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CS484/684 Computational Vision

Geometric Model Fitting

• Feature matching   

• Model fitting (e.g. homography estimation for panoramas) 

• How many points to choose?

• Least square model fitting

• RANSAC (robust method for model fitting)

• Multi-model fitting problems

)',( ii pp



Flashbacks: feature detectors

Harris corners Dog

from skimage.feature import blob_dog

blobs = blob_dog(image_gray)

from skimage.feature import corner_harris, corner_subpix, corner_peaks

hc_filter = corner_harris(image_gray)

peaks = corner_peaks(hc_filter)

python code from “FeaturePoints.ipynb”



Flashbacks: feature descriptors

We know how to detect points

Next question: How to match them?

?

need point descriptors that should be

• Invariant       (e.g. to gain/bias, rotation, projection, etc) 

• Distinctive    (to avoid false matches)



Flashbacks: MOPS descriptor

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalization:  I’ = (I – )/

8 pixels

Another popular idea (SIFT): use gradient orientations inside the patch

                                               as a descriptor (also invariant to gain/bias)



Flashbacks: MOPS descriptor

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalization:  I’ = (I – )/

8 pixels

Popular descriptors: MOPS, SIFT, SURF, HOG, BRIEF, many more… 



Feature matching

?

detected features

their descriptors



Feature matching

Optimal matching:

• Bipartite matching, quadratic assignment (QA) problems   

  –   too expensive

Common simple approach: 

• use SSD (sum of squared differences) between two descriptors (patches).

• for each feature in image 1 find a feature in image 2 with the lowest SSD 

• accept a match if      SSD(patch1,patch2) < T    (threshold)



Feature matching

SSD(patch1,patch2) < T            

How to set threshold T?

SSD of the closest match
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no threshold T is 

good for separating

correct and 

incorrect matches



Feature matching

A better way [Lowe, 1999]:

• SSD of the closest match (SSD1)

• SSD of the second-closest match (SSD2)

• Accept the best match if it is much better than the second-best match  

                                      (and the rest of the matches)

(SSD1) / (SSD2)

easier to select

threshold T for

decision test

(SSD1) / (SSD2)  < T



Python example (BRIEF descriptor)

from skimage.feature import (corner_harris, corner_peaks, plot_matches, BRIEF, match_descriptors)

keypointsL = corner_peaks(corner_harris(imL), threshold_rel=0.0005, min_distance=5)

keypointsR = corner_peaks(corner_harris(imR), threshold_rel=0.0005, min_distance=5)

extractor = BRIEF()

extractor.extract(imL, keypointsL)

keypointsL = keypointsL[extractor.mask]         

descriptorsL = extractor.descriptors

extractor.extract(imR, keypointsR)

keypointsR = keypointsR[extractor.mask]

descriptorsR = extractor.descriptors

matchesLR = match_descriptors(descriptorsL, descriptorsR, cross_check=True)

find the closest match p’

for any feature p

crosscheck: keep pair  (p,p’)

only if p is the best match for p’



How to fit a homorgaphy???

What problems do you see for homography estimation?



How to fit a homorgaphy???

Issue 1: the number of matches                  is more than 4 )',( ii pp

)',( ii ppIssue 2: too many outliers or wrong matches

What problems do you see for homography estimation?

Answer: model fitting via “least squares”  (later, slide 21)

Answer: robust model fitting via RANSAC (later, slide 35)



Recall: Homography from 4 points

(from Topic 5) 

p p’



Recall: Homography from 4 points

Consider one match (point-correspondence)

 0''' =−−−++ ixhyxgxxcbyax

0''' =−−−++ iyhyygxyfeydx

Two equations linear w.r.t unknown coefficients of matrix H 

and quadratic w.r.t. known point coordinates (x,y,x’,y’)
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After eliminating w = gx+hy+i :



Recall: Homography from 4 points

Consider 4 point-correspondences


0''' =−−−++ iiiiiii ixxhyxgxcbyax

0''' =−−−++ iiiiiii iyyhyygxfeydx

)''(')( ,, iiiiii yxpyxp =→=

ii Hpp ='
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Can be written as matrix multiplication                                    for i=1,2,3,4

where                                                           is a vector of unknown coefficients in H

and             is a 2x9 matrix based on known point coordinates

0hA =i

T]ihgfedcba[=h

iA iiii yxyx ',',,

for i=1,2,3,4

Special case of 

DLT method

(see p.89

in Hartley and 

Zisserman)



Recall: Homography from 4 points

Consider 4 point-correspondences



All four matrix equations can be “stacked up” as

                 or

)''(')( ,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =i

0hA =

for i=1,2,3,4
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iClilcker Q: how many solutions for h?    A: none     B: one     C:  many



Recall: Homography from 4 points

Consider 4 point-correspondences



)''(')( ,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =
for i=1,2,3,4

8x18x9 9x1

8 linear equations, 9 unknowns:    trivial solution h=0?

(*)

To find one specific solution h, for now fix one element, e.g. i = 1


98:18:1 AhA −=

8x18x8 8x1

first 8 columns of A first 8 rows of h 9th columns of A

All solutions h form the (right) null space of A of dimension 1,

but they represent the same transformation (as homographies can be scaled) 
as discussed in topic 5, 

this may not work
more generally, should

fix norm  ||h||=1  (later)

homogeneous linear equations



Homography from more than 4 points

)''(')( ,, iiiiii yxpyxp =→=

ii Hpp ='

for i =1,…,N

over-constrained system

Consider N point-correspondences


98:18:1 AhA −=

2Nx12Nx8 8x1

first 8 columns of A first 8 rows of h 9th columns of A

   Questions: 
        

     Are there any benefits from knowing more point correspondences?

     What if 4 points correspondences are known with error?

First, consider a simpler model fitting problem…



Simpler example: line fitting

Assume a set of data points            ,            ,            , ...  

                          (e.g. person’s height vs. weight)

We want to fit a linear model  (a,b)  to predict       from      

 

How many pairs               do we need to find  a  and  b?
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Simpler example: line fitting    

Assume a set of data points            ,            ,            , ...  

                          (e.g. person’s height vs. weight)

We want to fit a linear model to predict      from      

 

What if the data points             are noisy?
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min BAx
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ii

BxA =

this problem is also known as 

“linear regression” problem

X

'X
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BAx = −1

TUWVA  −− 11
where                                                      is a  pseudo-inverse 

based on SVD decomposition                                         

(in python, one can use svd function in library numpy.linalg)

TVWUA =

(least-squares)

)X,X( '

11 )X,X( '
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sum of squared 

vertical errors in this example

'X X

'XbXa =+



SVD: rough idea

TVWUA =
 ≥ :            MxN               MxN           NxN            NxN 

xA 
3x2

2

x

3

Ax

where  U and V are matrices with ortho-normal 

columns and W is diagonal with elements wi ≥0                                                   

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

iClicker Moment: where are all points from R2 mapped to?

   A:  point B:  line           C:  plane         D:  whole R3  



range of transformation A 

(2D subspace of      )3

SVD: rough idea

TVWUA =
 ≥ :            MxN               MxN           NxN            NxN 

xA 
3x2

2

x

3

Ax

projection of  B  onto range of  A

U1

U2

Ui  (column-vectors of U) form 

the basis of this subspace
2

min BAx
x

−

B

How does  SVD  help to solve least-squares ?

BUWV T1  −
BAx = −1

embed          scale           rotate
where  U and V are matrices with ortho-normal 

columns and W is diagonal with elements wi ≥0                                                   

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

Equivalent (fast to compute) expression 

x  =  (ATA)-1∙AT∙B
Nx1                NxN         NxM    Mx1

Indeed:  ATA = VWUTUWVT = VW2VT 

so  (ATA)-1∙AT  =  VW-2VT ∙ VWUT = VW-1UT

If  M>>N  computing inverse of positive 

semi-definite NxN matrix ATA  can be 

faster than SVD of MxN matrix A



Least squares line fitting

Data generated as                                               for  Normal noise
iii XbXaX ++= iX

least squares

iX 

iX



Homography from N ≥ 4 points

Approach 1:  add constraint i =1.  So, there are only 8 unknowns.

Set up a system of linear equations for vector of unknowns  h1:8 =[a,b,c,d,e,f,g,h]T

 

               solve  (least-squares)
2

8:18:1
h

BhAmin
8:1

−

Consider N point correspondences 



)''(')( ,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =
for i =1,…,N

2Nx12Nx9 9x1

(*)

98:18:1 ABhA −==

over-constrained system

2Nx8 8x1 2Nx1

𝒉𝟏:𝟖 = (𝐀𝟏:𝟖
𝑇 ⋅ 𝐀𝟏:𝟖)−1 ⋅ 𝐀𝟏:𝟖

𝑇 ⋅ (−𝐀9)8:18:1 AA
T

compute inverse for              as in line fitting, then



Homography from N ≥ 4 points

Approach 2: add constraint  ||h||=1

DLT  method

(see p.91

in Hartley and 

Zisserman)

Solution:    (unit) eigenvector of      

                 corresponding to the smallest eigen-value  

                                (use SVD, see next slide)

AA
T

solve 

Consider N point correspondences 



)''(')( ,, iiiiii yxpyxp =→=

ii Hpp =' 0hA =
for i =1,…,N

2Nx12Nx9 9x1

(*)

over-constrained system

(homogeneous least-squares)



Simple motivating example:

||||min
1||:||

xW
xx
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Consider 2x2 diagonal matrix   

solve: 
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unit circle in  
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u=Wx

Ellipsoid in  2

w2
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equivalently, solve ||||min u
Ellipsu

Solution:    x = (1,0)  if  w1< w2

                   x = (0,1)  if  w2< w1





General case: use SVD (rough idea)

where  U and V are matrices with ortho-normal 

columns and W is diagonal with elements wi ≥0                                                   

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

TVWUA =
 ≥ :            MxN               MxN           NxN            NxN 

unit circle in  

||x|| =1   or   xT∙x=1

2

embed          scale           rotate

v = WVTx

WVT  maps unit circle  xT∙x = 1 

onto ellipsoid   vT W 
-2 v = 1

in basis {V1 , V2 }   

w2

w1

V2

V1

2

2x2 2x2

check that  x=Vi  is mapped to point  

W VT x = wi ei 

vector with zeros

and 1 in the i-th position 

• can interpret multiplication by VT 

as change of ortho-normal basis

• interpret multiplication by W       

as anisotropic scaling/deformation  

(or as space rotation, but illustration should be modified)

2

x



General case: use SVD (rough idea)

where  U and V are matrices with ortho-normal 

columns and W is diagonal with elements wi ≥0                                                   

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

TVWUA =
 ≥ :            MxN               MxN           NxN            NxN 

xA 
3x2

2

x

3

Ax

How does  SVD  help to solve                            ?||x||min
1||x:||x


=

A

A  maps unit circle  xT∙x=1 

onto ellipsoid   uT∙(W2)-1∙u=1 

in the range of  A  (2D subspace of      ) 
Indeed, the coordinates of vector  u  are in 

basis {U1 ,U2 },  i.e.  u=WVT ∙x  and  x=VW-1 ∙u

3

unit circle in  

||x|| =1   or   xT∙x=1

2

iiiiii
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Check that Vi  and (wi)
2 are eigen vectors/values for matrix  ATA   (note: ellipsoid xT∙(ATA)∙x=1 maps onto circle uT∙u=1 ) 

ii w||VA|| =
vector x=Vi corresponding to 

the least wi  solves the problem

can use eigen decomposition of ATA instead of SVD of A. => 

ellipsoid from the previous slide

embedded on a hyperplane in 
3



Least squares 

fail in presence of outliers

+ outliers

iX

iX 

Data generated as                                               for  Normal noise
iii XbXaX ++= iX

least squares



Least squares

fail in presence of outliers

homogeneous least squares

for
and

In presence of outliers 

we need more robust methods

(e.g. RANSAC, soon)



Least squares work 

if using “inliers” only     ( detecting these? – soon )

imR projected from inliers only

homogeneous least squares

for
and



larger errors 

in the area

with no matches
after

blending

Did we actually minimize these errors?

“geometric errors”
observable in the image

harder to minimize

“non-linear least squares”

“algebraic errors”
we minimized

using  “least squares”

“errors” 

among inliers

Least squares work 

if using “inliers” only     ( detecting these? – soon )



Question: how to remove outliers automatically?

after

blending

Least squares work 

if using “inliers” only     ( detecting these? – soon )



Model fitting robust to outliers

We need a method that can separate inliers from outlliers

RANSAC

random sampling

consensus
[Fischler and Bolles, 1981]



RANSAC (for line fitting example)

1. randomly sample

            two points from the set, 

get a line

iX 

iX

l



RANSAC (for line fitting example)

2. count inliers p 

     for threshold  T

2T

Tlp − ||||

# of inliers = 68

iX 

iX

1. randomly sample

            two points from the set, 

get a line



RANSAC (for line fitting example)

2. count inliers p 

     for threshold  T

2T Tlp − ||||

l

# of inliers = 24

iX 

iX

1. randomly sample

            two points from the set, 

get a line

3.  repeat



RANSAC (for line fitting example)

2. count inliers p 

     for threshold  T

2T

Tlp − ||||

l

# of inliers = 93

iX 

iX

1. randomly sample

            two points from the set, 

get a line

3.  repeat N times 

and select model 

with most inliers



RANSAC (for line fitting example)

2. count inliers p 

     for threshold  T

Tlp − ||||

l

# of inliers = 93

3.  repeat N times 

and select model 

with most inliers

4. Use least squares to fit 

      a model (line) to this 

     largest set of inliers 

iX 

iX

1. randomly sample

            two points from the set, 

get a line

Q:  Assume know percentage of outliers in the data. 

      How many pairs of points (N) should be sampled to have high confidence (e.g. 95%)

      that at least one pair consist of two inliers? [Fischler and Bolles, 1981]  



RANSAC (for line fitting example)

line model 

reliably estimated 

via  RANSAC with 

only N=10  samples

(least squares fit to the 

largest set of inliers)

least squares 

line model 

fit to all points

iX 

iX

iClicker Poll:  did you have students in your class (in school) 

                        who have birthday on same day?      A: yes       B: no  

Birthday Paradox:  in a group of random 23 people the probability

                                 that at least two have same birthday is 50.7%

(similar math as in statistical analysist of RANSAC success rate) 



RANSAC for robust homography fitting

only two differences:    1. need to randomly sample four pairs 

              the minimum number of matches to estimate a homography H

),( pp 

2.  pair                  counts as an inlier for a given homography H if 

THpp − ||||

),( pp 



RANSAC for robust homography fitting

Homography for corrupted four matches is likely to have only a few inliers

THpp − ||||

),( pp 

(randomly sampled)



RANSAC for robust homography fitting

Homography for good four matches has 21 inliers

THpp − ||||

),( pp 

(randomly sampled)



RANSAC for robust homography fitting

Inliers for the randomly sampled homography with the largest inlier set



RANSAC for robust homography fitting

The final automatic panorama result

|| p’ - Hp ||

matched

inliers



RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Count inliers             where

4. Iterate N times (steps 1-3). Keep the largest set of inliers.

5. Re-compute least-squares H estimate on all of the inliers

THpp − ||||),( pp 

RANSAC for robust model fitting

In general (for other models):

always sample the smallest number 

of points/matches needed to estimate a model

e.g. geometric errors

e.g. for algebraic errors

(for simplicity)



Other examples of 

geometric model fitting

Merton College III data 
from Oxford’s Visual Geometry Group 

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Question:  Is it possible to create a panorama from these images?

                      (or, is there a homography that can match overlap in these images?)

images from different view points (optical centers)

Can a homography map/warp a part of the left image onto a part of the right image?



Merton College III data 
from Oxford’s Visual Geometry Group 

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

images from different view points (optical centers)

Other examples of 

geometric model fitting

There should be a homography for each plane in the scene  (Why?)

Question:  How can we detect such homographies? 

What do these multiple homographies give us?



matched features (p,p’), as earlier

[Isack, et al. IJCV12]

What do these multiple homographies give us?

3. Inliers allow to segment 

planar regions

4. Segmentation allows to 

extend correspondence 

from inliers to any point  p 

inside segment: 

1. Allow to remove 

bad matches (outliers)

2. Correspondences 

can be estimated with 

subpixel precision

𝒑, 𝒑′  → (𝒑, 𝑯𝒑)
(𝒑, 𝑯𝒑)

NOTE: 
good matches can be used 

for reconstructing 3D points

if camera positions & 

orientations are known:

 

(Triangulation, see next topic)

𝒑, 𝒑′  → 𝑿𝒑∈ 𝑹𝟑

Other examples of 

geometric model fitting

5. Piece-wise planar         

3D scene reconstruction



could be used for 

3D piecewise planar reconstruction
from multiple views

Other examples of 

geometric model fitting



Other K-model estimation problems in vision

• Geometric structures
• lines, planes, rigid motions (fundamental matrices), flex. models (pose)

• Stereo or multi-view reconstruction
• projection matrices (camera positions), points and surfaces in 3D

• Object models (segmentation, classification)

• appearance models, boundary surface models, (linear & non-linear) discriminative models

Computer vision  -  can answer  what  and  where

                                  based on “model” estimation

Topics 7,8,12

Topics 9,10,11,12

model formulation   +   loss function (data & regularization)  +  optimization



So, how do we fit multiple geometric models?

Why not 

RANSAC
again?



Why not 

RANSAC
again?

So, how do we fit multiple geometric models?



Why not 

RANSAC
again?

remove inliers for line 1

and use RANSAC again

(sequential RANSAC)

So, how do we fit multiple geometric models?



Multiple models and many outliers



(greedy) maximization of inliers often fails for 

multiple models + many outliers + large noise

Higher 

noise

We need a more 

principled (objective) 

approach evaluating

the whole solution

Multiple models and many outliers



RANSAC as optimization (of certain objective)

- find optimal label L (line)

minimizing loss function  E(L) 

RANSAC minimizes error (loss) function

|| p – L||  counting outliers

L

2T

),( Lpdist

|||| Lp −

T-T

1

treat  ||p - L||  as an “operator”  ||  ⸳ - ⸳ || 

representing some error penalty function 

Loss ( distance ( p , L ) )

- errors (distances between point p and line L)

inliersoutliers outliers

(equivalent to maximizing inliers)



RANSAC as optimization (of certain objective)

- find optimal label L (line)

minimizing loss function  E(L) 

RANSAC minimizes error (loss) function

|| p – L||  counting outliers

L

2T

|||| Lp −

T-T

1

treat  ||p - L||  as an “operator”  ||  ⸳ - ⸳ || 

representing some error penalty function 

Loss ( distance ( p , L ) )

The use of least squares among inliers can be 

interpreted as quadratic loss for   errors < T

),( Lpdist - errors (distances between point p and line L)

inliersoutliers outliers

(equivalent to maximizing inliers)



General error functions (overview)

Can use different losses

i.e. error functions  || p – L ||

L

|||| Lp −

),( Lpdist

least squares

RANSAC

other robust error measure

least absolute deviations 

robust error/loss functions have 

bounded response effectively ignoring 

larger errors (outliers)

non convex => harder to optimize
e.g. see iterative reweighted least squares (IRLS)



Optimization-based multi-model fitting

If multiple models

- assign different models 

(labels Lp) to every point p

- find optimal labeling

L = { L1 , L2 , ... , Ln }

Lp

Lq

need a “simpler” solution, i.e. 

few lines “explaining” all data

too “complex” - too many lines
(perfect line model for every point)

Error / loss function 
distances to lines

set of used

models (lines)



If multiple models

- assign different models 

(labels Lp) to every point p

- find optimal labeling

L = { L1 , L2 , ... , Ln }

Penalize the number of models

                  (solution “complexity”)

Error / loss function 
distances to lines

few lines “explaining” all data
set of used

models (lines)

Optimization-based multi-model fitting

[Delong, Isack, et al. 2012]

our first example

 of regularization

NOTE: loss above relates to K-means (topic 9) with sparsity regularization prior (a.k.a. AIC/BIC) 



Penalize the number of models

                  (solution “complexity”)

Error / loss function 
distances to lines

Optimization-based multi-model fitting

[Delong, Isack, et al. 2012]

our first example

 of regularization

Extra trick: add to Λ one special 

model Ø  representing “outlier model” 

with fixed cost  ||p - Ø|| = τ  for any  p 

),( Lpdist

τ

Then any point p prefers to be 

assigned “outlier model” Ø

if its closest line L has ||p - L|| > τ 

||p - Ø||
||p - L||



Penalize the number of models

                  (solution “complexity”)

Error / loss function 
distances to lines

Optimization-based multi-model fitting

[Delong, Isack, et al. 2012]

our first example

 of regularization

Extra trick: add to Λ one special 

model Ø  representing “outlier model” 

with fixed cost  ||p - Ø|| = τ  for any  p 

),( Lpdist

τ

Then any point p prefers to be 

assigned “outlier model” Ø

if its closest line L has ||p - L|| > τ 

||p - Ø||
||p - L||

Also, weak models with only a few 

inliers               are not worth having. 

Its inliers should be assigned Ø.  Why? 



Optimization problem

data points



data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample 

K lines from points

(some very large K)



data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample 

K lines from points

(some very large K)

2a. Assign each point to 

model in Λ with lowest || || 



data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample 

K lines from points

(some very large K)

2a. Assign each point to 

model in Λ with lowest || || 

2b. Re-estimate lines 

parameters minimizing 

errors || || among inliers 
(e.g. least squares)

addresses the first 

term of the objective

assuming the number 

of used models is fixed:  

|Λ|  =  const 



data points + randomly sampled lines

Optimization problem

1. Initialization of Λ:

randomly sample 

K lines from points

(some very large K)

2a. Assign each point to 

model in Λ with lowest || || 

2b. Re-estimate lines 

parameters minimizing 

errors || || among inliers 
(e.g. least squares)

As a function of a set of used models Λ, 

E relates to the objective for Uncapacitated Facility Location (UFL) problem



Optimization problem

1. Initialization of Λ:

randomly sample 

K lines from points

(some very large K)

2. Assign points to the 

closest model, re-estimate 

line parameters using 

inliers (e.g. least squares)

As a function of a set of used models Λ, 

E relates to the objective for Uncapacitated Facility Location (UFL) problem

4. Iterate steps 2-3 

    until convergence

3. (UFL heuristic)

clean Λ by removing

lines  L  that are

not worth keeping:

data points & assigned models (lines or Ø)



iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Beginning of iteration 2: points assigned to 

the closest model that survived iteration 1



Re-estimating 

lines in    

from their inliers



iteration 2: re-estimate model parameters
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Remove

suboptimal 

lines, if any

(UFL heuristic)



iteration 3: optimize points labeling  L
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-assign points

to closest lines



iteration 3: re-estimate model parameters
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-estimating 

lines in    

from their inliers

Remove

suboptimal 

lines, if any

(UFL heuristic)



iteration 4: optimize points labeling  L
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-assign points

to closest lines



iteration 4: re-estimate model parameters
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

Re-estimating 

lines in    

from their inliers



iteration 7...
iteration #

en
er

g
y

Optimization problem (algorithm illustration)



iteration 10...
iteration #

en
er

g
y

Optimization problem (algorithm illustration)

NOTE:  yellow 

line became

unnecessary



iteration 15... converged.
iteration #

en
er

g
y

Optimization problem (algorithm illustration)



What’s going on inside

the space of labels (lines/models)

data points in R2

- darkness indicates the number of inliers for a line

space of all lines 
Hough space

Hough 

Transform
[Szeliski Sec.4.3.2]

- also R2, each point here defines line parameters (a,b)



Hough 

Transform
[Szeliski Sec.4.3.2]

data points in R2

- darkness indicates the number of inliers for a line

- also R2, each point here defines line parameters (a,b)

Q: why not just look for modes in the Hough space?

What’s going on inside

the space of labels (lines/models)

(strong local maxima)

space of all lines 
Hough space

Note: RANSAC searches the maxima by exploring a (large) sample of lines

           randomly sampled from the “line density” in the Hough space.



Comparison

original data points

Low 

noise



Comparison

sequential RANSAC,  modes in Hough space,    UFL approach

Low 

noise



Comparison

original data points

High 

noise



Comparison

sequential RANSAC 

High 

noise



Comparison

Finding modes in Hough-space

Hough 

transform

High 

noise



Comparison

High 

noise

UFL-based approach
[Delong et al. IJCV12]



Line fitting on real image data

Note: color indicates clusters of lines with common vanishing point 

[Delong et al. NIPS 2012]

data points are “Canny edges”



Fitting other geometric models

Model fitting for arbitrary geometric models  θ

Need: 1) define an error measure w.r.t. model parameters |||| −p

2) efficient method for minimizing the sum of errors 

among inliers w.r.t. model parameters θ 


−





Sp

p ||||min

( )2222 )()(:|||| rcycxp ypxp −−−−=− },,{ rcc yc=for



Fitting multiple homographies (e.g. planes)

matched features (p,p’), as earlier

[Isack, et al. IJCV12]

|||||||| 1 pHpHpp −+− −

using

symmetric

re-projection errors

 

as an error measure 

between match (p, p’) 

and homography  H



Fitting multiple homographies (e.g. planes)



Fitting multiple homographies (e.g. planes)



same scene from a different view point…

Note very small steps between each floor



user can help with rough initialization

instead of random sampling 
[Sinha et al. 2008]



Fitting dependent models (parts)

▪ Pictorial structures [Felzenswalb & Huttenlocher, 2005]

[Carl Olsson et al.,2017]

e.g. in the space of point tracks

▪ Finding low dim. subspaces

hand model fitting to 3D point cloud

[Andrea Tagliasacchi et al., 2013]

▪Articulated model tracking



▪ Active contours (snakes)  

   [Kass Witkin Terzopoulos, 1988]

Can use physics to define objectives (losses):
- parts interactions (e.g. spring-like)

- kinematics

- attraction/repulsion to image features

Fitting dependent models (parts)

hand model fitting to 3D point cloud

[Andrea Tagliasacchi et al., 2013]

▪Articulated model tracking



next topic

Geometric model fitting in vision

- single models (e.g. panorama stitching, camera projection matrix)

- multiple models (e.g. multi-plane reconstruction, multiple rigid motion)

 FIRST STEP:  detect some features (corners, LOGS, etc) 

                     and compute their descriptors (SIFT, MOPS, etc.)

 SECOND STEP:   match or track

 THIRD STEP:      fit models

                               (minimization or errors/losses)

MODELS: lines, planes, homographies, affine transformations, 

projection matrices, fundamental/essential matrices, etc.
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