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CS 484/684
Computational Vision

Image Pre-Processing

(the elements of filtering)

& Low-level Features

(low-dimensional, e.g. intensity, color, edges, corners, SIFT, ...)

\ J \ J
| |

raw input features filtered features
output of sensor output of “hand-designed”
low-level filters

Steven Seitz, Aleosha Efros, David Forsyth, Gonzalez & Woods
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CS 484/684 Computational Vision

Image Processing Basics

0 Point Processing Extra Reading: Szeliski, Sec 3.1
e gamma correction intensities, colors
« window-center correction
* histogram equalization

[ FI |tel'l ng (linear & non-linear neighborhood processing) Extra Reading: Szeliski, Sec 3.2-3.3

« convolution, gradient contrast edges
 mean, Gaussian, and median filters texture

» normalized cross-correlation (NCC) templates, patches

0 Higher-order gradient-based features

Harris corners, MOPS, SIFT, etc. Extra Reading: Szeliski, Sec. 4.1
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Summary of image transformations

O Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples:
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Summary of image transformations

0 Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples:

— Geometric (domain) transformation: g(x,y)= f(t(x Y),ty (X,¥))
- What kinds of operations can this transformation t = (t,, t,) perform?



% WATERLOO

Summary of image transformations

O Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples:

— Geometric (domain) transformation: g(x,y)= f(t(x Y),ty (X,¥))
- What kinds of operations can this transformation t = (t,, t,) perform?

— Range transformation: g(x,y)=t(f(x,y))
- What kinds of operations can this transformation t perform?
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Summary of image transformations

O Image processing or image transformation operation typically defines a
new image g in terms of an existing image f.

Preview Examples: Topic 4

— Geometric (domain) transformation: g(x,y)= f(t(x Y),ty (X,¥))
What kinds of operations can this transformation t = (t,, t,) perform?

— Range transformation: g(x,y)=t(f(x,y))
- What kinds of operations can this transformation t perform?

point processing

ring also generates new images from an existing image

g(x,y)= jh(u,v)-f(x—u,y—v)~du-dv

— more on filtering later |uj<e
lvi<e neighborhood processing
NOTE: neural networks use such operations (e.g. activations, convolutions) in each layer (e.g. CNNs in Topics 10-12)
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Point Processing

image image
range range
g(x,y) =t(f(x,y)) t:R— R

for each original image intensity value | function t(-)

returns a transformed intensity value t(l).
_ NOTE: we will often use

[ — t([) notation |, instead of f(x,y) to

denote intensity at pixel p=(x,y)

* Important: every pixel is for itself
- spatial information is ignored!

* What can point processing do?

(we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)
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Point Processing:

Examples of gray-scale transforms t

FIGURE 3.3 Some L—-1
basic gray-level
transformation
functions used for Negative
image
enhancement. nth roat
3L/ -
i Log
)
5 nth power
‘J.I'J L;‘? — —
g
o)
L/4 _
Identity Inverse log

0 L/4 L2 3L /4 L—1

Input gray level. r
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Point Processing:

Negative

ab

FIGURE 3.4

(a) Original
digital
Mmammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

I, or f(xY) ||’o or g(X,y)

t(1) =255 |

g(x, y) =t(f(x,y)) =255-1(x,y)



Point Processing:

Power-law transformations t

UNIVERSITY OF

A WATERLOO

@

FIGURE 3.6 Plots

of the equation

s = ¢’ for
various values of
y(c = 11inall
cases).

HI) = I7

L-1 _
= 0.04
y = 0.10
3L/4 v = 0.20 H
. v = 0.40
E
B v = 0.67
L2 = —
=]
E‘ v=13
L
= 2.
Li4r- =50 .
y = 10.0
_ﬁfﬂff// = 25.0
0 | | | _/
0 L/4 L/2 3L /4

Input gray level. r
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Point Processing:

Enhancing Image via Gamma Correction

ab
cd

FIGURE 3.9

(a) Aerial image.
{(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0.4.0,and
5.0, respectively.
{Original image
for this example
courtesy of
NASA.)




Point Processing:
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Understanding Image Histograms

Dark image Lonw-contrast image

Bright image High-contrast image

Image Brightness

probability of intensity i - p(I1) = —

Image Contrast

---number of pixels with intensity i

|
N ---total number of pixels in the image
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Point Processing: Note the difference between
contrast and  dynamic range

CO ntraSt StretCh | ng (max | - min 1) (min #bits needed)

Output image

(rz2.52)

Original image

L2 T(r) _

Ouput gray level. s

(ry.s)

0 | | |
0 L/4A L2  3L4 L-1

Input gray level.r

—
1
-

T(r)

Output gray level, s

0
/ Input gray level, r L-1

a.k.a. intensity thresholding
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Point Processing:

Contrast Stretching

Original images Histogram corrected images

1)

2)
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Point Processing:

Contrast Stretching

Original images Histogram corrected images

3)
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One way to automatically select transformation t :

Histogram Equalization

FIGURE 3.18
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
1[11 1“‘& 5 1[1

Hn? 7(a).using
EL[{11 8).

1.00

0.75 -

0.50 —

025 -

0 % 192 255

t(i) = Z n(j) = T’ = cumulative distribution
=0 of Image intensities

...see Gonzalez and Woods, Sec3.3.1, for more details
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Point processing

Histogram Equalization

ti)=> p(j)=>+ = cumulative distribution
j=0 j=0 of image intensities

Q: Why does that work?

Answer in probability theory:
I—random variable with probability density p(i) over j in [0,1]
If £(7) is a cumulative distribution function for 7 then

I'=t(I) —is a random variable with uniform density over its range [0,1]

That is, transform image 7’ will have a uniformly-spread histogram (good contrast)
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Point Processing: input image outpruatnigrr;age
Window-Center adjustment t R SR

Displaying high dynamic range
image (e.g. CT or MR) over low
dynamic range monitor

distinct input intensities are

displayed as one

256 /

monitor’s intensity
small bit depth (28 or 1 byte)

o

input intensity ~05000 A Jot of information is lost!
large bit depth (up to 216 or 2 bytes)



monitor’s intensity

% WATERLOO

Point Processing:

Window-Center adjustment

256

input intensity >65000
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Point Processing:

Window-Center adjustment

256

window

output gray level

\ 4

0 center 60000

input gray level



Point Processing:

Window-Center adjustment

Window = 4000
Center =500

IIIIIIIIIIII




Point Processing:

Window-Center adjustment

Window = 800
Center =500

IIIIIIIIIIII
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Point Processing:

Window-Center adjustment

Window =0
Center = 500

If window=0 then we get
binary image thresholding
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Point Processing:

Window-Center adjustment
‘ 4 ol

Window = 800
Center = 500

Window = 800
Center = 1160
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Q. Is This an Example of Point Processing?

f(x,y) g(x,y) =t(t(x,y))
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Neighborhood Processing (or filtering)

0 Q: What happens if I reshuffle all pixels within the image?

£

d nn IIIIII- . 1 n .l.l. --

M I 1 " | | ' 1 II w :I .I Y . I1 2 .: Il-. .LI
.. = " » l. ] ' I. I n ..-l y - | -I | | o l: ll l1 " | |
T o . Al ol 40T o i e
L " i I.I. T :: | S 1 a I I. |} .I-. L I

| 1 .: l.:r1.II- :. .lI-l -II. - l1l. I ! I .II. ...

0 A: It’s histogram won’t change.
No point processing will be affected...

0 Images contain a lot of “‘spatial information”

Readings: Szeliski, Sec 3.2-3.3
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Neighborhood Processing (filtering)
Linear image transforms

Let’s start with 1D image (a signal): f[i]

fle]

A very general and useful class of transforms are
the linear transforms of f, defined by a matrix M

M. j] fll gli]

glil = > MIi,jlf[i]

j=1
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Neighborhood Processing (filtering)
Linear image transforms

Let’s start with 1D image (a signal): f[i]

Ile] fli] =

matrix M

flil —

IGE-‘IG-CJ:JGE'JI—'I
e T o I e o e e
o [ v o o e Y e [
o [ v e o O e e [
o v e v Y e e [
o= QoOoQo
oy = o e e [ e
=0 000000

fli] =

e T e Y e e [ e e [
o [ e Y o [ e e e [
o [ e Y o [ v e e [
o [ e Y o o v e e [
o [ e Y o v e e [
oo QQO o Qo
CoOoQQoQQ

T 1
[ R T T R T
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Neighborhood Processing (filtering)
Linear image transforms

Let’s start with 1D image (a signal): f[i]

2 i| =
f[] f[I] matrix M
O 0000000
4 ] 1 0000O0O0O0
01000000
00100000 )
0001000 O0 f[g]—}
00001000
00000100
0O0O0O0O0CO0O1O0
20000000
11000000
1 01100000
00110000 3
Q2loo0011000 f[E]_jF
00001100
00000110
000O0O0O0011
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Neighborhood Processing (filtering)

Linear shift-invariant filters

matrix M

= % 0 0 0
a b o 0O 0
h e 0
a b e

oo o o

represented by a so-called (1D) kernel or mask h:

n b e
0 a b ¢
E' D I Ir.l i
0O 0 0 % =

- -

0 0
0 0
0 0 It is known as a linear shift-invariant filter and is
0 aQ
o 0
L

hli] = [a b c]

L e i L
Lo o i N i [ [

and can be written (for kernel of size 2k+1) as:
This pattern is very common

- same entries in each row

K
- all non-zero entries near the diagonal g [|] — Z h [U] . f [| + u]
g=M - f "

The above allows negative filter indices.
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Neighborhood Processing (filtering)
|_Inear shift-invariant filters

Linearity of H: H (f+g) = Hf + Hg

Shift-invariance of H: H (Sf) =S (Hf)  for shift operator, e.g S =

SO r O oo
O r OO oo
-0 O O O O

cocooco RO
coorRr oo
coococoo

Any linear shift-invariant operator H can be expressed in a form like

hli] = [a b c ..]

g[il= > h[u]- fli+u]

u=—k
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Neighborhood Processing (filtering)

2D linear transforms

Similar linear neighborhood-processing operations on 2D images can also
be expressed via matrix multiplication after concatenating all image rows
into one long vector (in a “raster-scan” order):

flil = fIli/m],i%m]

*  * * & *

C * * *
¥ ¥ % % ¥

MGl f il

However, matrix M will have many zeros and
kernel-based representation is significantly simpler...
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Neighborhood Processing (filtering)

2D filtering

2D image f[i,J] can be filtered by 2D kernel h[u,v] to produce
output image g[1,j]:

K K

gll, J] = Z Z hlu,v]- fli+u, j+V]

u=—k v=-k

This is called a cross-correlation operation and written:
g=hof

h is called “kernel” or “mask” or “filter” which
representing a given “window function”
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Neighborhood Processing (filtering)

2D filtering

Closely related convolution operation is defined slightly differently

gli,i1= Y > hluv]- fli-u, j—v]

u=-k v=—k

It IS written as: « K
g —h=*f = > > h[-u~v]- fli+u, j+V]

Convolution is cross-correlation where the filter
is flipped both horizontally and vertically before
being applied to the image:

If h[u, v] = h[—u,—\V] then convolution is not different from cross-correlation

Convolution has additional “technical” properties: commutativity, associativity. Also, “nice” properties wrt Fourier analysis.
(see Szeliski Sec 3.2, Gonzalez and Woods Sec. 4.6.4)

Cross-correlation is a statistically motivated operation computing similarity between
a pattern defined by kernel h (seen as an image too) and patches at different locations inside image f (more later)



Neighborhood Processing (filtering)
convolution = linearity + shift-invariance

K K

gli,i1= Y > hluv]- fli-u, j—v]

u=-k v=—k

g= nNx* f = Zk: Zk: h[-u,—v]- f[i+u, j+V]

u=-k v=-k

Note: any linear shift-invariant operation Is
a convolution (or cross-correlation)

/

NOTE: since the two operations are equivalent after trivial kernel “flipping”, in practice,
they are often used indiscriminately. For example, CNNs implementations often use cross correlations.
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kernels + convolution N
In Image Processing

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Examples to be discussed now:

- denoising (mean filtering, Gaussian kernel)
- edge detection (differentiation, gradient & Laplace kernels)

- sharpening (unsharp mask, LoG & DoG kernels)
- pattern matching (template matching, NCC)



2D filtering for
Noise Reduction

Common types of noise:

« Salt and pepper noise:
random occurrences of
black and white pixels

« Impulse noise: random
occurrences of white pixels

e Gaussian noise: variations in
Intensity drawn from a
Gaussian normal distribution

Impulse noise

Gaussian noise



Neighborhood Processing (filtering)
Mean filtering

f[x, y]

IIIIIIIII

10

alx,y.




Neighborhood Processing (filtering)
Mean filtering

f[x, y]

IIIIIIIII

80

10

alx,y.




Neighborhood Processing (filtering)
Mean filtering

f[x, y]

%) WATERLO

UNIVER SITY

side effect of mean filtering: blurring
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Gaussian Salt and pepper

Effect of notse oo
mean filters

AN5S

TxT




Neighborhood Processing (filtering)
Mean kernel

0 What’s the kernel for a 3x3 mean filter?

IIIIIIIII



IIIIIIIII

Neighborhood Processing (filtering)
Gaussian Filtering

0 A Gaussian kernel gives less weight to pixels
further from the center
of the window

2

discrete approximation of
a Gaussian (density) function

Ll
h,(u,'v)=27m2e o

NOTE: Gaussian distribution is a synonym for Normal distribution!
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Neighborhood Processing (filtering)

Gaussian Filtering

0 A Gaussian kernel gives less weight to pixels
further from the center

of the window
1 2
e 2142
11211

GG

discrete approximation of
a Gaussian (density) function

Ll
h,(u,'v)=27m2e o

We denote such Gaussian kernels by G or G4



Neighborhood Processing (filtering)
Mean vs. Gaussian filtering

no rotational invariance

IIIIIIIIIIII
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Neighborhood Processing (filtering)

Median filters

0 A Median Filter operates over a window by
selecting the median intensity in the window.

0 What advantage does a median filter have over
a mean filter?

0 Is a median filter a kind of convolution?

- No, median filter is non-linear (homework exercise)



Compar Ison: Gaussian Median
salt and pepper = : '
noise :
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Extra reading: Forsyth & Ponce, 8.1-8.2
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Differentiation and convolution

0 Recall for f(x)

1:,(X):"m(f(x+5)— f(x)j

&—0 E

o Useful for analyzing f(x)

o0 How to extend differentiation to
multivariate functions like

f(x,y) or f(X,y,2) ?

flz) 4

tangent line at given point x,
a.k.a. 1-st order Taylor approx.
tx) = f(x0) + f'(wo) (@ — @o)
-
dx

17NN

f'(X) 4 =slope of the tangent line

at each specific point x

X
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Differentiation and convolution

f(x,
3 () 3D plot of f

F(x,y) |

What is “slope” of f(X,y)
at a given point (x,y)?

Some intuition first:

- For functions f(x,y) think about the slope of a tangent plane for its 3D plot at point (x,y).

- Such a slope could be characterized by direction and magnitude - attributes of a vector (?)
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Differentiation and convolution

“heat-map” visualization of f

F(x,y)

domain of f(x,y) in R?

t is “slope”
int (x,y)?

range of f(x,y)
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Differentiation and convolution

o For f(X,Yy) use fixed directions

(e.g. “partial” derivatives) domain of f(xy)

el 10 ey) - () oo | .
2 f =1lim s
slope in g—)O 8 ' |
Y (- ¢
X
o ¢ _pim| JO0Y+E) = F(x,Y) a
E i
slope in ¢>0 8
NOTE: we compute partial derivatives X

at specific points (x,y)
so, formally one can write

Sf(xy) or 5 (XY
Another common notation

f (X, ) f,(X )

range of f(x,y)
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Differentiation and convolution

o For f(X,Yy) use fixed directions

(e.g. “partial” derivatives)

o :"m(f(x+g,y)—f(x,y)j
X £—0 E
0 f =|im(f(x’y+8)_ f(X1 y)j
% £—0 &

domain of f(x,y)

gradient V{
range of f(x,y)
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Gradients for function f (x,y)
(a.k.a. intensity gradients, if f represents image intensities)

o For a function of two (or more)
variables f(X,Y)

v

| - of -
Gradient B
at point (x,y) V= of
. Jy

two (or more)
dimensional vector

-

small image gradients
in low textured areas

 Gradient’s absolute value 1v/I = \/ (g—ﬁ) + (2—;”) describes the slope’s “steepness™

- large at contrast edges, small in inform color regions

» Gradient’s direction corresponds to the steepest ascend direction of the “slope”
- gradient is orthogonal to image object boundaries
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Gradients and linear approximations

(tangent hyperplanes)
Functions of a single variable Functions of two variables
f:R — R f:R*— R
dx | {_dkx_\ dy
t(x) = f(xo) + f’(:z:o)(:o) Ha,y) = f(@o, o) + g—{(r Yo) (& — o) + g—i(? Yo) (4 = Yo)
fay f.y)s e S

a.k.a. 1-st order Taylor approx.

v
N
>
S

>I(o x b >
Y:/ _____________ /'v ¥ (Xo) steepest ascend direction
Y

at point X, = (Zo, Yo )
t(x) = f(%o) + vf(XO)TdX

General formula for linear (1t order) Taylor approximation for function f (X) of n variables X € R"
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Comment: gradient Vf Is independent
specific coordinate system for domain of f

0 Ingeneral, gradient of function f(p)
at point p€R” can be defined as a
vector Vf s.t. for any unit vector n

Gragient V T'ﬁ — a‘f _f(p+e-n)-1f(p)
at point p / 8ﬁ :
dot product direCtio}al derivative of

function f along direction n

e pure vector algebra, specific coordinate system is irrelevant

« works for functions of two, three, or any larger number of variables
« partial derivatives (% , %) represent gradient Vf for any given
orthonormal XY basis for 2D domain of function f : R — R



Image gradients
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as a “vector field”

derivatives for
function of one variable f (x)

from Jupiter notebook “Convolution.ipynb”

R L

gradients (derivatives) for
a function of two variables, image f (x,y)
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Computing gradients for closed-form functions
(iClicker moment)

flz,y,2)=yx

2

- ux

Vi=| 2
0

| 2yx
vr=| %

none of the above

both A and B



Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

0 Estimating partial derivatives for
numerically-defined f (X, y) e.g. images

e—0

o :“m[f(x+g, y)— f (X, y)j

OX
&<

E

o f — Iim(f(xiy_l_g)_ f(X’ y)j
oy e—0

0 Both are linear and shift-invariant, so
“must be”’ the result of a convolution.

IIIIIIIIIIII



Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (X; ,Y;)

partial derivative with respect to x ] ]
one can approximate this as

o f = Iim( Fix+e,y)= X y)j 2 f ~ f (Xi+1’ yi) — 1 (Xi—11 yi)
o ¢ > 2. AX
=V *f
convolution

with kernel 1

X
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Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point_(x; ,Y;)
one can-approximate this as

o g o T )~ T, Y1)

o 2. AX
=V *f

convolution
with kernel 1

X

1/2*(90-0) = 45
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Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point (X ,Y;)
one can approximate this as

ot o T Vi) — T (X, i)
> 2 AX

=V *f

convolution
with kernel 1

X

1/2*(0-90) = -45
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Estimating gradients for numerically defined functions, e.g. images

Differentiation and convolution

At given point_(x; ,Y:)
one-ean approximate this as

o5 o 1K Y1) = T(Xiy, i)

o 2. AX
=V *f

convolution
with kernel 1

X

1/2*(60-60) = 0



Finite differences

iz
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Finite differences responding to noise

increasing noise ->
(this is zero mean additive Gaussian noise)

VA




f ()

»

UNIVERSITY OF
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f(X) 4 (with small noise)
> X
f'(X) s
| X
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Finite differences and noise

0 Finite difference filters 0 What is to be done?

respond Strongly to noise * Intuitively, most pixels in images
_ _ look quite a lot like their
 obvious reason: image neighbors
noise results in pixels that - this is partially true even at
look very different from edges: along the edge they are
their neighbours similar (but not across the edge)

* suggests that smoothing the
. Genera”y’ the Iarger the image should help, by forcing

noise the stronger the pixels different to their neighbors
(=noise pixels?) to look more
response like neighbors
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Smoothing and Differentiation
0 Issue: noise

« smooth before differentiation
« two convolutions: Vg x (G * f)
» actually, we can use a derivative of Gaussian filter
—differentiation 1s convolution, and convolution iIs
assoclative

Vex (Gxf)=(VexG)xf
! iffé.'-‘i'
A
f".!” ‘ \ ."I' ) p: I' Y
!H ) ”;" )
‘;, 0,:,:.¢‘!“1t\\1 ;;,’,l;f,':'&f,?:::s‘ R =
7 i 5
m‘:‘t‘i’o‘:’t‘:“;‘;‘{a éﬁ’ﬂ%&f@"!‘&%\\\\v gt
i N
(2D gaussian)

(x-derivative of 2D gaussian)
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Smoothing and Differentiation

0 Issue: noise
« smooth before differentiation
e two convolutions: Vg x (G * f)
« actually, we can use a derivative of Gaussian filter
—differentiation is convolution, and convolution is
assoclative Vex (Gx )= (Ve*xG)xf
| \ w

Vy, xG

V,*xG
-

(y-derivative of 2D gaussian) (x-derivative of 2D gaussian)
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1 pixel 3 pixels 7 pixels

The scale of the smoothing filter (e.g. “bandwidth” ¢ of a Gaussian kernel)
affects derivative estimates, and also the semantics of the edges recovered.
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Image Gradients and Edges

Goal: Identify sudden (large) changes
(discontinuities) in an image

— Intuitively, most semantic and shape information from the
image can be encoded in the edges
— More compact than pixels

e |deal: artist’s line drawing

(note that artist is using object-level knowledge)

Source: D. Lowe
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Image Gradients and Edges

Why do we care about edges?

Extract information, recognize objects

vanishing
T point C
(at infinity)

« Recover geometry and
viewpoint

vanishing

o point B
vanishing

point A

Source: J. Hayes
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Image Gradients and Edges

0 Typical application where image gradients are used
IS Image edge detection

« find points with large image gradients

gradient magnitudes " thresholded
IV £ gradient magnitudes

“Lena’s image”
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Image Gradients and Edges

Edge thinning via non-maximum suppression

nearest neighbors
of pixel q
® o----3-0-0
e o g
Gradient:at g
® &-@--9 - *
I
@ 9 @ @

At any given point q we have a local
maximum if gradient magnitude |V f|| at g

Is larger than those at both p and r
(may need to interpolate to estimate gradients at p,r)

ridge of
local maxima

gradient magnitudes
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Image Gradients and Edges

0 Typical application where image gradients are used
IS Image edge detection

« find points with large image gradients

“edge features”

P
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~
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gradient magnitudes Canny edge detector

INgal (non-maxima suppression
+ adaptive thresholding)
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“Lena’s image”
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narp masking

nat does blurring take away?

unsharp mask

IIIIIIIIIIII

unsharp mask
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Unsharp masking

l+a)l —a-G*I = (+a)G, *| —a-G_*I

e<l

unsharp mask
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Unsharp masking

unsharp masking can be seen as
a convolution with
difference of Gaussians (DoG) kernel

l+a)l —a-G*lI = [l+a)G, —a-G_]*I

e<l

unsharp mask
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Unsharp masking

unsharp masking can be seen as
a convolution with
difference of Gaussians (DoG) kernel

Ge

Go f\

| T~

Ge-Go
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Unsharp masking

unsharp masking can be seen as
a convolution with

Python: difference of Gaussians (DoG) kernel

im=image.imread("xxxxx.jpg") Ge

# assume “im” is gray scale

\

Ge-Go

blurred = ndimage.gaussian_filter(im, sigma=3)
unsharp = im - 1.0*blurred

sharp = im + 10.0*unsharp

One can obtain the same effect
using an explicit convolution with the DoG kernel
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Reading: Forsyth & Ponce ch.7.5
Filters and Templates

0 Applying a filter at
some point can be seen
as taking a dot-product Insight

between the image and « filters may look like the effects they
some vector are intended to find

0 Filtering the image is g « filters find effects they look like
set of dot products
V.46

X

V, %G
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Normalized Cross-Correlation (NCC)

« filtering as a dot product
e now measure the angle:

I.e. divide filter output by the
norms of kernel and image patch

cross-correlation of h and f around t=(x,y)

N ——Kv=
PV [hl- 1, |
h template (filter, kernel, mask) 4 7 @b \
orstee = Ferp(Eed xv’x' @Q division makes this
a non-linear operation
W) ft
A -] £
f .
image

n
) vector lengths | Z |= 22
raster-scan h and f;, asvectorsin R" ; '
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Normalized Cross-Correlation (NCC)

- filtering as a dot product 0 Tricks: -
e now measure the angle: - subtract template average h

e
i.e. divide filter output by the « subtract patch average
norms of kernel and image patch (subtract the image mean in the
neighborhood of t)

- gives zero output for constant regions, reducing
response to irrelevant background
- invariance to (additive) intensity bias

h template (filter, kernel, mask)
of size n = (2k+1) x (2k+1)

image a - — . J—
ft E?tf% /—\ g [t] — ( _) ( t _t )
|h=h|-| f,— 1|
f T such vectors do not have to be

in the “positive” quadrant
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Normalized Cross-Correlation (NCC)

« filtering as a dot product
e now measure the angle:

I.e. divide filter output by the
norms of kernel and image patch

h template (filter, kernel, mask)
of size n = (2k+1) x (2k+1)

W) f—f,

h [ o
at t

such vectors do not have to be

image . .\
g in the “positive” quadrant

o Tricks:

* subtract template average h

- subtract patch average T,

(subtract the image mean in the
neighborhood of t)

- gives zero output for constant regions, reducing
response to irrelevant background
- invariance to (additive) intensity bias

equivalently using statlstlcal term o (standard diviation)

(h h) (f—f) Nee
- Noy o ey

glt] =

n
Remember: st.div. o, =/
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Normalized Cross-Correlation (NCC)

« filtering as a dot product
e now measure the angle:

I.e. divide filter output by the
norms of kernel and image patch

h template (filter, kernel, mask)
of size n = (2k+1) x (2k+1)

o Tricks:

* subtract template average h

. subtract patch average
(subtract the image mean in the
neighborhood of t)

- gives zero output for constant regions, reducing
response to irrelevant background

- invariance to (additive) intensity bias

t=(x,y) standard in statistics equivalently using statistical term cov (covariance)
\ - correlation coefficient N f NCC
ft patc% t _ COV( ) '[)
at t P g[ ] _
Op O
¢ between h and f, t
image

cov(a,b)=E(a-a)(b-b) = %Zn:(ai—a)(bi—B) = (a—a)r-](b—b)
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Normalized Cross-Correlation (NCC)

NCC for h and f

40

0 20 0 2 0 20 0 20 7
0 40 60 80 100 120 140 160 180 200
templates _ .
points mark local maxima of NCC

for each template

points of interest or feature points
(detected via non-maxima suppression of NCCs)
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Normalized Cross-Correlation (NCC)

Vision system for TV remote control
- uses template matching

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer
Graphics and Applications, 1998 copyright 1998, IEEE



Other feature points...
(Szeliski sec 4.1.1)

Many applications require
generic “discriminant” feature points with

Identifiable appearance and location
(so that they can be matched across multiple images)

Image alignment/registration
3D reconstruction

Motion tracking

Object recognition

Indexing and database retrieval
Robot navigation

... other

IIIIIIIIIIII
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How discriminant are
“Intensity edges”

Patches at different near-by locations along the edge
look identical and cannot be discriminated (uniquely identified and localized).
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Harris corners

Intuition:

find patches where
strong gradients
vary in orientation

) e

corner features are extracted by analyzing image “auto-correlation” matrices [( f) 1 fy ]
g "\2
(see next slides, also Selizski — Sec 4.1.1) f fy (fy)

. i . . : 2 re\2 '"\2
in contrast, basic edge features use only magnitude of image gradients |[Vf|" =(f,)*+(f,)
no orientation information
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The Basic Idea

0 We should easily recognize the point by
looking through a small window

0 Shifting a window in any direction should
give a large change in observed intensities

!E\




% WATERLOO

Harris Detector: Basic ldea

| \

“flat” region: “edge”: “corner”:
no change in all change across the edge direction significant change in all
directions directions

no change along the edge
direction
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Harris Detector: Mathematics

For any given image patch or window w
we should measure how It changes
when shifted by o - ﬂ

V

w(x,y)=1

Notation: a patch can be defined
by its indicator or “support” function w(x,y)=0
w(X,y) over image pixels

y
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Harris Detector: Mathematics

weighted sum of

patch w change measure for shift ds = m squared differences

Window
function

window support e S
i _ o _ Gaussian
functions W(X,y) = 1 in window, 0 outside

(weighted) support
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Harris Detector: Mathematics

u

Change of intensity for the shift s - { } assuming image gradient vi E[:}

y

v

~ . T
|(Xx+u,y+v)—I(x,y) = | -u+l v = ds -VI
difference/change in | at (x,y) for shift (u,v) =ds (remember gradient definition on earlier slides!!!!)
this is 15t order Taylor expansion (see slide 55)

[I(X+u,y+V)—I(X,yY) ] =~ ds'-VI.-VI'.ds

Q
o
w
_|
M
=
=
X
<<
N’
<
<
_l
@R
w
1
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Harris Detector: Mathematics

Change of intensity for the shift ds - {“

v

} assuming image gradient v E[:}

y

where M,, is a 2x2 matrix computed from image derivatives inside patch w

This tells you how
to compute M,,
A at any window w

{ \
(t.e. any image patch)
] WX, y)- VIV
X,y

2
matrix M is also called { Ix ley}

Harris matrix or structure tensor | | 1, 1

S~ M

W
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Harris Detector: Mathematics

u

Change of intensity for the shift ds = {

} assuming image gradient v E[:}

y

v

paraboloid

M is a positive semi-definite (p.s.d.) matrix (Exercise: show that ds’ -M -ds >0 for any ds)

M can be analyzed via isolines, e.g. dsT -M w .0ds = 1 (ellipsoid)
T
Vv

see next slide

u
" Points on this ellipsoid are shifts ds=[u,v]"
2 2 that have the same value of function E(u,v)=L1.
VA JA = This isoline visually illustrates how function E
T / depends on shifts ds=[u,v]" in different directions.

two eigen values of matrix M,,
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IClicker moment
Quadratic forms and their matrix-based expressions

2 + 2xy + 8y*

(all terms are of order 2)

pTMp where p::{g}

M =7
1 0 1 0
A: :
'8 2 ¢ l2 8
g [ 1 2 | 1 1
81 b 118
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technical note from linear algebra:

Ellipsoids

A R? unit circle A R ellipsoid aligned with
! coordinate axes

Aes2 + )\ysz =1

s =1
or 33; + 52 =1 assuming non-negative A, and A,

or s . A-s =1

. a0
- AP > fOFA—|:0 )\y]

v, | ellipsoid
Vz] | with general principal axes

Vz[Vl

two columns are
orthogonal unit
eigenvectors
of matrix M

s"-M-s =1 forany p.s.d. matrix M

Explanation: M = VAV (eigendecomposition for any p.s.d. M)
S Mes =1 = TV AVT.s =1

' | = (VTs)T - A-(VTs) = 1

change to a different

Ar O
A = { Y } orthogonal coordinate basis { — VT - S = tT At =1
Y (more in next topic) rotation

eigenvalues
of matrix M
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Harris Detector: Mathematics

Classification of image points Ay
using eigenvalues of M:

A, and a, are small; ‘
E is almost constant j> -
in all directions region

“EdgeQS
M >> 0,
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Harris Detector: Mathematics

One common measure
of corner response.

det M
Trace M

R =

detM =44,
traceM =4, + 4,

Q: computational complexity for
computing R (corner response) 0
at all image pixels?
(assume window of size nxm and image of size NxM)



Harris Detector

o0 The Algorithm:

 Find points with large corner response function R
R > threshold

 Take the points of local maxima of R

IIIIIIIIIIII
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Harris Detector: Workflow

Features are often needed to register different views of the same object




Harris Detector: Workflow

Compute corner response R




Harris Detector: Workflow

Find points with large corner response: R>threshold
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Harris Detector: Workflow

Take only the points of local maxima of R




Harris Detector: Workflow

IIIIIIIII




Example of corner features (python)

o from jupiter notebook “FeaturePoints.ipynb”

Peaks

IIIIIIIIIIII



Harris Detector: Some Properties

0 Rotation Invariance

™ \|‘ A4
— =

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

IIIIIIIIIIII

Corner response R IS invariant to image rotation
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Harris Detector: Some Properties

0 Partial invariance to affine intensity change

v Only derivatives are used => invariance to intensity shift | — 1 +b (“bias” invariance)

v Intensity scale: | ->al (“gain” invariance)

threshold / AV w \ vv \

x (Image coordinate5 x (Image coordinate5

features locations stay the same,
but some may appear or disappear depending on gain a
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Harris Detector: Some Properties

0 non-invariant to image scale!

e~

N
7

All points will be corner
classified as edges

Two images of the same object taken at different scales (e.g. zoom settings)
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Scale Invariant Detection

o Consider windows (circles) of different sizes (scales) around a point
o At some scale it looks like a corner.

corner
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Scale Invariant Detection

o Consider windows (circles) of different sizes (scales) around a point
o At some scale it looks like a corner.
o0 Choose the scale of the “best” corner (scale with largest R value)

corner
for even larger windows
it may become an edge again

Can use Gaussian pyramid for efficient optimal scale selection (see 2 slides later)
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0 DoG (or asimilar LoG) kernels
are used to detect blob-like features

Feature locations: extrema points for convolution with 0

Feature scale is still not known: = E E ?

How to find the right scale?
Instead of rescaling the kernel, rescaling the image is more efficient...



Gaussian pyramid
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0 Gaussian pyramid helps to find “optimal scale” for features

scales
s=5

s=4
s=3

s=2
s=1

location (X,y)

Side Notes: such Gaussian pyramid
can be seen as a trivial (linear)
convolutional neural network

- similar multiresolution pyramid
also appears in the “encoder” part
of common segmentation CNNs

G, = (G: * gaussian) ¥ 2 B Low
, ! am 4 2 Dllll down-sam le soluti
G: = (G, * gaussian) + resolution
wn-
Rp— . blur " Sam k
G, = (G, * gaussian) v
do
W n~sa
! blur
G, = (G, * gaussian) v 2 'Ql
’0\
G, = Image
High
resolution
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Gaussian pyramid

0 Gaussian pyramid helps to find “optimal scale” for features

e.g. consider DoG features

scales
S:5 * E G, =(G: * gaussian) v 2 B down- -sam ' Low
¢ z .
G = (G, * gaussian) ¥ 2 D"" resolution
s=4 * m - , blur !n =Sam k
G: = (G, * gaussian) ¥ 2
* d()"
ur
* m G, = (G, * gaussian) v 2 "’
_ D
§=2
/
— [ ,
0\
s=1
location (x,y)
G, = Image
High
resolution

compute feature response
(e.g. convolve or NCC w. kernel)
with image at each scale
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Gaussian pyramid

0 Gaussian pyramid helps to find “optimal scale” for features

e.g. consider DoG features

scales
S:5 * E Gy=(G: * gau.\-.\iun) v2 B d Low
Dllll Own-sam le B
G; = (G- * gaussian) + 2 resolution
=4 * m blur !n —Sam k
S= G, = (G, * gaussian) $2
* do;,
s=3 = E Lsam, le
! blur
* m G, = (G, * gaussian) v 2 "ll
— o
§=2 =
= * [ [,
s=1
location (x,y)
. . G, = Image
find local maxima
High

response in volume
(X,y.5)

resolution

compute feature response
(e.g. convolve or NCC w. kernel)
with image at each scale
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Example (python)

o from jupiter notebook “FeaturePoints.ipynb”

circle center -> feature location
circle radius -> feature scale
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Features: location + descriptor

o Now we know how to detect (locate) interest points or features
0 Next question: How to match them?

Besides location each feature point should have its signature or descriptor

Point descriptor should be: invariant  (stable to illumination and view point changes)
distinctive (discriminant)
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Common generic feature points

0 MOPS, Hog, SIFT, ...

Features are characterized by location and descriptor
color any pixel RGB vector
edge local extrema of |Vf| Vf
MOPS corners normalized intensity patch
HOG DOG or LOG extrema points gradient orientation
SIFT or other interest points histograms
highly

discriminative
(see Szeliski, Sec. 4.1.2)
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Multi-Scale Oriented Patches (MOPS)

Summary of main ideas:

0 Patch location and orientation
e Multi-scale Harris corners
 Orientation from blurred gradient => invariant to rotation

0 Descriptor vector
« Sampling of intensities in a local 8x8 patch
 Bias/gain normalization => invariance to affine intensity changes

[Brown, Szeliski, Winder, CVPR’2005]



IIIIIIIIIIII

MOPS: patch location and orientation

0 Location and Scale — Harris corner
0 Orientation - blurred gradient
blurred gradient

0 Rotation Invariant Frame orientation
» Scale-space position (X, Yy, S) + orientation (0)
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Descriptors Invariant to Image Rotation

find “dominant” direction of image gradient in the neighborhood
(e.g. blurred-image gradient) to set patch orientation (0)

e R

0 Set patch/descriptor orientation based on such direction
=> |nvariance to camera/image rotation
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MOPS: descriptor vector

0 8x8 oriented patch invariance to image

intensity bias & gain

» sampled at 5 xscale / /
0 Bias/gain normalization: I' = (1 —pu)/o
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Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.
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