
Situational Access Control in the Internet of Things
Roei Schuster

Tel Aviv University
Cornell Tech

rs864@cornell.edu

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

Eran Tromer
Tel Aviv University
Columbia University
tromer@cs.tau.ac.il

ABSTRACT
Access control in the Internet of Things (IoT) often depends on a sit-
uation—for example, “the user is at home”—that can only be tracked
using multiple devices. In contrast to the (well-studied) smartphone
frameworks, enforcement of situational constraints in the IoT poses
new challenges because access control is fundamentally decentral-
ized. It takes place in multiple independent frameworks, subjects
are often external to the enforcement system, and situation tracking
requires cross-framework interaction and permissioning.

Existing IoT frameworks entangle access-control enforcement
and situation tracking. This results in overprivileged, redundant,
inconsistent, and inflexible implementations.

We design and implement a new approach to IoT access control.
Our key innovation is to introduce “environmental situation oracles”
(ESOs) as first-class objects in the IoT ecosystem. An ESO encapsu-
lates the implementation of how a situation is sensed, inferred, or
actuated. IoT access-control frameworks can use ESOs to enforce
situational constraints, but ESOs and frameworks remain oblivious
to each other’s implementation details. A single ESO can be used
by multiple access-control frameworks across the ecosystem. This
reduces inefficiency, supports consistent enforcement of common
policies, and—because ESOs encapsulate sensitive device-access
rights—reduces overprivileging.

ESOs can be deployed at any layer of the IoT software stack
where access control is applied. We implemented prototype ESOs
for the IoT resource layer, based on the IoTivity framework, and
for the IoT Web services, based on the Passport middleware.

CCS CONCEPTS
• Security and privacy → Access control; Mobile platform
security; Web application security;

KEYWORDS
Access control; Internet of Things
ACM Reference Format:
Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational Access
Control in the Internet of Things. In 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’18), October 15–19, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3243734.3243817

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS '18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243817

1 INTRODUCTION
The IoT (Internet of Things) refers to “smart” devices whose opera-
tion is governed by hardware and software controllers that com-
municate with each other and with Internet-based services. The
IoT ecosystem includes physical devices (in particular, sensors and
actuators) and software applications in industrial, medical, civic,
and other settings. We focus on the consumer “smart home” devices
such as thermostats, light bulbs, door locks, and smoke detectors.
A quarter of U.S. homes already have at least one such device, and
their prevalence is projected to grow [61].

Open-source and proprietary platforms and frameworks such
as IoTivity, Nest, and SmartThings enable communication and in-
tegration among the “smart home” devices, as well as access by
third-party apps. Devices such as door locks and surveillance cam-
eras are responsible for privacy-sensitive or safety-critical function-
ality, thus any IoT framework must enforce device-to-device and
app-to-device access control.

Classic access-control lists (ACLs) specify an action, a subject, an
object, and the “approve or deny” decision. They are not expressive
enough for the IoT, where access-control decisions often depend
on the situation, context,1 or state of the world [35, 41, 68].

1.1 Situational access control
Using situational conditions in access-control policies is a well-
known approach in smartphone frameworks that predate IoT. For
example, Android has a “work mode” that can be switched on
by the user [63]. Starting from version 6.0, app permissions are
requested (and can be revoked) dynamically to provide the user with
“increased situational context” of permission use [19]. iOS appsmust
explicitly request a permission to access location “when the user is
not interacting with the app” [62]. More generic situational access
control has been often proposed for mobile OSes [9, 16, 46, 56, 72].

Many IoT frameworks track situations that are relevant to com-
mon access-control policies. For example, Nest and SmartThings
track the location of the user’s phone to infer whether the user is at
home; Sen.se Mother, Nest, and Ecobee can also use special sensors
for this purpose. SmartThings includes a “night time” indicator,
updated either by scheduled routines or by the user. Amazon Echo
and Google Home use “wake word” monitoring to detect when a
user intends to issue a voice command.

1The word “context” has been overloaded and misused in the access-control literature,
often appealing to Nissenbaum’s theory of contextual integrity [48] to justify any
external condition in the policies, including the state of another device (e.g., “turn
on the camera if the motion detector has been activated”) or even the call stack of
the current function. These technical factors do not define social norms that govern
information flow and thus have little to do with contextual integrity in Nissenbaum’s
sense. To avoid confusion, we use the term situation to refer to the environmental
conditions that must be considered when making access-control decisions.

https://doi.org/10.1145/3243734.3243817
https://doi.org/10.1145/3243734.3243817
https://doi.org/10.1145/3243734.3243817

Consider GetSafe and similar mobile apps that enable users to
view feeds from home security cameras on their smartphones. Get-
Safe can work with the Nest Cam indoor camera but requires per-
mission from the Nest service to access it. It can also record without
the user’s direct involvement, e.g., when a possible burglary is de-
tected. Since the app’s primary purpose is home monitoring when
the user is away, its right to access the camera should be conditioned
on the “user is not at home” situation.
IoT vs. smartphone frameworks. IoT and smartphone frame-
works have much in common: both control and use multiple sensors
and actuators, are event-driven, have similar API access patterns,
and expose sensitive data and operations to third-party apps. These
superficial similarities motivate IoT access-control architectures
that work the same way as in mobile OSes, with centralized refer-
ence monitors that collect all relevant situational information and
make access-control decisions [11, 29, 41, 68, 71].

The critical distinction between the IoT and mobile OSes is
that access control in the IoT is fundamentally decentral-
ized. First, it is performed by multiple, heterogeneous frameworks
with different hardware and software stacks. Second, tracking IoT-
relevant situations involves interrogating (and possibly actuating)
multiple devices, sensors, apps, and APIs that are not governed by
the same access-control framework and require sensitive privileges.
For example, inferring if the user is at home involves obtaining GPS
coordinates from their smartphone and thus the ability to track
the user wherever they go. Third, apps, the subjects of access con-
trol, are often standalone services external to the framework (e.g.,
GetSafe is separate from Nest but can use its API).

In a decentralized environment where multiple frameworks en-
force situational access control, situation tracking should be en-
capsulated by a global interface to ensure uniform, consistent se-
mantics and segregated so that its access privileges are not shared
with the frameworks that use it.
Inadequacy of existing approaches. In today’s IoT, situations
are neither encapsulated, nor segregated. Instead, they are defined
in terms of the access-control system’s own information and ca-
pabilities: the embedded or available devices, user-provided con-
figurations, and/or the execution state (open UI dialogs, method
call stack, etc.) of the subject (e.g., an app) requesting access. Both
research [41, 68, 72, 73] and commercial frameworks implement sit-
uation tracking as a part of the access-control system itself, coupling
them so tightly that the abstract situation semantics are entangled
with the low-level implementation details. For example, Nest does
not have an explicit “the user is at home” condition, even though
this is a common situational constraint. Instead, Nest policies inter-
pret “the GPS coordinates of the user’s smartphone and/or deployed
Nest sensors indicate that the user is at a predefined ‘home’ location”
as equivalent to “the user is at home.” Overprivileged access to the
user’s smartphone is thus incorporated directly into the framework.

In Section 2, we explain how in addition to overprivileging, the
lack of encapsulation and segregation leads to redundant and in-
consistent implementations of the same functionality and forces
the implementors of access control to include low-level code for
communicating with other devices and interpreting their responses.

A natural solution is to separate situation tracking from the
access-control policies [9, 49] by introducing dedicated situation

trackers, each tasked with determining if a certain situational pred-
icate (e.g., “the user is at home”) is currently true. Prior appified
environments used this idea only in centralized settings where the
tracker has the same rights and capabilities as the access-control sys-
tem it serves, and the interface between them is platform-specific.
The former again results in overprivileging, while the latter pre-
vents the reuse and interoperability of situation trackers across
frameworks. This is a problem because, as we show in Section 2,
a few common situations are responsible for the lion’s share of
situational constraints in real-world access-control policies.

As the semantics of situational constraints become more com-
plex—for example, if they involve fusion of information from multi-
ple sensors or machine learning [35]—it will be increasingly difficult
to continue treating IoT access control as just another version of
centralized mobile-OS access control.

1.2 Environmental Situation Oracles (ESOs)
We propose, design, and implement ESOs, situation trackers that
operate at the level of the IoT ecosystem and are thus fully external
to the access-control monitors. They expose a simple interface that
access-control monitors can use to determine whether the situation
is true or not. Figure 1.1 illustrates the difference between our
approach and prior, centralized ones.

Like services and app frameworks, ESOs are independent units
that can be directly added to and removed from the IoT ecosystem.
ESOs can be explicitly incorporated into access-control policies in
a manner similar to conventional permissions. A policy can specify
that a subject has access to an object only if a specific situation is
currently true. These constraints are visible to users and developers.
Advantages of ESOs in IoT. First, ESOs separate policy and imple-
mentation, thus enabling two-way obliviousness between access-
control policies and situation trackers. A single ESO can serve mul-
tiple policies from different frameworks. Because policies depend
only on the ESO’s abstract interface and their reference monitors
are oblivious of the details of the ESO’s implementation, this helps
ensure consistent semantics and eliminate redundancies. For exam-
ple, all monitors for enforcing “allow access only if the user is at
home” no longer need to query the user’s phone for geolocation.

Second, ESOs encapsulate access rights needed to access other
devices for the purposes of tracking a given situation (e.g., obtain
geolocation from the user’s phone). ESOs thus act as declassifiers
and help enforce the principle of least privilege. Reference mon-
itors have access only to the abstract predicate representing the
situation (e.g., “the user is at home”) but not to the raw data from
which this situation was inferred.

Finally, an IoT framework can support multiple ESOs for the
same situation that have different semantics but expose the same
API to clients. This allows developers and users to easily substitute
ESOs without changing the policy and the reference monitor.
Implementation and case studies. Our ESO design makes mini-
mal assumptions about access-control systems and is thus compati-
ble with the various frameworks at any layer of the IoT stack.

We define the connectivity and communication protocols that
ESOs must support for compatibility with the existing IoT envi-
ronments. We then prototype and evaluate our approach in two
different open-source frameworks representing the opposite ends

(a) Centralized approach: access control is coupled with situation tracking (b) Our approach: ESOs separate policy and implementation

Figure 1.1: Situation tracking in access-control frameworks: centralized approach vs. our ESO-based approach

of the IoT stack: (1) IoTivity implementation of the OCF standard,
and (2) Passport authorization library for Node.js. IoTivity runs on
low-performance embedded devices and performs access control
locally in the home network, while Node.js libraries typically run
on Internet servers and mediate server-to-server communication.
The main components of ESO-enabled situational access control are
isomorphic in both implementations. Implementing ESOs in either
layer is straightforward: hundreds of C LOCs in IoTivity, dozens of
JavaScript LOCs in Passport. As case studies, we implement an ESO
for tracking whether the user is at home and an ESO for logging
all device accesses to a Google spreadsheet.

2 INADEQUACIES OF IOT ACCESS CONTROL
Explicit and implicit dependence on environmental situations is
ubiquitous in the IoT access-control policies. For example, “the
user is at home” is a very common policy constraint, supported by
SmartThings, Nest, Ecobee, Wink, Apple HomeKit, Sen.se Mother,
Abode, Netatmo, and Honeywell. IFTTT, a popularWeb service that
lets users integrate other services, including IoT frameworks, via
simple “if trigger then action” recipes—confusingly called applets
in IFTTT—provides built-in support for the “user enters an area”
trigger. In the 15,000 recipes we collected from IFTTT (see Appen-
dix A.4), “user enters an area” and “user leaves an area” are among
the top three most common triggers and are typically configured
to fire on home/away state changes.

As explained in Section 1, existing IoT frameworks track situa-
tions directly as part of the access-control logic. We now survey
the negative effects of this policy-implementation entanglement.

2.1 Overprivileging and privacy violations
Tracking environmental situations directly as part of the access-
control logic causes overprivileging in IoT apps and frameworks.
To track whether the user is at home or away, both SmartThings
and Nest rely on access to the smartphone GPS coordinates and
other location sensors. This information is much more sensitive
than the simple “home or away?” predicate. As a consequence, IoT
apps and frameworks can persistently track the user wherever he
goes, even outside the home where they are deployed. Furthermore,
these privileges are redundant. If the user installs devices from
multiple vendors in his home, all of them gain the ability to track
his location anywhere in the world. The user’s location is then

disclosed to multiple potentially buggy or vulnerable apps, some of
which may also have overly permissive data sharing policies.

2.2 Inability to enforce common policies
“Allow access but notify the user.” Many users configure their
IFTTT recipes to notify them about sensitive operations, e.g., when
a home monitoring app initiates a camera recording.

Neither Nest, nor SmartThings supports this constraint. Their
notification triggers include events such as button pushed, door
opened, a family member leaves home, etc., but not the execution
of a sensitive operation by an app.
“Allow access but log the operation.” Even if the user is not noti-
fied in real time, some accesses need to be logged. Logging IFTTT
trigger-firing events is very popular: “add row to spreadsheet” is
the second most common action in our set of IFTTT recipes (see
Appendix B). For example, when the SmartThings app “ridiculously
automated garage door” opens the garage door, the operation should
be logged. Then, if a burglary occurs, it will be possible to verify
that the app did not enable this by (possibly inadvertently) letting
the burglars in through the garage.

Neither Nest, nor SmartThings supports such constraints.
“Allow access only when user is not at home.” The access rights
of many apps—e.g., camera access by the GetSafe app from Section 1
or motion-sensor access by the smart home monitor (a popular
SmartThings app)—are conditioned on the user not being at home.

This constraint cannot be expressed using the Nest Cam API,
nor the SmartThings API. Instead, Nest tracks the “user is at home”
situation and automatically turns off the camera to enforce a coarser
policy: “no app can access the camera when user is at home.” Apps
cannot turn on the camera without the user’s approval, thus usually
they can access it only when the user is away. Critically, the user
may turn the camera back on to monitor a sleeping baby or kids
playing in another room or to record a family event (Nest Cam
highlights these uses in its advertising). This unintentionally allows
apps to resume recording even the user is at home.

SmartThings, too, supports coarse policies, with extra flexibility:
situation (“mode”) changes can turn any app and any device on or
off. Because home monitor has to operate both when the user is at
home and away, this is not useful for expressing the “allow access
only when user is not at home” constraint.

“Allow access only when user is at work” Consider the IFTTT
recipe “automatically post [photos] on LinkedIn when you take
an instagram at work,” published by LinkedIn. This recipe uses
Instagram’s (often inaccurate) photo geo-tagging to determine if
it’s Ok to post the photo. Instead, this recipe should fire only when
the user is at work. The semantics would not change but would be
enforced correctly. There is no way to express this in IFTTT.
“Allow access only when user is awake.” The fifth and sixth most
common actions in our set of IFTTT recipes are “post a tweet with
an image” and “post a tweet,” respectively. Consider the recipe
“tweet your instagrams” that automatically tweets any Instagram
photo uploaded by the user and is enabled by over 700,000 users.
Tweeting is risky when the user is not in a position to respond if
something goes wrong [55]. Many apps should not be able to post
when the user is asleep, or watching a movie, or on a plane without
Internet access, etc. There is no way to express and enforce this via
Twitter and other social-media APIs.

Physical device access should also be constrained by such poli-
cies. For example, temperature-control apps should not be able to
open windows if this might enable burglars to break in [41].
“Allow access only during an emergency.” An app may need
to change its behavior and access rights in some situations. For
example, if a distress button (e.g., Flic) is pushed, an emergency app
can respond by streaming live camera video to the authorities.2 For
privacy, the emergency app should not be able to access the camera
when the situation “user is in distress” is not true.
“Smart” situation tracking. Different situations have different
social norms. For example, when noone is in the room, potentially
dangerous devices such as ovens should not be turned on automat-
ically [74]. When kids enter a home office, it becomes unsuitable
for a professional video conference [34]. When a couple is fighting,
the visuals and audio are especially sensitive, requiring stricter
policies. When a driver is distraught or tired, a smart car should
respond [38, 67]. These situations are not easy to track, possibly
requiring machine learning and aggregation of information from
multiple sensors across different frameworks. Nevertheless, they
can be critical factors in access control.
Situations for physical access control. In a recent study, He et
al. [35] empirically show that situational factors such as user’s age,
device state, and proximity of other people to the device are crucial
for physical access control, where users are subjects and device capa-
bilities are objects. This form of situational access control requires
both tracking situations and authenticating physical users. Neither
is adequately supported by the existing IoT frameworks.

2.3 Inefficiencies and inconsistencies
Example: home/away. Smartphone-based geofencing is unreli-
able [15, 64] and inaccurate [14, 54]. SmartThings and Nest can use
additional sensors, e.g., smart door locks or motion sensors, but
they have different implementations and configurations and are
not interoperable. Not only is the situation-tracking functionality

2Currently, there is no popular emergency app on SmartThings. Using and developing
such apps is sometimes discouraged by the SmartThings community, partly because
today the app infrastructure—including the SmartApps cloud, Internet connection,
and wireless connectivity—is not considered reliable enough for emergency uses.

replicated, different devices may even end up with inconsistent
understanding of the environment: a SmartThings biometric door
lock may recognize the user entering the home, while a Nest device,
relying on inaccurate smartphone GPS, thinks the user is away.

IFTTT partially standardizes the interface for triggers, but trig-
gers are still based not on abstract predicates such as “home or
away?” but on specific implementations (the most popular one uses
phone-based geofencing).
Example: user notification. The most common action in IFTTT
recipes is “send a notification.” User notifications can also constrain
recipes: “notify me when this recipe fires” is a configuration option
for all recipes (see Section A.4). This option is so important that it
was added to the IFTTT’s minimalistic configuration dialog even
though IFTTT documentation exhorts recipe developers to add as
few configuration fields to recipes as possible.

As in the home/away case, IFTTT-integrated services offer di-
verse, inconsistent implementations for the “notify me” action. In
addition to the (by far the most popular) native trigger that sim-
ply sends push notification through the IFTTT phone app, there
are email notifications, flicker lights, phone calls, etc. Notification
methods can be very elaborate [43] and have different intended
functionalities (e.g., “ “notify me urgently” vs. “notify me non-
obtrusively”). Recipe writers, however, have no way of selecting
them by abstract functionality, only by implementation.

These redundancies raise the implementation and deployment
cost of situational access-control policies such as those in Section 2.2.
This cost must be paid by every framework or even every applica-
tion, motivating implementers to use only coarse policies based on
ad-hoc, simplistic situation trackers. Moreover, redundant, incon-
sistent definitions of situations hamper security and usability.

3 OUR DESIGN
We use a simple abstraction of access control, with subjects S , ob-
jects O , and a set of access rights A ⊆ 2O . O are typically API-level
operations, possibly subdivided by the input-parameter values if
different values require different access rights.

A policy is a list of access-control entries (ACEs) E ⊆ S × A. A
reference monitor intercepts operation invocations. It allows s ∈ S
to invoke an operation o ∈ O only if there exists (s,a) ∈ E such that
o ∈ a. Figure 3.1a depicts enforcement in this abstract framework.

We introduce environmental situation oracles (ESOs) as first-
class objects that (1) encapsulate the tracking of environmental
conditions relevant to access-control enforcement, and (2) present a
uniform interface that can be incorporated into any access-control
policy and invoked by any monitor in a given IoT environment.

A single ESO instantiation can be used by many client access-
control systems which would otherwise all track the same situation
separately. Clients no longer need to query multiple devices and
interpret their responses before making access-control decisions.

ESOs are least-privilege declassifiers. They expose only essential
predicates to their clients, as opposed to the underlying data (e.g.,
“the user is at home” vs. GPS coordinates of the user’s smartphone).
Access rights needed to track a specific situation are confined in
a single ESO instead of propagating to all clients. ESOs are much
simpler functionally than the clients that use them and thus easier
to audit and update. An ESO can be maintained by a trusted party

or even by one of the client frameworks (e.g. Nest). In both cases,
the other frameworks no longer need access privileges for the raw
information on which the situation is based.

We argue that segregating this information inside an ESO is su-
perior to reducing its granularity. For example, an app that receives
coarse (as opposed to fine-grained) location of the user’s phone is
still overprivileged because it can infer information about the user
well beyond the single bit revealed by the ESO.

Access-control monitors and ESOs are mutually oblivious, which
allows for dual-faceted reusability. Multiple monitors can track
the same situation using a single ESOs, and multiple ESOs (e.g.,
different implementations of the same environmental predicate)
can be used interchangeably by the same monitor.

Writing access-control policies using ESOs is similar to writing
IFTTT recipes using actions and triggers. The logic of the recipes
relies on simple, uniform interfaces and is independent of the actual
actions and triggers, thus a rich set of recipes can be constructed
from a few triggers and actions. Similarly, access-control monitors
can use the abstract interfaces of the ESOs, regardless of how the
ESOs actually implement situation tracking. On the other side,
IFTTT triggers (respectively, ESOs) work the same regardless of
the recipes (respectively, access-control systems) that use them.

3.1 Interacting with ESOs
The interaction between an access-control system and a ESO is a
basic client-server interaction.
ESO interface. Each ESO object exposes several methods. The
first is дet_id(), which returns situation_id, situation_name,
and ESO_description. The second is is_active(s,a), which receives
as input a subject and an access right and returns a boolean is_active
indicating if the situation is currently active.

An ESO may optionally support a third method,
callback_on_chanдe(), to register callbacks for state changes. This
is useful mainly for situation-triggered functionality that is not nec-
essarily related to access control. Our survey of IFTTT recipes (Ap-
pendix B) shows that, just like situational access control, situation-
triggered functionality lacks common interface standardization and
suffers from overprivileging and redundancy.

Access to an ESO can be controlled, too, for example if is_active()
and callback_on_chanдe() are accessible only to authorized sub-
jects. We use the term e-policy for the access-control policy of the
ESO itself, as opposed to the access-control policies that are clients
of the ESO. Section 3.3 explains how these e-policies are created.
Changes to the policy language. We add a set of ESO identifiers
I and a set of situational ACEs (sACEs) Esit ⊆ S ×A × I . For every
(s,a) ∈ S ×A, Esit can have at most one entry pertaining to (s,a).
More elaborate policies could be expressed with multiple situational
constraint per subject-object pair, e.g., based on logical and or or
between situations, but an ESO can aggregate query results from
other ESOs, thus there is no loss of expressiveness.

These changes are backward-compatible and aim to minimize
the adoption cost for the existing systems. Alternatives such as
grouping rules into “profiles” that activate on situation changes or
adding roles and attributes [37] are expensive to adopt in the IoT
and do not appear necessary for common situational policies.

Changes to enforcement. Figure 3.1b depicts the reference moni-
tor’s behavior when enforcing a situational constraint. Upon access
request (s,o) ∈ S ×O , if there exists (s,a, i) ∈ Esit such that o ∈ a,
the reference monitor calls i’s is_active() function with (s,a) as
input. Access is allowed if one of the ESOs is “active.” Otherwise,
the reference monitor reverts to its original behavior.

If an ESO is unavailable for any reason, access is disallowed. This
is a conservative choice. While it could potentially result in denial
of service, the alternative is too-permissive enforcement. Either
way, the user should be notified that the ESO has failed.

For some operations, access may need to be revoked and oper-
ation terminated mid-execution when the situation changes. For
example, the access of a home-monitoring app to a camera may
need to be terminated when the user enters the house. One solution
is to use the ESO callback interface. Unavailable ESOs will not issue
callbacks, however, thus client frameworks may need to periodi-
cally query the ESO and terminate the operation if the situation
has changed (or the ESO has become unavailable).

Once the reference monitor has permitted an operation to start,
it may not be able to terminate or even notify the operation. Opera-
tions should expose an interface to be notified by the access-control
mechanism about changes in the environment—see Figure 3.1c.

3.2 Integrating ESOs into the IoT stack
In Section 4.1, we survey four IoT interfaces where access-control
policies may need to be enforced: (1) direct resource-layer access,
(2) service-to-service access through Web APIs, (3) app-to-service
access in app frameworks, and (4) IFTTT service integrations. We
categorize these interfaces by their connectivity and communica-
tion capabilities and specify the connectivity interface and commu-
nication protocol between the clients and ESOs.

Resource-layer accesses are local: they take place within a home
network or local area network. Unlike HTTP, resource-layer proto-
cols such as OCF, ZigBee, and Z-Wave (see Section 4) are optimized
for high availability and low energy consumption. We call ESOs at
this layer Resource ESOs (rESOs).

Service-to-service interactions are Web-based. Access-control
decisions are made by a (typically remote) cloud service prior to
operation dispatch. ESOs are deployed as Web services exporting
an HTTP interface, i.e., Web ESOs (wESOs).

Monitors for app-service interactions can be Web-based (and use
wESOs) or local (and use rESOs); SmartThings is a hybrid.

IFTTT recipes are deployed in the proprietary, closed-source
IFTTT service. While wESOs can be used, they may not be adequate.
IFTTT imposes requirements on the remote services exposing ac-
tions and triggers, e.g., they must issue OAuth 2 tokens that never
expire, add integration code in IFTTT’s Web IDE, and pay a fee.
“Filter” code with third-party query capability (see Appendix A.4)
has the benefits of an ESO for IFTTT recipes.

Our prototype implementations focus on rESOs (Section 5) and
wESOs (Section 6).
Alternative: constrained delegation. For the Web, where access
is delegated using tokens rather than granted based on identities,
some existing delegation schemes already facilitate wESOs with-
out any modification to the scheme’s enforcement logic. In the
expressive bearer-credential protocols such as SPKI/SDSI [22] and

(a) Enforcing non-situational constraint (b) Enforcing situational constraint (c) Termination notification flow

Figure 3.1: Abstract access-protected framework reference monitoring flow

(the more recent) Macaroons [6], credentials include constraints on
when and how they may be used. For example, Macaroons allow
adding contextual caveats to bearer credentials, which can include
arbitrary constraints from the credential issuer or a downstream
bearer, e.g., the requirement that a credential-carrying request con-
tain a signed statement from a third party.

These access delegation schemes are expressly designed to sup-
port attestation protocols with the mutual obliviousness property
of our ESOs. For example, a macaroon could carry the constraint
“bearer must show evidence that they are logged into Alice’s Google
account” and Google could export a service that signs such state-
ments, similar to OpenID authentication [53]. Our wESO protocol
can be similarly extended to issue such statements.

3.3 Using ESOs
Creating policieswith situational constraints. Different access-
control systems configure policies differently. For example, in Smart-
Things, the user assigns access rights to individual devices during
app installation (see Section A.3). Nest uses the standard OAuth
2access delegation flow. In the resource layer, policies are typically
determined by a higher-level framework, not by the user.

Some frameworks already support rudimentary situational con-
straints, usually proprietary and with different semantics and con-
figuration procedures, e.g., “modes” in SmartThings (see SectionA.3)
and “Home/Away Assist” in Nest (see Section A.2).

Our generic design does not prescribe how to generate poli-
cies with situational constraints, as this varies from framework to
framework. We focus on policy enforcement rather than policy gen-
eration. ESOs can help enforce policies that are already popular but
nevertheless not enforced by the existing platforms. In Section 6.3,
we show how to add a wESO-tracked situational condition to any
policy rule in a Web service.
Installing ESOs. rESOs can be installed into the local or home
network directly by the user, but resources at this layer (and their
permissions) are typically controlled by a higher-level framework
that exposes a UI for setting policies. Installing a wESO is as easy
as signing up for a Web service.

Installation includes configuring the ESO and and setting the e-
policy for accessing the ESO’s interface. Configuration is important
when the ESO is based on the user-specific data and preferences
(for example, home location). To specify and enforce the e-policy,

rESOs can use the access-control facilities of the resource layer,
while wESOs can use OAuth 2-style bearer tokens.3

ESOs are not exempt from their environment’s access-control
policies. Like any other entity in an IoT ecosystem, wESOs and
rESOs may request and use access to protected APIs on the Web,
within the home network, on the user’s phone, etc.
Choosing ESOs. ESOs expose an interface, consisting of дet_id()
and ESO_description(), announcing which situation they track.
This is useful for grouping and choosing from among ESOs that
track the same situation, when their URIs are known.

An ESO cannot respond to these queries before it is installed
and therefore cannot be discovered by potential clients. To address
this challenge, we suggest that the maintainers of ESOs create
ESO providers. Providers expose the identities and descriptions of
not-yet-installed ESOs through a Web interface. The URIs of such
providers can be collected and advertised by clients or other parties.

Concretely, an ESO provider exposes theдet_id()method, which,
like the corresponding method in the ESO interface, returns three
values. The first two are identical to what the ESO’s дet_id() would
return. The third value, ESO_provider_description, is an abstract
description of the ESO without specific configuration values. For
example, a provider that tracks the situation “it is dark outside” may
produce location-specific ESOs. Its description can return “This
ESO indicates if it is dark outside, inferred using date and location.”
For an ESO installed by this provider, the ESO_description can
return, for example, “This ESO returns if it is dark outside in Ebbing,
Missouri, United states, using the current date.”
Accessing ESOs. Once an ESO has been installed, clients must
know its URI. For rESOs, the resource layer broadcasts resource
URIs within the home network. As long as an rESO is set as “dis-
coverable,” its authorized clients can identify and use it.4 wESOs,
however, are on the Web. Their URIs should be the same as their
providers’ URIs (if implemented). Either way, multiple wESO in-
stances for multiple clients can be accessed using a single URI.
Within the clients and the wESO service, different wESOs are iden-
tified and distinguished by the OAuth 2 tokens used to access them.

3OAuth 2 tokens are only valid for a certain duration. To avoid wESO denial of service
when enforcing a situation-dependent policy, client frameworks should only grant
tokens that expire before their own e-policy token for accessing the wESO service.
4Resources have identities coupled with cryptographic keys; resource authorization
can ensure that the rESO being used is the one intended—see Appendix A.1.

In Section 6.3, we describe our prototype implementation of a
Web service that lets situational constraints be added to its policy
rules using wESOs and wESO providers. This includes choosing
wESOs, installing them, and setting up access using OAuth 2.

3.4 Limitations
Network and performance overhead. When making a situation-
dependent access-control decision, the reference monitor must
query an ESO and receive an answer. This can be a problem if
latency is crucial or if the access-control system or the network are
request-saturated. In IoT, however, permission-protected accesses
already take place over a network interface (see Section 3.2) and are
thus not likely to be time-critical. Home devices and networks rarely
operate near their maximal request throughput, and we expect that
the capacity for inter-service HTTP requests will scale to support
a large number of services and interactions.
Reliance on third parties. ESOs are third parties (vs. subjects and
objects) in situational access control. An unresponsive or faulty
ESO affects its clients’ functionality, which is problematic if this
functionality is end-to-end and cannot tolerate faults.

In practice, IoT frameworks already rely on third-party com-
ponents for situation tracking (e.g., smartphone geofencing) and
already deal with inconsistent and sometimes erroneous results
(see Section 2.3). Therefore, ESOs are not making situation tracking
worse and may even improve it.

4 THE IOT STACK
IoT devices are typically accessed via vendor-specific controller
apps (vendor apps) that (1) configure and control devices from a
given vendor and may also (2) control compliant devices from other
vendors. Vendor apps may have both Web- and smartphone-based
interfaces. Apps and devices from different vendors interact via
high-level Web APIs and/or directly over a home network (e.g., an
Amazon Echo Plus device can directly control GE lightbulbs).

We briefly survey the IoT software stack depicted in Figure 4.1,
focusing primarily on the layers where access control is performed.
Layer 1: Connectivity. The connectivity layer is responsible for (1)
device-to-device physical transmission and reception (often requir-
ing a common proprietary chip), and (2) low-level device addressing
and routing using IP addresses, typically using proprietary proto-
cols that minimize energy consumption and improve the efficiency
of the home network, and secure device-to-device communication
facilities (e.g., DTLS sockets). Older protocols include IP over Blue-
tooth and Wi-Fi, newer ones include ZigBee, Z-Wave, and Thread.
Layer 2: Resources. The resource layer is responsible for (1) pro-
visioning IoT devices, in particular assigning unique identities asso-
ciated with cryptographic credentials to devices and their owners,
and (2) exposing device capabilities to (possibly remote) clients and
enforcing permissions when clients access the device.

The client API is relatively low-level, exposing only a few primi-
tive methods for invoking device capabilities such as poll, update,
and subscribe to the events of a device-based resource. This is akin
to a distributed Linux-style file system, where files correspond to

resources. Some functions of this layer are decentralized, e.g., per-
mission checks may be performed on multiple devices, while others
are implemented by centralized daemons, e.g., device provisioning.

Resource layer standardization efforts include the OCF standard,
ZigBee/dotdot, Z-Wave, Apple HomeKit Accessory Protocol (HAP),
Insteon, Echonet, IPSO, and others.

The resource layer does not include apps,5 nor does it manage
app installation, activation, removal, and app-identity assignment.
Layer 3: Vendor apps and services. A vendor app typically imple-
ments some functionality using the devices it can access. It can also
expose a Web-based control interface through a service. A service
runs on a cloud infrastructure and manages user accounts. Services
such as Nest are operated by IoT device vendors and control de-
vices in users’ homes. Other services do not control IoT devices (e.g.
Facebook, Instagram) but can interact with services that do.
Layer 4-a: Web APIs. A service may expose a Web API for query-
ing and controlling user data and devices from the same vendor and
compliant devices from other vendors. Other services can access
this interface with the user’s permission. This layer also defines a
permission model and enforces access control. API methods and
permissions are device-specific and higher-level than resource-layer
primitives, e.g., “turn switch on and off.” See Section A.2 for details.
Layer 4-b: (Vendor-)app frameworks. Some vendors provide
frameworks that expose richer programmable interfaces and APIs
to apps that are specifically designed for the framework. In addition
to the APIs for device and data access, a framework can include
an app programming language, an app market for publishing and
distributing apps, app installation and removal interfaces, and APIs
for common UI operations such as app configuration.

An example of an app framework is Samsung SmartThings,
which runs apps on a dedicated hub device and provides device APIs
with abstractions similar to (but less flexible and more high-level
than) a smartphone app framework. Similarly, Apple’s HomeKit
app framework exposes an API for iOS apps to control HomeKit-
compliant smarthome products. Another example is the framework
for Google Assistant apps, which builds on the device’s voice tran-
scription to offer specialized functionality. For example, the Chef
assistant app interactively helps users choose and follow cooking
recipes. Alexa “skills” are similar.
Layer 5-a: IFTTT. IFTTT is a dedicated Web service that de-
fines yet another abstraction for device operations and user data:
channels, which comprise triggers and actions. Triggers and actions
are provided by third-party partner services (e.g., Nest and Smart-
Things); a few “native” ones are provided by IFTTT itself. Triggers
and actions defined by a partner service use that service’s Web APIs.
For example, the Instagram trigger “any new photo by you” uses
Instagram’s Web API to find and retrieve user’s images.

Any IFTTT user or partner service can create new interactions
between services by writing “if trigger then action” recipes, e.g.,
“publish all Instagram photos to my Facebook profile” or “shut off
the smart blinds when the sun is setting.”

Layer 5-b and Layer 6 deal with third-party apps and applets.

5Lower-level protocol specifications can refer to the resource layer as “application layer.”
Some prior work [2, 28, 32, 45] incorrectly considers resource-layer implementations
such as IoTivity and AllJoyn (now merged into IoTivity) as app frameworks.

Figure 4.1: The IoT stack. wESOs export Web APIs in the service layer; rESOs are local-network resources.

Despite standardization efforts, in practice inter-vendor integra-
tion is still performed in an ad-hoc fashion. For example, Samsung
SmartThings and Nest do not have an integration interface: Smart-
Things does not use the Nest API, and controlling Nest products
via the SmartThings framework is not officially supported. This
does not have a direct impact on the ESOs because they are not
based on inter-vendor integration.

4.1 Access control in IoT
Four types of interactions in the IoT stack are protected by access
control. We describe them generically and then provide detailed
examples in Appendices A.1 through A.4.

Direct resource access is typically performed by the device’s
“owner” app provided by its vendor. To this end, many devices im-
plement a standardized communication protocol such as ZigBee,
Z-Wave, or the OCF standard. Devices become accessible to ven-
dor apps and other devices by acting as resource-layer servers that
export resources (“endpoints” in Z-Wave, “application objects” in
ZigBee). Resources can be accessed by other servers (typically, other
devices) or by resource-layer clients, such as a hub that controls de-
vices. Clients and servers have identities that can be used to specify
resource permissions on servers. Permissions for this low-level
interface are typically set by the vendor app so that they comply
with its higher-level policies. Resource-layer standards do not sup-
port situational constraints at all. A representative example of a
resource-layer standard is the OCF Standard (see Appendix A.1).

App-service interactions are performed via app-framework
APIs such as Samsung SmartThings that may use a permission
model to constrain API access. We explain SmartThings’ SmartApps
access control in Appendix A.3.

Service-service interactions typically involve accesses viaWeb
APIs, although vendors can also program their respective devices
to interact directly or via mobile APIs. A representative example is
Nest API (see Appendix A.2).

Channel-recipe interactions are based on the service-service
integrations defined in IFTTT. See Appendix A.4 for details.

As explained in Section 3.2, to serve access-control frameworks
within the home network (e.g., local apps on app frameworks with
direct resource-layer access), rESOs are integrated into the resource
layer. To serve access-control frameworks that run on the Web,
wESOs export Web APIs—see Figure 4.1.

(a) rESOs as OCF resources; IoTivity server enforces situational constraints

(b) wESOs as token-protected Web interfaces; token-protected Web service en-
forces situational constraints

Figure 5.1: Resource layer and Web ESOs integrated into ac-
cess control in IoT.

5 RESOURCE-LAYER ESOS
rESOs can export interfaces through any resource-layer protocol
such as ZigBee, Z-Wave, or the OCF standard. The three standards
have similar abstractions. For Z-Wave, wewere unable to locate pub-
lic details about access-control standardization (if any). In ZigBee,
access control is supposedly standardized by a recently advertised
specification, “dotdot”, which is not publicly available. Therefore,
we focus on the OCF standard and its open-source implementation,
IoTivity. IoTivity is supported and maintained by hundreds of IoT
vendors, with major companies such as Microsoft, Samsung, Intel,
Qualcomm, and others leading the implementation.

Our rESOs are resources registered by a server process. Their
query interfaces, with the дet_id() and is_active() methods, are
exported via the permission-protected read operation and can be
accessed only from authorized clients (see Appendix A.1). rESOs

can be installed and configured directly by users, but servers are
typically installed by a higher layer, i.e., a service or app framework.

5.1 Situational access control in IoTivity
IoTivity, coded in C and C++, facilitates OCF client and server de-
velopment. For clients, it supports APIs for issuing asynchronous
requests; for servers, it supports an API for resource registration,
allowing the server to associate resource identifiers with request
handlers. IoTivity handles associating requests with registered re-
source methods, as well as access control. Every client and server
must provide a JSON file with configuration resource values.

We changed IoTivity’s implementation of an OCF server to sup-
port ESO-based situational access control as described below.
Server enforcement before change. Incoming requests from the
network are handled asynchronously. First, the communication
middleware pushes them onto a task queue. One or more han-
dler threads sequentially pulls requests from the queue and calls
into the secure resource manager (SRM), which is the IoTivity
reference monitor. The SRM constructs a request context object
to track requests throughout the process of authorization and ex-
ecution. This object contains the authenticated identifier of the
remote requester and network-level identifiers, whether or not the
request was granted, and other metadata (e.g., the accessed method
and URI). It then invokes the CheckPermission(requestContext)
method, which has the following logic. First, it checks if the request
is from the device owner or resource owner for configuration re-
sources, and if so, approves. Then, it iterates over ACEs and tries to
find a match for the object and subject. If the request is approved,
the SRM calls into the resource access handler.
Server enforcement after change. We changed the JSON schema
for /acl configuration, as well the corresponding parsing code,
to add an optional field to every ACE that specifies the situation
identifier. If the ACE contains a situation identifier, the request
context is passed onto the situation client (SC) module that handles
interaction with the rESO. SC constructs an is_active() request to
the rESO, specifying the subject identity (GUID) and access right
request (URI, access type, and device identity).

For this solution to scale to multiple concurrent requests, we im-
plemented two crucial optimizations. First, because response time
is contingent on the rESO, queried an acknowledgement message
is sent to the requesting client before the rESO is queried. It signals
that the request is processing and retransmissions are unnecessary.
Second, the situation query is asynchronous: right after the remote
request is issued, we yield the thread so that concurrent requests
can be handled. When a response is received or after a (config-
urable) timeout, if the situation is not confirmed as active—the
rESO responded that it is inactive, access to the rESO was denied,
or the request timed out—CheckPermission() continues to try to
find a matching valid ACE. Otherwise, it finishes, and the SRM flow
continues to perform the request. Figure 5.1a depicts this flow.
Operation termination. After a situation-dependent approval has
been issued for a request, SC maintains a handle to a termination
object and passes it through the SRM to the request handler. Using
this shared object, the request handler can indicate to the SC that
periodic querying is necessary and provide a termination callback.

It can subsequently signal to the SC that the operation has ended
organically and there is no need to query further.

5.2 Micro-benchmarks
Code changes. Our implementation of the SC module totals 824
LOCs of C. Main changes in IoTivity itself total 442 line insertions
and 147 line removals.

The main code changes required in IoTivity were (1) passing the
termination handle from the SC to the request handler, (2) adding
the rESO address to the policy’s ACE JSON schema, and (3) splitting
the SRM logic into asynchronous handlers to facilitate sending a
request to the rESO during a permission check without blocking the
handler thread. The last change, which is also the most challenging
(and requires most LOCs) is already planned for IoTivity’s SRM, to
support querying a centralized security manager for some requests.
Because it has not yet been integrated into IoTivity’s mainline
branch, we added it ourselves.
Experimental setup. To measure the added overhead in permis-
sion checks when querying rESOs, we used an IoTivity client on
an i7-5960X machine running Ubuntu as our subject. The object
is an OCF server exposing the /a/cam resource that responds to a
read method, simulating an IoT device interface. We installed our
server on a Raspberry Pi Model B with an ARMv7 Processor rev 4
running Raspbian (this low-performance setup is similar to an IoT
embedded device). Our prototype rESO contains /a/is_user_home.
The rESO server was installed on an Ubuntu Intel E5-1660 machine.
The machines were all connected to the same LAN.

Our subject accesses /a/cam’s read operation in an infinite loop.
In the following experiments, we compare the timings in two set-
tings: (1) the “vanilla” setting, where the object server configuration
contains an ACE that grants the subject read permission, and (2)
the situation-query setting, where the read permission is granted
conditional on the rESO’s approval. The only difference between
the settings is that in (2), the ACE specifying client permissions to
/a/cam also specifies a situational constraint in the cnd field:

"aclist2": [... {

"aceid": 3,

"subject": { "uuid": "CLIENT_GUID" },

"resources": [{ "href": "/a/cam",

"cnd":"ESO_GUID:/a/is_user_home" }],

"permission": 7 }]

We launched multiple concurrent instances of our subject and,
over the course of 3 minutes, measured the duration of the method
CheckPermission() for /a/cam, average round-trip time for a re-
quest to /a/cam, and the average processor load of /a/cam’s IoTiv-
ity process as the percentage of a single core’s capacity sampled at
2-second frequency via top. Table 1 summarizes the results.
Results. On average, 301 requests per minute were sent and han-
dled when permission checks involve situational queries, compared
to 528 for the vanilla setting. Permission checks that involve query-
ing an rESO consistently take similar average time, with up to 15%
variance, as querying the vanilla /a/cam. The average round-trip
time for requests to /a/cam is consistently almost twice the aver-
age time for checking permissions. This is expected, because the

#clients V/RTT V/proc V/CP SQ/RTT SQ/proc SQ/CP
1 0.162 11.47% 0.0005 0.254 17.613% 0.128
5 0.512 21.16% 0.0006 0.937 23.543% 0.473
10 1.033 20.915% 0.0009 1.856 25.348% 0.938
20 2.075 21.123% 0.0009 3.676 24.351% 1.841

Table 1: rESO micro-benchmark results for concurrent
access requests issued for 3 minutes in the situation
query (SQ) and vanilla (V) settings. Round trip (RTT) and
CheckPermission() times (CP) are in seconds.

overhead of permission checks using an ESO is dominated by the
additional /a/is_user_home request RTT (see Section 3.4).

We further observed that the processor load increased by about
5% for the situation-query setting. This can be explained by the
additional request and acknowledgement messages, as well as the
cost of making permission checks asynchronous, i.e., saving and
reinstating the request-handling state before and after the situation
query. This overhead can be reduced by optimizing the SC.

Note that, while this benchmark is useful for verifying imple-
mentation sanity and grounding assessments of overheads in many
scenarios, it does not directly measure overheads in all ESOs; those
may vary with network conditions and ESO processing time.

6 WEB ESOS
Every Web ESO (wESO) is provided by a Web service, which is
independent of the object and subject services. The wESO’s inter-
face, including the two methods exported by all ESOs, is accessed
via HTTP GET calls to its URI with the appropriate method name
and accompanied by an appropriate bearer token. The results are
returned in JSON-encoded responses. See Appendix A.2 for more
details and an example involving Nest Cam APIs.

6.1 Situational access control in a Web service
To support ESO-based situational access control on the Web, we
changed an object service, which is implemented in JavaScript and
runs over Node.js servers with Mongoose DB schemas. Following
common practice, the object service uses bearer tokens, verified
using the popular Passport authentication library, to control access
to its single API, дet_user_in f o().

Passport enforces access control as follows. When protected
APIs are accessed, an authorization strategy is called. This function
is defined once but can be used for multiple APIs. It receives the
request, which includes the caller’s credentials, the access rights
required for the protected API, and a callback implementing the
API’s behavior. The strategy first decides whether to deny or al-
low access. Strategies usually follow common patterns, such as
username-and-password-based “local” authorization or bearer to-
kens. The passport-http-bearer library offers middleware for the
latter. It verifies that the token is valid (i.e., was issued by the object
service), non-expired, and that its scope allows the invoked API
call. The strategy then finds the user profile associated with the
request, and, if access is allowed, calls the function that implements
the API’s behavior, passing the user profile to it.
Server enforcement after change. Internally, ACEs are expressed
using access tokens that are linked in the service database to a

#clients V/RTT V/proc V/CP SQ/RTT SQ/proc SQ/CP
1 0.0185 92.1% 0.006 0.038 67.3% 0.025
5 0.0635 100.9% 0.016 0.093 105.7% 0.056
10 0.1228 99% 0.034 0.182 102.2% 0.103
20 0.2052 100.1% 0.06 0.326 105.5% 0.191
40 0.3960 101.9% 0.114 0.593 109.6% 0.365
80 0.7704 102.1% 0.222 1.178 108.1% 0.737

Table 2: wESO micro-benchmark results. The situation
query (SQ) and the vanilla (V) settings; concurrent access
requests issued for over 3 minutes. Round trip (RTT) and
CheckPermission() (CP) times are in seconds.

wESO’s URI and access token. The scope of the token specifies access
rights encoded as a list of permission strings—see Appendix A.2 for
more details. We add the situation ID as a prefix to every permission
string, followed by a delimiter (we used “;”). Changing the scope
to reflect situation dependence is important since, in OAuth 2, the
scope is sent to subjects to specify their access rights.

We implemented our strategy middleware, passport-http-bearer-
ESO, as a fork of the passport-http-bearer library. When used in
lieu of the original passport-http-bearer, it performs authentication
as follows. When a token linked to an ESO is received in a request,
it is first verified using the vanilla authorization logic, which also
extracts the user’s profile. The associated ESO is then queried using
a GET request to the ESO’s URI (with the received token). If the
ESO is active, the requested API is invoked and passed the user’s
profile, as well as a situation-change subscription function (see
below). Figure 5.1b depicts the enforcement logic.
Operation termination. The situation-change subscription func-
tion receives as input a termination callback (to be called if the
situation is no longer active, or the ESO is irresponsive), and the
time to wait between periodic situation queries. It initiates periodic
queries and calls the termination callback if the ESO is no longer
active. The subscription function returns a callback for the API to
invoke when the operation stops (and so should periodic querying).

6.2 Micro-benchmarks
Code changes. The entire enforcement behavior is contained in the
authorization strategy implemented by our passport-http-bearer-
ESO library, which adds 56 LOC to passport-http-bearer. Services
that use the latter can simply use our library instead. This involves
changes to 3 lines of code, to change the strategy name and add
ESO URIs and access tokens to the persistent token registry.
Experimental setup. We measure request times similarly to Sec-
tion 5.2: a subject service initiates periodic concurrent queries to
saturate the handling capacity of the object service and measures
times for permission checks, processor load, and request round-trip
times. The subject, object, and ESO are all Node.js server processes
running on an Intel i7-5960 PC, a Raspberry Pie Model B, and an
Intel E5-1660 respectively. The queried object-service API is /info,
which, after token authorization, simply returns the processor load
and time that authorization took.
Results. The results are similar to Section 5.2, except the (more
mature) Node.js infrastructure demonstrates overall much better
performance than IoTivity. For 5-40 concurrent requests, on average

(a) Access delegation

(b) Situation-dependent access delegation

Figure 6.1: Situational vs. non-situational access delegation.
Users instantiating operations that require access rights are
referred to another website, where they configure and dele-
gate access, and then back to the originalwebsite to continue
with the original flow. For situational access delegation, an
additional, nested wESO instantiation flow may occur.

3,300 requests per minute were sent and handled by the situation-
querying server, compared to about 5,200 for the vanilla server.
Both seamlessly handle up to 80 concurrent requests.

6.3 Creating situational policies on the Web
In Section 6.1, we added a situational constraint to an OAuth 2-
protected API. To enforce this constraint, the object service used a
hard-coded wESO and its access token. We now explain how the
user can select an arbitrary wESO to situationally constrain access
to the object service by subject services.
Delegating access using OAuth 2. Our object service uses OAuth
2 to enable the user to delegate access to its API. At a high level,
when subject services access the protected API, they redirect the
user (using an HTTP redirect response) to the OAuth 2 entry point
at the object service. The user can then approve access and is redi-
rected back. See Appendix D for more details.
Adding situational constraints. We changed our object service
so that, when the user is approving access, she can (1) constrain
it using a wESO of her choice, and (2) provide the token for this
wESO to the object service. To this end, a second, nested OAuth
2 flow redirects the user to a wESO server, which exposes the
wESO-provider interface (see Section 3.3) and protects wESO APIs
using OAuth 2 “authorization code grant.” User can choose from
the existing wESOs or authorize the installation of a new one.

Figure 6.1 depicts standard access delegation in the original
object service and situation-dependent access delegation in our
modified object service with a nested wESO instantiation flow.
Choosing a wESO. In step (2) of Figure 6.1b, the user chooses a
wESO service URI (see an illustration in Figure 6.2). The object
service displays the description of the wESO provider. If the object
service already has tokens to access wESOs with this URI, it displays
the corresponding wESO descriptions. If the user’s desired wESO
is on this list, she can choose it, obviating the nested flow.

Figure 6.2: Choosing a wESO: step (2) of Figure 6.1b.

Implementation. Implementing the above behavior is easy in
any Web service that protects APIs with OAuth 2. Nested flows
are the biggest challenge because they involve two concurrent
“authorization code grant” OAuth 2 flows: the encapsulating one,
where the object service issues a token, and the nested one, where
the wESO service issues a different token to the object service.
Concretely, at step (2) of Figure 6.1b, we save the encapsulating
flow’s state using a Mongoose DB schema; at step (4), we reload it
and present a confirmation dialog to the user; and at step (5), we
finish the nested OAuth 2 flow, continue the encapsulating flow,
and eventually redirect the user to the subject service. The last
step requires exchanging an “access code” for a token with the
wESO service and issuing an access token for the subject service
(see Appendix D). These changes total 122 LOC in JavaScript. The
confirmation screen was implemented with a 45-line Jade scheme.

Like the authorization strategies in Section 6.1, all changes are lo-
cal. The OAuth 2 flow that we modify is typically implemented once
per service—but can be invoked with different scopes, to delegate
access to different sets of APIs and operations.

6.4 Case studies
We describe Web ESOs that track situations motivated by the exam-
ples in Section 2: “allow access but log the operation,” “allow access
only when the user is not at home,” and “allow access only when
the user is in the room.” For each situation and ESO, we specify: (1)
the return values of дet_id , (2) the protected APIs used by the ESO,
(3) ESO configuration values, (4) its offline behavior and the behav-
ior of is_active . We implemented the first two ESOs, which track
common situations. The third ESO tracks a situation not commonly
available in IoT frameworks but still has interesting use cases.

Appendix C also describes an alternative ESO for detecting the
“user is away” situation using Nest and SmartThings presence sen-
sors, and two ESOs for notifying the user via (a) push notifications,
and (b) push notifications and blinking SmartThings lights.
Log accesses to a Google Drive spreadsheet. Identity values:
{situation_name: logAction; ESO_description: “log access

operations to a Google Drive spreadsheet.”}.ProtectedAPIs,
configuration: This ESO uses Google Drive with the scope
spreadsheets. It is configured with the name of the spreadsheet
and sheet to use. Behavior: is_active(s,a) logs s’s access to a with

Figure 6.3: Geofencing-based “home/away” detection

a timestamp and returns “active” only when the log operation suc-
ceeds (it is “fail-safe”). Use cases: In Section 2.2, we explain why
this is a particularly useful ESO. Delay induced by logging:We
used the setting from Section 6.2 but extended with this ESO to
measure the delay in access operations due to the ESO constraint.
When performed from our campus network, the logging operation
takes about 0.5 seconds (averaged over 60 requests).
User is away, using Android geofencing. Identity values:
{situation_name: HomeAway; ESO_description: “Home presence

detection using phone geolocation.”}. ProtectedAPIs, con-
figuration: User is required to install an Android app that uses lo-
cation services. The app requires the ACCESS_FINE_LOCATION and
WAKE_LOCK permissions, the latter to keep the CPU from entering
sleep mode when handling location updates. The user configures
the location of their home in the app. Behavior: the Android app
uses the geofencing API [18] to track if the user is in close proximity
to their home (a location configured by the user). To this end, it
registers a listener (“pending intent”) with the geofencing server on
the device, for the event of the user coming within 600 feet of their
home coordinates. On server updates, the ESO backend is updated
via HTTP—see Figure 6.3. is_active(s,a) returns true when the
app indicates that the user is away.
Familymember in the room, usingOpenCV face detection and
recognition. {situation_name: PersonDetector;

ESO_description: “Apply a face classifier to captured video

to detect when specific family members are in the room.”}

Protected APIs, configuration: requires an OAuth 2 access token
to the Nest Camera, with access scope camera_read. Configuring
the ESO include supplying several images of family members to
train the classifier. Behavior: first identify a face in the camera
feed using OpenCV’s face detection API, then use the classifier
trained to identify faces of family members. is_active(s,a) returns
“active” when a family member is present. Use cases: For example,
a home monitoring camera can be used to record nannies, clean-
ing personnel, delivery personnel [59], and any untrusted person
around the house, but only when a trusted family member is not
in the room. It could also detect children in the room and revoke
access from a videoconferencing app (see Section 2.2).

7 RELATEDWORK
Access control in appified environments. Many proposals for
tightening security policies in appified environments make as-
sumptions about the apps’ structure or runtime. Some build on
language-specific static analyses [3, 4, 24, 27, 33, 42] or dynamic
analyses in Android’s Dalvik/Art virtual machine [23, 33, 52] to
detect and prevent unwanted information flows. Static analysis has

been suggested for SmartThings, too [11]. Other works employ An-
droid’s inter-process communication and/or kernel access monitors
to mitigate collusion and confused deputy attacks [7, 8, 10, 21, 26]
for mandatory access control [10, 60] and information flow con-
trol (IFC) [36, 40, 69]. For SmartThings, runtime monitoring-based
IFC [29] and data provenance collection [71] have been considered.
Other approaches monitor the kernel [10, 60].

NLP-based approaches have been proposed to infer the desired
policy from the app-market descriptions for Android [50] and Smart-
Things [68] apps.

Wijesekera et al. [72] found that subdividing dynamically granted
permissions according to the runtime information (e.g., “is the
app in the background?”) can sometimes be effective in balanc-
ing fine granularity of permissions and the need to prompt the
user. PmP [13] follows this approach but focuses on informing the
users about access requests from third-party libraries. Wijesekera
et al. [73] use even finer-grained permissions but offload some of
the decisions to machine learning classifiers. In the IoT domain,
ContexIoT [41] subdivides dynamically granted permissions for
SmartThings SmartApps according to the app’s control flow and
the source of the data used in permission-protected operations.

In IoT, however, apps (subjects) are typically entirely external
to the access-control system, which thus cannot monitor their exe-
cution. Their code is often proprietary, and they are not built in a
specific programming framework or distributed through a central-
ized app market that can facilitate inspection and vetting.
Situational access control. Dating back to the early 2000s, multi-
ple papers suggested designs for role-based access control (RBAC)
systems that add explicit situation-dependent constraints to poli-
cies. These are specific to the RBAC setting [17, 49, 51] and most
require situation tracking to run locally [5, 44, 51, 75, 76].

Explicit situation-dependent constraints for Android have been
proposed in CRePE [16], MOSES [56], FlaskDroid [9], Shebaro et
al. [57], and Apex [46]. Policy rules are activated and de-activated
dynamically by configurable detectors (“context detectors” in CRePE
and MOSES, “dynamic constraints” in Apex, “context providers” in
FlaskDroid and Shebaro et al.). These approaches all assume that
situation tracking is done on the Android platform and using its
capabilities. In particular, they define situational predicates using
Android sensors. In CRePE, authorized third parties activate situa-
tions via SMS. In FlaskDroid, trackers are special plugins running
on the Android framework API. None of these approaches support
the encapsulation and segregation required for the IoT situation
trackers (see Section 1.1).

For IoT, Yu et al. [74] argue for monitoring access requests and
enforcing situational policies at the network level rather than on
the devices. This is complementary to our ESO-based approach.
Other attacks and defenses in IoT frameworks. Many works
focus on IoT security issues other than access control. Fernandes et
al. [28] found flaws in the SmartThings app security model that lead
to overprivilege and demonstrated the resulting attacks. Apthorpe
et al. [1] analyze devices’ encrypted traffic and suggest defenses.
Simpson et al. [58] propose a hub-based system for detecting and
preventing vulnerability exploitation in IoT devices. FACT [45] de-
tects “functionalities” that devices and resources support, isolates

them from one another, and enforces functionality-level rules. Sur-
batovich et al. [66] show how IFTTT configuration can introduce
non-intuitive, unexpected information flows, and that users often
define and use recipes that not only enable but also automate and
streamline privacy and integrity violations. DTAP [30] offers prove-
nance verification for triggers in trigger-action platforms (such as
IFTTT) while substantially reducing their required privileges.
Delegated access control. Constrained bearer-credential protocols
such as SPKI/SDSI [22] and Macaroons [6] are complementary to
ESOs. They can be used as alternative enforcement modes that
query ESOs in delegation-based systems, as discussed in Section 3.2.

8 CONCLUSION
We identified a fundamental problemwith situational access control
in today’s IoT: situation tracking is entangled with the enforcement
of access-control policies. This leads to overprivileging, inefficiency,
and inability to enforce common policies. The root cause is the de-
sign of the existing IoT access-control frameworks, which view IoT
as a centralized platform similar to a smartphone app framework.

We proposed and implemented environmental situation oracles
(ESOs) as a simple and generic solution suitable for access control
at all layers of the IoT software stack, and concretely demonstrated
the benefits of ESOs with prototypes for the resource layer and
Web-services layer of the IoT stack.
Acknowledgements. Roei Schuster and Eran Tromer are members
of the Check Point Institute for Information Security. This work was
also supported by the Blavatnik Interdisciplinary Cyber Research
Center (ICRC); DARPA and ARO under Contract #W911NF-15-C-
0236; Israeli Ministry of Science and Technology; Leona M. & Harry
B. Helmsley Charitable Trust; Schmidt Sciences; and NSF awards
1423306, 1445424, 1611770, and 1612872. Thanks to Tom Tytunovich
for sharing his expertise in Web backend technologies.

REFERENCES
[1] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and

Nick Feamster. Spying on the Smart Home: Privacy Attacks and Defenses on
Encrypted IoT Traffic. arXiv preprint arXiv:1708.05044 2017 .

[2] Stefan-Ciprian Arseni, Simona Halunga, Octavian Fratu, Alexandru Vulpe, and
George Suciu. Analysis of the Security Solutions Implemented in Current Internet
of Things Platforms. In IEEE Grid, Cloud & High Performance Computing in Science
(ROLCG) 2015.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.

[4] Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe, Karsten Raddatz, Aubrey-
Derrick Schmidt, and Sahin Albayrak. Using Static Analysis for Automatic
Assessment and Mitigation of Unwanted and Malicious Activities within Android
Applications. In Malicious and Unwanted Software (MALWARE) 2011.

[5] Rafae Bhatti, Elisa Bertino, and Arif Ghafoor. 2005. A Trust-based Context-aware
Access Control Model for Web-services. Distributed and Parallel Databases 18, 1
(2005), 83–105.

[6] Arnar Birgisson, Joe Gibbs Politz, Ulfar Erlingsson, Ankur Taly, Michael Vrable,
and Mark Lentczner. Macaroons: Cookies with Contextual Caveats for Decen-
tralized Authorization in the Cloud. In Network and Distributed System Security
Symposium (NDSS) 2014.

[7] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-
Reza Sadeghi. XmAndroid: A New Android Evolution to Mitigate Privilege
Escalation Attacks. Technische Universität Darmstadt, Technical Report TR-2011-04
2011.

[8] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Towards Taming Privilege-Escalation Attacks
on Android. In Network and Distributed System Security Symposium (NDSS) 2012.

[9] Sven Bugiel, StephanHeuser, and Ahmad-Reza Sadeghi. Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Privacy Policies.
In USENIX Security Symposium 2013.

[10] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Towards a Framework
for Android Security Modules: Extending SE Android Type Enforcement to
Android Middleware. Technische Universität Darmstadt, Technical Report TUD-
CS-2012-0231 2012.

[11] Z Berkay Celik, Leonardo Babun, Amit K Sikder, Hidayet Aksu, Gang Tan, Patrick
McDaniel, and A Selcuk Uluagac. Sensitive Information Tracking in Commodity
IoT. arXiv preprint arXiv:1802.08307 2018.

[12] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. OAuth Demystified forMobile Application Developers. InACMConference
on Computer and Communications Security (CCS) 2014.

[13] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I Hong, and Yuvraj
Agarwal. Does this App Really Need My Location?: Context-Aware Privacy
Management for Smartphones. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT) 2017 .

[14] SmartThings Community. 2016. Fix for Android Presence Arrival Prob-
lems. https://community.smartthings.com/t/fix-for-android-presence-arrival-p
roblems/61021. (2016). Accessed: Jan 2018.

[15] SmartThings Community. 2018. The Many Ways of Detecting Pres-
ence. https://community.smartthings.com/t/faq-the-many-ways-of-detecting-p
resence/51563. (2018). Accessed: Jan 2018.

[16] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. CRePE: Context-Related
Policy Enforcement for Android. In Information Security Conference (ISC) 2010.

[17] Michael J Covington, Wende Long, Srividhya Srinivasan, Anind K Dev, Mustaque
Ahamad, and Gregory D Abowd. Securing Context-aware Applications Using
Environment Roles. InACM Symposium on Access Control Models and Technologies
(SACMAT) 2001.

[18] Android Developer. 2018. Android Geofencing API. https://developer.android.co
m/training/location/geofencing.html. (2018). Accessed: March 2018.

[19] Android Developer. 2018. Permissions in Android 6.0. https://developer.android.
com/training/permissions/usage-notes.html. (2018). Accessed: Feb 2018.

[20] Facebook Developers. 2018. Facebook Permissions. https://developers.facebook.
com/docs/facebook-login/permissions/. (2018). Accessed: 2018-01-08.

[21] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach.
QUIRE: Lightweight Provenance for Smart Phone Operating Systems. In USENIX
Security Symposium 2011.

[22] Carl M Ellison. 2011. SPKI. In Encyclopedia of Cryptography and Security. Springer,
1243–1245.

[23] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
Droid: An Information-flow Tracking System for Realtime Privacy Monitoring
on Smartphones. ACM Transactions on Computer Systems (TOCS) 2014.

[24] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaudhuri. A
Study of Android Application Security. In USENIX Security Symposium 2011.

[25] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. Android Permissions: User Attention, Comprehension, and
Behavior. In ACM Symposium on Usable Privacy and Security (SOUPS) 2012.

[26] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. Permission Re-Delegation: Attacks and Defenses. In USENIX Security
Symposium 2011.

[27] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based
Detection of Android Malware Through Static Analysis. In ACM International
Symposium on Foundations of Software Engineering (SIGSOFT) 2014.

[28] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security Analysis of Emerg-
ing Smart Home Applications. In IEEE Symposium on Security and Privacy 2016.

[29] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks. In USENIX Security Symposium 2016.

[30] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. Decentral-
ized Action Integrity for Trigger-Action IoT Platforms. In Network and Distributed
System Security Symposium (NDSS) 2018.

[31] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. Decoupled-
IFTTT: Constraining Privilege in Trigger-Action Platforms for the Internet of
Things. arXiv preprint arXiv:1707.00405 2017 .

[32] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. Security
Implications of Permission Models in Smart-Home Application Frameworks.
IEEE Symposium on Security and Privacy 2017 .

[33] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. Information Flow Analysis of Android Applications in
DroidSafe. In Network and Distributed System Security Symposium (NDSS) 2015.

[34] The Guardian. 2017. BBC Interviewee Interrupted by His Children on
Air. https://www.theguardian.com/media/video/2017/mar/10/bbc-correspondent
-interrupted-by-his-children-live-on-air-video. (2017). Accessed: Jan 2018.

[35] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. Rethinking Access Control and Authentication
for the Home Internet of Things (IoT). In USENIX Security Symposium 2018.

https://community.smartthings.com/t/fix-for-android-presence-arrival-problems/61021
https://community.smartthings.com/t/fix-for-android-presence-arrival-problems/61021
https://community.smartthings.com/t/faq-the-many-ways-of-detecting-presence/51563
https://community.smartthings.com/t/faq-the-many-ways-of-detecting-presence/51563
 https://developer.android.com/training/location/geofencing.html
 https://developer.android.com/training/location/geofencing.html
 https://developer.android.com/training/permissions/usage-notes.html
 https://developer.android.com/training/permissions/usage-notes.html
https://developers.facebook.com/docs/facebook-login/permissions/
https://developers.facebook.com/docs/facebook-login/permissions/
https://www.theguardian.com/media/video/2017/mar/10/bbc-correspondent-interrupted-by-his-children-live-on-air-video
https://www.theguardian.com/media/video/2017/mar/10/bbc-correspondent-interrupted-by-his-children-live-on-air-video

[36] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. These Aren’t the Droids You’re Looking for: Retrofitting Android to
Protect Data from Imperious Applications. In ACM Conference on Computer and
Communications Security (CCS) 2011.

[37] Vincent C Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin,
Robert Miller, and Karen Scarfone. 2013. Guide to Attribute Based Access Control
(ABAC) Definition and Considerations (Draft). NIST Special Publication 800, 162
(2013).

[38] Xiping Hu, Junqi Deng, Jidi Zhao, Wenyan Hu, Edith C-H Ngai, Renfei Wang,
Johnny Shen, Min Liang, Xitong Li, Victor Leung, and Yu-Kwong Kwok. SAfeDJ: A
Crowd-Cloud Codesign Approach to Situation-Aware Music Delivery for Drivers.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 2015.

[39] IETF. 2018. The OAuth 2.0 Authorization Framework. https://tools.ietf .org/html/
rfc6749. (2018). Accessed: Jan 2018.

[40] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time En-
forcement of Information-flow Properties on Android. In European Symposium
on Research in Computer Security (ESORICS) 2013.

[41] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z Morley Mao, and Atul Prakash. ContexIoT: Towards Providing Contextual
Integrity to Appified IoT Platforms. In Network and Distributed System Security
Symposium (NDSS) 2017.

[42] Jinyung Kim, Yongho Yoon, and Kwangkeun Yi. ScanDal: Static Analyzer for
Detecting Privacy Leaks in Android Applications. Mobile Security Technologies
(MoST) 2012.

[43] Thomas Kubitza, Alexandra Voit, Dominik Weber, and Albrecht Schmidt. An IoT
Infrastructure for Ubiquitous Notifications in Intelligent Living Environments.
In ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp): Adjunct 2016.

[44] Devdatta Kulkarni and Anand Tripathi. Context-Aware Role-Based Access Con-
trol in Pervasive Computing Systems. In ACM Symposium on Access Control
Models and Technologies (SACMAT) 2008.

[45] Sanghak Lee, Jiwon Choi, Jihun Kim, Beumjin Cho, Sangho Lee, Hanjun Kim, and
Jong Kim. FACT: Functionality-centric Access Control System for IoT Program-
ming Frameworks. In ACM Symposium on Access Control Models and Technologies
(SACMAT) 2017.

[46] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints. In
ACM Conference on Computer and Communications Security (CCS) 2010.

[47] Nest. 2018. Works with Nest. https://workswith.nest.com/. (2018). Accessed: Jan
2018.

[48] Helen Nissenbaum. 2009. Privacy in Context: Technology, Policy, and the Integrity
of Social Life. Stanford University Press.

[49] OASIS. 2018. XACML Specification. http://docs.oasis-open.org/xacml/. (2018).
Accessed: March 2018.

[50] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. WHYPER:
Towards Automating Risk Assessment of Mobile Applications. In USENIX Security
Symposium 2013.

[51] Mor Peleg, Dizza Beimel, Dov Dori, and Yaron Denekamp. 2008. Situation-
based Access Control: Privacy Management via Modeling of Patient Data Access
Scenarios. Journal of Biomedical Informatics 41, 6 (2008), 1028–1040.

[52] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic
Security Analysis of Smartphone Applications. In ACM Conference on Data and
Application Security and Privacy (CODASPY) 2013.

[53] David Recordon and Drummond Reed. OpenID 2.0: A Platform for User-centric
Identity Management. In ACM Workshop on Digital Identity Management (DIM)
2016.

[54] Reddit. 2017. Galaxy S8 reddit: Problems with IFTTT Location Trig-
gers. https://www.reddit.com/r/GalaxyS8/comments/69tw7q/problems_with_ift
tt_location_triggers/. (2017). Accessed: Jan 2018.

[55] Jon Ronson. 2018. How One Stupid Tweet Blew Up Justine Sacco’s
Life. https://www.nytimes.com/2015/02/15/magazine/how-one-stupid-tweet
-ruined-justine-saccos-life.html. (2018). Accessed: March 2018.

[56] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes. MOSES:
Supporting Operation Modes on Smartphones. In ACM Symposium on Access
Control Models and Technologies (SACMAT) 2012.

[57] Bilal Shebaro, Oyindamola Oluwatimi, and Elisa Bertino. Context-based Access
Control Systems for Mobile Devices. IEEE Transactions on Dependable and Secure
Computing (TDSC) 2015.

[58] Anna Kornfeld Simpson, Franziska Roesner, and Tadayoshi Kohno. Securing Vul-
nerable Home IoT Devices with an In-hub Security Manager. In IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom)
Workshops 2017.

[59] Slashdot. 2017. Amazon Keys Puts Deliveries — and Delivery People — In Your
Home. https://news.slashdot.org/story/17/10/25/1813258/amazon-key-puts-del
iveries----and-delivery-people----in-your-home. (2017). Accessed: 2017-07-18.

[60] Stephen Smalley and Robert Craig. Security Enhanced (SE) Android: Bringing
Flexible MAC to Android. In Network and Distributed System Security Symposium
(NDSS) 2013.

[61] Statista. 2018. Smart Home Market Penetration in US. https://www.statista.com
/outlook/279/109/smart-home/united-states. (2018). Accessed: 2018-08.

[62] Apple Support. 2017. iOS: Allow Location Access Only While Using App. https:
//support.apple.com/en-gb/HT203033. (2017). Accessed: 2017-07-18.

[63] Google Support. 2017. Android Work Mode. https://support.google.com/work/
android/answer/7029561?hl=en. (2017). Accessed: 2017-07-18.

[64] SmartThings Support. 2018. Known Mobile Presence Issues. https://support.sm
artthings.com/hc/en-us/articles/204744424. (2018). Accessed: Jan 2018.

[65] SmartThings Support. 2018. SmartThings: Local Processing. https://support.sm
artthings.com/hc/en-us/articles/209979766-Local-processing. (2018). Accessed:
March 2018.

[66] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin Jia.
Some Recipes Can Do More Than Spoil Your Appetite: Analyzing the Security
and Privacy Risks of IFTTT Recipes. In International Conference on World Wide
Web (WWW) 2017.

[67] Eric A. Taub. 2018. New York Times: Sleepy Behind the Wheel? Some Cars Can
Tell. https://www.nytimes.com/2017/03/16/automobiles/wheels/drowsy-driving
-technology.html. (2018). Accessed: May 2018.

[68] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaofengWang, Blase Ur, Xianzheng Guo,
and Patrick Tague. SmartAuth: User-Centered Authorization for the Internet of
Things. In USENIX Security Symposium 2017.

[69] Eran Tromer and Roei Schuster. DroidDisintegrator: Intra-application Informa-
tion Flow Control in Android Apps. In ACM Symposium on Information, Computer
and Communications Security (ASIACCS) 2012.

[70] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L Littman. Trigger-action Programming
in the Wild: An Analysis of 200,000 IFTTT Recipes. In ACM CHI Conference on
Human Factors in Computing Systems 2016.

[71] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. Fear and Logging in
the Internet of Things. In Network and Distributed System Security Symposium
(NDSS) 2018.

[72] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wag-
ner, and Konstantin Beznosov. Android Permissions Remystified: A Field Study
on Contextual Integrity. In USENIX Security Symposium 2012.

[73] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David
Wagner, and Konstantin Beznosov. The Feasibility of Dynamically Granted
Permissions: Aligning Mobile Privacy with User Preferences. In IEEE Symposium
on Security and Privacy 2017.

[74] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.
Handling a Trillion (Unfixable) Flaws on a Billion Devices: Rethinking Network
Security for the Internet-of-things. In ACM Workshop on Hot Topics in Networks
(HotNets) 2015.

[75] Guangsen Zhang and Manish Parashar. Dynamic Context-Aware Access Con-
trol for Grid Applications. In IEEE International Workshop on Grid Computing
(CCGRID) 2003.

[76] Hong Zhang, Yeping He, and Zhiguo Shi. Spatial Context in Role-based Ac-
cess Control. In Springer International Conference on Information Security and
Cryptology (ICISC) 2006.

A ACCESS CONTROL IN IOT
A.1 Direct resource access
As an illustrative example for a resource layer protocol, we focus on
the Open Connectivity Foundation (OCF) standard (see Section 5).
It defines the functionality of an IoT resource layer.
Subjects. In the OCF environment, subjects are clients and servers,
which are processes running on top of physical devices. A client
can be, for example, a hub or a smartphone terminal that controls
sensors and actuators using requests. Sensors and actuators (light-
bulbs, smoke detectors, motion sensors, etc.) are typically servers.
A server can issue requests and is therefore a subject, too. For ex-
ample, after detecting movement, a motion sensor can send a “turn
on” request to a smart lightbulb.
Objects. In OCF, objects are resources exported by servers. Clients
issue requests to servers, and servers to other servers, to access
resources. Locally, a resource is uniquely identified by its URI (e.g.,

 https://tools.ietf.org/html/rfc6749
 https://tools.ietf.org/html/rfc6749
https://workswith.nest.com/
http://docs.oasis-open.org/xacml/
https://www.reddit.com/r/GalaxyS8/comments/69tw7q/problems_with_ifttt_location_triggers/
https://www.reddit.com/r/GalaxyS8/comments/69tw7q/problems_with_ifttt_location_triggers/
 https://www.nytimes.com/2015/02/15/magazine/how-one-stupid-tweet-ruined-justine-saccos-life.html
 https://www.nytimes.com/2015/02/15/magazine/how-one-stupid-tweet-ruined-justine-saccos-life.html
https://news.slashdot.org/story/17/10/25/1813258/amazon-key-puts-deliveries----and-delivery-people----in-your-home
https://news.slashdot.org/story/17/10/25/1813258/amazon-key-puts-deliveries----and-delivery-people----in-your-home
https://www.statista.com/outlook/279/109/smart-home/united-states
https://www.statista.com/outlook/279/109/smart-home/united-states
https://support.apple.com/en-gb/HT203033
https://support.apple.com/en-gb/HT203033
https://support.google.com/work/android/answer/7029561?hl=en
https://support.google.com/work/android/answer/7029561?hl=en
https://support.smartthings.com/hc/en-us/articles/204744424
https://support.smartthings.com/hc/en-us/articles/204744424
 https://support.smartthings.com/hc/en-us/articles/209979766-Local-processing
 https://support.smartthings.com/hc/en-us/articles/209979766-Local-processing
 https://www.nytimes.com/2017/03/16/automobiles/wheels/drowsy-driving-technology.html
 https://www.nytimes.com/2017/03/16/automobiles/wheels/drowsy-driving-technology.html

/home/living_room/light). Globally, a resource is addressed us-
ing a device identity (see below) and a URI.

If a resource is discoverable, its global address can be found by
any client or server via broadcast “discover” messages. A parent-
child relationship is defined for some resources, forming a hierarchy
reflected in their URIs, e.g., a /home/living_room/light resource
can represent two devices: /home/living_room/light/led1, and
/home/living_room/light/led2.

There are two types of resources. Configuration resources store
and expose client or server configuration values, identities, crypto-
graphic credentials, and other metadata. They are created automat-
ically by the app framework and have a resource owner identity.

Device resources implement arbitrary server functionality and
are registered using the app-framework APIs. A device resource ex-
poses five operations: read, write, update, delete, and observe.
Typically, device resources call device-specific APIs when accessed
by a client (e.g., /home/living_room/light_off invokes a system
call on the device that turns off the light).

Requests to remote servers have an associated client identity: the
owner identity of the ‘‘/doxm’’ configuration resource. The server
identity (or device identity in the OCF standard’s terminology), also
stored in the ‘‘/doxm’’ resource, is used when handling incoming
requests. Identities are represented as GUIDs. A designated configu-
ration resource in every client and server, /creds, contains remote
identities and their associated TLS credentials.
Access-control policies. The configuration resource /acl of a
server contains the access-control list (ACL) for the resources man-
aged by the server process. The ACL is a list of ACEs, with each
ACE specifying a subject (an identity), an object (the URI of a re-
source), and permissions. Permissions are specified using a mask of
5 bits corresponding to create, read, update, delete, notify (CRUDN)
operations. Resource discovery, as well as read and observe op-
erations, require read permission; write and update operations
require write permission; delete, notify, and create operations
require delete, notify, and create permissions, respectively.6 Any
access to a resource by its owner (if it is a configuration resource),
or by the device owner (another identity stored in the ‘‘/doxm’’
resource), is automatically permitted.
Policy creation. The device owner and the resource owner of /acl
(who may have the same identity) set the policy. When installed
into a home network, devices follow a provisioning procedure
to determine the initial owner identities. For example, the owner
identity can be the client identity of a terminal or a hub device
operated by a service (e.g., SmartThings). This way, the service can
configure and control resource-layer policies and offer a user-facing
interface that abstracts away some of their low-level details.
Access-control enforcement. When a server or a client invokes
one of the server resources, the caller’s identity is first verified using
/cred information. The server then checks in /acl if the caller is
allowed to perform the requested operation. If so, the requested
operation handler is invoked by the reference monitor.
Situational constraints. There is no support for situational con-
straints in the OCF standard.

6In IoTivity v1.3, there is no use and no implementation for notify and delete operations.

A.2 Service-service interaction
Subjects and objects. Users often have accounts with multiple
Web services. Typically, subject services issue HTTP requests to
object services to access APIs associated with a specific user. For
example, Nest Web APIs enable third-party services to access Nest
devices; these APIs are currently used by over 50 services [47].
Third-party services control Nest devices by issuing requests to
URLs of the form https://developer-api.nest.com/devices/DEVICE
_TYPE/DEVICE_ID/API_ID.
Access-control policies. Object services typically protect their
APIs via OAuth 2 [39] bearer tokens. This is a capability-based
permissioning system, where capabilities (tokens) give the bearer
certain access rights. Bearer tokens have associated user accounts
and scopes. A scope specifies the token’s access rights, encoded as
a list of permission strings. For example, in Nest, the “camera read”
permission string gives access rights to APIs such as is_online, but
accessing images requires the “camera read + images” permission.
Policy creation. In OAuth 2, policy creation is an access delegation
process where users allow access “on their behalf.” This involves
the object service securely sharing an access token with a subject
service, using a Web flow that includes both services, as well as the
user who approves the delegation of access rights [12, 39]. See also
Appendix D.
Access-control enforcement. To invoke anAPI, the subject service
passes a token as part of the HTTP request. The request is allowed
if the token maps to a user identity, has not expired, and its scope
contains an access right string for the requested API call.
Situational constraints. Services can implement additional pro-
tections beyond bearer token authorizations, including situational
constraints. The Nest framework tracks the “user is home” situa-
tion using the phone GPS sensor available to the Nest mobile app.
The Nest camera can be configured to turn on or off automatically
depending on the detected situation. Moreover, services can turn
the camera on only with explicit user consent (involving a prompt
from the Nest mobile app). This means that if the camera auto-
matically turns off when the user enters, access to the camera is
indiscriminately blocked when the user is at home—unless the user
turns the camera on, in which case it is indiscriminately allowed.

Another example of a situational constraint is that even when
the camera is on, the user has to opt-in via Nest’s configuration to
enable live-feed access by any third-party services (short GIF ani-
mations and images, however, are not protected by this constraint).
In effect, this is a situation (“user allows third-party access”) that is
explicitly activated and de-activated by the user.
Issues in service-service access control. As demonstrated in Sec-
tion 2, tracking of situational constraints by Nest and other services
is often inadequate. In general, access control in Web services is
plagued by many other problems. We do not address them in this
paper but mention them here for completeness.

First, with the bulk of IoT-device and Web-account function-
ality packaged into multiple different services, the user does not
have a central interface for viewing, granting, and revoking inter-
service permissions. Moreover, granting permissions is easier than
revoking them because users are prompted to grant a permission

https://developer-api.nest.com/devices/DEVICE_TYPE/DEVICE_ID/API_ID
https://developer-api.nest.com/devices/DEVICE_TYPE/DEVICE_ID/API_ID

when configuring the service that requires the permission but never
prompted to revoke this permission afterwards.

Second, permissive interfaces and overprivileging are ubiqui-
tous. For example, IFTTT requires services to issue OAuth 2 bearer
tokens (or refresh tokens) that never expire, presumably because
expiring tokens can make recipes fail. Services often allow any
other (known, authenticated) service to request access tokens, not
just IFTTT. Moreover, it is natural to implement OAuth 2 delega-
tion in a subject-agnostic manner, and therefore IFTTT-compliant
services may issue non-expiring tokens indiscriminately, not just
to IFTTT. This problem is outside the scope of this paper and we
did not measure its prevalence.

Third, user-facing permission descriptions are not standardized.
Different services use very different description styles, permission
semantics, and permission granularities. If it is hard for users to
comprehend Android user prompts [25], it is virtually impossible
for them to reason about permissions forWeb services, even though
they are equally dangerous. For example, users of IFTTT—which
interacts with many other services—frequently encounter many
different OAuth 2 prompts with different, hard-to-follow semantics.
To reduce the number of prompts, IFTTT eagerly requests access to
all APIs of a Web-service channel once the user activates a single
recipe that uses any of them, resulting in overprivileging,7 as noted
by Fernandes et al. [31]

A.3 App-service interaction
We use Samsung’s SmartThings API as an example of app-service
interaction.
Subjects. SmartThings apps, SmartApps, are essentially collections
of event handlers written in the Groovy language. Apps are supplied
to users through a curated app market. They typically run on the
Samsung cloud service, but some can run offline on the SmartThings
hub, and this facility is expected to be enabled for more apps [65].
Objects. SmartApps control smart devices compatible with the
SmartThings service and, typically, connected to the SmartThings
hub device. The access-control system protects accesses of apps
(subjects) to device APIs (objects).
Access-control policies. Apps control devices using their skills:8
collections of commands and attribute values that are exposed by
devices. Many skills are defined in the API and they tend to be
very specific vs., for example, Android permissions. For example,
“dishwasher mode” allows to get and set operation modes for the
dishwasher, i.e., Home/Away/Night (see below). Some of the skills
are similar to OCF resource types (see Section A.1).
Policy creation. App declare the skills they require, while Smart-
Things devices declare the skills they implement. When installing
a SmartApp, the user is prompted to assign to it devices imple-
menting its required skill(s). The skills requested by a SmartApp
do not define its privilege level (and calling them “permissions”
7For example, if the user activates a recipe that requires access to any Facebook
channel, even a read-only one, IFTTT will immediately ask for access to the follow-
ing Facebook Web API access rights, which include the right to post to the user’s
page [20]: manage_pages, public_profile, publish_actions, user_about_me,
user_events, user_friends, user_location, user_photos, user_posts,
user_status, user_website.
8“Capabilities” in SmartThings terminology, but we use “skills” to avoid confusion
with the standard access-control meaning of “capability.”

may be confusing). Instead, access rights are determined via device
assignment by the user: a SmartApp is allowed to access all of its
assigned devices’ APIs. Fernandes et al. noted that this design often
results in overprivileging [28].
Access-control enforcement. The Groovy runtime environment
on the SmartThings cloud platform checks resource-access opera-
tions against app skills.
Situational constraints. SmartThings tracks three specific situa-
tions through modes: Home, Away, and Night. Modes are described
by the documentation as “behavioral filters.” The user can configure
apps to run only in specific modes.Apps can (and are encouraged
by the developer documentation) change their behavior according
to modes. Mode changes are highly configurable using routines,
user-defined automation rules with triggers and actions (similar in
structure to IFTTT rules), and apps. A natural configuration is to
switch theHome/Awaymode according to the device’s location, and
set the Night mode according to the time of day. SmartThings users
can add custom modes but developers cannot. Modes are mutually
exclusive and thus not suitable for tracking multiple non-exclusive
situations.

A.4 Channel-recipe interactions (IFTTT)
The IFTTT recipe structure is described in Section 4. In IFTTT,
recipes are subjects, actions are objects. Access-control policies are
implicitly defined by recipe functionality, i.e., every recipe can
access its attached actions (subject to situational constraints, see
below). Correspondingly, policy creation is the process of activating
recipes.
Situational constraints. Recipes can potentially do dangerous
things, such as disarm an alarm system or tweet on the user’s behalf,
but they can fire only if they are activated by their triggers. One can
view triggers as having a dual purpose: they define the sufficient
and necessary conditions for the execution of recipe actions, or, in
other words, the situation in which the trigger executes.

In IFTTT, every recipe is limited to one situational constraint
defined by its trigger, as well as two other optional constraints. First,
for any activated recipe, users can choose to be notifiedwhen it runs.
Notifications are transmitted through push messages to the IFTTT
app on the user’s phone. The second constraint is recipe filters,
which are pieces of code that execute after the trigger and prior
to the action. A filter can “decide,” based on the situational factors
such as the time of day or information available about the trigger-
firing event, not to execute the action. For example, a developer
can define that a recipe only runs between 2pm and 4pm.

A planned future feature is the ability to query third-party in-
terfaces from the filter code. With this ability, filters would be a
powerful tool for enforcing situational constraints. In contrast to
our ESOs, however, filters cannot be shared among recipes.

B IFTTT SURVEY
Collected data. We implemented a crawler that extracts IFTTT
recipes, actions, and triggers, similarly to Ur et al. [70] and Surba-
tovich et al. [66]. We extracted the recipes, actions, and triggers of
the 571 recipe collections curated by IFTTT partner services, acces-
sible from the “services” page, https://ifttt.com/search/services, as

https://ifttt.com/search/services

of January 5th, 2018. We extracted 13619 recipes,9 not counting the
“notify me about new recipes for this service” recipe. It exists for
every service and we removed it from our analysis.

Our statements about IFTTT recipes in Section 2 are based on
the following recipe statistics:
Top 10 most utilized triggers (by recipes).

(1) say a specific phrase by AMAZON_ALEXA (498 recipes)
(2) button press by DO_BUTTON (457 recipes)
(3) you enter an area by LOCATION (309 recipes)
(4) you exit an area by LOCATION (239 recipes)
(5) every day at by DATE_AND_TIME (234 recipes)
(6) new public video uploaded by you by YOUTUBE (215 recipes)
(7) say a simple phrase by GOOGLE_ASSISTANT (200 recipes)
(8) every day of the week at by DATE_AND_TIME (155 recipes)
(9) any new note by DO_NOTE (131 recipes)
(10) flic is clicked by FLIC (112 recipes)

Top 10 most utilized actions (by recipes).
(1) send a notification from the ifttt app by IF_NOTIFICATIONS

(823 recipes)
(2) add row to spreadsheet by GOOGLE_SHEETS (648 recipes)
(3) send me an email by EMAIL (491 recipes)
(4) send an email by GMAIL (332 recipes)
(5) post a tweet by TWITTER (322 recipes)
(6) post to channel by SLACK (277 recipes)
(7) quick add event by GOOGLE_CALENDAR (245 recipes)
(8) change color by HUE (192 recipes)
(9) call my phone by PHONE_CALL (187 recipes)
(10) turn on lights by HUE (181 recipes)

Top 10 most utilized triggers (by users).
(1) button press by DO_BUTTON (2904292 users)
(2) any new photo by you by INSTAGRAM (2296873 users)
(3) say a specific phrase by AMAZON_ALEXA (2088880 users)
(4) you enter an area by LOCATION (1933872 users)
(5) new feed item by FEED (1708995 users)
(6) any new note by DO_NOTE (1401746 users)
(7) every day at by DATE_AND_TIME (1261117 users)
(8) any new photo by DO_CAMERA (1196368 users)
(9) tomorrow’s forecast calls for by WEATHER (1194811 users)
(10) you exit an area by LOCATION (1022967 users)

Top 10 most utilized actions (by users).
(1) send a notification from the ifttt app by IF_NOTIFICATIONS

(6830526 users)
(2) send me an email by EMAIL (5282087 users)
(3) add row to spreadsheet byGOOGLE_SHEETS (4760448 users)
(4) quick add event by GOOGLE_CALENDAR (2460103 users)
(5) post a tweet by TWITTER (1868969 users)
(6) upload file from url by GOOGLE_DRIVE (1446966 users)
(7) add file from url by DROPBOX (1365485 users)

9 The URL access used by [70] and [66] to exhaustively crawl all recipes, including
those created by users and not advertised in channel pages, is no longer available.
However, the vast majority of the recipes collected in these studies are duplicates and
unpopular recipes. Our collection contains about 6,000 unique recipes, compared to Ur
et al.’s 16,000. The mean user adoption of recipes in our collection is 4,884 users and
the median is about 55 users, vs. Ur et al.’s mean of 52 and median of 1. This is at least
partly due to the growing adoption of IFTTT in general after the Ur et al. collection
was published.

(8) post a tweet with image by TWITTER (1318712 users)
(9) create a note by EVERNOTE (1225323 users)
(10) call my phone by PHONE_CALL (1178089 users)

Home/away trigger. We observe that location-based triggers are
among the most common, with over 500 apps and 3 million users
using them. The “location” trigger is provided by the IFTTT service
itself, not by a partner service. It uses the location capabilities of
the user’s phone to determine the area the user is in. To use it, the
IFTTT mobile app must be installed.

We manually examined the descriptions of 100 randomly chosen
apps that use location-based triggers (enter an area, leave an area,
enter or leave an area) to understand why they use location. Most
recipes use location for determining if the user is in a specific place:
home for 75, gym for 5, work for 2, and vacation for 2. Only 16
recipes do not specify the meaning of the location-based trigger.
For the majority of those, however, it appears that location is most
likely used for determining if the user is at home (e.g., “disarm your
alarm when you leave an area”).

C ESO EXAMPLES
To illustrate the range of situations that are useful for IoT access
control, we suggest (but do not implement) several ESOs in addition
to those described in Section 6.
User is away, usingGPs andpresence sensors. {situation_name:

HomeAway; ESO_description: “Home presence detection using

phone geolocation, Nest and SmartThings presence sensors.”}

Protected APIs, configuration: user is required to install an An-
droid app that uses location services, configure their location, and
indicate which sensors to use. If Nest is used, the ESO asks for the
Nest API token away and calls into the Nest API for the status of
the presence sensor, https://developer-api.nest.com/structures/h
ome_id/away10 (see Section A.2). Optionally, the user installs a
SmartThings SmartApp which requests the presenceSensor ca-
pability (see Section A.3), and (upon installation) asks the user for
access to all presence sensors in the home. Behavior: in addition to
geofencing-based tracking, this ESO also uses the presence-sensor
data from Nest and SmartThings. If presence was recently detected
and geofencing does not indicate that the user is at home, then the
phone app starts to actively query the location API (as opposed
to passively waiting for an “enter area” event). is_active() returns
“active” if the user is not at home, “not active” otherwise.
Notify user via push notifications. {situation_name: Noti-

fyUser; ESO_description: “whenever access occurs, send the

user a push notification with the access details.”}

Protected APIs„ configuration: user is required to install an An-
droid app but does not need to approve any permissions beyond
normal ones needed for all apps. Behavior: is_active(s,a) sends
the user a push notification if there has been an access of subject s
with capability a. Always returns “active”.
Notify user via push notifications and smart lights.
{situation_name: NotifyUser; ESO_description: “Whenever

10This Nest API itself uses phone geolocation in addition to Nest sensors. Nest currently
does not offer third-party access to “raw” presence sensors. However, when the phone
location sensors indicate the user is away, and the in-house presence sensors detect
occupancy, this API will return an indication, which is useful for this ESO.

https://developer-api.nest.com/structures/home_id/away
https://developer-api.nest.com/structures/home_id/away

access occurs, send the user a push notification and blink

smart lights.”}ProtectedAPIs, configuration: user is required
to install an Android app (none of its permissions require user au-
thorization) and a SmartThings app that uses the light capability.
Behavior: is_active(s,a) sends the user a push notification and
logs the fact that there has been an access of subject s with capabil-
ity a. Always returns “active”.
Use cases of “notify user” ESOs. This situation is useful in many
diverse, common scenarios. Our study of IFTTT recipes (see Sec-
tion 2.2) indicates that many users would like to be notified of
almost any possibly dangerous operation. Automatic user notifica-
tion is natural for accesses that are (a) infrequent and (b) require the
user’s attention anyway, e.g., taking pictures if a burglary has been
detected or a smart garage door opened when the user is away.

D OAUTH 2
OAuth 2access delegation flows. Delegation involves the user,
a user agent (e.g., browser, app), and the subject and object ser-
vices. The delegation flow begins when (1) the user-agent issues
a request to the subject service. Then, (2) user-agent is redirected
by the subject service to the object service. A request for a token
with a specified scope can be transmitted over the redirect request.
Then, (3) the object service “obtains an authorization decision (by
asking the resource owner or by establishing approval via other
means)” [39], and (4) redirects the user agent back to the subject
service. Then, (5) the access token is passed to the subject service
either over the final redirect request11 (implicit grant) or using di-
rect service-service communication (authorization code token grant).
The object service can return an access token with a scope different
from the requested scope (specifying the de-facto granted scope
in the “access token response” that relays the token from the ob-
ject to the subject). Finally, (6) the subject can access the protected
resource. Figure D.1 depicts the access delegation flow.

Optionally, a refresh token can be granted along with an access
token. The refresh token has a later expiry date and can be used to
fetch a fresh access token to replace an expired one.
Example: adding a Nest Cam Alexa skill To illustrate the rele-
vant OAuth 2functionality, consider a user who wishes to enable
the “Nest Cam” Alexa skill. This skill lets users control Nest Cam
via Amazon products, e.g., stream the camera feed directly to Ama-
zon Show, which is an Alexa terminal with a screen. The user can
install this skill from a skills market on the Amazon Web site. Since
Alexa accesses Nest Cam through its Web API, it requires the cor-
responding OAuth 2token. If it does not have the token already, it
initiates an OAuth 2flow to obtain the token. The Nest service then
authenticates the user (e.g., using a password or an authentication
cookie) and prompts her for approval. When the flow ends and if
permission was granted, the user is redirected back to the skills
market where she can continue to configure the skill.
On-demand permissioning. OAuth 2is popular because it is easy
for users and developers. OAuth 2delegation flows can be seamlessly
nested in any flow of the subject service where the user is involved.
They can begin whenever the user invokes an operation in the

11Not directly over the request but via an HTTP fragment field, obtainable by a service
script—see OAuth 2specification [39].

Figure D.1: OAuth 2access delegation

subject service that requires access to a third-party service. When
a delegation flow ends, the user is redirected back to continue the
original operation. In our example, when the flow ends, if the user
has approved Amazon’s access to the camera in some Nest account
and was redirected back to Amazon, the configuration flow can
continue seamlessly.
User approval and permission semantics. The process of obtain-
ing the user’s approval is not standardized in OAuth 2. Typically,
following user identification and authentication, the object website
displays an HTTP form to request the permission grant. It includes
a description of the requested permissions and the URL identifying
Amazon, and prompts the user for approval.

	Abstract
	1 Introduction
	1.1 Situational access control
	1.2 Environmental Situation Oracles (ESOs)

	2 Inadequacies of IoT Access Control
	2.1 Overprivileging and privacy violations
	2.2 Inability to enforce common policies
	2.3 Inefficiencies and inconsistencies

	3 Our Design
	3.1 Interacting with ESOs
	3.2 Integrating ESOs into the IoT stack
	3.3 Using ESOs
	3.4 Limitations

	4 The IoT Stack
	4.1 Access control in IoT

	5 Resource-layer ESOs
	5.1 Situational access control in IoTivity
	5.2 Micro-benchmarks

	6 Web ESOs
	6.1 Situational access control in a Web service
	6.2 Micro-benchmarks
	6.3 Creating situational policies on the Web
	6.4 Case studies

	7 Related Work
	8 Conclusion
	References
	A Access Control in IoT
	A.1 Direct resource access
	A.2 Service-service interaction
	A.3 App-service interaction
	A.4 Channel-recipe interactions (IFTTT)

	B IFTTT Survey
	C ESO Examples
	D OAuth 2

