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Image Pre-Processing
(the elements of filtering) 

&   Low-level Features
(low-dimensional, e.g. intensity, color, edges, corners, SIFT, ...) 

Later in the course: 

     compositions of learnable filters
             (deep neural networks) 

             high-level features
       (high-dimensional, good for semantics) 

raw input features filtered features
output of “hand-designed” 

low-level filters

output of sensor



CS 484/684  Computational Vision

Image Processing Basics

Point Processing
• gamma correction

• window-center correction

• histogram equalization

Filtering  (linear & non-linear neighborhood processing)

• convolution, gradient 

• mean, Gaussian, and median filters

• normalized cross-correlation (NCC)

• etc…: Fourier, Gabor, wavelets (Szeliski, Sec 3.4-3.5)

Higher-order gradient-based features

Extra Reading: Szeliski, Sec 3.1

Extra Reading: Szeliski, Sec 3.2-3.3

Extra Reading: Szeliski, Sec. 4.1

intensities, colors

contrast edges

Harris corners, MOPS, SIFT, etc.

texture

templates, patches



Summary of image transformations

image processing or image transformation operation typically defines a 

new image g in terms of an existing image f.

Preview Examples:
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Preview Examples:

– Geometric (domain) transformation:
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Summary of image transformations

image processing or image transformation operation typically defines a 

new image g in terms of an existing image f.

Preview Examples:

– Geometric (domain) transformation:

• What kinds of operations can this transformation t = (tx, ty) perform?

– Range transformation:

• What kinds of operations can this transformation t perform?

– Filtering also generates new images from an existing image

–  more on filtering later
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point processing

neighborhood processing
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Topic 4

NOTE: neural networks use such operations (e.g. activations, convolutions) in each layer (e.g. CNNs in Topics 10-12) 



Point Processing 

for each original image intensity value  I   function  t(·) 

returns a transformed intensity value  t(I).

)),((),( yxftyxg =

NOTE:     we will often use 

notation  Ip instead of  f(x,y)  to 

denote intensity at pixel p=(x,y)

• Important: every pixel is for itself 
- spatial information is ignored!

• What can point processing do?
 (we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)

image 

range

image 

range



Point Processing: 

Examples of gray-scale transforms  t

I



Point Processing: 

Negative
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Point Processing: 

Power-law transformations  t



Point Processing: 

Enhancing Image via Gamma Correction



Point Processing: 

Understanding Image Histograms

Image Brightness Image Contrast

n

n
ip i=)(probability of intensity i :

---number of pixels with intensity i

---total number of pixels in the image



Point Processing: 

Contrast Stretching

Original image

0

L - 1

L - 1

T(r)

Input gray level, r
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Output image

a.k.a. intensity thresholding

Note the difference between 

contrast         and       dynamic range

(max I - min I)               (min #bits needed)



Point Processing: 

Contrast Stretching
Original images Histogram corrected images

1)

2)



Point Processing: 

Contrast Stretching
Original images Histogram corrected images

3)

4)



One way to automatically select transformation t :

Histogram Equalization

…see Gonzalez and Woods, Sec3.3.1, for more details

= cumulative distribution
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Point processing

Histogram Equalization

Answer in probability theory:

      I – random variable with probability density p(i)  over i  in [0,1]

      If t(i)  is a cumulative distribution function for  I   then

      I’=t(I)  – is a random variable with uniform density over its range [0,1]

That is, transform image I’  will have a uniformly-spread histogram (good contrast)

= cumulative distribution

     of image intensities
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Q: Why does that work?



Point Processing: 

Window-Center adjustment

input intensity
large bit depth (up to 216 or 2 bytes)
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0 >65000

256

Displaying high dynamic range 
image (e.g. CT or MR) over low 

dynamic range monitor

distinct input intensities are

displayed as one

A lot of information is lost!

input image 

range

output image 

range



Point Processing: 

Window-Center adjustment

input intensitym
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Point Processing: 

Window-Center adjustment

input gray level  
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center

window



Point Processing: 

Window-Center adjustment

Window = 4000

Center = 500



Point Processing: 

Window-Center adjustment

Window = 800

Center = 500



Point Processing: 

Window-Center adjustment

Window = 0

Center = 500

If   window=0  then we get 

binary image thresholding



Point Processing: 

Window-Center adjustment

Window = 800

Center = 1160

Window = 800

Center = 500



Q. Is This an Example of Point Processing?
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Neighborhood Processing (or filtering)

Q: What happens if I reshuffle all pixels within the image?

A:  It’s histogram won’t change.                                          

No point processing will be affected…

Images contain a lot of  “spatial information”

Readings: Szeliski, Sec 3.2-3.3



Neighborhood Processing (filtering)

Linear image transforms

Let’s start with 1D image (a signal):  f[i]

A very general and useful class of transforms are
the linear transforms of f, defined by a matrix M



Neighborhood Processing (filtering)

Linear image transforms

Let’s start with 1D image (a signal):  f[i]

matrix M



Neighborhood Processing (filtering)

Linear image transforms

Let’s start with 1D image (a signal):  f[i]

matrix M



Neighborhood Processing (filtering)

Linear shift-invariant filters

This pattern is very common

- same entries in each row

- all non-zero entries near the diagonal

It is known as a linear shift-invariant filter and is

represented by a so-called (1D) kernel or mask  h:

and can be written (for kernel of size 2k+1) as:

      

          The above allows negative filter indices. 

matrix M
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Neighborhood Processing (filtering)

Linear shift-invariant filters

Linearity of H:                H (f+g) = Hf + Hg

ℎ[𝑖] = [𝑎 𝑏 𝑐 … ]


−=

+=
k

ku

uifuhig ][][][

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Any linear shift-invariant operator H can be expressed in a form like

Shift-invariance of H:    H (Sf)  = S (Hf)      for shift operator,    e.g  S =   



Neighborhood Processing (filtering)

2D linear transforms

Similar linear neighborhood-processing operations on 2D images can also 

be expressed via matrix multiplication after concatenating all image rows 

into one long vector (in a “raster-scan” order):

ҭ𝑓[𝑖] = 𝑓[ 𝑖/𝑚 , 𝑖%𝑚]

However, matrix  M  will have many zeros and 

kernel-based representation is significantly simpler… 



Neighborhood Processing (filtering)

2D filtering

2D image  f [i,j]  can be filtered by 2D kernel  h[u,v]  to produce 

output image g[i,j]:

This is called a cross-correlation operation and written:
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h is called “kernel” or “mask” or “filter” which 

representing a given “window function”



Closely related convolution operation is defined slightly differently

It is written as:  

Neighborhood Processing (filtering)

2D filtering

fhg =

 
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kv

vjuifvuhjig ],[],[],[

If                                                                 then convolution is not different from cross-correlation],[],[ vuhvuh −−=

Convolution has additional “technical” properties: commutativity, associativity. Also, “nice” properties wrt Fourier analysis. 
(see Szeliski Sec 3.2, Gonzalez and Woods Sec. 4.6.4)  
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Convolution is cross-correlation where the filter 

is flipped both horizontally and vertically before 

being applied to the image:

Cross-correlation is a statistically motivated operation computing similarity between 

a pattern defined by kernel h (seen as an image too) and patches at different locations inside image f  (more later) 



Neighborhood Processing (filtering)

convolution = linearity + shift-invariance

fhg =
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Note:   any linear shift-invariant operation is 

a convolution (or cross-correlation)

NOTE: since the two operations are equivalent after trivial kernel “flipping”, in practice, 

they are often used indiscriminately. For example, CNNs implementations often use cross correlations.



kernels + convolution

in Image Processing

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Examples to be discussed now:

 - denoising (mean filtering, Gaussian kernel)

              - edge detection (differentiation, gradient & Laplace kernels) 

              - sharpening (unsharp mask, LoG & DoG kernels)

              - pattern matching (template matching, NCC)

Also in this topic:

 - non-linear filtering  (median filtering, Harris Corners, ...)

               
- feature localization (detection) – non-maximum suppression

            VS.  

  feature descriptors (matching) – MOPS, SIFT, ...



2D filtering for

Noise Reduction

Common types of noise:

• Salt and pepper noise: 

random occurrences of   

black and white pixels

• Impulse noise: random 

occurrences of white pixels

• Gaussian noise: variations in 

intensity drawn from a 

Gaussian normal distribution



Neighborhood Processing (filtering) 

Mean filtering

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

?
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Neighborhood Processing (filtering) 

Mean filtering

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[ yxf ],[ yxg
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Neighborhood Processing (filtering) 

Mean filtering

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

],[ yxf ],[ yxg

side effect of mean filtering: blurring



Effect of 

mean filters



1 1 1

1 1 1

1 1 1

Neighborhood Processing (filtering) 

Mean kernel

What’s the kernel for a 3x3 mean filter?

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


9

1



Neighborhood Processing (filtering) 

Gaussian Filtering

A Gaussian kernel gives less weight to pixels 

       further from the center 

       of the window
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

discrete approximation of 

a Gaussian (density) function

1 2 1

2 4 2

1 2 1


16

1

NOTE: Gaussian distribution is a synonym for Normal distribution!



Neighborhood Processing (filtering) 

Gaussian Filtering

A Gaussian kernel gives less weight to pixels 

       further from the center 

       of the window
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

discrete approximation of 

a Gaussian (density) function

1 2 1

2 4 2

1 2 1


16

1

We denote such Gaussian kernels by G or GϬ

G



Neighborhood Processing (filtering) 

Mean vs. Gaussian filtering

no rotational invariance



Neighborhood Processing (filtering) 

Median filters

A Median Filter operates over a window by 

selecting the median intensity in the window.

What advantage does a median filter have over 

a mean filter?

Is a median filter a kind of convolution?

- No, median filter is non-linear  (homework exercise)



Comparison: 

salt and pepper 

noise



Comparison: 

Gaussian 

noise



Differentiation and convolution

Recall for 

Useful for analyzing  f(x)

How to extend differentiation to 

multivariate functions like         

        or                       ?
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= slope of the tangent line 

at each specific point x

tangent line at given point x0 

a.k.a. 1-st order Taylor approx.

“extrema”

points

steepest

positive

slope

steepest

negative

slope

Extra reading: Forsyth & Ponce, 8.1-8.2

x0

dx



Differentiation and convolution

),( yxf

Some intuition first: 

   - For functions  f(x,y)  think about the slope of a tangent plane for its 3D plot at point (x,y).

                

   - Such a slope could be characterized by direction and magnitude - attributes of a vector (?)

3D plot of  f

x

y

f(x,y)

What is “slope” of  f(x,y) 

at a given point (x,y)?



range of  f(x,y)

Differentiation and convolution

),( yxf

x

y

domain of  f(x,y) in R2

What is “slope” 

at point (x,y)?

“heat-map” visualization of  f



range of  f(x,y)

Differentiation and convolution

For                 use fixed directions
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(e.g. “partial” derivatives)

NOTE: we compute partial derivatives

             at specific points (x,y)

             so, formally one can write
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domain of  f(x,y)
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What is “slope” 

at point (x,y)?

Another common notation
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slope in 

x-direction

slope in 

y-direction



range of  f(x,y)

Differentiation and convolution

For                 use fixed directions
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point (x,y)?

gradient f

slope in 

x-direction

slope in 

y-direction

(e.g. “partial” derivatives)
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Gradients for function f (x,y)    
(a.k.a. intensity gradients, if  f represents image intensities)

For a function of two (or more)   

    variables ),( yxf

Gradient 

at point (x,y)

two (or more) 

dimensional vector

x

y

• Gradient’s absolute value                             describes the slope’s “steepness”

       -  large at contrast edges, small in inform color regions 

small image gradients 

in low textured areas

• Gradient’s direction corresponds to the steepest ascend direction of the “slope”

- gradient is orthogonal to image object boundaries 



Gradients and linear approximations 
(tangent hyperplanes)

tangent line at given point x0 

a.k.a. 1-st order Taylor approx.

x0

dx

Functions of a single variable

tangent plane at given point x0 ,y0

a.k.a. 1-st order Taylor approx.

Functions of two variables

x0

y0

dx dy

General formula for linear (1st order) Taylor approximation for function              of n variables

steepest ascend direction 

at point



Comment: gradient        is independent of 

specific coordinate system for domain of  f

directional derivative of 

function  f  along direction  n

In general,   gradient    of function     

at point can be defined as a 

vector          s.t. for any unit vectorf

dot product

• pure vector algebra,  specific coordinate system is irrelevant

• works for functions of two, three, or any larger number of variables

• partial derivatives                represent gradient          for any given 

orthonormal XY basis for 2D domain of function
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Image gradients

as a “vector field”

from Jupiter notebook “Convolution.ipynb”

)(' xf

x

x

gradients (derivatives) for

a function of two variables, image  f (x,y)

derivatives for 

function of one variable  f (x)



Computing gradients for closed-form functions
(iClicker moment) 

none of the above

A:

B:

C:

both A and BD:



Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

Estimating partial derivatives for 

numerically-defined               e.g. images

Both are linear and shift-invariant, so 

“must be” the result of a convolution.
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[Extra Reading: Forsyth & Ponce, 8.1-8.2]
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Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point  (xi ,yi) 

    one can approximate this as

                              

x
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partial derivative with respect to x
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convolution
with kernel          



Estimating gradients for numerically defined functions, e.g. images 

Differentiation and convolution

At given point  (xi ,yi) 

    one can approximate this as

x
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0 0 0 40 60 60 60 40 0 0
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0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1/2*(90-0) = 45 

convolution
with kernel          



Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point  (xi ,yi) 

    one can approximate this as

x
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0 0 0 60 90 90 90 60 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1/2*(0-90) = -45 

convolution
with kernel          



Estimating gradients for numerically defined functions, e.g. images 

Differentiation and convolution

At given point  (xi ,yi) 

    one can approximate this as
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0 0 0 60 90 90 90 60 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1/2*(60-60) = 0 

convolution
with kernel          



Finite differences

fx 



Finite differences responding to noise

increasing noise ->
(this is zero mean additive Gaussian noise)

fx  fx  fx 



)(xf

x

)(' xf

x

)(' xf

x

)(xf

x

(with small noise)



Finite differences and noise

Finite difference filters 

respond strongly to noise

• obvious reason: image 

noise results in pixels that 

look very different from 

their neighbours

Generally, the larger the 

noise the stronger the 

response

What is to be done?

• intuitively, most pixels in images 

look quite a lot like their 

neighbors

• this is partially true even at 

edges: along the edge they are 

similar (but not across the edge)

• suggests that smoothing the 

image should help, by forcing 

pixels different to their neighbors 

(=noise pixels?) to look more 

like neighbors



Smoothing and Differentiation

Issue:  noise

• smooth before differentiation

• two convolutions:                               

• actually, we can use a derivative of Gaussian filter

– differentiation is convolution, and convolution is 
associative

G  
(2D gaussian)

(x-derivative of 2D gaussian)



Smoothing and Differentiation

Issue:  noise

• smooth before differentiation

• two convolutions:

• actually, we can use a derivative of Gaussian filter

– differentiation is convolution, and convolution is 
associative

(y-derivative of 2D gaussian) (x-derivative of 2D gaussian)



The scale of the smoothing filter  (e.g. “bandwidth”  σ  of a Gaussian kernel) 

affects derivative estimates, and also the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels



Image Gradients and Edges

Source: D. Lowe

Goal: Identify sudden (large) changes 

(discontinuities) in an image

– Intuitively, most semantic and shape information from the 

image can be encoded in the edges

– More compact than pixels

• Ideal: artist’s line drawing

  (note that artist is using object-level knowledge)



Image Gradients and Edges

Source: J. Hayes

Why do we care about edges?

•  Extract information, recognize objects

• Recover geometry and 

    viewpoint
vanishing 

point B
vanishing 

point A

vanishing 

point C 
(at infinity)



Image Gradients and Edges

Typical application where image gradients are used 

is image edge detection

• find points with large image gradients 

“Lena’s image”
thresholded 

gradient magnitudes

gradient magnitudes



Image Gradients and Edges

At any given point  q  we have a local 

maximum if gradient magnitude           at q 

is larger than those at both p and r 
(may need to interpolate to estimate gradients at p,r)

Edge thinning via non-maximum suppression

gradient magnitudes

q

q

nearest neighbors 

of pixel q

Gradient at q

p

r

ridge of 

local maxima



Image Gradients and Edges

Typical application where image gradients are used 

is image edge detection

• find points with large image gradients 

“Lena’s image”
gradient magnitudes thinned gradients magnitudes

(non-maxima suppression)

Canny edge detector

(non-maxima suppression

+ adaptive thresholding)

“edge features”



+ =      ?

Unsharp masking

What does blurring take away?

- =

IGIU *−=

UI +

unsharp mask

unsharp mask

IGIU *−=I

I G*I



+ =      ?

Unsharp masking

unsharp mask

UI +

IGI *)1( −+ 

IGIU *−=

IGIG **)1(   −+
1

I



+ =      ?

Unsharp masking

unsharp mask

UI +

IGI *)1( −+ 

unsharp masking  can be seen as 

a convolution with 

difference of Gaussians (DoG) kernel                    

IGIU *−=

IGG *])1[(   −+

I

1



Unsharp masking
unsharp masking  can be seen as 

a convolution with 

difference of Gaussians (DoG) kernel                    

 GGDoG −

Gε-Gσ

Gε

Gσ



Unsharp masking

Python:

im=image.imread(“xxxxx.jpg")

# assume “im” is gray scale

blurred = ndimage.gaussian_filter(im, sigma=3)

unsharp = im - 1.0*blurred

sharp = im + 10.0*unsharp

One can obtain the same effect 

using an explicit convolution with the DoG kernel

 GGDoG −

unsharp masking  can be seen as 

a convolution with 

difference of Gaussians (DoG) kernel                    

 GGDoG −

Gε-Gσ

Gε

Gσ



Reading: Forsyth & Ponce ch.7.5 

Filters and Templates

Applying a filter at 

some point can be seen 

as taking a dot-product 

between the image and 

some vector

Filtering the image is a 

set of dot products

Insight 

• filters may look like the effects they 

are intended to find

• filters find effects they look like

Gx  Gy 



Normalized Cross-Correlation (NCC)

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the 

norms of kernel and image patch

||||

],[],[

t

k

ku

k

kv

fh

vyuxfvuh



++ 
−= −=

cross-correlation  of  h  and  f  around  t=(x,y)

division makes this 

a non-linear operation

)cos(
||||

][ =



=

t

t

fh

fh
tg

 h

ft

raster-scan  h  and   ft  as vectors in  Rn

f

t=(x,y)

ft

h

image

template (filter, kernel, mask)

of size  n = (2k+1) x (2k+1)

image 

patch 

at  t


=

=
n

i

izz
1

2||vector lengths



Normalized Cross-Correlation (NCC)

Tricks:

• subtract template average       

• subtract patch average             

(subtract the image mean in the 

neighborhood of t)

f

t=(x,y)

ft

h

image

||||

)()(
][

tt

tt

ffhh

ffhh
tg

−−

−−
=

 hh−

tt ff −

such vectors do not have to be 

in the “positive” quadrant

image 

patch 

at  t

NCC

h

tf

template (filter, kernel, mask)

of size  n = (2k+1) x (2k+1)

- gives zero output for constant regions, reducing 

response to irrelevant background

- invariance to (additive) intensity bias

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the 

norms of kernel and image patch



Normalized Cross-Correlation (NCC)

f

t=(x,y)

ft

h

image

 hh−

tt ff −

such vectors do not have to be 

in the “positive” quadrant

image 

patch 

at  t

NCC

tfh

tt

n

ffhh
tg

 

−−
=

)()(
][

equivalently using statistical term  σ (standard diviation)

||)( 1

1

21 zzzz
n

n

i

inZ −=− 
=

Remember: st.div.

template (filter, kernel, mask)

of size  n = (2k+1) x (2k+1)

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the 

norms of kernel and image patch

Tricks:

• subtract template average       

• subtract patch average             

(subtract the image mean in the 

neighborhood of t)

h

tf

- gives zero output for constant regions, reducing 

response to irrelevant background

- invariance to (additive) intensity bias



Normalized Cross-Correlation (NCC)

f

t=(x,y)

ft

h

image

tfh

tfh
tg

 
=

),cov(
][

standard in statistics 

correlation coefficient

between  h  and  ft

NCC



equivalently using statistical term  cov (covariance)

image 

patch 

at  t

n

bbaa
bbaabbaaEba

n

i

iin

)()(
))(())((),cov(

1

1
−−

=−−=−− 
=

template (filter, kernel, mask)

of size  n = (2k+1) x (2k+1)

Tricks:

• subtract template average       

• subtract patch average             

(subtract the image mean in the 

neighborhood of t)

h

tf

- gives zero output for constant regions, reducing 

response to irrelevant background

- invariance to (additive) intensity bias

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the 

norms of kernel and image patch



hA hB hC hD

Normalized Cross-Correlation (NCC)

NCC for h and f

image f
A

B

C

D

points mark local maxima of NCC 

for each template

templates

points of interest or feature points

pictures from Silvio Savarese

(detected via non-maxima suppression of NCCs)



Normalized Cross-Correlation (NCC)

Vision system for TV remote control

     -  uses template matching

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer 

Graphics and Applications, 1998 copyright 1998, IEEE



Other feature points… 
(Szeliski sec 4.1.1)  

• Image alignment/registration

• 3D reconstruction

• Motion tracking

• Object recognition

• Indexing and database retrieval

• Robot navigation

• … other

Many applications require 

generic “discriminant” feature points with

identifiable appearance and location
(so that they can be matched across multiple images)



How discriminant are 

“intensity edges”

Patches at different near-by locations along the edge 

look identical and cannot be discriminated (uniquely identified and localized). 



Harris corners

Intuition: 

find patches where 

strong gradients 

vary in orientation  

in contrast, basic edge features use only magnitude of image gradients fffff T

yx =+= 2'2'2
)()(

no orientation information

(see next slides, also Selizski – Sec 4.1.1) 










2'''

''2'

)(

)(

yyx

yxx

fff

fff
Tff =

corner features are extracted by analyzing image “auto-correlation” matrices



The Basic Idea

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should 
give a large change in observed intensities



Harris Detector: Basic Idea

“flat” region:

no change in all 

directions
no change along the edge 

direction

“corner”:

significant change in all 

directions
change across the edge direction

“edge”:



Harris Detector: Mathematics

For any given image patch or window  w 

we should measure how it changes 

when shifted by       

Notation: a patch can be defined

by its indicator or “support” function  

w(x,y)  over image pixels 

x

y

w(x,y)=0

w(x,y)=1









=

v

u
ds



2

,

)],(),([),(:),(  −++=
yx

w yxIvyuxIyxwvuE

Harris Detector: Mathematics

patch w change measure for shift         :

IntensityShifted 
intensity

Window 
function

or
NOTE:             

window support

functions  w(x,y) = Gaussian 

(weighted) support1 in window, 0 outside

weighted sum of 

squared differences







=

v

u
ds



Harris Detector: Mathematics

vIuIyxIvyuxI yx +−++ ),(),(

dsIIdsyxIvyuxI TT −++ 2]),(),([

IdsT =

dsIIyxwds T

yx

T 












 

,

),(

2

,

)],(),([),(),(  −++=
yx

w yxIvyuxIyxwvuE

Change of intensity for the shift              assuming image gradient  







=

v

u
ds 








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y

x

I

I
I

difference/change in  I  at (x,y)  for shift  (u,v) = ds                     (remember gradient definition on earlier slides!!!!)

this is 1st order Taylor expansion (see slide 55)

dsMds w

T =

Mw



Harris Detector: Mathematics

dsMds
v

u
MvuvuE w

T

ww =







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Change of intensity for the shift              assuming image gradient  







=

v

u
ds 





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
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IIyxw

Mw

where  Mw  is a 22 matrix computed from image derivatives inside patch  w












2

2

yxy

yxx

III

III

This tells you how 

to compute Mw 

at any window  w    

      (t.e. any image patch)

matrix  M  is also called 

Harris matrix or structure tensor



Harris Detector: Mathematics

M is a positive semi-definite (p.s.d.) matrix   (Exercise: show that                             for any ds) 0 dsMdsT

M can be analyzed via isolines, e.g.                                            (ellipsoid) 1= dsMds w

T

Points on this ellipsoid are shifts ds=[u,v]T

that have the same value of function E(u,v)=1.

 This isoline visually illustrates how function E  

depends on shifts ds=[u,v]T in different directions.

u

v

1

2

2

2



Change of intensity for the shift              assuming image gradient  







=

v

u
ds 








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y

x

I

I
I

paraboloid

two eigen values of matrix  Mw

see next slide
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iClicker moment

Quadratic forms and their matrix-based expressions

?

A:

where

B:

C:

D:

(all terms are of order 2)



s

technical note from linear algebra:

Ellipsoids
ellipsoid aligned with 

coordinate axes  

or         

or

unit circle

or

    for

2

s

V2

V1

2

2

s

ellipsoid 

with general principal axes

for any p.s.d. matrix M

Explanation:                           (eigendecomposition for any p.s.d. M) 

assuming non-negative

change to a different 

orthogonal coordinate basis

(more in next topic) rotation

two columns are 

orthogonal unit

eigenvectors

of matrix M

eigenvalues

of matrix M

2x2



Harris Detector: Mathematics

1

2

“Corner”

1 and 2 are large,

 1 ~ 2;

E rapidly increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points 

using eigenvalues of M:



Harris Detector: Mathematics

One common measure 

of corner response:

1 2

1 2

det

trace

M

M

 

 

=

= +

M

M
R

Trace

det
=

1

2

0 T

T

TR 
+

=
21

21





Q: computational complexity for

     computing R (corner response)

     at all image pixels? 
(assume window of size nxm and image of size NxM)



Harris Detector

The Algorithm:

• Find points with large corner response function  R  

                       R > threshold

• Take the points of local maxima of R



Harris Detector: Workflow

Features are often needed to register different views of the same object



Harris Detector: Workflow

Compute corner response R



Harris Detector: Workflow

Find points with large corner response: R>threshold



Harris Detector: Workflow

Take only the points of local maxima of R



Harris Detector: Workflow



Example of corner features (python)

from jupiter notebook “FeaturePoints.ipynb”



Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation



Harris Detector: Some Properties

Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift I → I + b

✓ Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

features locations stay the same,  

but some may appear or disappear depending on gain  a

(“bias” invariance)

(“gain” invariance)



Harris Detector: Some Properties

non-invariant to image scale!

All points will be 

classified as edges
corner

Two images of the same object taken at different scales (e.g. zoom settings)



Scale Invariant Detection

Consider windows (circles) of different sizes (scales) around a point

At some scale it looks like a corner.

corner

edge

edge



Scale Invariant Detection

for even larger windows 

it may become an edge again

corner

edge

edge

Consider windows (circles) of different sizes (scales) around a point

At some scale it looks like a corner.

Choose the scale of the “best” corner (scale with largest R value)

Can use Gaussian pyramid for efficient optimal scale selection (see 2 slides later) 



 GGDoG −

Blob-like discriminant feature points

DoG (or a similar LoG) kernels

   are used to detect blob-like features

   

 

Feature locations: extrema points for convolution with 

Feature scale is still not known:                            ?     

How to find the right scale?

Instead of rescaling the kernel, rescaling the image is more efficient…



Gaussian pyramid

Gaussian pyramid helps to find “optimal scale” for features

location (x,y)

Side Notes: such Gaussian pyramid 

can be seen as a trivial (linear)

convolutional neural network

- similar multiresolution pyramid 

also appears in the “encoder” part

of common segmentation CNNs

s=4

s=1

s=2

s=3

scales

s=5



Gaussian pyramid

Gaussian pyramid helps to find “optimal scale” for features

location (x,y)

compute feature response

(e.g. convolve or NCC w. kernel) 

with image at each scale

*

*

*

*

*

e.g. consider DoG features

s=4

s=1

s=2

s=3

scales

s=5



Gaussian pyramid

Gaussian pyramid helps to find “optimal scale” for features

find local maxima

response in volume

(x,y,s)

e.g. consider DoG features

compute feature response

(e.g. convolve or NCC w. kernel) 

with image at each scale

*

*

*

*

*

s=4

s=1

s=2

s=3

scales

s=5

location (x,y)



Example (python)

from jupiter notebook “FeaturePoints.ipynb”

circle center   ->  feature location

circle radius   ->  feature scale



Features: location + descriptor

Now we know how to detect (locate) interest points or features

Next question: How to match them?

?

Point descriptor should be:              invariant      (stable to illumination and view point changes) 

     distinctive    (discriminant)

Besides location each feature point should have its signature or descriptor



Common generic feature points

MOPS, Hog, SIFT, …

Features   are characterized by    location            and         descriptor

   color                                           any pixel                         RGB vector

   edge                                  local extrema of

  MOPS                                          corners                        normalized intensity patch

   HOG                           DOG or LOG extrema points            gradient orientation

   SIFT                                 or other interest points                 histograms

highly 

discriminative

(see Szeliski, Sec. 4.1.2)

more below
f f



Multi-Scale Oriented Patches    (MOPS)

Patch location and orientation

• Multi-scale Harris corners

• Orientation from blurred gradient => invariant to rotation

Descriptor vector

• Sampling of intensities in a local 8x8 patch

• Bias/gain normalization => invariance to affine intensity changes

              [Brown, Szeliski, Winder, CVPR’2005]

Summary of main ideas:



MOPS: patch location and orientation

Location and Scale – Harris corner

Orientation - blurred gradient

Rotation Invariant Frame

• Scale-space position (x, y, s) + orientation ()

blurred gradient

orientation



Descriptors Invariant to Image Rotation

Set patch/descriptor orientation based on such direction

find “dominant” direction of image gradient in the neighborhood

(e.g. blurred-image gradient) to set patch orientation ()

=>  invariance to camera/image rotation 



MOPS: descriptor vector

8x8 oriented patch

• sampled at 5 x scale

Bias/gain normalization:  I’ = (I – )/

8 pixels

invariance to image 

intensity bias & gain



Detections at multiple scales
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