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CS484/684 Computational Vision

Image Warping (a.k.a. Domain Transforms)

• Parametric transformations

- Linear transformations of images via 2x2 matrices

 (a crash course on basic linear algebra)

- Affine transformations

- Homographies (3x3 transformation matrices)

• Estimation of parametric transformations (from corresponding points)

• Forward and inverse warps
- bilinear interpolation



Image Warping

point processing: change range of image       g(x) = T(f(x))

 
f

x

T
g

x

f

x

T g

x

image warping: change domain of image      g(x) = f(T(x))

 



Image Warping

f

f g

g

point processing: change range of image       g(x) = T(f(x))

 

image warping: change domain of image      g(x) = f(T(x))
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f (x,y) g(x,y)=f (x,y2)Example: shape

distortion

iClicker moment:      Can image warping change intensity histogram?

                                                  A:    Yes

                                                  B:     No



Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical



Parametric (global) warping

Transformation T is a coordinate-changing machine:
    

What does it mean that T is global?

• the same transform for any point p

• described by just a few numbers (parameters)

Example: linear transforms T (represented by matrix M):     p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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𝑔(𝑝′) = 𝑔(𝑀 ⋅ 𝑝) = 𝑓(𝑝) = 𝑓(𝑀−1 ⋅ 𝑝′)

forward warp (slide 54)

inverse warp (slide 56)



Scaling

Scaling a coordinate means multiplying each of its components by 
a scalar

Uniform scaling means this scalar is the same for all components:

 2



Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

Scaling operation:

Or, in matrix form:
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What’s inverse of S?



2-D Rotation   (around coordinate center)



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation   (if you do not remember derivation)

x = r cos ()

y = r sin ()

x’ = r cos ( + )

y’ = r sin ( + )

Trig Identity…

x’ = r cos() cos() – r sin() sin()

y’ = r cos() sin() + r sin() cos()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()



(x, y)

(x’, y’)





2-D Rotation

This is easy to capture in matrix form:

Even though  sin()  and  cos()  are nonlinear functions of  ,

• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?

• Rotation by  –

• For rotation matrices
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Identity?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Mirror about Y axis?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Translation?
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origin maps to origin 

                     (for any M)



No histogram 
change as 

ratios of areas 
are preserved

All 2D Linear Transformations

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror

Properties of linear transformations:

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Distance or length ratios are preserved on parallel lines
– scaling of length/distances depends on (line) orientation only (see next slide)

• Ratios of areas are preserved

• Closed under composition

     see pp. 40-41 of Hartley and Zisserman “Multiple View Geometry” (2nd edition)
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iClicker moment:

Can a (non-degenerate) linear warp 

change image intensity histogram?

                A:    Yes

                B:     No



All 2D Linear Transformations

Decomposition into basic geometric transformations  (follows from SVD for 2x2 matrices) 
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Linear Transformation as Space Deformation

p = (4,3)
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Linear Transformation as Change of Basis
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u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)
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Linear Transformation as Change of Basis
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jiq yx qq +=
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ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

T

i =(1,0)

j =(0,1)

= (qx,qy)

?
coordinates of  q  in basis u,v

vuq 34 +=

basis transformed, fixed points (coordinates still change)



Linear Transformation as Change of Basis
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ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

T

i =(1,0)

j =(0,1)

= (qx,qy)

Any matrix can be seen as a (linear) coordinate system basis!!!
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Linear Transformation as Change of Basis
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ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

T-1

i =(1,0)
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Any matrix can be seen as a (linear) coordinate system basis!!!
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Linear Transformation as Change of Basis

q q

u =(ux, uy)

v =(vx, vy)

T=?

i =(1,0)

j =(0,1)

Any matrix can be seen as a (linear) coordinate system basis!!!

      Question: What is T if both coordinate systems have ortho-normal basis? 



Linear Transformation as Change of Basis

q q

u =(ux, uy)

v =(vx, vy)

T=R

i =(1,0)

j =(0,1)

Then matrix T represents rotation, reflection, or their combination (rotoreflection) of the coordinate basis

Any matrix can be seen as a (linear) coordinate system basis!!!

      Question: What is T if both coordinate systems have ortho-normal basis? 



Towards Homogeneous Coordinates

Q: Can we represent translation by matrix multiplication?

y

x

tyy

txx

+=

+=

'

'

















⎯⎯⎯⎯ →⎯








1

scoordinate 
shomogeneou

y

x

y

xHomogeneous coordinates

• represent coordinates in 2 

dimensions with a 3-vector
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Translation

Example of translation
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Homogeneous Coordinates    (in general)

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (0, 0, 0) is not allowed

1 2
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(2,1,1) or (4,2,2) or (6,3,3)

x
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),1,2( www 

represent the same 2D point

for any value of  w

Advantages of 

homogeneous 

coordinate system: 
 

- simple matrix representation of   

  many useful transformations



Homogeneous Coordinates    (in general)

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (0, 0, 0) is not allowed

• (x, y, 0) represents a point at infinity

Advantages of 

homogeneous 

coordinate system: 
 

- simple matrix representation of

  many useful transformations

- allows to expand      with “points at infinity” 

                                            (like        for      )
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using finite numerical representation



Basic 2D Transformations via 3x3 matrices

𝑥′
𝑦′
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Composing Affine Transformations

Example: 

 In general:  any affine transformation is a combination of             

translation, rotation/reflection, and anisotropic scaling

























































−














=















w

y
x

sy
sx

ty
tx

w

y
x

100

00
00

100
0cossin
0sincos

100

10
01

'

'
'

p’   =      T(tx,ty)                 R()              S(sx,sy)        p

composition of any affine 

transforms is still affine
(as easy to check)



Affine Transformations

Affine transformations are combinations of …

• Linear 2D transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin   (new compared to 2x2 matrices)

• Lines map to lines

• Parallel lines remain parallel

• Length/distance ratios are preserved on parallel lines

• Ratios of areas are preserved

• Closed under composition
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Projective Transformations   (a.k.a. homographies)

Projective transformations …

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines       (indeed, line of hom. points p means a∙p=0 for some a. Then, b∙Hp=0 for b=aH-1)

• Parallel lines do not necessarily remain parallel

• Non-parallel lines may become parallel

• Distance/length or area ratios are not preserved

• Closed under composition
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• Parallel lines do not necessarily remain parallel

• Non-parallel lines may become parallel
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Projective Transformations   (a.k.a. homographies)
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• Parallel lines do not necessarily remain parallel

• Non-parallel lines may become parallel
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Projective Transformations   (a.k.a. homographies)
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• Distance/length or area ratios are not preserved
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(3,2,1)

(3,2,0)

A’



General property to keep in mind    (Theorem 2.10 from Hartley&Zisserman) 

     An invertible mapping h from a (homogeneous) plane   P2 onto  P2 

preserves straight lines iff there exists a non-singular 3x3 matrix H s.t.

                                                                    for any

Projective Transformations   (a.k.a. homographies)

xH)x(h = 2x 

That is, any transformation of a plane onto a plane that 

preserves straight lines must be a homography.



2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

See Hartley and 

Zisserman,

 p. 44



iClicker moment

A:   translation

B:   translation + scale

C:   projective

Q: What best describes 

     the transformation 

     between two monsters

     in this image?



Remaining parts of this lecture

• Estimation of parametric transformations (from corresponding points)

• Forward and inverse warps



Recovering Parametric Transformations

What if we know f and g and want to recover transform T?

• e.g. to better align images (image registration)

• willing to let user provide correspondences

Q: How many pairs of corresponding points do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?



Translation: # correspondences?

How many correspondences needed for translation?

How many Degrees of Freedom (DOF)?

What is the transformation matrix?

x x’

T(x,y)

y y’

?
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Euclidian: # correspondences?

How many correspondences needed for translation+rotation?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?
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How to prove geometrically

that 2 pairs is enough?
(use rigid transformation invariants

to map an arbitrary point)



Affine: # correspondences?

How many correspondences needed for affine? 

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?

















=

100

fdc

cba

M

How to prove geometrically

that 3 pairs is enough?
(use affine transformation invariants

to map an arbitrary point)



Algebraic point of view
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Each pair of corresponding points                  gives 

two linear equations w.r.t 6 unknown coefficients of matrix M 

with known point coordinates for      and ii 'pp

)',( ii pp

6 unknown

parameters

(variables)

3 pairs of corresponding points give 3x2 (=6) linear equations

allowing to resolve 6 unknown parameters



Projective: # correspondences?

How many correspondences needed for projective?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?

Harder, but possible 

to prove geometrically

that 4 pairs is enough.
(can use only line preservation)



4 matches is enough to map all other points 

(informal geometric proof based on line preservation)

T(x,y)

x

y

x’

y’

p p’

q
q’

r

r’

d
d’

Projective: # correspondences?



Projective: # correspondences?

4 matches is enough to map all other points 

(informal geometric proof based on line preservation)

T(x,y)

x

y

x’

y’

p p’

q
q’

r

r’

d
d’

Similarly, add

matches s-s’ and t-t’ 

s t
s’

t’



Projective: # correspondences?

4 matches is enough to map all other points 

(informal geometric proof based on line preservation)

T(x,y)

x

y

x’

y’

p p’

r

r’

d
d’

Keep recursively subdividing quadrilaterals A, B, C, D 

into smaller quadrilaterals while computing more matching 

pairs of points and gradually increasing their density

s t
s’

t’

A B

C D

A’ B’

C’ D’



Projective: # correspondences?

How many correspondences needed for projective?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?
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Easy to check that 4 pairs give only 4x2 (=8) equations! 

What about 9 unknowns?

Homographies have only 8 DOF since scale is irrelevant

(multiplying M by any factor does not change the actual transformation).

More on estimating homographies 

from 4 matching pairs of point - later in Topic 5.

=4



Example: warping triangles 
(e.g. “texture mapping” for deformable mesh models)

Given two triangles: ABC and A’B’C’ in 2D  (3 corresponding pairs) 

Need to find a simple parametric transform T to transfer all pixels from 

one to the other ? 

Common answer:    affine

T(x,y)

?

A

B

C A’
C’

B’

Source Destination

(solve 6 linear equations with 6 unknowns)

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100
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M

NOTE: Mesh has many triangles, and each may get a different affine 

transformation. The overall (continuous) transformation of the mesh 

is piecewise-affine with six parameters per triangle.



assume a given transform T, e.g. rotation or projection

Image warping

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

How to generate the transformed image g ?

 e.g.  - panorama stitching (next topic)

         - texture mapping (3D reconstruction)

             - novel view generation (special effects, virtual/augmented reality)

         - data augmentation (network training) 

?

NOTE: in practice, 

one should consider

the canvas bounds

of the new image



Image warping

Given a coordinate transform (x’,y’) = T(x,y) and a 

source image f(x,y), how do we compute a 

transformed image g(x’,y’) = f (x,y)?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

COMMENT: for simplicity, the slides ignore 

the bounds of the new image’s canvas, but    

you cannot do so in the homework assignments.

I. forward warping          II. inverse warping



f(x,y) g(x’,y’)

Forward warping

Send each pixel (x,y) in the first image to its corresponding 

location     (x’,y’) = T(x,y)      in the second image

x x’

T(x,y)

y y’

Traverse the pixels (x,y) in the first image.



f(x,y) g(x’,y’)

Forward warping

x x’

T(x,y)

y y’

A:  distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

Traverse the pixels (x,y) in the first image.

Q:  what if pixel lands “between” two pixels?

Send each pixel (x,y) in the first image to its corresponding 

location     (x’,y’) = T(x,y)      in the second image



f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel (x’,y’) in the second image from its 

corresponding location (x,y) = T-1(x’,y’) in the first image

x x’

y’
T-1(x,y)

Traverse the pixels (x’,y’) in the second image.



f(x,y) g(x’,y’)
x

y

Inverse warping

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

Get each pixel (x’,y’) in the second image from its 

corresponding location (x,y) = T-1(x’,y’) in the first image

Traverse the pixels (x’,y’) in the second image.



P

Q

v = Q - P

e.g.   P + 0.5v   =  P + 0.5(Q – P)

                         =  0.5P + 0.5 Q

Any point between P and Q  can 

be obtained as 

a linear combination  

 P + (1−) Q

Linear interpolation in vector spaces

NOTE: linear combination

is called convex combination

if                              .



P Q

Linear interpolation for functions

Linear interpolation of function

f between P and Q:

f(  P + (1−) Q ) =  f(P) + (1−) f(Q) 

 P + (1−) Q

f

f(P)

f(Q)

f( P + (1−) Q)

Assume 1D image (scan line)

with intensity f(P) and f(Q)

for 2 pixels P and Q

In fact, any linear function on [P,Q]

must satisfy the equation above 

(by definition of linear functions)



Bilinear interpolation (2 variate image intensity function)

Sampling of  f  at (x,y):

(i+1, j+1)

(i+1, j)(i, j)

(i, j+1)

(x, y)

pixels viewed as points in 2D

b

a

1-a

a

pixels viewed as square regions in 2D

1-a

Interpolated intensity at (x,y) can 

be seen as a weighted average of  

4 near-by pixels intensities where 

weights based on overlap area 

a



Forward vs. inverse warping

Q:  which is better?

A:  if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for 

transformation T: R2 →R2 significantly differs from 1. For linear warps x’=Mx this corresponds to the determinant of M. 

Example for 2D transformation T: R2 → R2

example: blur due to

significant area “stretch”



Forward vs. inverse warping

Q:  which is better?

Example for 2D transformation T: R2 → R2

example: aliasing due to

significant area “shrink”

A:  if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for 

transformation T: R2 →R2 significantly differs from 1. For linear warps x’=Mx this corresponds to the determinant of M. 

Zwicker & Pfister, Trans. on Visualization and Comp. Graphics, 2002



Forward vs. inverse warping

Q:  which is better?

Example for 1D transformation T: R1 → R1

x

x’

?

3 pixels 

1
2
 p

ix
el

s 

T

forward 

warp

x

x’T

inverse

warp

A:  if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for 

transformation T: R2 →R2 significantly differs from 1. For linear warps x’=Mx this corresponds to the determinant of M. 



skimage.transform.warp (input_image, inverse_map,…)

inverse warping in python

Second argument must be a function
transforming coordinates in the output 

image into their corresponding 
coordinates in the input image.

Bug Warning: students often specify 

the transform from the input image 

to the output image instead of its inverse
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