

Image Warping

http://www.jeffrey-martin.com

Image Warping (a.k.a. Domain Transforms)

- Parametric transformations
 - Linear transformations of images via 2x2 matrices

(a crash course on basic linear algebra)

- Affine transformations
- Homographies (3x3 transformation matrices)
- Estimation of parametric transformations (from corresponding points)
- Forward and inverse warps
 - bilinear interpolation

Image Warping

point processing: change range of image g(x) = T(f(x))

$$g(x) = T(f(x))$$

image warping: change **domain** of image g(x) = f(T(x))

$$g(x) = f(T(x))$$

Image Warping

point processing: change range of image

$$g(x) = T(f(x))$$

image warping: change *domain* of image g(x) = f(T(x))

$$g(x) = f(T(x))$$

Can image warping change intensity histogram? iClicker moment:

Yes

B: No

Parametric (global) warping

Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Parametric (global) warping

Transformation T is a coordinate-changing machine:

What does it mean that *T* is global?

- the same transform for any point p
- described by just a few numbers (parameters)

Example: linear transforms T (represented by matrix \mathbf{M}): $\mathbf{p}' = \mathbf{M}\mathbf{p}$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

inverse warp (slide 56)
$$g(p') = g(M \cdot p) = f(p) = f(M^{-1} \cdot p')$$

Scaling

Scaling a coordinate means multiplying each of its components by a scalar

Uniform scaling means this scalar is the same for all components:

Scaling

Non-uniform scaling: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What's inverse of S?

2-D Rotation (around coordinate center)

2-D Rotation (if you do not remember derivation)

$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

$$Trig Identity...$$

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \cos(\phi) \sin(\theta) + r \sin(\phi) \cos(\theta)$$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

WATERLOO

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{R}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^T$

What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$

$$x' = s_x * x$$
 $y' = s_y * y$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = y$$

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} 1 & sh_x \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

origin maps to origin

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(for any M)

change image intensity histogram?

No

All 2D Linear Transformations

Linear transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
iClicker moment:
Can a (non-degenerate) linear warp change image intensity histogram?

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Distance or length ratios are preserved on parallel lines
 - scaling of length/distances depends on (line) orientation only (see next slide)
- Ratios of areas are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} s & q \\ r & t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

see pp. 40-41 of Hartley and Zisserman "Multiple View Geometry" (2nd edition)

All 2D Linear Transformations

Decomposition into basic geometric transformations (follows from SVD for 2x2 matrices)

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} =$$

$$R_{ heta}$$
 .

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = R_{\theta} \cdot \begin{bmatrix} R_{-\Phi} \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \cdot R_{\Phi}$$

rotation by angle θ

deformation (non-isotropic scaling & reflection)

Scaling directions are always orthogonal.

Areas are scaled (homogeneously over a plane) by a factor of det $A = |\lambda_1 \lambda_2|$

Linear Transformation as Space Deformation

point **p** is transformed into new point **q** fixed basis, point transformed (coordinates change)

WATERLOO

Linear Transformation as Change of Basis

now interpret the columns of matrix T as some vectors \mathbf{u} and \mathbf{v} (their coordinates in basis \mathbf{i} , \mathbf{j})

coordinates of
$$\mathbf{q}$$
 in basis \mathbf{i} , \mathbf{j}

$$\mathbf{q} = \mathbf{q}_{x} \mathbf{i} + \mathbf{q}_{y} \mathbf{j}$$

$$\mathbf{q} = \mathbf{q}_{x} \mathbf{i} + \mathbf{q}_{y} \mathbf{j}$$

$$\mathbf{q} = 4\mathbf{u} + 3\mathbf{v}$$

Indeed,
$$\mathbf{q} = 4 \cdot (u_x \cdot \mathbf{i} + u_y \cdot \mathbf{j}) + 3 \cdot (v_x \cdot \mathbf{i} + v_y \cdot \mathbf{j}) = (4 \cdot u_x + 3 \cdot v_x) \cdot \mathbf{i} + (4 \cdot u_y + 3 \cdot v_y) \cdot \mathbf{j}$$

now interpret the columns of matrix T as some vectors **u** and **v** (their coordinates in basis **i**, **j**)

coordinates of
$$\mathbf{q}$$
 in basis \mathbf{i} , \mathbf{j}

$$\mathbf{q} = q_x \mathbf{i} + q_y \mathbf{j}$$

$$\mathbf{q} = 4\mathbf{u} + 3\mathbf{v}$$

point q represented in different coordinate systems basis transformed, fixed points (coordinates still change)

WATERLOO

Linear Transformation as Change of Basis

now interpret the columns of matrix T as some vectors \mathbf{u} and \mathbf{v} (their coordinates in basis \mathbf{i} , \mathbf{j})

$$\begin{bmatrix} q_x \\ q_y \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What's the inverse matrix T⁻¹?

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} q_x \\ q_y \end{bmatrix}$$

now interpret the columns of matrix T as some vectors **u** and **v** (their coordinates in basis **i**, **j**)

$$\begin{bmatrix} q_x \\ q_y \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What's the inverse matrix T⁻¹?

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} i_x & j_x \\ i_y & j_y \end{bmatrix} \begin{bmatrix} q_x \\ q_y \end{bmatrix}$$
 coordinates of **i** and **j** in basis **u**, **v**
$$\mathbf{i} = i_x \cdot \mathbf{u} + i_y \cdot \mathbf{v}$$

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What is T if both coordinate systems have ortho-normal basis?

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What is T if both coordinate systems have **ortho-normal basis**?

Then matrix T represents rotation, reflection, or their combination (rotoreflection) of the coordinate basis

WATERLOO

Towards Homogeneous Coordinates

Q: Can we represent translation by matrix multiplication?

$$x' = x + t_x$$
$$y' = y + t_y$$

very simple, but not a *linear* transformation *in 2D*

$$T(p+q) \neq T(p) + T(q)$$

 $T(\lambda p) \neq \lambda T(p)$

Answer: Yes, using homogeneous coordinates and 3x3 matrices

Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+t_x \\ y+t_y \\ 1 \end{bmatrix}$$
Translation

matrix (3x3)

Translation

Example of translation

Homogeneous Coordinates

Homogeneous Coordinates

(in general)

Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- (0, 0, 0) is not allowed

Advantages of homogeneous coordinate system:

 $(w \cdot 2, w \cdot 1, w)$ represent the same 2D point for any value of w

Homogeneous Coordinates

(in general)

Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- (0, 0, 0) is not allowed
- (x, y, 0) represents a *point at infinity*

Advantages of homogeneous coordinate system:

- simple matrix representation of many useful transformations
- allows to expand R^2 with "points at infinity" using finite numerical representation (like $\pm \infty$ for R^1)

Basic 2D Transformations via 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{sh_x} & \mathbf{0} \\ 0 & 1 & \mathbf{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

all of the above are special cases of a general Affine Transformation: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Composing Affine Transformations

Example:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$$
 composition of any affine transforms is still affine (as easy to check)

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{x}, \mathbf{t}_{y}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}) \qquad \mathbf{p}$$

In general: any affine transformation is a combination of translation, rotation/reflection, and anisotropic scaling

Affine Transformations

- Affine transformations are combinations of ...

 Linear 2D transformations, and $\begin{vmatrix} x' \\ y' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$

 - **Translations**

Properties of affine transformations:

- Origin does not necessarily map to origin (new compared to 2x2 matrices)
- Lines map to lines
- Parallel lines remain parallel
- Length/distance ratios are preserved on parallel lines
- Ratios of areas are preserved
- Closed under composition

transformations in homogeneous coordinate space via general 3x3 matrices

Projective transformations ...

- Affine transformations, and
- Projective warps

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines (indeed, line of hom. points p means a·p=0 for some a. Then, b·Hp=0 for b=aH-1)
- Parallel lines do not necessarily remain parallel
- Non-parallel lines may become parallel
- Distance/length or area ratios are not preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Parallel lines do not necessarily remain parallel
- Non-parallel lines may become parallel

$$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}$$

NOTE: "finite" point may transform to "point at infinity"

- Parallel lines do not necessarily remain parallel
- Non-parallel lines may become parallel

$$\begin{bmatrix} 12 \\ 10 \\ 2 \end{bmatrix} = \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

NOTE: or "point at infinity" may transform to "finite" point

Distance/length or area ratios are not preserved

Example: distance |B'C'| remains finite, while |A'B'| is infinite

Projective Transformations (a.k.a. homographies)

General property to keep in mind (Theorem 2.10 from Hartley&Zisserman)

An invertible mapping h from a (homogeneous) plane P^2 onto P^2 preserves straight lines **iff** there exists a non-singular 3x3 matrix H s.t.

$$h(x) = H \cdot x \qquad \text{for any } x \in \mathbf{P}^2$$

That is, any transformation of a plane onto a plane that preserves straight lines must be a homography.

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$oxed{egin{bmatrix} I & I & I \end{bmatrix}_{2 imes 3}}$	2	orientation $+ \cdots$	
rigid (Euclidean)	$igg igg[m{R} igg m{t} igg]_{2 imes 3}$	3	lengths + · · ·	
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	angles $+\cdots$	\Diamond
affine	$igg[egin{array}{c} igg[oldsymbol{A} igg]_{2 imes 3} \end{array}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

See Hartley and Zisserman, p. 44

These transformations are a nested set of groups

Closed under composition and inverse is a member

Q: What best describes the transformation between two monsters in this image?

A: translation

B: translation + scale

C: projective

Remaining parts of this lecture

- Estimation of parametric transformations (from corresponding points)
- Forward and inverse warps

Recovering Parametric Transformations

What if we know f and g and want to recover transform T?

- e.g. to better align images (image registration)
- willing to let user provide correspondences

Q: How many pairs of corresponding points do we need?

Translation: # correspondences?

How many correspondences needed for translation?
How many Degrees of Freedom (DOF)?

What is the transformation matrix?

$$\mathbf{M} = \begin{vmatrix} 1 & 0 & c_x \\ 0 & 1 & c_y \\ 0 & 0 & 1 \end{vmatrix}$$

Euclidian: # correspondences?

How many DOE?

How many DOF?

Transformation matrix?

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Affine: # correspondences?

How many correspondences needed for affine?

How many DOF?

Transformation matrix?

$$\mathbf{M} = \begin{bmatrix} a & b & c \\ c & d & f \\ 0 & 0 & 1 \end{bmatrix}$$

Algebraic point of view

$$\mathbf{p'}_{i} = M \mathbf{p}_{i}$$

$$\begin{bmatrix} x'_{i} \\ y'_{i} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix}$$
for any given pair of corresponding points $(\mathbf{p}_{i}, \mathbf{p'}_{i})$

$$\Rightarrow \begin{cases} x'_i = ax_i + by_i + c \\ y'_i = dx_i + ey_i + f \end{cases}$$
 6 unknown parameters (variables)

Each pair of corresponding points $(\mathbf{p}_i, \mathbf{p}'_i)$ gives two linear equations w.r.t 6 unknown coefficients of matrix Mwith known point coordinates for \mathbf{p}_i and \mathbf{p}'_i

3 pairs of corresponding points give 3x2 (=6) linear equations allowing to resolve 6 unknown parameters

How many correspondences needed for projective?

How many DOF?

Transformation matrix?

4 matches is enough to map all other points (*informal* geometric proof based on line preservation)

Optional slides

4 matches is enough to map all other points (*informal* geometric proof based on line preservation)

Optional slides

4 matches is enough to map all other points (*informal* geometric proof based on line preservation)

Optional slides

How many correspondences needed for projective?

=4

How many DOF?

Easy to check that 4 pairs give only 4x2 (=8) equations! What about 9 unknowns?

Transformation matrix?

Homographies have only 8 DOF since scale is irrelevant (multiplying M by any factor does not change the actual transformation).

$$\mathbf{M} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

More on estimating homographies from 4 matching pairs of point - later in Topic 5.

Given two triangles: ABC and A'B'C' in 2D (3 corresponding pairs)

Need to find a **simple parametric transform T** to transfer all pixels from one to the other?

Common answer: **affine**(solve 6 linear equations with 6 unknowns) $\mathbf{M} = \begin{vmatrix} a & b & c \\ c & d & f \\ 0 & 0 & 1 \end{vmatrix}$

NOTE: Mesh has many triangles, and each may get a different affine transformation. The overall (continuous) transformation of the mesh is **piecewise-affine** with six parameters per triangle.

Image warping

assume a given transform T, e.g. rotation or projection

How to generate the transformed image g?

- e.g. panorama stitching (next topic)
 - texture mapping (3D reconstruction)
 - novel view generation (special effects, virtual/augmented reality)
 - data augmentation (network training)

Image warping

COMMENT: for simplicity, the slides ignore the bounds of the new image's canvas, but you cannot do so in the homework assignments.

Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(x,y)?

I. forward warping

II. inverse warping

WATERLOO

Forward warping

Traverse the pixels (x,y) in the first image.

Send each pixel (x,y) in the first image to its corresponding location (x',y') = T(x,y) in the second image

Forward warping

Traverse the pixels (x,y) in the first image.

Send each pixel (x,y) in the first image to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

WATERLOO

Inverse warping

Traverse the pixels (x',y') in the second image.

Get each pixel (x',y') in the second image from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Inverse warping

Traverse the pixels (x',y') in the second image.

Get each pixel (x',y') in the second image from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

nearest neighbor, bilinear, Gaussian, bicubic

Linear interpolation in vector spaces

Any point between *P* and *Q* can be obtained as a linear combination

$$\lambda P + (1-\lambda) Q$$

NOTE: linear combination

$$\sum_{i} \lambda_i V_i \quad \text{for } V_i \in \mathcal{R}^N$$

is called convex combination

if
$$\sum_{i} \lambda_i = 1, \ \lambda_i \geq 0$$
.

e.g.
$$P + 0.5V = P + 0.5(Q - P)$$

= $0.5P + 0.5 Q$

Linear interpolation for functions

Assume 1D image (scan line) with intensity f(P) and f(Q) for 2 pixels P and Q

Linear interpolation of function *f* between *P* and *Q*:

$$f(\lambda P + (1-\lambda) Q) = \lambda f(P) + (1-\lambda) f(Q)$$

In fact, any linear function on [P,Q] must satisfy the equation above (by definition of *linear functions*)

Bilinear interpolation (2 variate image intensity function)

Sampling of f at (x,y):

pixels viewed as square regions in 2D

$$f(x,y) = (1-a)(1-b) f[i,j] + a(1-b) f[i+1,j] + ab f[i+1,j+1] + (1-a)b f[i,j+1]$$

Interpolated intensity at (x,y) can be seen as a weighted average of 4 near-by pixels intensities where weights based on overlap area

Forward vs. inverse warping

Q: which is better?

A: if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) **stretch** or **shrink** a lot, which happens when the determinant of the Jacobian for transformation T: $R^2 \rightarrow R^2$ significantly differs from 1. For linear warps x'=Mx this corresponds to the determinant of M.

Example for 2D transformation T: $R^2 \rightarrow R^2$

example: blur due to significant area "stretch"

Forward vs. inverse warping

Q: which is better?

A: if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) **stretch** or **shrink** a lot, which happens when the determinant of the Jacobian for transformation T: $R^2 \rightarrow R^2$ significantly differs from 1. For linear warps x'=Mx this corresponds to the determinant of M.

Example for 2D transformation T: $R^2 \rightarrow R^2$

Zwicker & Pfister, Trans. on Visualization and Comp. Graphics, 2002

example: aliasing due to significant area "shrink"

Forward vs. inverse warping

optional slide

Q: which is better?

A: if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for transformation T: $R^2 \rightarrow R^2$ significantly differs from 1. For linear warps x'=Mx this corresponds to the determinant of M.

inverse warping in python

Bug Warning: students often specify the transform from the input image to the output image instead of its inverse

skimage.transform.warp (input_image_inverse_map,...)

Second argument <u>must be</u> a function transforming coordinates in the output image into their corresponding coordinates in the input image.