orientation.

still 3x4 matrix

but only 6 d.o.f

normalized image 
embedded in R3

~

~

NOTE: in general, “calibration” process also 

correct for lens distortions (barrel, etc.)



Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 

needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix

C

x
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z
camera-centered

coordinate 

system

u

v

(0,0)1

Estimating multiple camera viewpoints 

or poses Pn is the “motion” part of the 

structure-from-motion problem

still 3x4 matrix

but only 6 d.o.f

normalized image 
embedded in R3

~

~
NOTE: camera calibration uses known 3D points          . 

The “structure” part of SfM problem estimates 

unknown 3D scene points           .

(later in this topic)



Calibrated (Normalized) Camera

For simplicity, the rest of this topic assumes 

that all images are normalized (calibrated cameras)

unless explicitly stated otherwise



Two cameras geometry

Epipolar geometry

essential & fundamental matrices

Motivation: helps reconstruction



Stereo reconstruction

Triangulation: can reconstruct a point as an intersection of two rays, assuming…

- known projection matrix (camera position) 

- known point correspondence

From 2D images back to 3D scene

C1 C2

p1 p2



Epipolar lines

• Find pairs of corresponding pixels (that come from the same 3D scene point)

– not trivial (remember mosaicing)

C1 C2

?
p2

A rhetorical question: 

does any ray from C1 

intersect ray C2 p2 ?    

left image epipole
(definition: point where optical center C2 projects onto left image plane)

“baseline”

a plane

unknown 3D scene 

point

epipolar line 

in the left image

for point p2

e1

corresponding point 

must be somewhere

on this line

Any right image point p2 corresponds to a line passing though epipole e1. 

It is a projection of ray C2 → p2  (ray C2 → unknown 3D scene point).



Epipolar lines

right camera imageleft camera image
(contains the right camera)

epipole

Example [from Carl Olsson] 
(two stationary cameras)

corresponding 

points

consider some features 

in the right image
(projections of some 3D points)

Any right image point p2 corresponds to some left image epipolar line. 

projection of 

right camera center C2

onto left image

corresponding 

epipolar

lines

It is a projection of ray C2 → p2  (ray C2 → unknown 3D scene point).

p2

p1

ALL EPIPOLAR LINES

PASS TROUGH THE EPIPOLE



Epipolar lines

Similarly, for any given point p1 in the left image…

epipolar constraint for the right image:  for any point  p1  in the left 

image, the corresponding point in the right image must be on the line 

where plane  p1 C1 C2  intersects the right image (right image epipolar line)

- reduces correspondence problem to 1D search along conjugate epipolar lines

C1 C2

?p1

epipoles
(points where base line  C1 C2  intersects two image planes)

e2e1

“baseline”

a plane
epipolar line 

in the right image

for point p1

corresponding point 

must be on this line

unkown 3D scene 

point



Epipolar lines

epipolar lines
epipolar lines

C1 C2

e1 e2

System of corresponding epipolar lines depends only on 

camera set up and it does not depend on 3D scene. 



Epipolar lines

epipolar lines
epipolar lines

C1 C2

e1 e2

• Intersection of epipolar planes  (planes containing baseline C1C2 )  with 

image planes define a system of corresponding epipolar lines

• Corresponding points can be only on corresponding epipolar lines

- important to know such lines when searching for corresponding pairs of points

System of corresponding epipolar lines depends only on 

camera set up and it does not depend on 3D scene. 



Epipolar lines

epipolar lines
epipolar lines

C1 C2

e1 e2

• How can we compute epipolar lines for a given pair of images?

 

-   but only relative position of two cameras really matters: 

    can estimate a single 3x3 essential matrix rather than two 3x4 matrices  P = (R|T) … 

- if known, camera projection matrices P1 and P2 contain all information

   e1= P1 C2    e2= P2 C1        x1= P1 X        x2= P2 X      (X – any 3D point)



Essential matrix E        (definition)

C1 C2

e1 e2

3x3 matrix

im
a

g
e

 1 im
a

g
e

 2

l1 l2

x2
x1

for any pair of pixels/points x1 and x2

on the corresponding epipolar lines
(assuming calibrated cameras)

NOTE: given x1 in image 1 vector  l2 = Ex1  gives equation  x2·l2 = 0 (a line in image 2)  

given x2 in image 2 vector  l1 = ETx2 gives equation  x1·l1 = 0  (a line in image 1)  

The system of corresponding epipolar lines 

is fully described by a 3x3 matrix E in equation below 

l2(l1)
T



Essential matrix E     (proof of existence)

C1 C2

e1 e2

im
a

g
e

 1 im
a

g
e

 2

l1 l2

x2

co-planarity constraint for x1 and x2 
treating x1 and x2 as vectors in R3  

x1

Recall: assuming calibrated cameras, 

pixels x1 and x2 in (homogeneous) image coordinates 

can be treated as 3D points (vectors) in the 

corresponding camera-centered coordinates of 3D space

use camera 1 for

“world coordinates”

rotation R and translation T convert 

camera 1 (world) coordinates to camera 2

T

R

NOTE: Rx1 is vector x1 in camera 2 coordinates and TRx1 is the green plane’s normal (camera 2 coordinates)

cross productdot product

for any pair of pixels/points x1 and x2

on the corresponding epipolar lines
(assuming calibrated cameras)



co-planarity constraint for x1 and x2 
treating x1 and x2 as vectors in R3  

NOTE: cross product ab can be represented as matrix multiplication

Essential matrix E     (proof of existence)

cross productdot product

matrix expression

notation:

iClicker Q:   null space of  [a]x has dimensions?   A: 0   B: 1    C: 2     D: 3

3x3 skew-symmetric matrix, rank 2

(a.k.a. antisymmetric matrix  M = -MT )

Q:  example of a null vector for [a]x ? 



matrix expression

essential 

matrix 

E

Essential matrix E     (proof of existence)

NOTE: due to homogeneous

coordinates, scale of E is arbitrary 



matrix expression

essential 

matrix 

E

nontrivial exercise: prove up-to-scale uniqueness of E

Essential matrix E

Theorem [existence and uniqueness of essential matrix]: 

Assume two calibrated cameras with non-zero baseline.

There exists (unique up to scale) 3x3 matrix E such that  

for any   

 

where                       are projections of X on two cameras, 

i.e.                  for cameras' projection matrices P1 and P2.

NOTE: due to homogeneous

coordinates, scale of E is arbitrary 

COMMENT: In practice (as discussed later) E is estimated from observed projections of 

a given (finite) cloud of 3D points {X} onto two cameras (that is, a given set of matched 

pairs of pixels in two images {(x1,x2)}. One can construct certain critical configurations of 

point cloud {X} and camera positions allowing multiple essential matrices E such that            

                         for all given matched pairs. Examples: entire point cloud {X} and 

camera centers lie on one plane or on a cone, see [Kahl & Hartley, “Critical Curves and 

Surfaces for Euclidean Reconstruction”, ECCV’02,]

For general 3D scenes and camera positions, critical configurations are unlikely to 

happen in practice, particularly when sets of matched pairs of pixels are sufficiently large.

Th. Oct 19



matrix expression

essential 

matrix 

EE is defined by a relative position 

of two cameras (R and T), as expected

Essential matrix E

Theorem [existence and uniqueness of essential matrix]: 

Assume two calibrated cameras with non-zero baseline.

There exists (unique up to scale) 3x3 matrix E such that  

for any   

 

where                       are projections of X on two cameras, 

i.e.                  for cameras' projection matrices P1 and P2.

Q: How many d.o.f  in E ?

NOTE: due to homogeneous

coordinates, scale of E is arbitrary 

A:  5 = 3 (rotation) + 3-1 (scale of  T is arbitrary)

nontrivial exercise: prove up-to-scale uniqueness of E



matrix expression

essential 

matrix 

E

Essential matrix E

Q: What is the rank of  E ?

E is defined by a relative position 

of two cameras (R and T), as expected

Theorem [existence and uniqueness of essential matrix]: 

Assume two calibrated cameras with non-zero baseline.

There exists (unique up to scale) 3x3 matrix E such that  

for any   

 

where                       are projections of X on two cameras, 

i.e.                  for cameras' projection matrices P1 and P2.

NOTE: due to homogeneous

coordinates, scale of E is arbitrary 

nontrivial exercise: prove up-to-scale uniqueness of E



F

Fundamental matrix F 

assuming calibrated

camera coordinates 

Remember:
calibrated 

(normalized) 

coordinates 

original image

coordinates 

=>

defines epipolar lines for

uncalibrated cameras- fundamental matrix

Question: are there epipolar lines in uncalibrated cameras?

Answer: baseline, epipoles, epipolar planes & lines exist due to 3D geometry.
                   (camera normalization or specific image coordinate system can only change their representation)



camera set-up
(bird-eye view) castle

Example

left camera right camera

optical 

center

the blue dots in two images are representative pairs of matched features

NOTE: epipoles do not have to be within image box. 

In fact, they can be points at infinity (parallel epipolar lines, see later)



Estimating F or E from  N ≥ 8  matches

Assume corresponding points  in two images

(matched pair corresponding to a projection of unknown 3D point         )

They must lie on the corresponding epipolar lines, thus

If                                and                               then

One matching pair                    gives only one linear equation. 
Eight is enough to determine elements of 3x3 matrix F  (as scale is arbitrary)

(use E for calibrated images)

8-point method

Note: enforcing known properties (e.g. rank=2) allows to use fewer points. 



Estimating F or E from  N ≥ 8  matches

In matrix form: one row for each of N ≥ 8 correspondences

Nx9 9x1 Nx1

If matched points

have some errors

(not exact locations) ?



Estimating F or E from  N ≥ 8  matches

solve homogeneous least squares

as in homography estimation, 

constraint ||f||=1  fixes the scale of  f (i.e. F)

Need  N  ≥ 8  to get a unique minimizer f (up to sign, –f also works). 

Use eigen vector for the smallest eigen value of 9x9 matrix

If  N ≤ 7  then the problem is under-constrained. The (right) null space of A has dimension  ≥ 2 

and there are many unit norm solutions f achieving zero loss.          

If  N = 8  then perfect (zero) least squares loss is achieved at a unique solution (up to sign).

                      - dim(A)=8x9,    rank(A)=8,  and  f is (unit norm) right null vector of A

for E use e

instead of f



What’s left to cover

• More on Estimation of E and F  
 

• properties of E and F

• limitations of 8-point method (no enforcement of rank or other constraints for E or F)

• more advanced 5-point method (see H&Z book, we do not cover this in class)

• similarly to homography estimation in previous topics, we cover only least 

squares for algebraic errors (reprojection errors use more advanced optimization) 

• Extraction of cameras pose (projection matrices) from E

• Structure from Motion

• triangulate (estimate structure)

• bundle adjustment

• reconstruction ambiguities



Properties of E and F

Theorem: 3x3 matrix E is essential (                            ) if and only if  

two of its singular values are equal, and the third is zero.
                                                           [H&Z. Sec 9.6 p.257]

Then, SVD for essential matrix is
(scale ambiguity allows to use 1 for singular values)

For the fundamental matrix  F  we only have rank (F) =2 constraint, 

while two non-zero singular values of F can be different.

Of course, the third singular value is still zero.

Note that rank (E) =2 since                      and



Summary of properties

• epipolar lines
     (for two calibrated cameras)

• epipolar lines

    (for two arbitrary cameras)

essential matrix E fundamental matrix F

• 5 d.o.f • 7 d.o.f

• rank 2 • rank 2

(6 from R&T, - scale of T)  (9 par., - scale & det F=0) 

• two equal non-zero 

     singular values

• two non-zero 

     singular values

• epipoles e1 and e2 are right 

and left null vectors for  E

• epipoles e1 and e2 are right 

and left null vectors for  F



Limitations of 8-point method

homogeneous least squares

Issue: optimal  F  may not satisfy det(F)=0 and rank(F)=2. 



Limitations of 8-point method

Epipole is not well defined if rank is not constrained to 2

Example [Carl Olsson]



Naïve solution

homogeneous least squares

Issue: optimal  F  may not satisfy det(F)=0 and rank(F)=2. 

where
Frobenius norm

One “solution”: find the “closest” rank 2 matrix       s.t.



Naïve solution

Issue: optimal  F  may not satisfy det(F)=0 and rank(F)=2. 

Theorem (low rank approximation) [Eckart-Young-Mirsky]:

Assuming SVD for mxn matrix 

                              is solved by

k largest singular values of A

where
Frobenius norm

the minimizer is unique iff 

One “solution”: find the “closest” rank 2 matrix       s.t.



Naïve solution

Issue: optimal  F  may not satisfy det(F)=0 and rank(F)=2. 

Theorem (low rank approximation) [Eckart-Young-Mirsky]:

Assuming SVD for mxn matrix 

                              is solved by

k largest singular values of A

the minimizer is unique iff 

One “solution”: find the “closest” rank 2 matrix       s.t.



Naïve solution

If point matches                   are in normalized camera images,
solve homogeneous least squares

Issue: optimal E  may not have SVD                                   .

One “solution”: find the “closest” essential matrix
[H&Z, Sec.11.7.3, p.294]



Much better solution

use 5-point method (see H&Z book)

     

• a more principled approach directly enforcing the necessary 

constraints on matrix E during estimation, rather than trying to fix 

the issue by “post-processing” the problematic matrix.  

• not covered in CS484/684



The Fundamental Matrix Song

Go here if video does not play automatically:

https://www.youtube.com/watch?v=DgGV3l82NTk&feature=emb_logo

https://www.youtube.com/watch?v=DgGV3l82NTk&feature=emb_logo


What’s left to cover

• More on Estimation of E and F  
 

• properties of E and F

• limitations of 8-point method (no enforcement of rank or other constraints for E or F)

• more advanced 5-point method (see H&Z book, we do not cover this in class)

• similarly to homography estimation in previous topics, we cover only least 

squares for algebraic errors (reprojection errors use more advanced optimization) 

• Extraction of camera pose (projection matrices) from E

• Structure from Motion

• triangulate (estimate structure)

• bundle adjustment

• reconstruction ambiguities



• assume no camera rotation

• vector of camera translation

   is the same as the base line  T = C1C2 

• epipoles and epipolar lines are

  identical in both images  

   hint:                  is antisymmetric 

          e.g. equal left/right null vectors e1 = e2 

   note: easy to estimate T from E (up to scale)

here, all objects 

are sliding along

 the epipolar lines

initial camera 

position

camera position 

after translation
C1

C2

e1

e2parallel

motion 

lines in 3D

C

e

“vanishing point”

(focus of expansion) Im
a

g
e

 p
la

n
e

equivalently, assume a stationary camera,

but all 3D scene points translate by vector C1C2

Motion and Epipolar lines
example: camera translation

T

~  T

The epipole is the projection of the point at 

infinity for all parallel motion lines in 3D

where the epipolar lines 

are projections of the 

parallel motion lines



C1

C2

initial camera 

position

camera position 

after forward 

translation

(images from H&Z p.248)

Example: forward camera motion

                    (i.e. along the optical axis)

note how objects slide along the epipolar lines

e2
e1

Motion and Epipolar lines
example: camera translation

• epipole e1 = e2 = e ~ T is at the image 

center where the camera’s optical axis 

intersects the image plane

e2e1



e

C1

C2

initial camera 

position

camera position 

after panning camera 

horizontally

(along x-axis) 

• epipole e1 = e2 = e ~ T is a point at

  infinity for the image pane

• epipolar lines are parallel lines y1= y2

Example: panning camera motion

note how objects slide along the epipolar lines

Motion and Epipolar lines
example: camera translation



Question:  Is it possible to estimate motion (R, T)  from E ?

Motion and Epipolar lines
example: camera translation and rotation R ≠ I

Epipolar lines depend on both translation and rotation as                   .

Camera rotation is responsible for different positions of 

the epipoles and epipolar lines in two images (e.g. for e2 ≠ e1).

NOTES: 

T is still the left null vector (e2) of                     , e.g. since                        . Thus, it is easy to find T, e.g. using SVD of E. 

The right null vector (e1) for E is now RT T. Both T and RT T represent translation, but in different cameras’ coordinates.

images from online openCV tutorial

Thus, the main remaining problem is how to recover rotation R ?

Outline: treat unknown orthogonal matrix R as a (3 d.o.f.) homography aligning the epipolar lines. It is determined by E.



Given essential matrix              

find rotation R and translation T such that 

mathematical formulation of the problem

im
a

g
e

 1 im
a

g
e

 2

C1 C2T

R

can choose camera 1 as

“world coordinates”

to estimate projection matrix for camera 2

need rotation R and translation T converting 

camera 1 (world) coordinates to camera 2

Now assume essential matrix E is given, need to find P1 and  P2

e1 e2

Extracting cameras from essential matrix E



Extracting cameras from essential matrix E

for any combination of

                                                       and                     (scale is arbitrary)

the last column of U
corresponding to zero singular value

(the left null-vector for E)

see [H&Z:sec 9.6.2, p.258]  for proof

Four distinct R,T solutions   
                   (up to scale)

Q: Why?

Assume SVD decomposition

such that det(UVT) = 1  (if det(UVT) = -1 switch the sign of the last column in V).

Then, using special matrix                            we have



Extracting cameras from essential matrix E

Four distinct R,T solutions   
                   (up to scale of T)

translate the second camera

along the baseline... 

C1

e1 e2 e2

C2̀C2

for any combination of

                                                       and                     (scale is arbitrary)

Q: Why?



translate the second camera

along the baseline... 

Extracting cameras from essential matrix E

Four distinct R,T solutions   
                   (up to scale of T)

baseline length |T|

does not change

epipole or epipolar lines

in the images 

C1

e1 e2 e2

C2̀C2

for any combination of

                                                       and                     (scale is arbitrary)

Q: Why?

same 

epipolar 

planes

give same 

epipolar 

lines

Moreover, epipolar lines cannot distinguish

 “left” vs “right” relative position of camera 2 on baseline

 “front” vs “back” orientation of camera 2



Extracting cameras from essential matrix E

C1

e1
e2

C2

e1e2

C2 C1

order reversal
(“left-right” flip of two cameras)

C1

e1
e2

C2 C1

e1
e2

C2 C2
‘

orientation reversal
(“front-back” flip of camera 2)

Two modifications below change viewpoints (i.e. optical centers) 

but all epipolar lines (i.e. essential matrix) remain the same!!!



Extracting cameras from essential matrix E

3D reconstruction flips symmetrically

3D reconstruction is fundamentally different

order 

reversal

orientation 

reversal

C1
e1

e2 C2

epipolar line

in image 1
epipolar line

in image 2

p1

p2

C1
e1e2 C2

epipolar line

in image 2

epipolar line

in image 1

p1

p2

“left-right” flip

of two cameras along the baseline

“front-back” flip

of camera 2 viewpoint w.r.t. its image plane

Let’s focus on some fixed baseline plane

and the corresponding epipolar lines...

C1
e1

e2 C2

epipolar line

in image 2
epipolar line

in image 1

p1

p2

C1
e1

e2C2 C2

epipolar line

in image 1

p1 p2

epipolar line

in image 2

four distinct motions and 

different reconstructions
Two types of “viewpoint flip” can be combined => 



Two given views of a chair

14 known correspondences (for 14 non-coplanar 3D points)

allow to estimate essential matrix E 

assuming K is known 

(e.g. 8 point method)

Extracting cameras from essential matrix E

Example:
[from Carl Olsson]

A B

Four distinct R,T solutions   
                   (up to scale of T)



Extracting cameras from essential matrix E

- four distinct relative camera 

  positions (motion R, T) 

  computed from E (up to scale) 

A B

A
B

AB

A
B

Note: only one solution has positive “depths” for both cameras 

Example:
[from Carl Olsson]

baseline reversal  (T=±U3)
Four distinct R,T solutions   
                   (up to scale of T)

- 3D structure {Xi} computed from 

correspondences

     by triangulation  (more soon...) 

     up to a similarity transformation

     (i.e. scale+position+orientation)

     

cam
era B

 o
rien

tatio
n
 flip

s



e2

C2̀

`X

Causes for 3D reconstruction ambiguity:

C1

e1

C2

x1

e2

x2 x2

• scale

X

larger baseline
baseline

remember: epipolar geometry can not help to estimate baseline length |T|



Causes for 3D reconstruction ambiguity:

?• position+orientation

• scale

epipolar geometry determines only relative camera positions



Extracting cameras from fundamental matrix F

One can also estimate camera projection matrices from 

fundamental matrix, but there are more ambiguities 

          

 Examples
[from Carl Olsson]

3D reconstruction with

“projective” ambiguity

(cameras estimated from F)

3D reconstruction with

similarity transform ambiguity

(cameras estimated from E)

[see H&Z]



?  →

Triangulation

X

C1
C2

x1 x2

Now, assume known projection matrices P1 , P2 and a match

6 equations with 5 unknown 

projection 

constraints

=>  4 equations with 3 unknown 
But, we do not care about w1 & w2   –   eliminate them  (à la slide 15 topic 6)



Triangulation

C1
C2

x1 x2

One equation is redundant only if points x1, x2 are exactly on the

corresponding epipolar lines (the corresponding rays intersect in 3D).

Due to errors, use least squares.

Now, assume known projection matrices P1 , P2 and a match

projection 

constraints

X?  →



Structure-from-Motion workflow

Basic sequential reconstruction

• For the first two images, use 8-point algorithm to estimate 

essential matrix E, cameras, and triangulate some points {Xi}.

• Each new view should see some previously reconstructed 

scene points {Xi} (“feature matches” with previous cameras). Use such 

points to estimate new camera position (resection problem). 

• Add new scene points using triangulation, e.g. for new “matches” 

with previously non-matched (and non-triangulated) features in earlier views.

• If there are more cameras, iterate previous two steps.

• Issues

• errors can accumulate

• new views are used only to add new 3D points, but they can help to 

improve accuracy for previously reconstructed scene



Structure-from-Motion workflow

“Bundle adjustment”

re-projection error

i-th “feature track”

set of images

where feature i

is visible

feature i

location 

in image k



Structure-from-Motion workflow

from Carl Olsson

https://www.youtube.com/watch?v=i7ierVkXYa8

https://www.youtube.com/watch?v=i7ierVkXYa8


Applications of multi-view geometry:

Pose estimation

Rigid motion segmentation 

Augmented reality

Special effects in video

Volumetric 3D reconstruction

Depth reconstruction (stereo-next topic)



Examples:

We were fitting a single essential/fundamental matrix to

a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one  

  fundamental matrix?



Examples:

We were fitting a single essential/fundamental matrix to

a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one  

  fundamental matrix?

Hint: we assumed that the scene is stationary and only camera moved or, 

equivalently, that the camera is stationary but the whole 3D scene moved (R,T).



Examples:

We were fitting a single essential/fundamental matrix to

a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one  

  fundamental matrix?

multi-model fitting with

fundamental matrices

(UFL, previous topic)



Examples: Rigid Motion Estimation

We were fitting a single essential/fundamental matrix to

a pair of images corresponding to two different view points

Q: Can matched features in two images support more than one  

  fundamental matrix?

multi-model fitting with

fundamental matrices

(UFL, previous topic)R1 T1
R2 T2

R0 T0



Examples: Augmented Reality

• if camera position C and orientation R are known (in addition to K) then 

can insert “new” objects into the 3D scene

• particularly useful for movies: camera path can be computed 

     - can generate correct views of  new objects

Cinema 4D Camera Motion Tracking 

(“boujou”)

https://www.youtube.com/watch?v=aPl1aBw_x4M https://www.youtube.com/watch?v=Te2ZJzbuw5I

https://www.youtube.com/watch?v=aPl1aBw_x4M
https://www.youtube.com/watch?v=Te2ZJzbuw5I


Examples: Dense 3D Reconstruction 

How about dense (surface in 3D) reconstruction from n views?

Sparse reconstruction (cloud of points in 3D) is done by 

triangulating point correspondences (part of Structure-from-Motion problem)



Examples: Dense 3D Reconstruction 

A. computing Surfaces in 3D Volumes

          (volumetric reconstruction)

multiple wide baseline views

B. computing dense Depth Maps 

                 (stereo)

two narrow baseline views

will discuss in topic 8: stereo

disparity map
(depth map)

Relates to volumetric segmentation (topic 9)



From sparse features to dense reconstructions

• Assume known relative position of cameras (epipolar lines)

• Now, we can move towards denser reconstruction

     

 - find many more matches (correspondences) using 

known epipolar lines: constrained search space  

significantly reduces ambiguity for feature matching

    

     - use “regularization” to estimate surfaces or depth maps
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