
Image Warping

Many slides are from Alexei Efros (Berkeley) and Steve Seitz (U. of Washington)

http://www.jeffrey-martin.com

http://www.jeffrey-martin.com/

CS484/684 Computational Vision

Image Warping (a.k.a. Domain Transforms)

• Parametric transformations

- Linear transformations of images via 2x2 matrices

 (a crash course on basic linear algebra)

- Affine transformations

- Homographies (3x3 transformation matrices)

• Estimation of parametric transformations (from corresponding points)

• Forward and inverse warps
- bilinear interpolation

Image Warping

point processing: change range of image g(x) = T(f(x))

f

x

T
g

x

f

x

T g

x

image warping: change domain of image g(x) = f(T(x))

Image Warping

f

f g

g

point processing: change range of image g(x) = T(f(x))

image warping: change domain of image g(x) = f(T(x))

T

T

0 1 0 1

1 1

f (x,y) g(x,y)=f (x,y2)Example: shape

distortion

iClicker moment: Can image warping change intensity histogram?

 A: Yes

 B: No

Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Parametric (global) warping

Transformation T is a coordinate-changing machine:

What does it mean that T is global?

• the same transform for any point p

• described by just a few numbers (parameters)

Example: linear transforms T (represented by matrix M): p’ = Mp

T

p = (x,y) p’ = (x’,y’)









=









y

x

y

x
M

'

'
𝑔(𝑝′) = 𝑔(𝑀 ⋅ 𝑝) = 𝑓(𝑝) = 𝑓(𝑀−1 ⋅ 𝑝′)

forward warp (slide 54)

inverse warp (slide 56)

Scaling

Scaling a coordinate means multiplying each of its components by
a scalar

Uniform scaling means this scalar is the same for all components:

 2

Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

Scaling operation:

Or, in matrix form:

byy

axx

=

=

'

'

















=









y

x

b

a

y

x

0

0

'

'

scaling matrix S

What’s inverse of S?

2-D Rotation (around coordinate center)



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation (if you do not remember derivation)

x = r cos ()

y = r sin ()

x’ = r cos ( + )

y’ = r sin ( + )

Trig Identity…

x’ = r cos() cos() – r sin() sin()

y’ = r cos() sin() + r sin() cos()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()



(x, y)

(x’, y’)



2-D Rotation

This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?

• Rotation by –

• For rotation matrices
















 −
=









y

x

)cos()sin(

)sin()cos(

'y

'x





T
RR =−1

R

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Identity?

yy
xx

=
=
'
'












=






y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'

=

=

















=









y

x

s

s

y

x

y

x

0

0

'

'

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'

+=
−=




















−
=









y

x

y

x

cossin

sincos

'

'

2D Shear?

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'












−
=







y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'













−

−
=







y
x

y
x

10
01

'
'

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx

+=

+=

'

'
NO!

origin maps to origin

 (for any M)

No histogram
change as

ratios of areas
are preserved

All 2D Linear Transformations

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror

Properties of linear transformations:

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Distance or length ratios are preserved on parallel lines
– scaling of length/distances depends on (line) orientation only (see next slide)

• Ratios of areas are preserved

• Closed under composition

 see pp. 40-41 of Hartley and Zisserman “Multiple View Geometry” (2nd edition)

















=









y

x

dc

ba

y

x

'

'

































=









y

x

tr

qs

lk

ji

dc

ba

y

x

'

'

iClicker moment:

Can a (non-degenerate) linear warp

change image intensity histogram?

 A: Yes

 B: No

All 2D Linear Transformations

Decomposition into basic geometric transformations (follows from SVD for 2x2 matrices)























=








= − RRR

dc

ba
A

2

1

0

0






rotation

by angle θ

deformation
(non-isotropic scaling & reflection)

1

2

1

Scaling directions are always orthogonal.

Areas are scaled (homogeneously over a plane)

by a factor of det A = |1 2 |





Linear Transformation as Space Deformation

p = (4,3)

















=









3

4

yy

xx

y

x

vu

vu

q

q

pT=

point p is transformed into new point q

coordinates of p in basis i,jcoordinates of q in basis i,j

i =(1,0)

j =(0,1)

q pT

jip 34 +=jiq yx qq +=

q

fixed basis, point transformed (coordinates change)

Linear Transformation as Change of Basis

















=









3

4

yy

xx

y

x

vu

vu

q

q

q

coordinates of q in basis i,j

jiq yx qq +=

=(4,3)q

ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

i =(1,0)

j =(0,1)

= (qx,qy)

?
coordinates of q in basis u,v

vuq 34 +=

Indeed,)(3)(4 jijiq +++= yxyx vvuu

u v qx
qy

ji +++=)34()34(yyxx vuvu

Linear Transformation as Change of Basis

















=









3

4

yy

xx

y

x

vu

vu

q

q

q

point q represented in different coordinate systems

coordinates of q in basis i,j

jiq yx qq +=

=(4,3)q

ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

T

i =(1,0)

j =(0,1)

= (qx,qy)

?
coordinates of q in basis u,v

vuq 34 +=

basis transformed, fixed points (coordinates still change)

Linear Transformation as Change of Basis

















=









3

4

yy

xx

y

x

vu

vu

q

q

q =(4,3)q

ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

T

i =(1,0)

j =(0,1)

= (qx,qy)

Any matrix can be seen as a (linear) coordinate system basis!!!

 Question: What’s the inverse matrix T-1 ?
















=









y

x

q

q

??

??

3

4

Linear Transformation as Change of Basis

















=









3

4

yy

xx

y

x

vu

vu

q

q

q =(4,3)q

ji += yx vv

u =(ux, uy) ji += yx uu

v =(vx, vy)

now interpret the columns of matrix T

as some vectors u and v (their coordinates in basis i, j)

T-1

i =(1,0)

j =(0,1)

= (qx,qy)

Any matrix can be seen as a (linear) coordinate system basis!!!

 Question: What’s the inverse matrix T-1 ?
















=









y

x

yy

xx

q

q

ji

ji

3

4

vuj += yx jj

vui += yx ii

coordinates of i and j

in basis u,v

Linear Transformation as Change of Basis

q q

u =(ux, uy)

v =(vx, vy)

T=?

i =(1,0)

j =(0,1)

Any matrix can be seen as a (linear) coordinate system basis!!!

 Question: What is T if both coordinate systems have ortho-normal basis?

Linear Transformation as Change of Basis

q q

u =(ux, uy)

v =(vx, vy)

T=R

i =(1,0)

j =(0,1)

Then matrix T represents rotation, reflection, or their combination (rotoreflection) of the coordinate basis

Any matrix can be seen as a (linear) coordinate system basis!!!

 Question: What is T if both coordinate systems have ortho-normal basis?

Towards Homogeneous Coordinates

Q: Can we represent translation by matrix multiplication?

y

x

tyy

txx

+=

+=

'

'

















⎯⎯⎯⎯ →⎯








1

scoordinate
shomogeneou

y

x

y

xHomogeneous coordinates

• represent coordinates in 2

dimensions with a 3-vector

Answer: Yes, using homogeneous coordinates and 3x3 matrices

















+

+

=



































=

















11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

Translation

matrix (3x3)

very simple, but

not a linear transformation in 2D

)()()(qTpTqpT ++

)()(pTpT  

Translation

Example of translation

















+

+

=

































=

















11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous Coordinates

Homogeneous Coordinates (in general)

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (0, 0, 0) is not allowed

1 2

1

2

(2,1,1) or (4,2,2) or (6,3,3)

x

y

),1,2(www 

represent the same 2D point

for any value of w

Advantages of

homogeneous

coordinate system:

- simple matrix representation of

 many useful transformations

Homogeneous Coordinates (in general)

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (0, 0, 0) is not allowed

• (x, y, 0) represents a point at infinity

Advantages of

homogeneous

coordinate system:

- simple matrix representation of

 many useful transformations

- allows to expand with “points at infinity”

 (like for)

1 2

1

2

(2,1,1)

x

y
),1,2(

4
1

),1,2(
2
1

2R
1R

using finite numerical representation

Basic 2D Transformations via 3x3 matrices

𝑥′
𝑦′
1

=
cosΘ − sinΘ 0
sinΘ cosΘ 0
0 0 1

𝑥
𝑦
1

𝑥′
𝑦′
1

=
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑥
𝑦
1

Translate

Rotate Shear

𝑥′
𝑦′
1

=
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥
𝑦
1

Scale

𝑥′
𝑦′
𝑤

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

𝑥
𝑦
𝑤

all of the above are special cases of

a general Affine Transformation:

x′
y′
1

=
1 shx 0
0 1 0
0 0 1

x
y
1

Composing Affine Transformations

Example:

 In general: any affine transformation is a combination of

translation, rotation/reflection, and anisotropic scaling

























































−














=















w

y
x

sy
sx

ty
tx

w

y
x

100

00
00

100
0cossin
0sincos

100

10
01

'

'
'

p’ = T(tx,ty) R() S(sx,sy) p

composition of any affine

transforms is still affine
(as easy to check)

Affine Transformations

Affine transformations are combinations of …

• Linear 2D transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin (new compared to 2x2 matrices)

• Lines map to lines

• Parallel lines remain parallel

• Length/distance ratios are preserved on parallel lines

• Ratios of areas are preserved

• Closed under composition




























=















w

y
x

fed
cba

w

y
x

100

'
'

Projective Transformations (a.k.a. homographies)

Projective transformations …

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines (indeed, line of hom. points p means a∙p=0 for some a. Then, b∙Hp=0 for b=aH-1)

• Parallel lines do not necessarily remain parallel

• Non-parallel lines may become parallel

• Distance/length or area ratios are not preserved

• Closed under composition

































=

















1

y

x

ihg

fed

cba

'w

'y

'x

transformations in homogeneous coordinate space via general 3x3 matrices

?

• Parallel lines do not necessarily remain parallel

• Non-parallel lines may become parallel

x

y
(6,5,1)

































−

=

















1

5

6

1110

2

3

fed

cba

x

y

NOTE: “finite” point may transform to “point at infinity”

Projective Transformations (a.k.a. homographies)

H

(3,2,1)

(3,2,0)

?

• Parallel lines do not necessarily remain parallel

• Non-parallel lines may become parallel

x

y
(6,5,1)

































=

















0

2

3

'i'h'g

'f'e'd

'c'b'a

2

10

12

x

y

NOTE: or “point at infinity” may transform to “finite” point

Projective Transformations (a.k.a. homographies)

H-1

(3,2,1)

(3,2,0)

• Distance/length or area ratios are not preserved

?x

y

x

y

































=

















1

5

6

ihg

fed

cba

0

2

3

Example: distance |B’C’| remains finite, while |A’B’| is infinite

B

C

B’

C’

(6,5,1)

A

Projective Transformations (a.k.a. homographies)

(3,2,1)

(3,2,0)

A’

General property to keep in mind (Theorem 2.10 from Hartley&Zisserman)

 An invertible mapping h from a (homogeneous) plane P2 onto P2

preserves straight lines iff there exists a non-singular 3x3 matrix H s.t.

 for any

Projective Transformations (a.k.a. homographies)

xH)x(h = 2x 

That is, any transformation of a plane onto a plane that

preserves straight lines must be a homography.

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

See Hartley and

Zisserman,

 p. 44

iClicker moment

A: translation

B: translation + scale

C: projective

Q: What best describes

 the transformation

 between two monsters

 in this image?

Remaining parts of this lecture

• Estimation of parametric transformations (from corresponding points)

• Forward and inverse warps

Recovering Parametric Transformations

What if we know f and g and want to recover transform T?

• e.g. to better align images (image registration)

• willing to let user provide correspondences

Q: How many pairs of corresponding points do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?

Translation: # correspondences?

How many correspondences needed for translation?

How many Degrees of Freedom (DOF)?

What is the transformation matrix?

x x’

T(x,y)

y y’

?

















−

−

=

100

'10

'01

yy

xx

pp

pp

M

















=

100

10

01

y

x

c

c

M

Euclidian: # correspondences?

How many correspondences needed for translation+rotation?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?















 −

=

100

cossin

sincos

y

x

c

c





M

How to prove geometrically

that 2 pairs is enough?
(use rigid transformation invariants

to map an arbitrary point)

Affine: # correspondences?

How many correspondences needed for affine?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?

















=

100

fdc

cba

M

How to prove geometrically

that 3 pairs is enough?
(use affine transformation invariants

to map an arbitrary point)

Algebraic point of view

ii M pp ='

































=

















11001

'

'

i

i

i

i

y

x

fed

cba

y

x
for any given pair of

corresponding points

)',(ii pp

ip
i'p M

cbyaxx iii ++=

feydxy iii ++=

Each pair of corresponding points gives

two linear equations w.r.t 6 unknown coefficients of matrix M

with known point coordinates for and ii 'pp

)',(ii pp

6 unknown

parameters

(variables)

3 pairs of corresponding points give 3x2 (=6) linear equations

allowing to resolve 6 unknown parameters

Projective: # correspondences?

How many correspondences needed for projective?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?

Harder, but possible

to prove geometrically

that 4 pairs is enough.
(can use only line preservation)

4 matches is enough to map all other points

(informal geometric proof based on line preservation)

T(x,y)

x

y

x’

y’

p p’

q
q’

r

r’

d
d’

Projective: # correspondences?

Projective: # correspondences?

4 matches is enough to map all other points

(informal geometric proof based on line preservation)

T(x,y)

x

y

x’

y’

p p’

q
q’

r

r’

d
d’

Similarly, add

matches s-s’ and t-t’

s t
s’

t’

Projective: # correspondences?

4 matches is enough to map all other points

(informal geometric proof based on line preservation)

T(x,y)

x

y

x’

y’

p p’

r

r’

d
d’

Keep recursively subdividing quadrilaterals A, B, C, D

into smaller quadrilaterals while computing more matching

pairs of points and gradually increasing their density

s t
s’

t’

A B

C D

A’ B’

C’ D’

Projective: # correspondences?

How many correspondences needed for projective?

How many DOF?

Transformation matrix?

x x’

T(x,y)

y y’

?

















=

ihg

fed

cba

M

Easy to check that 4 pairs give only 4x2 (=8) equations!

What about 9 unknowns?

Homographies have only 8 DOF since scale is irrelevant

(multiplying M by any factor does not change the actual transformation).

More on estimating homographies

from 4 matching pairs of point - later in Topic 5.

=4

Example: warping triangles
(e.g. “texture mapping” for deformable mesh models)

Given two triangles: ABC and A’B’C’ in 2D (3 corresponding pairs)

Need to find a simple parametric transform T to transfer all pixels from

one to the other ?

Common answer: affine

T(x,y)

?

A

B

C A’
C’

B’

Source Destination

(solve 6 linear equations with 6 unknowns)
















=

100

fdc

cba

M

NOTE: Mesh has many triangles, and each may get a different affine

transformation. The overall (continuous) transformation of the mesh

is piecewise-affine with six parameters per triangle.

assume a given transform T, e.g. rotation or projection

Image warping

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

How to generate the transformed image g ?

 e.g. - panorama stitching (next topic)

 - texture mapping (3D reconstruction)

 - novel view generation (special effects, virtual/augmented reality)

 - data augmentation (network training)

?

NOTE: in practice,

one should consider

the canvas bounds

of the new image

Image warping

Given a coordinate transform (x’,y’) = T(x,y) and a

source image f(x,y), how do we compute a

transformed image g(x’,y’) = f (x,y)?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

COMMENT: for simplicity, the slides ignore

the bounds of the new image’s canvas, but

you cannot do so in the homework assignments.

I. forward warping II. inverse warping

f(x,y) g(x’,y’)

Forward warping

Send each pixel (x,y) in the first image to its corresponding

location (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’

Traverse the pixels (x,y) in the first image.

f(x,y) g(x’,y’)

Forward warping

x x’

T(x,y)

y y’

A: distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

Traverse the pixels (x,y) in the first image.

Q: what if pixel lands “between” two pixels?

Send each pixel (x,y) in the first image to its corresponding

location (x’,y’) = T(x,y) in the second image

f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel (x’,y’) in the second image from its

corresponding location (x,y) = T-1(x’,y’) in the first image

x x’

y’
T-1(x,y)

Traverse the pixels (x’,y’) in the second image.

f(x,y) g(x’,y’)
x

y

Inverse warping

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

Get each pixel (x’,y’) in the second image from its

corresponding location (x,y) = T-1(x’,y’) in the first image

Traverse the pixels (x’,y’) in the second image.

P

Q

v = Q - P

e.g. P + 0.5v = P + 0.5(Q – P)

 = 0.5P + 0.5 Q

Any point between P and Q can

be obtained as

a linear combination

 P + (1−) Q

Linear interpolation in vector spaces

NOTE: linear combination

is called convex combination

if .

P Q

Linear interpolation for functions

Linear interpolation of function

f between P and Q:

f( P + (1−) Q) =  f(P) + (1−) f(Q)

 P + (1−) Q

f

f(P)

f(Q)

f( P + (1−) Q)

Assume 1D image (scan line)

with intensity f(P) and f(Q)

for 2 pixels P and Q

In fact, any linear function on [P,Q]

must satisfy the equation above

(by definition of linear functions)

Bilinear interpolation (2 variate image intensity function)

Sampling of f at (x,y):

(i+1, j+1)

(i+1, j)(i, j)

(i, j+1)

(x, y)

pixels viewed as points in 2D

b

a

1-a

a

pixels viewed as square regions in 2D

1-a

Interpolated intensity at (x,y) can

be seen as a weighted average of

4 near-by pixels intensities where

weights based on overlap area

a

Forward vs. inverse warping

Q: which is better?

A: if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for

transformation T: R2 →R2 significantly differs from 1. For linear warps x’=Mx this corresponds to the determinant of M.

Example for 2D transformation T: R2 → R2

example: blur due to

significant area “stretch”

Forward vs. inverse warping

Q: which is better?

Example for 2D transformation T: R2 → R2

example: aliasing due to

significant area “shrink”

A: if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for

transformation T: R2 →R2 significantly differs from 1. For linear warps x’=Mx this corresponds to the determinant of M.

Zwicker & Pfister, Trans. on Visualization and Comp. Graphics, 2002

Forward vs. inverse warping

Q: which is better?

Example for 1D transformation T: R1 → R1

x

x’

?

3 pixels

1
2
 p

ix
el

s

T

forward

warp

x

x’T

inverse

warp

A: if area distortion is large, both have problems (blur, holes, aliasing)

when image areas (locally) stretch or shrink a lot, which happens when the determinant of the Jacobian for

transformation T: R2 →R2 significantly differs from 1. For linear warps x’=Mx this corresponds to the determinant of M.

skimage.transform.warp (input_image, inverse_map,…)

inverse warping in python

Second argument must be a function
transforming coordinates in the output

image into their corresponding
coordinates in the input image.

Bug Warning: students often specify

the transform from the input image

to the output image instead of its inverse

	Part 1
	Slide 1: Image Warping
	Slide 2: CS484/684 Computational Vision Image Warping (a.k.a. Domain Transforms)
	Slide 3: Image Warping
	Slide 4: Image Warping
	Slide 5: Parametric (global) warping
	Slide 6: Parametric (global) warping
	Slide 7: Scaling
	Slide 8: Scaling
	Slide 9: Scaling
	Slide 10: 2-D Rotation (around coordinate center)
	Slide 11: 2-D Rotation (if you do not remember derivation)
	Slide 12: 2-D Rotation
	Slide 13: 2x2 Matrices
	Slide 14: 2x2 Matrices
	Slide 15: 2x2 Matrices
	Slide 16: 2x2 Matrices
	Slide 17: All 2D Linear Transformations
	Slide 18: All 2D Linear Transformations
	Slide 19: Linear Transformation as Space Deformation
	Slide 20: Linear Transformation as Change of Basis
	Slide 21: Linear Transformation as Change of Basis
	Slide 22: Linear Transformation as Change of Basis
	Slide 23: Linear Transformation as Change of Basis
	Slide 24: Linear Transformation as Change of Basis
	Slide 25: Linear Transformation as Change of Basis
	Slide 26: Towards Homogeneous Coordinates
	Slide 27: Translation
	Slide 28: Homogeneous Coordinates (in general)
	Slide 29: Homogeneous Coordinates (in general)
	Slide 30: Basic 2D Transformations via 3x3 matrices
	Slide 31: Composing Affine Transformations
	Slide 32: Affine Transformations
	Slide 33: Projective Transformations (a.k.a. homographies)
	Slide 34: Projective Transformations (a.k.a. homographies)
	Slide 35: Projective Transformations (a.k.a. homographies)
	Slide 36: Projective Transformations (a.k.a. homographies)
	Slide 37: Projective Transformations (a.k.a. homographies)
	Slide 38: 2D image transformations
	Slide 39: iClicker moment
	Slide 40: Remaining parts of this lecture
	Slide 41: Recovering Parametric Transformations
	Slide 42: Translation: # correspondences?
	Slide 43: Euclidian: # correspondences?
	Slide 44: Affine: # correspondences?
	Slide 45: Algebraic point of view
	Slide 46: Projective: # correspondences?
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Projective: # correspondences?
	Slide 51: Example: warping triangles (e.g. “texture mapping” for deformable mesh models)

	Part 2 (11 slides)
	Slide 52: assume a given transform T, e.g. rotation or projection
	Slide 53: Image warping
	Slide 54: Forward warping
	Slide 55: Forward warping
	Slide 56: Inverse warping
	Slide 57: Inverse warping
	Slide 58: Linear interpolation in vector spaces
	Slide 59: Linear interpolation for functions
	Slide 60: Bilinear interpolation (2 variate image intensity function)
	Slide 61: Forward vs. inverse warping
	Slide 62: Forward vs. inverse warping
	Slide 63: Forward vs. inverse warping
	Slide 64

