
CS484/684 Computational Vision

Geometric Model Fitting

with some slides stolen from

 Steve Seitz and Rick Szeliski

CS484/684 Computational Vision

Geometric Model Fitting

• Feature matching

• Model fitting (e.g. homography estimation for panoramas)

• How many points to choose?

• Least square model fitting

• RANSAC (robust method for model fitting)

• Multi-model fitting problems

)',(ii pp

Flashbacks: feature detectors

Harris corners Dog

from skimage.feature import blob_dog

blobs = blob_dog(image_gray)

from skimage.feature import corner_harris, corner_subpix, corner_peaks

hc_filter = corner_harris(image_gray)

peaks = corner_peaks(hc_filter)

python code from “FeaturePoints.ipynb”

Flashbacks: feature descriptors

We know how to detect points

Next question: How to match them?

?

need point descriptors that should be

• Invariant (e.g. to gain/bias, rotation, projection, etc)

• Distinctive (to avoid false matches)

Flashbacks: MOPS descriptor

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalization: I’ = (I – )/

8 pixels

Another popular idea (SIFT): use gradient orientations inside the patch

 as a descriptor (also invariant to gain/bias)

Flashbacks: MOPS descriptor

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalization: I’ = (I – )/

8 pixels

Popular descriptors: MOPS, SIFT, SURF, HOG, BRIEF, many more…

Feature matching

?

detected features

their descriptors

Feature matching

Optimal matching:

• Bipartite matching, quadratic assignment (QA) problems

 – too expensive

Common simple approach:

• use SSD (sum of squared differences) between two descriptors (patches).

• for each feature in image 1 find a feature in image 2 with the lowest SSD

• accept a match if SSD(patch1,patch2) < T (threshold)

Feature matching

SSD(patch1,patch2) < T

How to set threshold T?

SSD of the closest match

p
ro

b
ab

il
it

y

no threshold T is

good for separating

correct and

incorrect matches

Feature matching

A better way [Lowe, 1999]:

• SSD of the closest match (SSD1)

• SSD of the second-closest match (SSD2)

• Accept the best match if it is much better than the second-best match

 (and the rest of the matches)

(SSD1) / (SSD2)

easier to select

threshold T for

decision test

(SSD1) / (SSD2) < T

Python example (BRIEF descriptor)

from skimage.feature import (corner_harris, corner_peaks, plot_matches, BRIEF, match_descriptors)

keypointsL = corner_peaks(corner_harris(imL), threshold_rel=0.0005, min_distance=5)

keypointsR = corner_peaks(corner_harris(imR), threshold_rel=0.0005, min_distance=5)

extractor = BRIEF()

extractor.extract(imL, keypointsL)

keypointsL = keypointsL[extractor.mask]

descriptorsL = extractor.descriptors

extractor.extract(imR, keypointsR)

keypointsR = keypointsR[extractor.mask]

descriptorsR = extractor.descriptors

matchesLR = match_descriptors(descriptorsL, descriptorsR, cross_check=True)

find the closest match p’

for any feature p

crosscheck: keep pair (p,p’)

only if p is the best match for p’

How to fit a homorgaphy???

What problems do you see for homography estimation?

How to fit a homorgaphy???

Issue 1: the number of matches is more than 4)',(ii pp

)',(ii ppIssue 2: too many outliers or wrong matches

What problems do you see for homography estimation?

Answer: model fitting via “least squares” (later, slide 21)

Answer: robust model fitting via RANSAC (later, slide 35)

Recall: Homography from 4 points

(from Topic 5)

p p’

Recall: Homography from 4 points

Consider one match (point-correspondence)

 0''' =−−−++ ixhyxgxxcbyax

0''' =−−−++ iyhyygxyfeydx

Two equations linear w.r.t unknown coefficients of matrix H

and quadratic w.r.t. known point coordinates (x,y,x’,y’)

Hpp ='

)''(')(,, yxpyxp =→=

































=

















1

'

'

y

x

ihg

fed

cba

w

wy

wx

After eliminating w = gx+hy+i :

Recall: Homography from 4 points

Consider 4 point-correspondences


0''' =−−−++ iiiiiii ixxhyxgxcbyax

0''' =−−−++ iiiiiii iyyhyygxfeydx

)''(')(,, iiiiii yxpyxp =→=

ii Hpp ='

































=

















1

'

'

i

i

i

ii

ii

y

x

ihg

fed

cba

w

yw

xw

Can be written as matrix multiplication for i=1,2,3,4

where is a vector of unknown coefficients in H

and is a 2x9 matrix based on known point coordinates

0hA =i

T]ihgfedcba[=h

iA iiii yxyx ',',,

for i=1,2,3,4

Special case of

DLT method

(see p.89

in Hartley and

Zisserman)

Recall: Homography from 4 points

Consider 4 point-correspondences



All four matrix equations can be “stacked up” as

 or

)''(')(,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =i

0hA =

for i=1,2,3,4

0h

A

A

A

A

=



















4

3

2

1

2x9 9x1 2x1

8x18x9 9x1

8x9

8x1

iClilcker Q: how many solutions for h? A: none B: one C: many

Recall: Homography from 4 points

Consider 4 point-correspondences



)''(')(,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =
for i=1,2,3,4

8x18x9 9x1

8 linear equations, 9 unknowns: trivial solution h=0?

(*)

To find one specific solution h, for now fix one element, e.g. i = 1


98:18:1 AhA −=

8x18x8 8x1

first 8 columns of A first 8 rows of h 9th columns of A

All solutions h form the (right) null space of A of dimension 1,

but they represent the same transformation (as homographies can be scaled)
as discussed in topic 5,

this may not work
more generally, should

fix norm ||h||=1 (later)

homogeneous linear equations

Homography from more than 4 points

)''(')(,, iiiiii yxpyxp =→=

ii Hpp ='

for i =1,…,N

over-constrained system

Consider N point-correspondences


98:18:1 AhA −=

2Nx12Nx8 8x1

first 8 columns of A first 8 rows of h 9th columns of A

 Questions:

 Are there any benefits from knowing more point correspondences?

 What if 4 points correspondences are known with error?

First, consider a simpler model fitting problem…

Simpler example: line fitting

Assume a set of data points , , , ...

 (e.g. person’s height vs. weight)

We want to fit a linear model (a,b) to predict from

How many pairs do we need to find a and b?

'

22

'

11

XbaX

XbaX

=+

=+









=
















'

2

'

1

2

1

X

X

b

a

1X

1X

)X,X('

11)X,X('

22
)X,X('

33

'X X

'XbXa =+

)X,X('

ii

BxA = 1X

'

1X

'

2X

2X

'XbXa =+

BAx = −1

Simpler example: line fitting

Assume a set of data points , , , ...

 (e.g. person’s height vs. weight)

We want to fit a linear model to predict from

What if the data points are noisy?



















=


























.........

1

1

1

'

3

'

2

'

1

3

2

1

X

X

X

b

a

X

X

X

o
v
e
r-

c
o

n
s
tr

a
in

e
d

2
min BAx

x
−

)X,X('

ii

BxA =

this problem is also known as

“linear regression” problem

X

'X

'XbXa =+

BAx = −1

TUWVA  −− 11
where is a pseudo-inverse

based on SVD decomposition

(in python, one can use svd function in library numpy.linalg)

TVWUA =

(least-squares)

)X,X('

11)X,X('

22
)X,X('

33

sum of squared

vertical errors in this example

'X X

'XbXa =+

SVD: rough idea

TVWUA =
 ≥ : MxN MxN NxN NxN

xA 
3x2

2

x

3

Ax

where U and V are matrices with ortho-normal

columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

iClicker Moment: where are all points from R2 mapped to?

 A: point B: line C: plane D: whole R3

range of transformation A

(2D subspace of)3

SVD: rough idea

TVWUA =
 ≥ : MxN MxN NxN NxN

xA 
3x2

2

x

3

Ax

projection of B onto range of A

U1

U2

Ui (column-vectors of U) form

the basis of this subspace
2

min BAx
x

−

B

How does SVD help to solve least-squares ?

BUWV T1  −
BAx = −1

embed scale rotate
where U and V are matrices with ortho-normal

columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

Equivalent (fast to compute) expression

x = (ATA)-1∙AT∙B
Nx1 NxN NxM Mx1

Indeed: ATA = VWUTUWVT = VW2VT

so (ATA)-1∙AT = VW-2VT ∙ VWUT = VW-1UT

If M>>N computing inverse of positive

semi-definite NxN matrix ATA can be

faster than SVD of MxN matrix A

Least squares line fitting

Data generated as for Normal noise
iii XbXaX ++= iX

least squares

iX 

iX

Homography from N ≥ 4 points

Approach 1: add constraint i =1. So, there are only 8 unknowns.

Set up a system of linear equations for vector of unknowns h1:8 =[a,b,c,d,e,f,g,h]T

 solve (least-squares)
2

8:18:1
h

BhAmin
8:1

−

Consider N point correspondences



)''(')(,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =
for i =1,…,N

2Nx12Nx9 9x1

(*)

98:18:1 ABhA −==

over-constrained system

2Nx8 8x1 2Nx1

𝒉𝟏:𝟖 = (𝐀𝟏:𝟖
𝑇 ⋅ 𝐀𝟏:𝟖)−1 ⋅ 𝐀𝟏:𝟖

𝑇 ⋅ (−𝐀9)8:18:1 AA
T

compute inverse for as in line fitting, then

Homography from N ≥ 4 points

Approach 2: add constraint ||h||=1

DLT method

(see p.91

in Hartley and

Zisserman)

Solution: (unit) eigenvector of

 corresponding to the smallest eigen-value

 (use SVD, see next slide)

AA
T

solve

Consider N point correspondences



)''(')(,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =
for i =1,…,N

2Nx12Nx9 9x1

(*)

over-constrained system

(homogeneous least-squares)

Simple motivating example:

||||min
1||:||

xW
xx


=

Consider 2x2 diagonal matrix

solve:









=

2

1

0

0

w

w
W

2

x

unit circle in

||x|| =1 or xT∙x=1

2

xW 
2x2

2

u=Wx

Ellipsoid in 2

w2

w1

equivalently, solve ||||min u
Ellipsu

Solution: x = (1,0) if w1< w2

 x = (0,1) if w2< w1



General case: use SVD (rough idea)

where U and V are matrices with ortho-normal

columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

TVWUA =
 ≥ : MxN MxN NxN NxN

unit circle in

||x|| =1 or xT∙x=1

2

embed scale rotate

v = WVTx

WVT maps unit circle xT∙x = 1

onto ellipsoid vT W
-2 v = 1

in basis {V1 , V2 }

w2

w1

V2

V1

2

2x2 2x2

check that x=Vi is mapped to point

W VT x = wi ei

vector with zeros

and 1 in the i-th position

• can interpret multiplication by VT

as change of ortho-normal basis

• interpret multiplication by W

as anisotropic scaling/deformation

(or as space rotation, but illustration should be modified)

2

x

General case: use SVD (rough idea)

where U and V are matrices with ortho-normal

columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

TVWUA =
 ≥ : MxN MxN NxN NxN

xA 
3x2

2

x

3

Ax

How does SVD help to solve ?||x||min
1||x:||x


=

A

A maps unit circle xT∙x=1

onto ellipsoid uT∙(W2)-1∙u=1

in the range of A (2D subspace of)
Indeed, the coordinates of vector u are in

basis {U1 ,U2 }, i.e. u=WVT ∙x and x=VW-1 ∙u

3

unit circle in

||x|| =1 or xT∙x=1

2

iiiiii

T

i Uw)eU(weUWVUWVVA ====

embed scale rotate

U2

U1

i

2

ii

2

i

T2

i

T VweVWVVVWVAA ===

Check that Vi and (wi)
2 are eigen vectors/values for matrix ATA (note: ellipsoid xT∙(ATA)∙x=1 maps onto circle uT∙u=1)

ii w||VA|| =
vector x=Vi corresponding to

the least wi solves the problem

can use eigen decomposition of ATA instead of SVD of A. =>

ellipsoid from the previous slide

embedded on a hyperplane in
3

Least squares

fail in presence of outliers

+ outliers

iX

iX 

Data generated as for Normal noise
iii XbXaX ++= iX

least squares

Least squares

fail in presence of outliers

homogeneous least squares

for
and

In presence of outliers

we need more robust methods

(e.g. RANSAC, soon)

Least squares work

if using “inliers” only (detecting these? – soon)

imR projected from inliers only

homogeneous least squares

for
and

larger errors

in the area

with no matches
after

blending

Did we actually minimize these errors?

“geometric errors”
observable in the image

harder to minimize

“non-linear least squares”

“algebraic errors”
we minimized

using “least squares”

“errors”

among inliers

Least squares work

if using “inliers” only (detecting these? – soon)

Question: how to remove outliers automatically?

after

blending

Least squares work

if using “inliers” only (detecting these? – soon)

Model fitting robust to outliers

We need a method that can separate inliers from outlliers

RANSAC

random sampling

consensus
[Fischler and Bolles, 1981]

RANSAC (for line fitting example)

1. randomly sample

 two points from the set,

get a line

iX 

iX

l

RANSAC (for line fitting example)

2. count inliers p

 for threshold T

2T

Tlp − ||||

of inliers = 68

iX 

iX

1. randomly sample

 two points from the set,

get a line

RANSAC (for line fitting example)

2. count inliers p

 for threshold T

2T Tlp − ||||

l

of inliers = 24

iX 

iX

1. randomly sample

 two points from the set,

get a line

3. repeat

RANSAC (for line fitting example)

2. count inliers p

 for threshold T

2T

Tlp − ||||

l

of inliers = 93

iX 

iX

1. randomly sample

 two points from the set,

get a line

3. repeat N times

and select model

with most inliers

RANSAC (for line fitting example)

2. count inliers p

 for threshold T

Tlp − ||||

l

of inliers = 93

3. repeat N times

and select model

with most inliers

4. Use least squares to fit

 a model (line) to this

 largest set of inliers

iX 

iX

1. randomly sample

 two points from the set,

get a line

Q: Assume know percentage of outliers in the data.

 How many pairs of points (N) should be sampled to have high confidence (e.g. 95%)

 that at least one pair consist of two inliers? [Fischler and Bolles, 1981]

RANSAC (for line fitting example)

line model

reliably estimated

via RANSAC with

only N=10 samples

(least squares fit to the

largest set of inliers)

least squares

line model

fit to all points

iX 

iX

iClicker Poll: did you have students in your class (in school)

 who have birthday on same day? A: yes B: no

Birthday Paradox: in a group of random 23 people the probability

 that at least two have same birthday is 50.7%

(similar math as in statistical analysist of RANSAC success rate)

RANSAC for robust homography fitting

only two differences: 1. need to randomly sample four pairs

 the minimum number of matches to estimate a homography H

),(pp 

2. pair counts as an inlier for a given homography H if

THpp − ||||

),(pp 

RANSAC for robust homography fitting

Homography for corrupted four matches is likely to have only a few inliers

THpp − ||||

),(pp 

(randomly sampled)

RANSAC for robust homography fitting

Homography for good four matches has 21 inliers

THpp − ||||

),(pp 

(randomly sampled)

RANSAC for robust homography fitting

Inliers for the randomly sampled homography with the largest inlier set

RANSAC for robust homography fitting

The final automatic panorama result

|| p’ - Hp ||

matched

inliers

RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Count inliers where

4. Iterate N times (steps 1-3). Keep the largest set of inliers.

5. Re-compute least-squares H estimate on all of the inliers

THpp − ||||),(pp 

RANSAC for robust model fitting

In general (for other models):

always sample the smallest number

of points/matches needed to estimate a model

e.g. geometric errors

e.g. for algebraic errors

(for simplicity)

Other examples of

geometric model fitting

Merton College III data
from Oxford’s Visual Geometry Group

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Question: Is it possible to create a panorama from these images?

 (or, is there a homography that can match overlap in these images?)

images from different view points (optical centers)

Can a homography map/warp a part of the left image onto a part of the right image?

Merton College III data
from Oxford’s Visual Geometry Group

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

images from different view points (optical centers)

Other examples of

geometric model fitting

There should be a homography for each plane in the scene (Why?)

Question: How can we detect such homographies?

What do these multiple homographies give us?

matched features (p,p’), as earlier

[Isack, et al. IJCV12]

What do these multiple homographies give us?

3. Inliers allow to segment

planar regions

4. Segmentation allows to

extend correspondence

from inliers to any point p

inside segment:

1. Allow to remove

bad matches (outliers)

2. Correspondences

can be estimated with

subpixel precision

𝒑, 𝒑′ → (𝒑, 𝑯𝒑)
(𝒑, 𝑯𝒑)

NOTE:
good matches can be used

for reconstructing 3D points

if camera positions &

orientations are known:

(Triangulation, see next topic)

𝒑, 𝒑′ → 𝑿𝒑∈ 𝑹𝟑

Other examples of

geometric model fitting

5. Piece-wise planar

3D scene reconstruction

could be used for

3D piecewise planar reconstruction
from multiple views

Other examples of

geometric model fitting

Other K-model estimation problems in vision

• Geometric structures
• lines, planes, rigid motions (fundamental matrices), flex. models (pose)

• Stereo or multi-view reconstruction
• projection matrices (camera positions), points and surfaces in 3D

• Object models (segmentation, classification)

• appearance models, boundary surface models, (linear & non-linear) discriminative models

Computer vision - can answer what and where

 based on “model” estimation

Topics 7,8,12

Topics 9,10,11,12

model formulation + loss function (data & regularization) + optimization

So, how do we fit multiple geometric models?

Why not

RANSAC
again?

Why not

RANSAC
again?

So, how do we fit multiple geometric models?

Why not

RANSAC
again?

remove inliers for line 1

and use RANSAC again

(sequential RANSAC)

So, how do we fit multiple geometric models?

Multiple models and many outliers

(greedy) maximization of inliers often fails for

multiple models + many outliers + large noise

Higher

noise

We need a more

principled (objective)

approach evaluating

the whole solution

Multiple models and many outliers

RANSAC as optimization (of certain objective)

- find optimal label L (line)

minimizing loss function E(L)

RANSAC minimizes error (loss) function

|| p – L|| counting outliers

L

2T

),(Lpdist

|||| Lp −

T-T

1

treat ||p - L|| as an “operator” || ⸳ - ⸳ ||

representing some error penalty function

Loss (distance (p , L))

- errors (distances between point p and line L)

inliersoutliers outliers

(equivalent to maximizing inliers)

RANSAC as optimization (of certain objective)

- find optimal label L (line)

minimizing loss function E(L)

RANSAC minimizes error (loss) function

|| p – L|| counting outliers

L

2T

|||| Lp −

T-T

1

treat ||p - L|| as an “operator” || ⸳ - ⸳ ||

representing some error penalty function

Loss (distance (p , L))

The use of least squares among inliers can be

interpreted as quadratic loss for errors < T

),(Lpdist - errors (distances between point p and line L)

inliersoutliers outliers

(equivalent to maximizing inliers)

General error functions (overview)

Can use different losses

i.e. error functions || p – L ||

L

|||| Lp −

),(Lpdist

least squares

RANSAC

other robust error measure

least absolute deviations

robust error/loss functions have

bounded response effectively ignoring

larger errors (outliers)

non convex => harder to optimize
e.g. see iterative reweighted least squares (IRLS)

Optimization-based multi-model fitting

If multiple models

- assign different models

(labels Lp) to every point p

- find optimal labeling

L = { L1 , L2 , ... , Ln }

Lp

Lq

need a “simpler” solution, i.e.

few lines “explaining” all data

too “complex” - too many lines
(perfect line model for every point)

Error / loss function
distances to lines

set of used

models (lines)

If multiple models

- assign different models

(labels Lp) to every point p

- find optimal labeling

L = { L1 , L2 , ... , Ln }

Penalize the number of models

 (solution “complexity”)

Error / loss function
distances to lines

few lines “explaining” all data
set of used

models (lines)

Optimization-based multi-model fitting

[Delong, Isack, et al. 2012]

our first example

 of regularization

NOTE: loss above relates to K-means (topic 9) with sparsity regularization prior (a.k.a. AIC/BIC)

Penalize the number of models

 (solution “complexity”)

Error / loss function
distances to lines

Optimization-based multi-model fitting

[Delong, Isack, et al. 2012]

our first example

 of regularization

Extra trick: add to Λ one special

model Ø representing “outlier model”

with fixed cost ||p - Ø|| = τ for any p

),(Lpdist

τ

Then any point p prefers to be

assigned “outlier model” Ø

if its closest line L has ||p - L|| > τ

||p - Ø||
||p - L||

Penalize the number of models

 (solution “complexity”)

Error / loss function
distances to lines

Optimization-based multi-model fitting

[Delong, Isack, et al. 2012]

our first example

 of regularization

Extra trick: add to Λ one special

model Ø representing “outlier model”

with fixed cost ||p - Ø|| = τ for any p

),(Lpdist

τ

Then any point p prefers to be

assigned “outlier model” Ø

if its closest line L has ||p - L|| > τ

||p - Ø||
||p - L||

Also, weak models with only a few

inliers are not worth having.

Its inliers should be assigned Ø. Why?

Optimization problem

data points

data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample

K lines from points

(some very large K)

data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample

K lines from points

(some very large K)

2a. Assign each point to

model in Λ with lowest || ||

data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample

K lines from points

(some very large K)

2a. Assign each point to

model in Λ with lowest || ||

2b. Re-estimate lines

parameters minimizing

errors || || among inliers
(e.g. least squares)

addresses the first

term of the objective

assuming the number

of used models is fixed:

|Λ| = const

data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample

K lines from points

(some very large K)

2a. Assign each point to

model in Λ with lowest || ||

2b. Re-estimate lines

parameters minimizing

errors || || among inliers
(e.g. least squares)

As a function of a set of used models Λ,

E relates to the objective for Uncapacitated Facility Location (UFL) problem

Optimization problem

1. Initialization of Λ:

randomly sample

K lines from points

(some very large K)

2. Assign points to the

closest model, re-estimate

line parameters using

inliers (e.g. least squares)

As a function of a set of used models Λ,

E relates to the objective for Uncapacitated Facility Location (UFL) problem

4. Iterate steps 2-3

 until convergence

3. (UFL heuristic)

clean Λ by removing

lines L that are

not worth keeping:

data points & assigned models (lines or Ø)

iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Beginning of iteration 2: points assigned to

the closest model that survived iteration 1

Re-estimating

lines in

from their inliers



iteration 2: re-estimate model parameters
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Remove

suboptimal

lines, if any

(UFL heuristic)

iteration 3: optimize points labeling L
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-assign points

to closest lines

iteration 3: re-estimate model parameters
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-estimating

lines in

from their inliers

Remove

suboptimal

lines, if any

(UFL heuristic)

iteration 4: optimize points labeling L
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-assign points

to closest lines

iteration 4: re-estimate model parameters
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-estimating

lines in

from their inliers

iteration 7...
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

iteration 10...
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

NOTE: yellow

line became

unnecessary

iteration 15... converged.
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

What’s going on inside

the space of labels (lines/models)

data points in R2

- darkness indicates the number of inliers for a line

space of all lines
Hough space

Hough

Transform
[Szeliski Sec.4.3.2]

- also R2, each point here defines line parameters (a,b)

Hough

Transform
[Szeliski Sec.4.3.2]

data points in R2

- darkness indicates the number of inliers for a line

- also R2, each point here defines line parameters (a,b)

Q: why not just look for modes in the Hough space?

What’s going on inside

the space of labels (lines/models)

(strong local maxima)

space of all lines
Hough space

Note: RANSAC searches the maxima by exploring a (large) sample of lines

 randomly sampled from the “line density” in the Hough space.

Comparison

original data points

Low

noise

Comparison

sequential RANSAC, modes in Hough space, UFL approach

Low

noise

Comparison

original data points

High

noise

Comparison

sequential RANSAC

High

noise

Comparison

Finding modes in Hough-space

Hough

transform

High

noise

Comparison

High

noise

UFL-based approach
[Delong et al. IJCV12]

Line fitting on real image data

Note: color indicates clusters of lines with common vanishing point

[Delong et al. NIPS 2012]

data points are “Canny edges”

Fitting other geometric models

Model fitting for arbitrary geometric models θ

Need: 1) define an error measure w.r.t. model parameters |||| −p

2) efficient method for minimizing the sum of errors

among inliers w.r.t. model parameters θ 


−





Sp

p ||||min

()2222)()(:|||| rcycxp ypxp −−−−=− },,{ rcc yc=for

Fitting multiple homographies (e.g. planes)

matched features (p,p’), as earlier

[Isack, et al. IJCV12]

|||||||| 1 pHpHpp −+− −

using

symmetric

re-projection errors

as an error measure

between match (p, p’)

and homography H

Fitting multiple homographies (e.g. planes)

Fitting multiple homographies (e.g. planes)

same scene from a different view point…

Note very small steps between each floor

user can help with rough initialization

instead of random sampling
[Sinha et al. 2008]

Fitting dependent models (parts)

▪ Pictorial structures [Felzenswalb & Huttenlocher, 2005]

[Carl Olsson et al.,2017]

e.g. in the space of point tracks

▪ Finding low dim. subspaces

hand model fitting to 3D point cloud

[Andrea Tagliasacchi et al., 2013]

▪Articulated model tracking

▪ Active contours (snakes)

 [Kass Witkin Terzopoulos, 1988]

Can use physics to define objectives (losses):
- parts interactions (e.g. spring-like)

- kinematics

- attraction/repulsion to image features

Fitting dependent models (parts)

hand model fitting to 3D point cloud

[Andrea Tagliasacchi et al., 2013]

▪Articulated model tracking

next topic

Geometric model fitting in vision

- single models (e.g. panorama stitching, camera projection matrix)

- multiple models (e.g. multi-plane reconstruction, multiple rigid motion)

 FIRST STEP: detect some features (corners, LOGS, etc)

 and compute their descriptors (SIFT, MOPS, etc.)

 SECOND STEP: match or track

 THIRD STEP: fit models

 (minimization or errors/losses)

MODELS: lines, planes, homographies, affine transformations,

projection matrices, fundamental/essential matrices, etc.

	part 1
	Slide 1: CS484/684 Computational Vision Geometric Model Fitting
	Slide 2: CS484/684 Computational Vision Geometric Model Fitting
	Slide 3: Flashbacks: feature detectors
	Slide 4: Flashbacks: feature descriptors
	Slide 5: Flashbacks: MOPS descriptor
	Slide 6: Flashbacks: MOPS descriptor
	Slide 7: Feature matching
	Slide 8: Feature matching
	Slide 9: Feature matching
	Slide 10: Feature matching
	Slide 11: Python example (BRIEF descriptor)
	Slide 12: How to fit a homorgaphy???
	Slide 13: How to fit a homorgaphy???
	Slide 14: Recall: Homography from 4 points
	Slide 15: Recall: Homography from 4 points
	Slide 16: Recall: Homography from 4 points
	Slide 17: Recall: Homography from 4 points
	Slide 18: Recall: Homography from 4 points
	Slide 19: Homography from more than 4 points
	Slide 20: Simpler example: line fitting
	Slide 21: Simpler example: line fitting
	Slide 22: SVD: rough idea
	Slide 23: SVD: rough idea
	Slide 24: Least squares line fitting
	Slide 25: Homography from N ≥ 4 points
	Slide 26: Homography from N ≥ 4 points
	Slide 27: Simple motivating example:
	Slide 28: General case: use SVD (rough idea)
	Slide 29: General case: use SVD (rough idea)
	Slide 30: Least squares fail in presence of outliers
	Slide 31: Least squares fail in presence of outliers
	Slide 32: Least squares work if using “inliers” only (detecting these? – soon)
	Slide 33
	Slide 34: Least squares work if using “inliers” only (detecting these? – soon)
	Slide 35: Model fitting robust to outliers
	Slide 36: RANSAC (for line fitting example)
	Slide 37: RANSAC (for line fitting example)
	Slide 38: RANSAC (for line fitting example)
	Slide 39: RANSAC (for line fitting example)
	Slide 40: RANSAC (for line fitting example)
	Slide 41: RANSAC (for line fitting example)
	Slide 42: RANSAC for robust homography fitting
	Slide 43: RANSAC for robust homography fitting
	Slide 44: RANSAC for robust homography fitting
	Slide 45: RANSAC for robust homography fitting
	Slide 46: RANSAC for robust homography fitting
	Slide 47: RANSAC for robust model fitting

	part 2
	Slide 48: Other examples of geometric model fitting
	Slide 49: Other examples of geometric model fitting
	Slide 50: Other examples of geometric model fitting
	Slide 51: Other examples of geometric model fitting
	Slide 52: Other K-model estimation problems in vision
	Slide 53: So, how do we fit multiple geometric models?
	Slide 54: So, how do we fit multiple geometric models?
	Slide 55: So, how do we fit multiple geometric models?
	Slide 56: Multiple models and many outliers
	Slide 57: Multiple models and many outliers
	Slide 58: RANSAC as optimization (of certain objective)
	Slide 59: RANSAC as optimization (of certain objective)
	Slide 60: General error functions (overview)
	Slide 61: Optimization-based multi-model fitting
	Slide 62: Optimization-based multi-model fitting
	Slide 63: Optimization-based multi-model fitting
	Slide 64: Optimization-based multi-model fitting
	Slide 65: Optimization problem
	Slide 66: Optimization problem
	Slide 67: Optimization problem
	Slide 68: Optimization problem
	Slide 69: Optimization problem
	Slide 70: Optimization problem
	Slide 71: Optimization problem (algorithm illustration)
	Slide 72: Optimization problem (algorithm illustration)
	Slide 73: Optimization problem (algorithm illustration)
	Slide 74: Optimization problem (algorithm illustration)
	Slide 75: Optimization problem (algorithm illustration)
	Slide 76: Optimization problem (algorithm illustration)
	Slide 77: Optimization problem (algorithm illustration)
	Slide 78: Optimization problem (algorithm illustration)
	Slide 79: Optimization problem (algorithm illustration)
	Slide 80: What’s going on inside the space of labels (lines/models)
	Slide 81
	Slide 82: Comparison
	Slide 83: Comparison
	Slide 84: Comparison
	Slide 85: Comparison
	Slide 86: Comparison
	Slide 87: Comparison
	Slide 88: Line fitting on real image data
	Slide 89: Fitting other geometric models
	Slide 90: Fitting multiple homographies (e.g. planes)
	Slide 91: Fitting multiple homographies (e.g. planes)
	Slide 92: Fitting multiple homographies (e.g. planes)
	Slide 93: same scene from a different view point…
	Slide 94
	Slide 95: Fitting dependent models (parts)
	Slide 96: Fitting dependent models (parts)
	Slide 97: Geometric model fitting in vision

