IIIIIIIIIIII

CS 484/684
Computational Vision

Image Pre-Processing

(the elements of filtering)

& Low-level Features

(low-dimensional, e.g. intensity, color, edges, corners, SIFT, ...)

\ J \ J
| |

raw input features filtered features
output of sensor output of “hand-designed”
low-level filters

Steven Seitz, Aleosha Efros, David Forsyth, Gonzalez & Woods

% WATERLOO
CS 484/684 Computational Vision

Image Processing Basics

0 Point Processing Extra Reading: Szeliski, Sec 3.1
e gamma correction intensities, colors
« window-center correction
* histogram equalization

[FI |tel'l ng (linear & non-linear neighborhood processing) Extra Reading: Szeliski, Sec 3.2-3.3

« convolution, gradient contrast edges
 mean, Gaussian, and median filters texture

» normalized cross-correlation (NCC) templates, patches

0 Higher-order gradient-based features

Harris corners, MOPS, SIFT, etc. Extra Reading: Szeliski, Sec. 4.1

IIIIIIIIIIII

% WATERLOO

Summary of image transformations

O Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples:

% WATERLOO
Summary of image transformations

0 Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples:

— Geometric (domain) transformation: g(x,y)= f(t(x Y),ty (X,¥))
- What kinds of operations can this transformation t = (t,, t,) perform?

% WATERLOO

Summary of image transformations

O Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples:

— Geometric (domain) transformation: g(x,y)= f(t(x Y),ty (X,¥))
- What kinds of operations can this transformation t = (t,, t,) perform?

— Range transformation: g(x,y)=t(f(x,y))
- What kinds of operations can this transformation t perform?

UNIVERSITY OF
% WATERLOO

Summary of image transformations

O Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples: Topic 4

— Geometric (domain) transformation: g(x,y)= f(t(x Y),ty (X,¥))
What kinds of operations can this transformation t = (t,, t,) perform?

— Range transformation: g(x,y)=t(f(x,y))
- What kinds of operations can this transformation t perform?

point processing

ring also generates new images from an existing image

g(x,y)= jh(u,v)-f(x—u,y—v)~du-dv

— more on filtering later |uj<e
lvi<e neighborhood processing
NOTE: neural networks use such operations (e.g. activations, convolutions) in each layer (e.g. CNNs in Topics 10-12)

% WATERLOO

Point Processing

image image
range range
g(x,y) =t(f(x,y)) t:R— R

for each original image intensity value | function t(-)

returns a transformed intensity value t(l).
_ NOTE: we will often use

[— t([) notation |, instead of f(x,y) to

denote intensity at pixel p=(x,y)

* Important: every pixel is for itself
- spatial information is ignored!

* What can point processing do?

(we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)

% WATERLOO
Point Processing:

Examples of gray-scale transforms t

FIGURE 3.3 Some L—-1
basic gray-level
transformation
functions used for Negative
image
enhancement. nth roat
3L/ -
i Log
)
5 nth power
‘J.I'J L;‘? — —
g
o)
L/4 _
Identity Inverse log

0 L/4 L2 3L /4 L—1

Input gray level. r

%Y WATERLOO
Point Processing:

Negative

ab

FIGURE 3.4

(a) Original
digital
Mmammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

I, or f(xY) ||’o or g(X,y)

t(1) =255 |

g(x, y) =t(f(x,y)) =255-1(x,y)

Point Processing:

Power-law transformations t

UNIVERSITY OF

A WATERLOO

@

FIGURE 3.6 Plots

of the equation

s = ¢’ for
various values of
y(c = 11inall
cases).

HI) = I7

L-1 _
= 0.04
y = 0.10
3L/4 v = 0.20 H
. v = 0.40
E
B v = 0.67
L2 = —
=]
E‘ v=13
L
= 2.
Li4r- =50 .
y = 10.0
_ﬁfﬂff// = 25.0
0 | | | _/
0 L/4 L/2 3L /4

Input gray level. r

UNIVERSITY OF
A WATERLOO

<%

Point Processing:

Enhancing Image via Gamma Correction

ab
cd

FIGURE 3.9

(a) Aerial image.
{(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0.4.0,and
5.0, respectively.
{Original image
for this example
courtesy of
NASA.)

Point Processing:

UNIVERSITY OF
% WATERLOO

Understanding Image Histograms

Dark image Lonw-contrast image

Bright image High-contrast image

Image Brightness

probability of intensity i - p(I1) = —

Image Contrast

---number of pixels with intensity i

|
N ---total number of pixels in the image

%Y WATERLOO
Point Processing: Note the difference between
contrast and dynamic range

CO ntraSt StretCh | ng (max | - min 1) (min #bits needed)

Output image

(rz2.52)

Original image

L2 T(r) _

Ouput gray level. s

(ry.s)

0 | | |
0 L/4A L2 3L4 L-1

Input gray level.r

—
1
-

T(r)

Output gray level, s

0
/ Input gray level, r L-1

a.k.a. intensity thresholding

%Y WATERLOO
Point Processing:

Contrast Stretching

Original images Histogram corrected images

1)

2)

%Y WATERLOO
Point Processing:

Contrast Stretching

Original images Histogram corrected images

3)

% WATERLOO

One way to automatically select transformation t :

Histogram Equalization

FIGURE 3.18
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
1[11 1“‘& 5 1[1

Hn? 7(a).using
EL[{11 8).

1.00

0.75 -

0.50 —

025 -

0 % 192 255

t(i) = Z n(j) = T’ = cumulative distribution
=0 of Image intensities

...see Gonzalez and Woods, Sec3.3.1, for more details

UNIVERSITY OF

WATERLOO
Point processing

Histogram Equalization

ti)=> p(j)=>+ = cumulative distribution
j=0 j=0 of image intensities

Q: Why does that work?

Answer in probability theory:
I—random variable with probability density p(i) over j in [0,1]
If £(7) is a cumulative distribution function for 7 then

I'=t(I) —is a random variable with uniform density over its range [0,1]

That is, transform image 7’ will have a uniformly-spread histogram (good contrast)

% WATERLOO

Point Processing: input image outpruatnigrr;age
Window-Center adjustment t R SR

Displaying high dynamic range
image (e.g. CT or MR) over low
dynamic range monitor

distinct input intensities are

displayed as one

256 /

monitor’s intensity
small bit depth (28 or 1 byte)

o

input intensity ~05000 A Jot of information is lost!
large bit depth (up to 216 or 2 bytes)

monitor’s intensity

% WATERLOO

Point Processing:

Window-Center adjustment

256

input intensity >65000

UNIVERSITY OF

%/ WATERLOO
Point Processing:

Window-Center adjustment

256

window

output gray level

\ 4

0 center 60000

input gray level

Point Processing:

Window-Center adjustment

Window = 4000
Center =500

IIIIIIIIIIII

Point Processing:

Window-Center adjustment

Window = 800
Center =500

IIIIIIIIIIII

IIIIIIIIIIII

Point Processing:

Window-Center adjustment

Window =0
Center = 500

If window=0 then we get
binary image thresholding

%Y WATERLOO
Point Processing:

Window-Center adjustment
‘ 4 ol

Window = 800
Center = 500

Window = 800
Center = 1160

IIIIIIIIIIII

Q. Is This an Example of Point Processing?

f(x,y) g(x,y) =t(t(x,y))

IIIIIIIIIIII

Neighborhood Processing (or filtering)

0 Q: What happens if I reshuffle all pixels within the image?

£

d nn IIIIII- . 1 n .l.l. --

M I 1 " | | ' 1 II w :I .I Y . I1 2 .: Il-. .LI
.. = " » l.] ' I. I n ..-l y - | -I | | o l: ll l1 " | |
T o . Al ol 40T o i e
L " i I.I. T :: | S 1 a I I. |} .I-. L I

| 1 .: l.:r1.II- :. .lI-l -II. - l1l. I ! I .II. ...

0 A: It’s histogram won’t change.
No point processing will be affected...

0 Images contain a lot of “‘spatial information”

Readings: Szeliski, Sec 3.2-3.3

%Y WATERLOO
Neighborhood Processing (filtering)
Linear image transforms

Let’s start with 1D image (a signal): f[i]

fle]

A very general and useful class of transforms are
the linear transforms of f, defined by a matrix M

M. j] fll gli]

glil = > MIi,jlf[i]

j=1

%Y WATERLOO
Neighborhood Processing (filtering)
Linear image transforms

Let’s start with 1D image (a signal): f[i]

Ile] fli] =

matrix M

flil —

IGE-‘IG-CJ:JGE'JI—'I
e T o I e o e e
o [v o o e Y e [
o [v e o O e e [
o v e v Y e e [
o= QoOoQo
oy = o e e [e
=0 000000

fli] =

e T e Y e e [e e [
o [e Y o [e e e [
o [e Y o [v e e [
o [e Y o o v e e [
o [e Y o v e e [
oo QQO o Qo
CoOoQQoQQ

T 1
[R T T R T

%Y WATERLOO
Neighborhood Processing (filtering)
Linear image transforms

Let’s start with 1D image (a signal): f[i]

2 i| =
f[] f[I] matrix M
O 0000000
4] 1 0000O0O0O0
01000000
00100000)
0001000 O0 f[g]—}
00001000
00000100
0O0O0O0O0CO0O1O0
20000000
11000000
1 01100000
00110000 3
Q2loo0011000 f[E]_jF
00001100
00000110
000O0O0O0011

%Y WATERLOO
Neighborhood Processing (filtering)

Linear shift-invariant filters

matrix M

= % 0 0 0
a b o 0O 0
h e 0
a b e

oo o o

represented by a so-called (1D) kernel or mask h:

n b e
0 a b ¢
E' D I Ir.l i
0O 0 0 % =

- -

0 0
0 0
0 0 It is known as a linear shift-invariant filter and is
0 aQ
o 0
L

hli] = [a b c]

L e i L
Lo o i N i [[

and can be written (for kernel of size 2k+1) as:
This pattern is very common

- same entries in each row

K
- all non-zero entries near the diagonal g [|] — Z h [U] . f [| + u]
g=M - f "

The above allows negative filter indices.

% WATERLOO
Neighborhood Processing (filtering)
|_Inear shift-invariant filters

Linearity of H: H (f+g) = Hf + Hg

Shift-invariance of H: H (Sf) =S (Hf) for shift operator, e.g S =

SO r O oo
O r OO oo
-0 O O O O

cocooco RO
coorRr oo
coococoo

Any linear shift-invariant operator H can be expressed in a form like

hli] = [a b c ..]

g[il= > h[u]- fli+u]

u=—k

UNIVERSITY OF

%/ WATERLOO
Neighborhood Processing (filtering)

2D linear transforms

Similar linear neighborhood-processing operations on 2D images can also
be expressed via matrix multiplication after concatenating all image rows
into one long vector (in a “raster-scan” order):

flil = fIli/m],i%m]

* * * & *

C * * *
¥ ¥ % % ¥

MGl f il

However, matrix M will have many zeros and
kernel-based representation is significantly simpler...

IIIIIIIIIIII

Neighborhood Processing (filtering)

2D filtering

2D image f[i,J] can be filtered by 2D kernel h[u,v] to produce
output image g[1,j]:

K K

gll, J] = Z Z hlu,v]- fli+u, j+V]

u=—k v=-k

This is called a cross-correlation operation and written:
g=hof

h is called “kernel” or “mask” or “filter” which
representing a given “window function”

% WATERLOO
Neighborhood Processing (filtering)

2D filtering

Closely related convolution operation is defined slightly differently

gli,i1= Y > hluv]- fli-u, j—v]

u=-k v=—k

It IS written as: « K
g —h=*f = > > h[-u~v]- fli+u, j+V]

Convolution is cross-correlation where the filter
is flipped both horizontally and vertically before
being applied to the image:

If h[u, v] = h[—u,—\V] then convolution is not different from cross-correlation

Convolution has additional “technical” properties: commutativity, associativity. Also, “nice” properties wrt Fourier analysis.
(see Szeliski Sec 3.2, Gonzalez and Woods Sec. 4.6.4)

Cross-correlation is a statistically motivated operation computing similarity between
a pattern defined by kernel h (seen as an image too) and patches at different locations inside image f (more later)

Neighborhood Processing (filtering)
convolution = linearity + shift-invariance

K K

gli,i1= Y > hluv]- fli-u, j—v]

u=-k v=—k

g= nNx* f = Zk: Zk: h[-u,—v]- f[i+u, j+V]

u=-k v=-k

Note: any linear shift-invariant operation Is
a convolution (or cross-correlation)

/

NOTE: since the two operations are equivalent after trivial kernel “flipping”, in practice,
they are often used indiscriminately. For example, CNNs implementations often use cross correlations.

i 2 WATERLOO
kernels + convolution N
In Image Processing

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Examples to be discussed now:

- denoising (mean filtering, Gaussian kernel)
- edge detection (differentiation, gradient & Laplace kernels)

- sharpening (unsharp mask, LoG & DoG kernels)
- pattern matching (template matching, NCC)

2D filtering for
Noise Reduction

Common types of noise:

« Salt and pepper noise:
random occurrences of
black and white pixels

« Impulse noise: random
occurrences of white pixels

e Gaussian noise: variations in
Intensity drawn from a
Gaussian normal distribution

Impulse noise

Gaussian noise

Neighborhood Processing (filtering)
Mean filtering

f[x, y]

IIIIIIIII

10

alx,y.

Neighborhood Processing (filtering)
Mean filtering

f[x, y]

IIIIIIIII

80

10

alx,y.

Neighborhood Processing (filtering)
Mean filtering

f[x, y]

%) WATERLO

UNIVER SITY

side effect of mean filtering: blurring

10

20

30

30

30

20

10

20

40

60

60

60

40

20

30

60

90

90

90

60

30

30

50

80

80

90

60

30

30

50

80

80

90

60

30

O[O O0O|O0|O|O

20

30

50

50

60

40

20

10

20

30

30

30

30

20

10

10

10

10

0

0

0

0

0

a[x,y]

OF

Gaussian Salt and pepper

Effect of notse oo
mean filters

AN5S

TxT

Neighborhood Processing (filtering)
Mean kernel

0 What’s the kernel for a 3x3 mean filter?

IIIIIIIII

IIIIIIIII

Neighborhood Processing (filtering)
Gaussian Filtering

0 A Gaussian kernel gives less weight to pixels
further from the center
of the window

2

discrete approximation of
a Gaussian (density) function

Ll
h,(u,'v)=27m2e o

NOTE: Gaussian distribution is a synonym for Normal distribution!

UUUUUU SITY OF

%) WATERLO
Neighborhood Processing (filtering)

Gaussian Filtering

0 A Gaussian kernel gives less weight to pixels
further from the center

of the window
1 2
e 2142
11211

GG

discrete approximation of
a Gaussian (density) function

Ll
h,(u,'v)=27m2e o

We denote such Gaussian kernels by G or G4

Neighborhood Processing (filtering)
Mean vs. Gaussian filtering

no rotational invariance

IIIIIIIIIIII

2J WATERLOO
Neighborhood Processing (filtering)

Median filters

0 A Median Filter operates over a window by
selecting the median intensity in the window.

0 What advantage does a median filter have over
a mean filter?

0 Is a median filter a kind of convolution?

- No, median filter is non-linear (homework exercise)

Compar Ison: Gaussian Median
salt and pepper = : '
noise :

Y

b Tisge
.r—f_‘.uh._.
.AIM_.-

._Jr..f.

SN
éz/fu

i | ._,.....u_ -)

RN

¢ _.m".“.u_
e [
1u.r._~.m-.“ A

e
W TN :.* ..mn..
Mt O, . ¥
.U...:f... ¥ i

N ,..-. e

S
TV i
L g u.,.ﬁ,“. i
a .rﬁ..."; .,."... i
By

‘g J .ru.r. Tk
,,, ,...,,,___,..-,__....ML.".._.m_vr
s
i .-ﬁ.....-.l. ..._._.”.m
.,..p.,,....J,.-._.“ffy gty
u.. .,_-_!_...._- L5 ...h

Extra reading: Forsyth & Ponce, 8.1-8.2

IIIIIIIIIIII

Differentiation and convolution

0 Recall for f(x)

1:,(X):"m(f(x+5)— f(x)j

&—0 E

o Useful for analyzing f(x)

o0 How to extend differentiation to
multivariate functions like

f(x,y) or f(X,y,2) ?

flz) 4

tangent line at given point x,
a.k.a. 1-st order Taylor approx.
tx) = f(x0) + f'(wo) (@ — @o)
-
dx

17NN

f'(X) 4 =slope of the tangent line

at each specific point x

X

UNIVERSITY OF
% WATERLOO

Differentiation and convolution

f(x,
3 () 3D plot of f

F(x,y) |

What is “slope” of f(X,y)
at a given point (x,y)?

Some intuition first:

- For functions f(x,y) think about the slope of a tangent plane for its 3D plot at point (x,y).

- Such a slope could be characterized by direction and magnitude - attributes of a vector (?)

IIIIIIIII

Differentiation and convolution

“heat-map” visualization of f

F(x,y)

domain of f(x,y) in R?

t is “slope”
int (x,y)?

range of f(x,y)

IIIIIIIII

Differentiation and convolution

o For f(X,Yy) use fixed directions

(e.g. “partial” derivatives) domain of f(xy)

el 10 ey) - () oo | .
2 f =1lim s
slope in g—)O 8 ' |
Y (- ¢
X
o ¢ _pim| JO0Y+E) = F(x,Y) a
E i
slope in ¢>0 8
NOTE: we compute partial derivatives X

at specific points (x,y)
so, formally one can write

Sf(xy) or 5 (XY
Another common notation

f (X,) f,(X)

range of f(x,y)

IIIIIIIIIIII

Differentiation and convolution

o For f(X,Yy) use fixed directions

(e.g. “partial” derivatives)

o :"m(f(x+g,y)—f(x,y)j
X £—0 E
0 f =|im(f(x’y+8)_ f(X1 y)j
% £—0 &

domain of f(x,y)

gradient V{
range of f(x,y)

UNIVERSITY OF

WATERLOO

Gradients for function f (x,y)
(a.k.a. intensity gradients, if f represents image intensities)

o For a function of two (or more)
variables f(X,Y)

v

| - of -
Gradient B
at point (x,y) V= of
. Jy

two (or more)
dimensional vector

-

small image gradients
in low textured areas

 Gradient’s absolute value 1v/I = \/ (g—ﬁ) + (2—;”) describes the slope’s “steepness™

- large at contrast edges, small in inform color regions

» Gradient’s direction corresponds to the steepest ascend direction of the “slope”
- gradient is orthogonal to image object boundaries

UNIVERSITY OF
% WATERLOO

Gradients and linear approximations

(tangent hyperplanes)
Functions of a single variable Functions of two variables
f:R — R f:R*— R
dx | {_dkx_\ dy
t(x) = f(xo) + f’(:z:o)(:o) Ha,y) = f(@o, o) + g—{(r Yo) (& — o) + g—i(? Yo) (4 = Yo)
fay f.y)s e S

a.k.a. 1-st order Taylor approx.

v
N
>
S

>I(o x b >
Y:/ _____________ /'v ¥ (Xo) steepest ascend direction
Y

at point X, = (Zo, Yo)
t(x) = f(%o) + vf(XO)TdX

General formula for linear (1t order) Taylor approximation for function f (X) of n variables X € R"

IIIIIIIIIIII

¥AT ERLOO

Comment: gradient Vf Is independent
specific coordinate system for domain of f

0 Ingeneral, gradient of function f(p)
at point p€R” can be defined as a
vector Vf s.t. for any unit vector n

Gragient V T'ﬁ — a‘f _f(p+e-n)-1f(p)
at point p / 8ﬁ :
dot product direCtio}al derivative of

function f along direction n

e pure vector algebra, specific coordinate system is irrelevant

« works for functions of two, three, or any larger number of variables
« partial derivatives (% , %) represent gradient Vf for any given
orthonormal XY basis for 2D domain of function f : R — R

Image gradients

UNIVERSITY OF
% WATERLOO

as a “vector field”

derivatives for
function of one variable f (x)

from Jupiter notebook “Convolution.ipynb”

R L

gradients (derivatives) for
a function of two variables, image f (x,y)

IIIIIIIIIIII

Computing gradients for closed-form functions
(iClicker moment)

flz,y,2)=yx

2

- ux

Vi=| 2
0

| 2yx
vr=| %

none of the above

both A and B

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

0 Estimating partial derivatives for
numerically-defined f (X, y) e.g. images

e—0

o :“m[f(x+g, y)— f (X, y)j

OX
&<

E

o f — Iim(f(xiy_l_g)_ f(X’ y)j
oy e—0

0 Both are linear and shift-invariant, so
“must be”’ the result of a convolution.

IIIIIIIIIIII

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (X; ,Y;)

partial derivative with respect to x]]
one can approximate this as

o f = Iim(Fix+e,y)= X y)j 2 f ~ f (Xi+1’ yi) — 1 (Xi—11 yi)
o ¢ > 2. AX
=V *f
convolution

with kernel 1

X

IIIIIIIIIIII

WATERLOO
Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point_(x; ,Y;)
one can-approximate this as

o g o T)~ T, Y1)

o 2. AX
=V *f

convolution
with kernel 1

X

1/2*(90-0) = 45

IIIIIIIIIIII

WATERLOO
Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (X ,Y;)
one can approximate this as

ot o T Vi) — T (X, i)
> 2 AX

=V *f

convolution
with kernel 1

X

1/2*(0-90) = -45

IIIIIIIIIIII

WATERLOO
Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point_(x; ,Y:)
one-ean approximate this as

o5 o 1K Y1) = T(Xiy, i)

o 2. AX
=V *f

convolution
with kernel 1

X

1/2*(60-60) = 0

Finite differences

iz

IIIIIIIIIIII

Finite differences responding to noise

increasing noise ->
(this is zero mean additive Gaussian noise)

VA

f ()

»

UNIVERSITY OF

WATERLOO

f(X) 4 (with small noise)
> X
f'(X) s
| X

IIIIIIIIIIII

Finite differences and noise

0 Finite difference filters 0 What is to be done?

respond Strongly to noise * Intuitively, most pixels in images
_ _ look quite a lot like their
 obvious reason: image neighbors
noise results in pixels that - this is partially true even at
look very different from edges: along the edge they are
their neighbours similar (but not across the edge)

* suggests that smoothing the
. Genera”y’ the Iarger the image should help, by forcing

noise the stronger the pixels different to their neighbors
(=noise pixels?) to look more
response like neighbors

% WATERLOO
Smoothing and Differentiation
0 Issue: noise

« smooth before differentiation
« two convolutions: Vg x (G * f)
» actually, we can use a derivative of Gaussian filter
—differentiation 1s convolution, and convolution iIs
assoclative

Vex (Gxf)=(VexG)xf
! iffé.'-‘i'
A
f".!” ‘ \ ."I') p: I' Y
!H) ”;")
‘;, 0,:,:.¢‘!“1t\\1 ;;,’,l;f,':'&f,?:::s‘ R =
7 i 5
m‘:‘t‘i’o‘:’t‘:“;‘;‘{a éﬁ’ﬂ%&f@"!‘&%\\\\v gt
i N
(2D gaussian)

(x-derivative of 2D gaussian)

IIIIIIIIIIII

Smoothing and Differentiation

0 Issue: noise
« smooth before differentiation
e two convolutions: Vg x (G * f)
« actually, we can use a derivative of Gaussian filter
—differentiation is convolution, and convolution is
assoclative Vex (Gx)= (Ve*xG)xf
| \ w

Vy, xG

V,*xG
-

(y-derivative of 2D gaussian) (x-derivative of 2D gaussian)

UNIVERSITY OF

WATERLOO

1 pixel 3 pixels 7 pixels

The scale of the smoothing filter (e.g. “bandwidth” ¢ of a Gaussian kernel)
affects derivative estimates, and also the semantics of the edges recovered.

% WATERLOO

Image Gradients and Edges

Goal: Identify sudden (large) changes
(discontinuities) in an image

— Intuitively, most semantic and shape information from the
image can be encoded in the edges
— More compact than pixels

e |deal: artist’s line drawing

(note that artist is using object-level knowledge)

Source: D. Lowe

IIIIIIIII

Image Gradients and Edges

Why do we care about edges?

Extract information, recognize objects

vanishing
T point C
(at infinity)

« Recover geometry and
viewpoint

vanishing

o point B
vanishing

point A

Source: J. Hayes

IIIIIIIIIIII

Image Gradients and Edges

0 Typical application where image gradients are used
IS Image edge detection

« find points with large image gradients

gradient magnitudes " thresholded
IV £ gradient magnitudes

“Lena’s image”

IIIIIIIIIIII

% WATERLOO

Image Gradients and Edges

Edge thinning via non-maximum suppression

nearest neighbors
of pixel q
® o----3-0-0
e o g
Gradient:at g
® &-@--9 - *
I
@ 9 @ @

At any given point q we have a local
maximum if gradient magnitude |V f|| at g

Is larger than those at both p and r
(may need to interpolate to estimate gradients at p,r)

ridge of
local maxima

gradient magnitudes

IIIIIIIII

Image Gradients and Edges

0 Typical application where image gradients are used
IS Image edge detection

« find points with large image gradients

“edge features”

P
i YT -
~

1 " &
o
\“:a

. N
S

—._-__%‘—_\
- b ‘
e

" £y
Yo e
Soart
ol 5
i - W
08 Y N
o

-~
E L
. T 1.

R
O o L)
‘!R..;—-rk
SR

X TG
3 e
_:’\f':?-.'.
ol
~
il

v
Y

E

-
v m——

x: ‘:/"
gradient magnitudes Canny edge detector

INgal (non-maxima suppression
+ adaptive thresholding)

P
‘X{é@"v 4'45
N

“Lena’s image”

Uuns
oW

narp masking

nat does blurring take away?

unsharp mask

IIIIIIIIIIII

unsharp mask

IIIIIIIIIIII

Unsharp masking

l+a)l —a-G*I = (+a)G, *| —a-G_*I

e<l

unsharp mask

UNIVERSITY OF
% WATERLOO

Unsharp masking

unsharp masking can be seen as
a convolution with
difference of Gaussians (DoG) kernel

l+a)l —a-G*lI = [l+a)G, —a-G_]*I

e<l

unsharp mask

UNIVERSITY OF
% WATERLOO

Unsharp masking

unsharp masking can be seen as
a convolution with
difference of Gaussians (DoG) kernel

Ge

Go f\

| T~

Ge-Go

UNIVERSITY OF
% WATERLOO

Unsharp masking

unsharp masking can be seen as
a convolution with

Python: difference of Gaussians (DoG) kernel

im=image.imread("xxxxx.jpg") Ge

assume “im” is gray scale

\

Ge-Go

blurred = ndimage.gaussian_filter(im, sigma=3)
unsharp = im - 1.0*blurred

sharp = im + 10.0*unsharp

One can obtain the same effect
using an explicit convolution with the DoG kernel

IIIIIIIIIIII

Reading: Forsyth & Ponce ch.7.5
Filters and Templates

0 Applying a filter at
some point can be seen
as taking a dot-product Insight

between the image and « filters may look like the effects they
some vector are intended to find

0 Filtering the image is g « filters find effects they look like
set of dot products
V.46

X

V, %G

UNIVERSITY OF
% WATERLOO

Normalized Cross-Correlation (NCC)

« filtering as a dot product
e now measure the angle:

I.e. divide filter output by the
norms of kernel and image patch

cross-correlation of h and f around t=(x,y)

N ——Kv=
PV [hl- 1, |
h template (filter, kernel, mask) 4 7 @b \
orstee = Ferp(Eed xv’x' @Q division makes this
a non-linear operation
W) ft
A -] £
f .
image

n
) vector lengths | Z |= 22
raster-scan h and f;, asvectorsin R" ; '

% WATERLOO

Normalized Cross-Correlation (NCC)

- filtering as a dot product 0 Tricks: -
e now measure the angle: - subtract template average h

e
i.e. divide filter output by the « subtract patch average
norms of kernel and image patch (subtract the image mean in the
neighborhood of t)

- gives zero output for constant regions, reducing
response to irrelevant background
- invariance to (additive) intensity bias

h template (filter, kernel, mask)
of size n = (2k+1) x (2k+1)

image a - — . J—
ft E?tf% /—\ g [t] — (_) (t _t)
|h=h|-| f,— 1|
f T such vectors do not have to be

in the “positive” quadrant

% WATERLOO

Normalized Cross-Correlation (NCC)

« filtering as a dot product
e now measure the angle:

I.e. divide filter output by the
norms of kernel and image patch

h template (filter, kernel, mask)
of size n = (2k+1) x (2k+1)

W) f—f,

h [o
at t

such vectors do not have to be

image . .\
g in the “positive” quadrant

o Tricks:

* subtract template average h

- subtract patch average T,

(subtract the image mean in the
neighborhood of t)

- gives zero output for constant regions, reducing
response to irrelevant background
- invariance to (additive) intensity bias

equivalently using statlstlcal term o (standard diviation)

(h h) (f—f) Nee
- Noy o ey

glt] =

n
Remember: st.div. o, =/

% WATERLOO

Normalized Cross-Correlation (NCC)

« filtering as a dot product
e now measure the angle:

I.e. divide filter output by the
norms of kernel and image patch

h template (filter, kernel, mask)
of size n = (2k+1) x (2k+1)

o Tricks:

* subtract template average h

. subtract patch average
(subtract the image mean in the
neighborhood of t)

- gives zero output for constant regions, reducing
response to irrelevant background

- invariance to (additive) intensity bias

t=(x,y) standard in statistics equivalently using statistical term cov (covariance)
\ - correlation coefficient N f NCC
ft patc% t _ COV() '[)
at t P g[] _
Op O
¢ between h and f, t
image

cov(a,b)=E(a-a)(b-b) = %Zn:(ai—a)(bi—B) = (a—a)r-](b—b)

pictures from Silvio Savarese %Y WATERLOO

Normalized Cross-Correlation (NCC)

NCC for h and f

40

0 20 0 2 0 20 0 20 7
0 40 60 80 100 120 140 160 180 200
templates _ .
points mark local maxima of NCC

for each template

points of interest or feature points
(detected via non-maxima suppression of NCCs)

UNIVERSITY OF
% WATERLOO

Normalized Cross-Correlation (NCC)

Vision system for TV remote control
- uses template matching

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer
Graphics and Applications, 1998 copyright 1998, IEEE

Other feature points...
(Szeliski sec 4.1.1)

Many applications require
generic “discriminant” feature points with

Identifiable appearance and location
(so that they can be matched across multiple images)

Image alignment/registration
3D reconstruction

Motion tracking

Object recognition

Indexing and database retrieval
Robot navigation

... other

IIIIIIIIIIII

UNIVERSITY OF

%) WATERLOO

How discriminant are
“Intensity edges”

Patches at different near-by locations along the edge
look identical and cannot be discriminated (uniquely identified and localized).

UNIVERSITY OF
%) WATERLOO

Harris corners

Intuition:

find patches where
strong gradients
vary in orientation

) e

corner features are extracted by analyzing image “auto-correlation” matrices [(f) 1 fy]
g "\2
(see next slides, also Selizski — Sec 4.1.1) f fy (fy)

. i . . : 2 re\2 '"\2
in contrast, basic edge features use only magnitude of image gradients |[Vf|" =(f,)*+(f,)
no orientation information

%) WATERLOO

The Basic Idea

0 We should easily recognize the point by
looking through a small window

0 Shifting a window in any direction should
give a large change in observed intensities

!E\

% WATERLOO

Harris Detector: Basic ldea

| \

“flat” region: “edge”: “corner”:
no change in all change across the edge direction significant change in all
directions directions

no change along the edge
direction

%) WATERLOO

Harris Detector: Mathematics

For any given image patch or window w
we should measure how It changes
when shifted by o - ﬂ

V

w(x,y)=1

Notation: a patch can be defined
by its indicator or “support” function w(x,y)=0
w(X,y) over image pixels

y

IIIIIIIII

Harris Detector: Mathematics

weighted sum of

patch w change measure for shift ds = m squared differences

Window
function

window support e S
i _ o _ Gaussian
functions W(X,y) = 1 in window, 0 outside

(weighted) support

IIIIIIIIIIII

Harris Detector: Mathematics

u

Change of intensity for the shift s - { } assuming image gradient vi E[:}

y

v

~ . T
|(Xx+u,y+v)—I(x,y) = | -u+l v = ds -VI
difference/change in | at (x,y) for shift (u,v) =ds (remember gradient definition on earlier slides!!!!)
this is 15t order Taylor expansion (see slide 55)

[I(X+u,y+V)—I(X,yY)] =~ ds'-VI.-VI'.ds

Q
o
w
_|
M
=
=
X
<<
N’
<
<
_l
@R
w
1

UNIVERSITY OF

WATERLOO

Harris Detector: Mathematics

Change of intensity for the shift ds - {“

v

} assuming image gradient v E[:}

y

where M,, is a 2x2 matrix computed from image derivatives inside patch w

This tells you how
to compute M,,
A at any window w

{ \
(t.e. any image patch)
] WX, y)- VIV
X,y

2
matrix M is also called { Ix ley}

Harris matrix or structure tensor | | 1, 1

S~ M

W

UNIVERSITY OF

WATERLOO

Harris Detector: Mathematics

u

Change of intensity for the shift ds = {

} assuming image gradient v E[:}

y

v

paraboloid

M is a positive semi-definite (p.s.d.) matrix (Exercise: show that ds’ -M -ds >0 for any ds)

M can be analyzed via isolines, e.g. dsT -M w .0ds = 1 (ellipsoid)
T
Vv

see next slide

u
" Points on this ellipsoid are shifts ds=[u,v]"
2 2 that have the same value of function E(u,v)=L1.
VA JA = This isoline visually illustrates how function E
T / depends on shifts ds=[u,v]" in different directions.

two eigen values of matrix M,,

B WATERLGO
IClicker moment
Quadratic forms and their matrix-based expressions

2 + 2xy + 8y*

(all terms are of order 2)

pTMp where p::{g}

M =7
1 0 1 0
A: :
'8 2 ¢ l2 8
g [1 2 | 1 1
81 b 118

% WATERLOO

technical note from linear algebra:

Ellipsoids

A R? unit circle A R ellipsoid aligned with
! coordinate axes

Aes2 +)\ysz =1

s =1
or 33; + 52 =1 assuming non-negative A, and A,

or s . A-s =1

. a0
- AP > fOFA—|:0)\y]

v, | ellipsoid
Vz] | with general principal axes

Vz[Vl

two columns are
orthogonal unit
eigenvectors
of matrix M

s"-M-s =1 forany p.s.d. matrix M

Explanation: M = VAV (eigendecomposition for any p.s.d. M)
S Mes =1 = TV AVT.s =1

' | = (VTs)T - A-(VTs) = 1

change to a different

Ar O
A = { Y } orthogonal coordinate basis { — VT - S = tT At =1
Y (more in next topic) rotation

eigenvalues
of matrix M

UNIVERSITY OF
% WATERLOO

Harris Detector: Mathematics

Classification of image points Ay
using eigenvalues of M:

A, and a, are small; ‘
E is almost constant j> -
in all directions region

“EdgeQS
M >> 0,

%) WATERLOO

Harris Detector: Mathematics

One common measure
of corner response.

det M
Trace M

R =

detM =44,
traceM =4, + 4,

Q: computational complexity for
computing R (corner response) 0
at all image pixels?
(assume window of size nxm and image of size NxM)

Harris Detector

o0 The Algorithm:

 Find points with large corner response function R
R > threshold

 Take the points of local maxima of R

IIIIIIIIIIII

UNIVERSITY OF
%) WATERLOO

Harris Detector: Workflow

Features are often needed to register different views of the same object

Harris Detector: Workflow

Compute corner response R

Harris Detector: Workflow

Find points with large corner response: R>threshold

UNIVERSITY OF

: % WATERLOO
Harris Detector: Workflow

Take only the points of local maxima of R

Harris Detector: Workflow

IIIIIIIII

Example of corner features (python)

o from jupiter notebook “FeaturePoints.ipynb”

Peaks

IIIIIIIIIIII

Harris Detector: Some Properties

0 Rotation Invariance

™ \|‘ A4
— =

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

IIIIIIIIIIII

Corner response R IS invariant to image rotation

IIIIIIIIIIII

Harris Detector: Some Properties

0 Partial invariance to affine intensity change

v Only derivatives are used => invariance to intensity shift | — 1 +b (“bias” invariance)

v Intensity scale: | ->al (“gain” invariance)

threshold / AV w \ vv \

x (Image coordinate5 x (Image coordinate5

features locations stay the same,
but some may appear or disappear depending on gain a

IIIIIIIIIIII

Harris Detector: Some Properties

0 non-invariant to image scale!

e~

N
7

All points will be corner
classified as edges

Two images of the same object taken at different scales (e.g. zoom settings)

2] UNIVERSITY OF
WATERLOO

Scale Invariant Detection

o Consider windows (circles) of different sizes (scales) around a point
o At some scale it looks like a corner.

corner

2 UNIVERSITY OF

%) WATERLOO

Scale Invariant Detection

o Consider windows (circles) of different sizes (scales) around a point
o At some scale it looks like a corner.
o0 Choose the scale of the “best” corner (scale with largest R value)

corner
for even larger windows
it may become an edge again

Can use Gaussian pyramid for efficient optimal scale selection (see 2 slides later)

IIIIIIIIIIII

0 DoG (or asimilar LoG) kernels
are used to detect blob-like features

Feature locations: extrema points for convolution with 0

Feature scale is still not known: = E E ?

How to find the right scale?
Instead of rescaling the kernel, rescaling the image is more efficient...

Gaussian pyramid

UNIVERSITY OF
% WATERLOO

0 Gaussian pyramid helps to find “optimal scale” for features

scales
s=5

s=4
s=3

s=2
s=1

location (X,y)

Side Notes: such Gaussian pyramid
can be seen as a trivial (linear)
convolutional neural network

- similar multiresolution pyramid
also appears in the “encoder” part
of common segmentation CNNs

G, = (G: * gaussian) ¥ 2 B Low
, ! am 4 2 Dllll down-sam le soluti
G: = (G, * gaussian) + resolution
wn-
Rp— . blur " Sam k
G, = (G, * gaussian) v
do
W n~sa
! blur
G, = (G, * gaussian) v 2 'Ql
’0\
G, = Image
High
resolution

UNIVERSITY OF
% WATERLOO

Gaussian pyramid

0 Gaussian pyramid helps to find “optimal scale” for features

e.g. consider DoG features

scales
S:5 * E G, =(G: * gaussian) v 2 B down- -sam ' Low
¢ z .
G = (G, * gaussian) ¥ 2 D"" resolution
s=4 * m - , blur !n =Sam k
G: = (G, * gaussian) ¥ 2
* d()"
ur
* m G, = (G, * gaussian) v 2 "’
_ D
§=2
/
— [,
0\
s=1
location (x,y)
G, = Image
High
resolution

compute feature response
(e.g. convolve or NCC w. kernel)
with image at each scale

UNIVERSITY OF

% WATERLOO

Gaussian pyramid

0 Gaussian pyramid helps to find “optimal scale” for features

e.g. consider DoG features

scales
S:5 * E Gy=(G: * gau.\-.\iun) v2 B d Low
Dllll Own-sam le B
G; = (G- * gaussian) + 2 resolution
=4 * m blur !n —Sam k
S= G, = (G, * gaussian) $2
* do;,
s=3 = E Lsam, le
! blur
* m G, = (G, * gaussian) v 2 "ll
— o
§=2 =
= * [[,
s=1
location (x,y)
. . G, = Image
find local maxima
High

response in volume
(X,y.5)

resolution

compute feature response
(e.g. convolve or NCC w. kernel)
with image at each scale

UNIVERSITY OF
% WATERLOO

Example (python)

o from jupiter notebook “FeaturePoints.ipynb”

circle center -> feature location
circle radius -> feature scale

UNIVERSITY OF

WATERLOO

Features: location + descriptor

o Now we know how to detect (locate) interest points or features
0 Next question: How to match them?

Besides location each feature point should have its signature or descriptor

Point descriptor should be: invariant (stable to illumination and view point changes)
distinctive (discriminant)

% WATERLOO

Common generic feature points

0 MOPS, Hog, SIFT, ...

Features are characterized by location and descriptor
color any pixel RGB vector
edge local extrema of |Vf| Vf
MOPS corners normalized intensity patch
HOG DOG or LOG extrema points gradient orientation
SIFT or other interest points histograms
highly

discriminative
(see Szeliski, Sec. 4.1.2)

IIIIIIIIIIII

Multi-Scale Oriented Patches (MOPS)

Summary of main ideas:

0 Patch location and orientation
e Multi-scale Harris corners
 Orientation from blurred gradient => invariant to rotation

0 Descriptor vector
« Sampling of intensities in a local 8x8 patch
 Bias/gain normalization => invariance to affine intensity changes

[Brown, Szeliski, Winder, CVPR’2005]

IIIIIIIIIIII

MOPS: patch location and orientation

0 Location and Scale — Harris corner
0 Orientation - blurred gradient
blurred gradient

0 Rotation Invariant Frame orientation
» Scale-space position (X, Yy, S) + orientation (0)

IIIIIIIIIIII

Descriptors Invariant to Image Rotation

find “dominant” direction of image gradient in the neighborhood
(e.g. blurred-image gradient) to set patch orientation (0)

e R

0 Set patch/descriptor orientation based on such direction
=> |nvariance to camera/image rotation

IIIIIIIIIIII

MOPS: descriptor vector

0 8x8 oriented patch invariance to image

intensity bias & gain

» sampled at 5 xscale / /
0 Bias/gain normalization: I' = (1 —pu)/o

UNIVERSITY OF
%) WATERLOO

Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

	Part 1 (48 slides)
	Slide 1: CS 484/684 Computational Vision
	Slide 2: CS 484/684 Computational Vision Image Processing Basics
	Slide 3: Summary of image transformations
	Slide 4: Summary of image transformations
	Slide 5: Summary of image transformations
	Slide 6: Summary of image transformations
	Slide 7: Point Processing
	Slide 8: Point Processing: Examples of gray-scale transforms t
	Slide 9: Point Processing: Negative
	Slide 10: Point Processing: Power-law transformations t
	Slide 11: Point Processing: Enhancing Image via Gamma Correction
	Slide 12: Point Processing: Understanding Image Histograms
	Slide 13: Point Processing: Contrast Stretching
	Slide 14: Point Processing: Contrast Stretching
	Slide 15: Point Processing: Contrast Stretching
	Slide 16: One way to automatically select transformation t : Histogram Equalization
	Slide 17: Point processing Histogram Equalization
	Slide 18: Point Processing: Window-Center adjustment
	Slide 19: Point Processing: Window-Center adjustment
	Slide 20: Point Processing: Window-Center adjustment
	Slide 21: Point Processing: Window-Center adjustment
	Slide 22: Point Processing: Window-Center adjustment
	Slide 23: Point Processing: Window-Center adjustment
	Slide 24: Point Processing: Window-Center adjustment
	Slide 25: Q. Is This an Example of Point Processing?
	Slide 26: Neighborhood Processing (or filtering)
	Slide 27: Neighborhood Processing (filtering) Linear image transforms
	Slide 28: Neighborhood Processing (filtering) Linear image transforms
	Slide 29: Neighborhood Processing (filtering) Linear image transforms
	Slide 30: Neighborhood Processing (filtering) Linear shift-invariant filters
	Slide 31: Neighborhood Processing (filtering) Linear shift-invariant filters
	Slide 32: Neighborhood Processing (filtering) 2D linear transforms
	Slide 33: Neighborhood Processing (filtering) 2D filtering
	Slide 34: Neighborhood Processing (filtering) 2D filtering
	Slide 35: Neighborhood Processing (filtering) convolution = linearity + shift-invariance
	Slide 36: kernels + convolution in Image Processing
	Slide 37: 2D filtering for Noise Reduction
	Slide 38: Neighborhood Processing (filtering) Mean filtering
	Slide 39: Neighborhood Processing (filtering) Mean filtering
	Slide 40: Neighborhood Processing (filtering) Mean filtering
	Slide 41: Effect of mean filters
	Slide 42: Neighborhood Processing (filtering) Mean kernel
	Slide 43: Neighborhood Processing (filtering) Gaussian Filtering
	Slide 44: Neighborhood Processing (filtering) Gaussian Filtering
	Slide 45: Neighborhood Processing (filtering) Mean vs. Gaussian filtering
	Slide 46: Neighborhood Processing (filtering) Median filters
	Slide 47: Comparison: salt and pepper noise
	Slide 48

	Part 2 (39 slides)
	Slide 49: Differentiation and convolution
	Slide 50: Differentiation and convolution
	Slide 51: Differentiation and convolution
	Slide 52: Differentiation and convolution
	Slide 53: Differentiation and convolution
	Slide 54: Gradients for function f (x,y) (a.k.a. intensity gradients, if f represents image intensities)
	Slide 55: Gradients and linear approximations (tangent hyperplanes)
	Slide 56: Comment: gradient is independent of specific coordinate system for domain of f
	Slide 57: Image gradients as a “vector field”
	Slide 58: Computing gradients for closed-form functions (iClicker moment)
	Slide 59: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 60: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 61: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 62: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 63: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 64: Finite differences
	Slide 65: Finite differences responding to noise
	Slide 66
	Slide 67: Finite differences and noise
	Slide 68: Smoothing and Differentiation
	Slide 69: Smoothing and Differentiation
	Slide 70
	Slide 71: Image Gradients and Edges
	Slide 72: Image Gradients and Edges
	Slide 73: Image Gradients and Edges
	Slide 74: Image Gradients and Edges
	Slide 75: Image Gradients and Edges
	Slide 76: Unsharp masking
	Slide 77: Unsharp masking
	Slide 78: Unsharp masking
	Slide 79: Unsharp masking
	Slide 80: Unsharp masking
	Slide 81: Reading: Forsyth & Ponce ch.7.5 Filters and Templates
	Slide 82: Normalized Cross-Correlation (NCC)
	Slide 83: Normalized Cross-Correlation (NCC)
	Slide 84: Normalized Cross-Correlation (NCC)
	Slide 85: Normalized Cross-Correlation (NCC)
	Slide 86
	Slide 87

	part 3 (38 slides)
	Slide 88: Other feature points… (Szeliski sec 4.1.1)
	Slide 89: How discriminant are “intensity edges”
	Slide 90: Harris corners
	Slide 91: The Basic Idea
	Slide 92: Harris Detector: Basic Idea
	Slide 93: Harris Detector: Mathematics
	Slide 94: Harris Detector: Mathematics
	Slide 95: Harris Detector: Mathematics
	Slide 96: Harris Detector: Mathematics
	Slide 97: Harris Detector: Mathematics
	Slide 98: iClicker moment Quadratic forms and their matrix-based expressions
	Slide 99: technical note from linear algebra: Ellipsoids
	Slide 100: Harris Detector: Mathematics
	Slide 101: Harris Detector: Mathematics
	Slide 102: Harris Detector
	Slide 103: Harris Detector: Workflow
	Slide 104: Harris Detector: Workflow
	Slide 105: Harris Detector: Workflow
	Slide 106: Harris Detector: Workflow
	Slide 107: Harris Detector: Workflow
	Slide 108: Example of corner features (python)
	Slide 109: Harris Detector: Some Properties
	Slide 110: Harris Detector: Some Properties
	Slide 111: Harris Detector: Some Properties
	Slide 112: Scale Invariant Detection
	Slide 113: Scale Invariant Detection
	Slide 114: Blob-like discriminant feature points
	Slide 115: Gaussian pyramid
	Slide 116: Gaussian pyramid
	Slide 117: Gaussian pyramid
	Slide 118: Example (python)
	Slide 119: Features: location + descriptor
	Slide 120: Common generic feature points
	Slide 121: Multi-Scale Oriented Patches (MOPS)
	Slide 122: MOPS: patch location and orientation
	Slide 123: Descriptors Invariant to Image Rotation
	Slide 124: MOPS: descriptor vector
	Slide 125: Detections at multiple scales

