
CS 484/684

Computational Vision

Acknowledgements:

 Steven Seitz, Aleosha Efros, David Forsyth, Gonzalez & Woods

Image Pre-Processing
(the elements of filtering)

& Low-level Features
(low-dimensional, e.g. intensity, color, edges, corners, SIFT, ...)

Later in the course:

 compositions of learnable filters
 (deep neural networks)

 high-level features
 (high-dimensional, good for semantics)

raw input features filtered features
output of “hand-designed”

low-level filters

output of sensor

CS 484/684 Computational Vision

Image Processing Basics

Point Processing
• gamma correction

• window-center correction

• histogram equalization

Filtering (linear & non-linear neighborhood processing)

• convolution, gradient

• mean, Gaussian, and median filters

• normalized cross-correlation (NCC)

• etc…: Fourier, Gabor, wavelets (Szeliski, Sec 3.4-3.5)

Higher-order gradient-based features

Extra Reading: Szeliski, Sec 3.1

Extra Reading: Szeliski, Sec 3.2-3.3

Extra Reading: Szeliski, Sec. 4.1

intensities, colors

contrast edges

Harris corners, MOPS, SIFT, etc.

texture

templates, patches

Summary of image transformations

image processing or image transformation operation typically defines a

new image g in terms of an existing image f.

Preview Examples:

Summary of image transformations

image processing or image transformation operation typically defines a

new image g in terms of an existing image f.

Preview Examples:

– Geometric (domain) transformation:

• What kinds of operations can this transformation t = (tx, ty) perform?

)),(),,((),(yxtyxtfyxg yx=

Summary of image transformations

image processing or image transformation operation typically defines a

new image g in terms of an existing image f.

Preview Examples:

– Geometric (domain) transformation:

• What kinds of operations can this transformation t = (tx, ty) perform?

– Range transformation:

• What kinds of operations can this transformation t perform?

)),((),(yxftyxg =

)),(),,((),(yxtyxtfyxg yx=

Summary of image transformations

image processing or image transformation operation typically defines a

new image g in terms of an existing image f.

Preview Examples:

– Geometric (domain) transformation:

• What kinds of operations can this transformation t = (tx, ty) perform?

– Range transformation:

• What kinds of operations can this transformation t perform?

– Filtering also generates new images from an existing image

– more on filtering later

dvduvyuxfvuhyxg

v
u

−−= 





||
||

),(),(),(

point processing

neighborhood processing

)),((),(yxftyxg =

)),(),,((),(yxtyxtfyxg yx=

Topic 4

NOTE: neural networks use such operations (e.g. activations, convolutions) in each layer (e.g. CNNs in Topics 10-12)

Point Processing

for each original image intensity value I function t(·)

returns a transformed intensity value t(I).

)),((),(yxftyxg =

NOTE: we will often use

notation Ip instead of f(x,y) to

denote intensity at pixel p=(x,y)

• Important: every pixel is for itself
- spatial information is ignored!

• What can point processing do?
 (we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)

image

range

image

range

Point Processing:

Examples of gray-scale transforms t

I

Point Processing:

Negative

),(yxf

),(255)),((),(yxfyxftyxg −==

IIt −= 255)(

),(yxgpI or pI  or

Point Processing:

Power-law transformations t

Point Processing:

Enhancing Image via Gamma Correction

Point Processing:

Understanding Image Histograms

Image Brightness Image Contrast

n

n
ip i=)(probability of intensity i :

---number of pixels with intensity i

---total number of pixels in the image

Point Processing:

Contrast Stretching

Original image

0

L - 1

L - 1

T(r)

Input gray level, r

O
u
tp

u
t

g
ra

y
 l

ev
el

,
s

Output image

a.k.a. intensity thresholding

Note the difference between

contrast and dynamic range

(max I - min I) (min #bits needed)

Point Processing:

Contrast Stretching
Original images Histogram corrected images

1)

2)

Point Processing:

Contrast Stretching
Original images Histogram corrected images

3)

4)

One way to automatically select transformation t :

Histogram Equalization

…see Gonzalez and Woods, Sec3.3.1, for more details

= cumulative distribution

 of image intensities
 
= =

==
i

j

i

j

n

n jjpit
0 0

)()(

Point processing

Histogram Equalization

Answer in probability theory:

 I – random variable with probability density p(i) over i in [0,1]

 If t(i) is a cumulative distribution function for I then

 I’=t(I) – is a random variable with uniform density over its range [0,1]

That is, transform image I’ will have a uniformly-spread histogram (good contrast)

= cumulative distribution

 of image intensities
 
= =

==
i

j

i

j

n

n jjpit
0 0

)()(

Q: Why does that work?

Point Processing:

Window-Center adjustment

input intensity
large bit depth (up to 216 or 2 bytes)

m
o

n
it

o
r’

s
 i

n
te

n
s
it

y
 s

m
a
ll

b
it
 d

e
p
th

 (
2

8
 o

r
1
 b

y
te

)

0 >65000

256

Displaying high dynamic range
image (e.g. CT or MR) over low

dynamic range monitor

distinct input intensities are

displayed as one

A lot of information is lost!

input image

range

output image

range

Point Processing:

Window-Center adjustment

input intensitym
o

n
it

o
r’

s
 i

n
te

n
s
it

y

0 >65000

256

Point Processing:

Window-Center adjustment

input gray level

o
u
tp

u
t

g
ra

y
 l
e
v
e
l

0
60000

256

center

window

Point Processing:

Window-Center adjustment

Window = 4000

Center = 500

Point Processing:

Window-Center adjustment

Window = 800

Center = 500

Point Processing:

Window-Center adjustment

Window = 0

Center = 500

If window=0 then we get

binary image thresholding

Point Processing:

Window-Center adjustment

Window = 800

Center = 1160

Window = 800

Center = 500

Q. Is This an Example of Point Processing?

)),((),(yxftyxg =),(yxf

Neighborhood Processing (or filtering)

Q: What happens if I reshuffle all pixels within the image?

A: It’s histogram won’t change.

No point processing will be affected…

Images contain a lot of “spatial information”

Readings: Szeliski, Sec 3.2-3.3

Neighborhood Processing (filtering)

Linear image transforms

Let’s start with 1D image (a signal): f[i]

A very general and useful class of transforms are
the linear transforms of f, defined by a matrix M

Neighborhood Processing (filtering)

Linear image transforms

Let’s start with 1D image (a signal): f[i]

matrix M

Neighborhood Processing (filtering)

Linear image transforms

Let’s start with 1D image (a signal): f[i]

matrix M

Neighborhood Processing (filtering)

Linear shift-invariant filters

This pattern is very common

- same entries in each row

- all non-zero entries near the diagonal

It is known as a linear shift-invariant filter and is

represented by a so-called (1D) kernel or mask h:

and can be written (for kernel of size 2k+1) as:

 The above allows negative filter indices.

matrix M

][][cbaih =


−=

+=
k

ku

uifuhig][][][

fMg =

Neighborhood Processing (filtering)

Linear shift-invariant filters

Linearity of H: H (f+g) = Hf + Hg

ℎ[𝑖] = [𝑎 𝑏 𝑐 …]


−=

+=
k

ku

uifuhig][][][

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Any linear shift-invariant operator H can be expressed in a form like

Shift-invariance of H: H (Sf) = S (Hf) for shift operator, e.g S =

Neighborhood Processing (filtering)

2D linear transforms

Similar linear neighborhood-processing operations on 2D images can also

be expressed via matrix multiplication after concatenating all image rows

into one long vector (in a “raster-scan” order):

ҭ𝑓[𝑖] = 𝑓[𝑖/𝑚 , 𝑖%𝑚]

However, matrix M will have many zeros and

kernel-based representation is significantly simpler…

Neighborhood Processing (filtering)

2D filtering

2D image f [i,j] can be filtered by 2D kernel h[u,v] to produce

output image g[i,j]:

This is called a cross-correlation operation and written:

fhg =

 
−= −=

++=
k

ku

k

kv

vjuifvuhjig],[],[],[

h is called “kernel” or “mask” or “filter” which

representing a given “window function”

Closely related convolution operation is defined slightly differently

It is written as:

Neighborhood Processing (filtering)

2D filtering

fhg =

 
−= −=

−−=
k

ku

k

kv

vjuifvuhjig],[],[],[

If then convolution is not different from cross-correlation],[],[vuhvuh −−=

Convolution has additional “technical” properties: commutativity, associativity. Also, “nice” properties wrt Fourier analysis.
(see Szeliski Sec 3.2, Gonzalez and Woods Sec. 4.6.4)

 
−= −=

++−−=
k

ku

k

kv

vjuifvuh],[],[

Convolution is cross-correlation where the filter

is flipped both horizontally and vertically before

being applied to the image:

Cross-correlation is a statistically motivated operation computing similarity between

a pattern defined by kernel h (seen as an image too) and patches at different locations inside image f (more later)

Neighborhood Processing (filtering)

convolution = linearity + shift-invariance

fhg =

 
−= −=

−−=
k

ku

k

kv

vjuifvuhjig],[],[],[

 
−= −=

++−−=
k

ku

k

kv

vjuifvuh],[],[

Note: any linear shift-invariant operation is

a convolution (or cross-correlation)

NOTE: since the two operations are equivalent after trivial kernel “flipping”, in practice,

they are often used indiscriminately. For example, CNNs implementations often use cross correlations.

kernels + convolution

in Image Processing

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Examples to be discussed now:

 - denoising (mean filtering, Gaussian kernel)

 - edge detection (differentiation, gradient & Laplace kernels)

 - sharpening (unsharp mask, LoG & DoG kernels)

 - pattern matching (template matching, NCC)

Also in this topic:

 - non-linear filtering (median filtering, Harris Corners, ...)

- feature localization (detection) – non-maximum suppression

 VS.

 feature descriptors (matching) – MOPS, SIFT, ...

2D filtering for

Noise Reduction

Common types of noise:

• Salt and pepper noise:

random occurrences of

black and white pixels

• Impulse noise: random

occurrences of white pixels

• Gaussian noise: variations in

intensity drawn from a

Gaussian normal distribution

Neighborhood Processing (filtering)

Mean filtering

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

?

],[yxf],[yxg

10

Neighborhood Processing (filtering)

Mean filtering

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[yxf],[yxg

10

80

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Neighborhood Processing (filtering)

Mean filtering

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

],[yxf],[yxg

side effect of mean filtering: blurring

Effect of

mean filters

1 1 1

1 1 1

1 1 1

Neighborhood Processing (filtering)

Mean kernel

What’s the kernel for a 3x3 mean filter?

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


9

1

Neighborhood Processing (filtering)

Gaussian Filtering

A Gaussian kernel gives less weight to pixels

 further from the center

 of the window
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

discrete approximation of

a Gaussian (density) function

1 2 1

2 4 2

1 2 1


16

1

NOTE: Gaussian distribution is a synonym for Normal distribution!

Neighborhood Processing (filtering)

Gaussian Filtering

A Gaussian kernel gives less weight to pixels

 further from the center

 of the window
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

discrete approximation of

a Gaussian (density) function

1 2 1

2 4 2

1 2 1


16

1

We denote such Gaussian kernels by G or GϬ

G

Neighborhood Processing (filtering)

Mean vs. Gaussian filtering

no rotational invariance

Neighborhood Processing (filtering)

Median filters

A Median Filter operates over a window by

selecting the median intensity in the window.

What advantage does a median filter have over

a mean filter?

Is a median filter a kind of convolution?

- No, median filter is non-linear (homework exercise)

Comparison:

salt and pepper

noise

Comparison:

Gaussian

noise

Differentiation and convolution

Recall for

Useful for analyzing f(x)

How to extend differentiation to

multivariate functions like

 or ?








 −+
=

→ 





)()(
lim)('

0

xfxf
xf

)(xf

),(yxf),,(zyxf

x

)(' xf

x

= slope of the tangent line

at each specific point x

tangent line at given point x0

a.k.a. 1-st order Taylor approx.

“extrema”

points

steepest

positive

slope

steepest

negative

slope

Extra reading: Forsyth & Ponce, 8.1-8.2

x0

dx

Differentiation and convolution

),(yxf

Some intuition first:

 - For functions f(x,y) think about the slope of a tangent plane for its 3D plot at point (x,y).

 - Such a slope could be characterized by direction and magnitude - attributes of a vector (?)

3D plot of f

x

y

f(x,y)

What is “slope” of f(x,y)

at a given point (x,y)?

range of f(x,y)

Differentiation and convolution

),(yxf

x

y

domain of f(x,y) in R2

What is “slope”

at point (x,y)?

“heat-map” visualization of f

range of f(x,y)

Differentiation and convolution

For use fixed directions








 −+
=

→









),(),(
lim

0

yxfyxf
f

x

),(yxf








 −+
=

→









),(),(
lim

0

yxfyxf
f

y

(e.g. “partial” derivatives)

NOTE: we compute partial derivatives

 at specific points (x,y)

 so, formally one can write

 or),(yxf
x
),(yxf

y


f
y


x

y

domain of f(x,y)

f
x


What is “slope”

at point (x,y)?

Another common notation

),(' yxf x
),(' yxf y

slope in

x-direction

slope in

y-direction

range of f(x,y)

Differentiation and convolution

For use fixed directions








 −+
=

→









),(),(
lim

0

yxfyxf
f

x

),(yxf








 −+
=

→









),(),(
lim

0

yxfyxf
f

y f
y


x

y

domain of f(x,y)

f
x


vector!
),(''

yx ff

slope at

point (x,y)?

gradient f

slope in

x-direction

slope in

y-direction

(e.g. “partial” derivatives)

x

f





y

f





Gradients for function f (x,y)
(a.k.a. intensity gradients, if f represents image intensities)

For a function of two (or more)

 variables),(yxf

Gradient

at point (x,y)

two (or more)

dimensional vector

x

y

• Gradient’s absolute value describes the slope’s “steepness”

 - large at contrast edges, small in inform color regions

small image gradients

in low textured areas

• Gradient’s direction corresponds to the steepest ascend direction of the “slope”

- gradient is orthogonal to image object boundaries

Gradients and linear approximations
(tangent hyperplanes)

tangent line at given point x0

a.k.a. 1-st order Taylor approx.

x0

dx

Functions of a single variable

tangent plane at given point x0 ,y0

a.k.a. 1-st order Taylor approx.

Functions of two variables

x0

y0

dx dy

General formula for linear (1st order) Taylor approximation for function of n variables

steepest ascend direction

at point

Comment: gradient is independent of

specific coordinate system for domain of f

directional derivative of

function f along direction n

In general, gradient of function

at point can be defined as a

vector s.t. for any unit vectorf

dot product

• pure vector algebra, specific coordinate system is irrelevant

• works for functions of two, three, or any larger number of variables

• partial derivatives represent gradient for any given

orthonormal XY basis for 2D domain of function

2Rp
)(pf

n


Gradient

at point p

f

f

n

)()(pfnpf −+




p

f

),(
y

f

x

f









Image gradients

as a “vector field”

from Jupiter notebook “Convolution.ipynb”

)(' xf

x

x

gradients (derivatives) for

a function of two variables, image f (x,y)

derivatives for

function of one variable f (x)

Computing gradients for closed-form functions
(iClicker moment)

none of the above

A:

B:

C:

both A and BD:

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

Estimating partial derivatives for

numerically-defined e.g. images

Both are linear and shift-invariant, so

“must be” the result of a convolution.

),(yxf








 −+
=

→









),(),(
lim

0

yxfyxf
f

y

[Extra Reading: Forsyth & Ponce, 8.1-8.2]








 −+
=

→








),(),(
lim

0

yxfyxf
f

x

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (xi ,yi)

 one can approximate this as

x

yxfyxf
f iiii

x


−
 −+




2

),(),(11

fx =

0 0 0

1 0 -1

0 0 0x


x2

1

partial derivative with respect to x








 −+
=

→








),(),(
lim

0

yxfyxf
f

x

convolution
with kernel

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (xi ,yi)

 one can approximate this as

x

yxfyxf
f iiii

x


−
 −+




2

),(),(11

fx =

0 0 0

1 0 -1

0 0 0x


x2

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1/2*(90-0) = 45

convolution
with kernel

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (xi ,yi)

 one can approximate this as

x

yxfyxf
f iiii

x


−
 −+




2

),(),(11

fx =

0 0 0

1 0 -1

0 0 0x


x2

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1/2*(0-90) = -45

convolution
with kernel

Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (xi ,yi)

 one can approximate this as

x

yxfyxf
f iiii

x


−
 −+




2

),(),(11

fx =

0 0 0

1 0 -1

0 0 0x


x2

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 60 90 90 90 60 0 0

0 0 0 40 60 60 60 40 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1/2*(60-60) = 0

convolution
with kernel

Finite differences

fx 

Finite differences responding to noise

increasing noise ->
(this is zero mean additive Gaussian noise)

fx  fx  fx 

)(xf

x

)(' xf

x

)(' xf

x

)(xf

x

(with small noise)

Finite differences and noise

Finite difference filters

respond strongly to noise

• obvious reason: image

noise results in pixels that

look very different from

their neighbours

Generally, the larger the

noise the stronger the

response

What is to be done?

• intuitively, most pixels in images

look quite a lot like their

neighbors

• this is partially true even at

edges: along the edge they are

similar (but not across the edge)

• suggests that smoothing the

image should help, by forcing

pixels different to their neighbors

(=noise pixels?) to look more

like neighbors

Smoothing and Differentiation

Issue: noise

• smooth before differentiation

• two convolutions:

• actually, we can use a derivative of Gaussian filter

– differentiation is convolution, and convolution is
associative

G
(2D gaussian)

(x-derivative of 2D gaussian)

Smoothing and Differentiation

Issue: noise

• smooth before differentiation

• two convolutions:

• actually, we can use a derivative of Gaussian filter

– differentiation is convolution, and convolution is
associative

(y-derivative of 2D gaussian) (x-derivative of 2D gaussian)

The scale of the smoothing filter (e.g. “bandwidth” σ of a Gaussian kernel)

affects derivative estimates, and also the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

Image Gradients and Edges

Source: D. Lowe

Goal: Identify sudden (large) changes

(discontinuities) in an image

– Intuitively, most semantic and shape information from the

image can be encoded in the edges

– More compact than pixels

• Ideal: artist’s line drawing

 (note that artist is using object-level knowledge)

Image Gradients and Edges

Source: J. Hayes

Why do we care about edges?

• Extract information, recognize objects

• Recover geometry and

 viewpoint
vanishing

point B
vanishing

point A

vanishing

point C
(at infinity)

Image Gradients and Edges

Typical application where image gradients are used

is image edge detection

• find points with large image gradients

“Lena’s image”
thresholded

gradient magnitudes

gradient magnitudes

Image Gradients and Edges

At any given point q we have a local

maximum if gradient magnitude at q

is larger than those at both p and r
(may need to interpolate to estimate gradients at p,r)

Edge thinning via non-maximum suppression

gradient magnitudes

q

q

nearest neighbors

of pixel q

Gradient at q

p

r

ridge of

local maxima

Image Gradients and Edges

Typical application where image gradients are used

is image edge detection

• find points with large image gradients

“Lena’s image”
gradient magnitudes thinned gradients magnitudes

(non-maxima suppression)

Canny edge detector

(non-maxima suppression

+ adaptive thresholding)

“edge features”

+ = ?

Unsharp masking

What does blurring take away?

- =

IGIU *−=

UI +

unsharp mask

unsharp mask

IGIU *−=I

I G*I

+ = ?

Unsharp masking

unsharp mask

UI +

IGI *)1(−+ 

IGIU *−=

IGIG **)1(  −+
1

I

+ = ?

Unsharp masking

unsharp mask

UI +

IGI *)1(−+ 

unsharp masking can be seen as

a convolution with

difference of Gaussians (DoG) kernel

IGIU *−=

IGG *])1[(  −+

I

1

Unsharp masking
unsharp masking can be seen as

a convolution with

difference of Gaussians (DoG) kernel

 GGDoG −

Gε-Gσ

Gε

Gσ

Unsharp masking

Python:

im=image.imread(“xxxxx.jpg")

assume “im” is gray scale

blurred = ndimage.gaussian_filter(im, sigma=3)

unsharp = im - 1.0*blurred

sharp = im + 10.0*unsharp

One can obtain the same effect

using an explicit convolution with the DoG kernel

 GGDoG −

unsharp masking can be seen as

a convolution with

difference of Gaussians (DoG) kernel

 GGDoG −

Gε-Gσ

Gε

Gσ

Reading: Forsyth & Ponce ch.7.5

Filters and Templates

Applying a filter at

some point can be seen

as taking a dot-product

between the image and

some vector

Filtering the image is a

set of dot products

Insight

• filters may look like the effects they

are intended to find

• filters find effects they look like

Gx  Gy 

Normalized Cross-Correlation (NCC)

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the

norms of kernel and image patch

||||

],[],[

t

k

ku

k

kv

fh

vyuxfvuh



++ 
−= −=

cross-correlation of h and f around t=(x,y)

division makes this

a non-linear operation

)cos(
||||

][=



=

t

t

fh

fh
tg

 h

ft

raster-scan h and ft as vectors in Rn

f

t=(x,y)

ft

h

image

template (filter, kernel, mask)

of size n = (2k+1) x (2k+1)

image

patch

at t


=

=
n

i

izz
1

2||vector lengths

Normalized Cross-Correlation (NCC)

Tricks:

• subtract template average

• subtract patch average

(subtract the image mean in the

neighborhood of t)

f

t=(x,y)

ft

h

image

||||

)()(
][

tt

tt

ffhh

ffhh
tg

−−

−−
=

 hh−

tt ff −

such vectors do not have to be

in the “positive” quadrant

image

patch

at t

NCC

h

tf

template (filter, kernel, mask)

of size n = (2k+1) x (2k+1)

- gives zero output for constant regions, reducing

response to irrelevant background

- invariance to (additive) intensity bias

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the

norms of kernel and image patch

Normalized Cross-Correlation (NCC)

f

t=(x,y)

ft

h

image

 hh−

tt ff −

such vectors do not have to be

in the “positive” quadrant

image

patch

at t

NCC

tfh

tt

n

ffhh
tg

 

−−
=

)()(
][

equivalently using statistical term σ (standard diviation)

||)(1

1

21 zzzz
n

n

i

inZ −=− 
=

Remember: st.div.

template (filter, kernel, mask)

of size n = (2k+1) x (2k+1)

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the

norms of kernel and image patch

Tricks:

• subtract template average

• subtract patch average

(subtract the image mean in the

neighborhood of t)

h

tf

- gives zero output for constant regions, reducing

response to irrelevant background

- invariance to (additive) intensity bias

Normalized Cross-Correlation (NCC)

f

t=(x,y)

ft

h

image

tfh

tfh
tg

 
=

),cov(
][

standard in statistics

correlation coefficient

between h and ft

NCC



equivalently using statistical term cov (covariance)

image

patch

at t

n

bbaa
bbaabbaaEba

n

i

iin

)()(
))(())((),cov(

1

1
−−

=−−=−− 
=

template (filter, kernel, mask)

of size n = (2k+1) x (2k+1)

Tricks:

• subtract template average

• subtract patch average

(subtract the image mean in the

neighborhood of t)

h

tf

- gives zero output for constant regions, reducing

response to irrelevant background

- invariance to (additive) intensity bias

• filtering as a dot product

• now measure the angle:

 i.e. divide filter output by the

norms of kernel and image patch

hA hB hC hD

Normalized Cross-Correlation (NCC)

NCC for h and f

image f
A

B

C

D

points mark local maxima of NCC

for each template

templates

points of interest or feature points

pictures from Silvio Savarese

(detected via non-maxima suppression of NCCs)

Normalized Cross-Correlation (NCC)

Vision system for TV remote control

 - uses template matching

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer

Graphics and Applications, 1998 copyright 1998, IEEE

Other feature points…
(Szeliski sec 4.1.1)

• Image alignment/registration

• 3D reconstruction

• Motion tracking

• Object recognition

• Indexing and database retrieval

• Robot navigation

• … other

Many applications require

generic “discriminant” feature points with

identifiable appearance and location
(so that they can be matched across multiple images)

How discriminant are

“intensity edges”

Patches at different near-by locations along the edge

look identical and cannot be discriminated (uniquely identified and localized).

Harris corners

Intuition:

find patches where

strong gradients

vary in orientation

in contrast, basic edge features use only magnitude of image gradients fffff T

yx =+= 2'2'2
)()(

no orientation information

(see next slides, also Selizski – Sec 4.1.1) 










2'''

''2'

)(

)(

yyx

yxx

fff

fff
Tff =

corner features are extracted by analyzing image “auto-correlation” matrices

The Basic Idea

We should easily recognize the point by
looking through a small window

Shifting a window in any direction should
give a large change in observed intensities

Harris Detector: Basic Idea

“flat” region:

no change in all

directions
no change along the edge

direction

“corner”:

significant change in all

directions
change across the edge direction

“edge”:

Harris Detector: Mathematics

For any given image patch or window w

we should measure how it changes

when shifted by

Notation: a patch can be defined

by its indicator or “support” function

w(x,y) over image pixels

x

y

w(x,y)=0

w(x,y)=1









=

v

u
ds

2

,

)],(),([),(:),( −++=
yx

w yxIvyuxIyxwvuE

Harris Detector: Mathematics

patch w change measure for shift :

IntensityShifted
intensity

Window
function

or
NOTE:

window support

functions w(x,y) = Gaussian

(weighted) support1 in window, 0 outside

weighted sum of

squared differences







=

v

u
ds

Harris Detector: Mathematics

vIuIyxIvyuxI yx +−++),(),(

dsIIdsyxIvyuxI TT −++ 2]),(),([

IdsT =

dsIIyxwds T

yx

T 












 

,

),(

2

,

)],(),([),(),( −++=
yx

w yxIvyuxIyxwvuE

Change of intensity for the shift assuming image gradient 







=

v

u
ds 










y

x

I

I
I

difference/change in I at (x,y) for shift (u,v) = ds (remember gradient definition on earlier slides!!!!)

this is 1st order Taylor expansion (see slide 55)

dsMds w

T =

Mw

Harris Detector: Mathematics

dsMds
v

u
MvuvuE w

T

ww =







][),(

Change of intensity for the shift assuming image gradient 







=

v

u
ds 










y

x

I

I
I

...),(...
,














  T

yx

IIyxw

Mw

where Mw is a 22 matrix computed from image derivatives inside patch w












2

2

yxy

yxx

III

III

This tells you how

to compute Mw

at any window w

 (t.e. any image patch)

matrix M is also called

Harris matrix or structure tensor

Harris Detector: Mathematics

M is a positive semi-definite (p.s.d.) matrix (Exercise: show that for any ds) 0 dsMdsT

M can be analyzed via isolines, e.g. (ellipsoid) 1= dsMds w

T

Points on this ellipsoid are shifts ds=[u,v]T

that have the same value of function E(u,v)=1.

 This isoline visually illustrates how function E

depends on shifts ds=[u,v]T in different directions.

u

v

1

2

2

2



Change of intensity for the shift assuming image gradient 







=

v

u
ds 










y

x

I

I
I

paraboloid

two eigen values of matrix Mw

see next slide

dsMds
v

u
MvuvuE w

T

ww =







][),(

iClicker moment

Quadratic forms and their matrix-based expressions

?

A:

where

B:

C:

D:

(all terms are of order 2)

s

technical note from linear algebra:

Ellipsoids
ellipsoid aligned with

coordinate axes

or

or

unit circle

or

 for

2

s

V2

V1

2

2

s

ellipsoid

with general principal axes

for any p.s.d. matrix M

Explanation: (eigendecomposition for any p.s.d. M)

assuming non-negative

change to a different

orthogonal coordinate basis

(more in next topic) rotation

two columns are

orthogonal unit

eigenvectors

of matrix M

eigenvalues

of matrix M

2x2

Harris Detector: Mathematics

1

2

“Corner”

1 and 2 are large,

 1 ~ 2;

E rapidly increases in all

directions

1 and 2 are small;

E is almost constant

in all directions

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region

Classification of image points

using eigenvalues of M:

Harris Detector: Mathematics

One common measure

of corner response:

1 2

1 2

det

trace

M

M

 

 

=

= +

M

M
R

Trace

det
=

1

2

0 T

T

TR 
+

=
21

21





Q: computational complexity for

 computing R (corner response)

 at all image pixels?
(assume window of size nxm and image of size NxM)

Harris Detector

The Algorithm:

• Find points with large corner response function R

 R > threshold

• Take the points of local maxima of R

Harris Detector: Workflow

Features are often needed to register different views of the same object

Harris Detector: Workflow

Compute corner response R

Harris Detector: Workflow

Find points with large corner response: R>threshold

Harris Detector: Workflow

Take only the points of local maxima of R

Harris Detector: Workflow

Example of corner features (python)

from jupiter notebook “FeaturePoints.ipynb”

Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties

Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift I → I + b

✓ Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

features locations stay the same,

but some may appear or disappear depending on gain a

(“bias” invariance)

(“gain” invariance)

Harris Detector: Some Properties

non-invariant to image scale!

All points will be

classified as edges
corner

Two images of the same object taken at different scales (e.g. zoom settings)

Scale Invariant Detection

Consider windows (circles) of different sizes (scales) around a point

At some scale it looks like a corner.

corner

edge

edge

Scale Invariant Detection

for even larger windows

it may become an edge again

corner

edge

edge

Consider windows (circles) of different sizes (scales) around a point

At some scale it looks like a corner.

Choose the scale of the “best” corner (scale with largest R value)

Can use Gaussian pyramid for efficient optimal scale selection (see 2 slides later)

 GGDoG −

Blob-like discriminant feature points

DoG (or a similar LoG) kernels

 are used to detect blob-like features

Feature locations: extrema points for convolution with

Feature scale is still not known: ?

How to find the right scale?

Instead of rescaling the kernel, rescaling the image is more efficient…

Gaussian pyramid

Gaussian pyramid helps to find “optimal scale” for features

location (x,y)

Side Notes: such Gaussian pyramid

can be seen as a trivial (linear)

convolutional neural network

- similar multiresolution pyramid

also appears in the “encoder” part

of common segmentation CNNs

s=4

s=1

s=2

s=3

scales

s=5

Gaussian pyramid

Gaussian pyramid helps to find “optimal scale” for features

location (x,y)

compute feature response

(e.g. convolve or NCC w. kernel)

with image at each scale

*

*

*

*

*

e.g. consider DoG features

s=4

s=1

s=2

s=3

scales

s=5

Gaussian pyramid

Gaussian pyramid helps to find “optimal scale” for features

find local maxima

response in volume

(x,y,s)

e.g. consider DoG features

compute feature response

(e.g. convolve or NCC w. kernel)

with image at each scale

*

*

*

*

*

s=4

s=1

s=2

s=3

scales

s=5

location (x,y)

Example (python)

from jupiter notebook “FeaturePoints.ipynb”

circle center -> feature location

circle radius -> feature scale

Features: location + descriptor

Now we know how to detect (locate) interest points or features

Next question: How to match them?

?

Point descriptor should be: invariant (stable to illumination and view point changes)

 distinctive (discriminant)

Besides location each feature point should have its signature or descriptor

Common generic feature points

MOPS, Hog, SIFT, …

Features are characterized by location and descriptor

 color any pixel RGB vector

 edge local extrema of

 MOPS corners normalized intensity patch

 HOG DOG or LOG extrema points gradient orientation

 SIFT or other interest points histograms

highly

discriminative

(see Szeliski, Sec. 4.1.2)

more below
f f

Multi-Scale Oriented Patches (MOPS)

Patch location and orientation

• Multi-scale Harris corners

• Orientation from blurred gradient => invariant to rotation

Descriptor vector

• Sampling of intensities in a local 8x8 patch

• Bias/gain normalization => invariance to affine intensity changes

 [Brown, Szeliski, Winder, CVPR’2005]

Summary of main ideas:

MOPS: patch location and orientation

Location and Scale – Harris corner

Orientation - blurred gradient

Rotation Invariant Frame

• Scale-space position (x, y, s) + orientation ()

blurred gradient

orientation

Descriptors Invariant to Image Rotation

Set patch/descriptor orientation based on such direction

find “dominant” direction of image gradient in the neighborhood

(e.g. blurred-image gradient) to set patch orientation ()

=> invariance to camera/image rotation

MOPS: descriptor vector

8x8 oriented patch

• sampled at 5 x scale

Bias/gain normalization: I’ = (I – )/

8 pixels

invariance to image

intensity bias & gain

Detections at multiple scales

	Part 1 (48 slides)
	Slide 1: CS 484/684 Computational Vision
	Slide 2: CS 484/684 Computational Vision Image Processing Basics
	Slide 3: Summary of image transformations
	Slide 4: Summary of image transformations
	Slide 5: Summary of image transformations
	Slide 6: Summary of image transformations
	Slide 7: Point Processing
	Slide 8: Point Processing: Examples of gray-scale transforms t
	Slide 9: Point Processing: Negative
	Slide 10: Point Processing: Power-law transformations t
	Slide 11: Point Processing: Enhancing Image via Gamma Correction
	Slide 12: Point Processing: Understanding Image Histograms
	Slide 13: Point Processing: Contrast Stretching
	Slide 14: Point Processing: Contrast Stretching
	Slide 15: Point Processing: Contrast Stretching
	Slide 16: One way to automatically select transformation t : Histogram Equalization
	Slide 17: Point processing Histogram Equalization
	Slide 18: Point Processing: Window-Center adjustment
	Slide 19: Point Processing: Window-Center adjustment
	Slide 20: Point Processing: Window-Center adjustment
	Slide 21: Point Processing: Window-Center adjustment
	Slide 22: Point Processing: Window-Center adjustment
	Slide 23: Point Processing: Window-Center adjustment
	Slide 24: Point Processing: Window-Center adjustment
	Slide 25: Q. Is This an Example of Point Processing?
	Slide 26: Neighborhood Processing (or filtering)
	Slide 27: Neighborhood Processing (filtering) Linear image transforms
	Slide 28: Neighborhood Processing (filtering) Linear image transforms
	Slide 29: Neighborhood Processing (filtering) Linear image transforms
	Slide 30: Neighborhood Processing (filtering) Linear shift-invariant filters
	Slide 31: Neighborhood Processing (filtering) Linear shift-invariant filters
	Slide 32: Neighborhood Processing (filtering) 2D linear transforms
	Slide 33: Neighborhood Processing (filtering) 2D filtering
	Slide 34: Neighborhood Processing (filtering) 2D filtering
	Slide 35: Neighborhood Processing (filtering) convolution = linearity + shift-invariance
	Slide 36: kernels + convolution in Image Processing
	Slide 37: 2D filtering for Noise Reduction
	Slide 38: Neighborhood Processing (filtering) Mean filtering
	Slide 39: Neighborhood Processing (filtering) Mean filtering
	Slide 40: Neighborhood Processing (filtering) Mean filtering
	Slide 41: Effect of mean filters
	Slide 42: Neighborhood Processing (filtering) Mean kernel
	Slide 43: Neighborhood Processing (filtering) Gaussian Filtering
	Slide 44: Neighborhood Processing (filtering) Gaussian Filtering
	Slide 45: Neighborhood Processing (filtering) Mean vs. Gaussian filtering
	Slide 46: Neighborhood Processing (filtering) Median filters
	Slide 47: Comparison: salt and pepper noise
	Slide 48

	Part 2 (39 slides)
	Slide 49: Differentiation and convolution
	Slide 50: Differentiation and convolution
	Slide 51: Differentiation and convolution
	Slide 52: Differentiation and convolution
	Slide 53: Differentiation and convolution
	Slide 54: Gradients for function f (x,y) (a.k.a. intensity gradients, if f represents image intensities)
	Slide 55: Gradients and linear approximations (tangent hyperplanes)
	Slide 56: Comment: gradient is independent of specific coordinate system for domain of f
	Slide 57: Image gradients as a “vector field”
	Slide 58: Computing gradients for closed-form functions (iClicker moment)
	Slide 59: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 60: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 61: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 62: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 63: Estimating gradients for numerically defined functions, e.g. images Differentiation and convolution
	Slide 64: Finite differences
	Slide 65: Finite differences responding to noise
	Slide 66
	Slide 67: Finite differences and noise
	Slide 68: Smoothing and Differentiation
	Slide 69: Smoothing and Differentiation
	Slide 70
	Slide 71: Image Gradients and Edges
	Slide 72: Image Gradients and Edges
	Slide 73: Image Gradients and Edges
	Slide 74: Image Gradients and Edges
	Slide 75: Image Gradients and Edges
	Slide 76: Unsharp masking
	Slide 77: Unsharp masking
	Slide 78: Unsharp masking
	Slide 79: Unsharp masking
	Slide 80: Unsharp masking
	Slide 81: Reading: Forsyth & Ponce ch.7.5 Filters and Templates
	Slide 82: Normalized Cross-Correlation (NCC)
	Slide 83: Normalized Cross-Correlation (NCC)
	Slide 84: Normalized Cross-Correlation (NCC)
	Slide 85: Normalized Cross-Correlation (NCC)
	Slide 86
	Slide 87

	part 3 (38 slides)
	Slide 88: Other feature points… (Szeliski sec 4.1.1)
	Slide 89: How discriminant are “intensity edges”
	Slide 90: Harris corners
	Slide 91: The Basic Idea
	Slide 92: Harris Detector: Basic Idea
	Slide 93: Harris Detector: Mathematics
	Slide 94: Harris Detector: Mathematics
	Slide 95: Harris Detector: Mathematics
	Slide 96: Harris Detector: Mathematics
	Slide 97: Harris Detector: Mathematics
	Slide 98: iClicker moment Quadratic forms and their matrix-based expressions
	Slide 99: technical note from linear algebra: Ellipsoids
	Slide 100: Harris Detector: Mathematics
	Slide 101: Harris Detector: Mathematics
	Slide 102: Harris Detector
	Slide 103: Harris Detector: Workflow
	Slide 104: Harris Detector: Workflow
	Slide 105: Harris Detector: Workflow
	Slide 106: Harris Detector: Workflow
	Slide 107: Harris Detector: Workflow
	Slide 108: Example of corner features (python)
	Slide 109: Harris Detector: Some Properties
	Slide 110: Harris Detector: Some Properties
	Slide 111: Harris Detector: Some Properties
	Slide 112: Scale Invariant Detection
	Slide 113: Scale Invariant Detection
	Slide 114: Blob-like discriminant feature points
	Slide 115: Gaussian pyramid
	Slide 116: Gaussian pyramid
	Slide 117: Gaussian pyramid
	Slide 118: Example (python)
	Slide 119: Features: location + descriptor
	Slide 120: Common generic feature points
	Slide 121: Multi-Scale Oriented Patches (MOPS)
	Slide 122: MOPS: patch location and orientation
	Slide 123: Descriptors Invariant to Image Rotation
	Slide 124: MOPS: descriptor vector
	Slide 125: Detections at multiple scales

