
Android SmartTVs Vulnerability Discovery via Log-Guided Fuzzing

Yousra Aafer
University of Waterloo

Wei You ∗

Renmin University
of China

Yi Sun, Yu Shi, Xiangyu Zhang
Purdue University

Heng Yin
UC Riverside

Abstract
The recent rise of Smart IoT devices has opened new doors
for cyber criminals to achieve damages unique to the ecosys-
tem. SmartTVs, the most widely adopted home-based IoT
devices, are no exception. Albeit their popularity, little has
been done to evaluate their security and associated risks. To
proactively address the problem, we propose a systematic eval-
uation of Android SmartTVs security. We overcome a number
of prominent challenges such as most of the added TV related
functionalities are (partially) implemented in the native layer
and many security problems only manifest themselves on the
physical aspect without causing any misbehaviors inside the
OS. We develop a novel dynamic fuzzing approach, which
features an on-the-fly log-based input specification derivation
and feedback collection. Our solution further introduces a
novel external observer that monitors the TV-related physi-
cal symptoms (i.e., visual and auditory) to detect potential
physical anomalies. We leverage our technique to analyze 11
Android TV Boxes. Our analysis reveals 37 unique vulner-
abilities, leading to high-impact cyber threats (e.g., corrupt-
ing critical boot environment settings and accessing highly-
sensitive data), memory corruptions, and even visual and au-
ditory disturbances (e.g., persistent display content corruption
and audio muting).

1 Introduction

Recent years have witnessed a runaway rise in the adoption
of IoT devices aiming to embed the smart digital world into
our surrounding physical environment, thus creating oppor-
tunities for a smarter life. According to [18], the number of
connected IoT devices in use is expected to hit 18 billion in
2022, covering a wide variety of consumer products such as
SmartTVs, Smart Bulbs, and Smart Thermostats. SmartTVs,
which are TVs that can be connected to the Internet to provide
a consumer-tailored entertainment experience, are expected
to achieve a market value of USD 253 billion by 2023 [17].

∗Corresponding author.

While these IoT devices are introducing previously incon-
ceivable experiences, they are also opening doors for crimi-
nals to carry in cyber and physical harm. For example, security
researchers [14] have discovered that it is possible to reveal
WiFi keys through ringing IoT doorbells and even to open the
door to attackers by exploiting smart voice recognition tech-
nologies [32]. Given the large market share of SmartTVs, the
situation could be aggravating. Cyber criminals can exploit
various attack vectors, physical or cyber. Although existing
research [21, 26, 29] has shown that physical channels, such
as crafted broadcast signals, are quite effective, exploiting
such channels may have a lot of constraints in practice. For
instance, the attacker has to be in the vicinity of the target
SmartTV. Thus, a more attractive attack vector is to spread
malware (e.g, through social engineering), potentially achiev-
ing more damages unique to the SmartTV ecosystem.

To proactively address this attack model, we propose to
perform an evaluation of SmartTV system security, which
entails a set of challenges, including identifying the potential
exploit targets specific to SmartTVs (i.e., APIs for SmartTV
functionalities), which often lie in both the Java layer and the
native layer; efficiently generating proper inputs to trigger/ex-
ecute those targets, which demands inferring input specifica-
tion (from native implementation); and assessing test results
which may lie in both the cyber space (e.g., segfaults) and
the physical space (e.g., corrupted display and sound). Note
that traditional static analysis is insufficient due to the heavy
involvement of native code, hence hindering potential static
inference of input specifications.

To tackle these challenges, we propose a novel approach
that combines both static analysis and dynamic fuzzing tech-
niques in a unique manner. Through static analysis, we pin-
point interesting customization targets that should undergo
extensive testing for vulnerability discovery. We focus on
custom public APIs, which vendors integrate into the original
OS to trigger the SmartTV’s peculiar functionalities.

Our dynamic fuzzing module features a novel on-the-fly
log analysis that allows inferring input specification of target
APIs and collecting execution feedback (i.e., if an exception

has been induced). In the context of SmartTV testing, input
specification is very difficult to acquire as many of the APIs
are implemented in the native layer, which is very hard to
analyze due to the lack of symbols. We hence leverage the
input validation messages emitted by such APIs when ill-
formed inputs are provided, to extract input specifications
(e.g. keywords, format, and value ranges). Specifically, the
log analyzer can determine which log messages are related to
input validation of the API under testing (note that such mes-
sages are buried in a large volume of other non-deterministic
messages), and further classifies them based on the validation
types. This is achieved by training a number of classifiers:
We leverage the observation that native layer log messages
share a lot of similarity with Java layer messages in terms
of semantics. Therefore, we use static analysis to extract a
large corpus of logging statements from the Java layer and
reconstruct the log messages through string analysis. We then
label if they are input validation related and if so, the valida-
tion category, through an automatic static analysis. Training
with the corpus via natural language embedding allows the
classifiers to predict (native) input validation messages.

The fuzzer also features an external observer to monitor
physical properties of SmartTVs while executing the target
APIs, Such physical manifestations cannot be captured by
monitoring the internal execution state of the APIs. Specifi-
cally, we rely on an assistant technology to redirect the HDMI
audio and display output to our external observer and employ
state-of-the-art image and audio comparison techniques to
detect potential anomalies caused by a test case execution.

We applied our proposed solution to systematically eval-
uate 11 popular Android TVBoxes from different vendors.
Our analysis led to the automatic discovery of 37 unique vul-
nerabilities, including 11 high-impact cyber threats, 10 new
memory corruptions, and 16 visual and auditory anomalies.
Our study shows that these flaws are quite extensive. Each
analyzed device contained 1 to 9 vulnerabilities; spanning rep-
utable TVBoxes such as NVidia Shield and Xiaomi MIBOX3
and MIBOX S. We have responsibly reported the attacks to
the corresponding vendors. NVidia has acknowledged the
flaws as Critical and released a corresponding patch in its
latest versions. Xiaomi has already fixed the identified vulner-
abilities in MIBOX3 1 and MIBOX S.

To prove that our detected vulnerabilities can be exploited
in the wild, we carried out targeted attacks. Specifically, our
fuzzing uncovered that an unprotected API on one victim
device allows corrupting critical boot environment variables,
leading to a complete device failure. We exploited other flaws
to access highly-sensitive data, overwrite certain system files,
delete directories and create hidden files in the internal stor-
age, all without any permissions or user consent.

We further leveraged the physical-anomalies enabling flaws
to conduct new attacks. Specifically, we exploited the expo-

1The vulnerabilities were known-internally and fixed prior to our report.

sure of the TV’s display color aspects to manipulate them
maliciously (e.g., flicker the brightness in high frequency),
possibly affecting the viewer’s visual health silently [35]. We
exploited another flaw allowing to interrupt the HDMI inter-
face to put the target TVBox in a fake powered-off mode,
potentially threatening the user’s privacy [9]. More details
about the discovered attacks can be found in Section 9.5.

Contributions. The scientific contributions of the paper are:

• New Technique. We develop a novel technique to auto-
matically detect cyber and physical anomalies using a
combination of static analysis and log-guided dynamic
fuzzing. It provides a solution when instrumentation and
collecting fine-grained execution feedback is not feasible.
Our technique proved to be effective through discovering
37 unique vulnerabilities in 11 TVboxes.

• New Findings. We systematically evaluate Android
SmartTV API additions. Our evaluation reveals security-
critical cyber threats, previously-unknown memory cor-
ruptions, as well as visual and auditory interruptions
causing a disarm of the TVs’ basic entertainment func-
tionality.

2 Background and Motivation

Android SmartTVs typically run a heavily customized version
of the Android Open Source Project (AOSP), with additional
hardware and system components to support the TV’s func-
tionalities. To understand the extent of deployed customiza-
tion, we extracted custom system services and pertaining APIs
in popular Android SmartTVs (details can be found in Sec-
tion 9. We found that the number of custom APIs is high,
reaching up to 101 in H96Pro. Since these services execute
in the context of highly-privileged processes, an inadequate
protection can be exploited to achieve various damages: tra-
ditional cyber attacks as well as physical damages unique to
SmartTV – e.g., breaking basic functionalities through cor-
rupting the display content or interrupting the HDMI signal.
Note that manipulating such physical aspects is a privileged
operation in AOSP - i.e., requiring system permissions such as
permission.CONFIGURE_DISPLAY_COLOR_TRANSFORM and
android.permission.HDMI_CEC. An unintentional expo-
sure of such functionalities can be misused to affect the
viewer’s health (e.g., impairing the eyes visual performance
through configuring a non-healthy color aspect or flickering
the display light in a human-unnoticeable frequency [11, 35]).

Example. Consider the (native) API in Xiaomi MIBOX3
SystemControl.XYZ(int x, int y, int w, int h),
enabling to setup the HDMI display at a position (x, y) and
with size (w, h). Through our analysis, we found that the
API does not enforce any protection, thus allowing any app
to mess up the display under specific parameters. Figure 1
shows MIBOX3’s home screen before and after invoking

TV Box

Install App

Invoke SystemControl.
setPosition(1000, 1000, 1000, 1000)

Before Invocation

Figure 1: Display before and after invoking a vulnerable API

the API with the parameters (1000, 1000, 1000, 1000).
After the invocation, the projected display moves to the lower
right corner of the screen with corrupt content as it cannot be
rescaled to fit the provided size. In such scenario, the user
will resort to rebooting the device to hopefully fix the display;
however, it turns out that the malicious display parameters
are persistent across reboots, making it impossible to fix
the problem without a hard device reset. We envision such
vulnerable scenario might be used even more maliciously by
attackers. With the help of other side channels [31, 40], an
attacker could mount a targeted DoS, where she corrupts the
screen content each time a target app (e.g., Netflix) is playing
on the top. The viewer will not be able to watch its content
unless she pays some money. With the SmartTV ransomware
already in-the-wild [15], it is reasonable to assume that the
new APIs can be exploited for a similar purpose. A demo of
the attack is available on the website [4].

The high privilege of the SmartTV services and the unique
broad spectrum of attack consequences (e.g., cyber and phys-
ical) motivate the need for developing a specialized analysis
framework to uncover hidden flaws. However, as vendors
often do not provide access to their custom additions, often
implemented as a hybrid form of multi-language (i.e., C/C++
and Java), the direct adoption of existing static analysis tools
is infeasible. To address the limitation, we propose a fuzz-
testing approach to detect potential anomalies.

A fuzzer’s anatomy can be naturally broken into three
major components: (1) an input generator responsible for gen-
erating test inputs to the program under test, (2) an executor
that runs the target test case, and (3) a monitoring system that
observes the target execution to detect potential vulnerabil-
ities and provide feedback. Under the context of detecting
SmartTV vulnerabilities, the design of an effective and effi-
cient fuzzer is very challenging and entails obstacles in each
of the components as follows.

2.1 Reverse Engineering Target Interfaces

Reverse Engineering Input Specification. The search space
for valid test inputs to (complex) parameters is typically

huge and random input generation can only explore limited
(shallow) program paths. To tackle the problem, existing ap-
proaches resort to collecting information about the execution
states to infer the program’s feedback about a supplied input.
Such information is usually collected through source code
instrumentation or running the target program in an emulated
environment. However, the lack of source code for custom
SmartTV services and the inability of existing emulators to
run proprietary services makes the task infeasible.

The only remaining channel that can be leveraged for the
same purpose is Android logs. Logs often contain valuable
information including input validation messages - e.g., stating
legitimate input values or value ranges. The following log
excerpt showcases an input validation log message:

1 BatteryChangedJob: Running battery changed worker
2 ImagePlayerService: max x scale up or y scale up is 16
3 DiskIntentProviderImpl: Successfully read intent from disk
4 MediaPlayer: not updating

As shown, executing a (native) target API XYZ(int, int,
float) with random inputs (20, 21, 20.2) led to trigger-
ing the log message at line 2 - indicating the input is rejected
because 2 argument values are > 16. While it is straightfor-
ward for a human analyst to extract this specific validation
message, the automatic extraction is not: (1) The rejection
does not correspond to a standard exception, but rather is rep-
resented by a message in free text form. (2) Identifying which
parameters x and y refer to is not straightforward. (3) Auto-
matically inferring the validation semantics of the message
is difficult - i.e., integer range check, should match specific
value, string of specific length, string with specific prefix, etc.

The log further depicts other challenges: deriving messages
that are uniquely triggered by the target execution (lines 2
and 4) is not trivial. As shown, (1) log events triggered by the
execution do not share a common identifier (e.g., Tag) since
a target might trigger processes belonging to different com-
ponents - i.e., ImagePlayerService and MediaPlayer. Be-
sides, (2) target messages are often buried in a large number of
unrelated messages; the logs often contain non-deterministic
messages triggered by system events (e.g., lines 1 and 3) and
hence it is difficult to draw a causal connection between a
triggered API and related log messages.

Reverse-Engineering API Descriptors at Native Layer. In
our analysis, we observe that SmartTV vendors add system
services at both the Java and native (C/C++) layers (refer to
Table 1 for a breakdown in the studied samples). Thus, it is
essential to dissemble the framework binaries and correctly
identify the native services’ interfaces, i.e., the Binder trans-
action Ids corresponding to the remote functions, arguments
types (including primitives and non-primitive), and order.

2.2 Assessing Execution Feedback
The monitoring system should observe cyber feedback and in-
fer potential flaws. Besides, since the SmartTV functionalities

are often tied to physical components that need to be correctly
working for a full-fledge experience, the monitoring system
should detect changes in the physical feedback triggered by
a target API. Note that corrupted physical state may not trig-
ger any internal abnormal state – i.e., no exception or failure
message is logged, hence would go undetected using exist-
ing testing tools. For example, executing the vulnerable API
SystemControl.XYZ() with the malicious inputs does not
trigger any failure messages although the display is corrupted.

3 Design Overview

Figures 2 illustrates a high level overview of our proposed
system. Our design includes a Fuzzing Target Locator, a Log
Analyzer, a Dynamic Fuzzer, and an External Observer. These
components work cohesively to test Android SmartTV addi-
tions and detect potential anomalies. Given a SmartTV ROM,
the Fuzzing Target Locator (A) identifies APIs of interest to
be fed to the fuzzer. To ensure a comprehensive extraction of
the SmartTV additions, it extracts custom APIs at the Java
layer and recovers native APIs from the native layer. The Dy-
namic Fuzzer (C) generates test cases for each target API. Our
system features a novel input generation approach to facilitate
smart fuzzing. It leverages input-validation log messages to
infer valid input specifications and drive the fuzzer towards
exploring code regions guarded by these validation checks
(i.e., without proper inputs, these regions cannot be explored).
Specifically, the Log Analyzer (D) processes the log dumps
of each target API’s execution and looks for potential input
validation messages using a set of classifiers - trained offline
on a large corpus of Android logs (B). It then analyzes the
input validation messages to extract input specs (e.g., value
boundaries and constant values). The extracted specifications
are in-turn fed back to guide the Dynamic Fuzzer in input
mutation. This closed loop process – i.e., log-guided fuzzing
– is carried out until no newer inputs can be recovered from
the logs. During this loop, the Log Analyzer further analyzes
the logs, looking for indications of newer state discovery (i.e.,
non-input related messages) or security related exceptions.
(e.g., program crashes, faults).

Besides, to detect physical anomalies caused by the target
API’s executions, our design features an External Observer
(E), responsible of monitoring the physical states. We trig-
ger a standard visual and audio activity within the TVBox -
through a custom MediaPlayer app that plays a short video
clip before and after executing each case. If the execution
outcome of the target API is normal, the video output should
be the same. We then redirect the physical activity’s output –
i.e., HDMI signals – to the External Observer via an HDMI
capture device. The Observer captures and compares the dis-
play and audio signals before and after each target execution
using efficient image and audio comparison algorithms. It
finally outputs alerts if discrepancies are detected. In the next
sections, we explain the design details of each component.

4 Fuzzing Target Locator
To evaluate SmartTV additions, we focus on system services,
customized or added by vendors. For this purpose, the goal of
this section is to extract a list of APIs implemented at the Java
or native system services. We compare the extracted APIs
with those of reference AOSP models to locate custom ones.

4.1 Uncovering System Service APIs
Android native services expose their underlying functionality
through dedicated APIs, invocable through the Binder IPC
mechanism. To test these services, we have to go through the
same interface. The Binder IPC mechanism allows apps to
cross process boundaries and invoke exposed methods in the
system service code. Upon system boot up, a system service
publishes itself in the ServiceManager by supplying its ser-
vice name and a service handle - i.e., an IBinder interface
defining exposed methods. A client app process can invoke
methods in the system service via binder transactions, which
contain the method id to execute and raw buffer data (i.e.,
parameter and reply data). Specifically, each binder transac-
tion follows a pattern depicted in Figure 3. After obtaining
a service handle (IBinder interface) for a system service, the
client process invokes a target function A within the service
interface 1©. The client proxy, which implements the service’s
IBinder interface, marshals parameter data through convert-
ing high-level application data structures into parcels, maps
the specified method call to a raw transaction id and initiates
the transaction call 2©. Upon receiving the transaction, the
service stub - also implementing the same IBinder interface -
unmarshals parameter data, calls the actual server function 3©,
and marshals replies back to the client 4©. The client proxy
will then unmarshal the reply 5© and return the call 6©.

To obtain available Java and native system service APIs,
one can query the ServiceManager to list the registered ser-
vices and retrieve the corresponding Service Interface De-
scriptors (i.e., string name of an IBinder Interface - native
or Java). Once the interface names are identified, we need
to locate the interface implementation in the Java and native
layers. While the process of identifying Java level APIs is
straightforward (i.e., extract methods in the bytecode of the
corresponding service IBinder Interface), locating native layer
methods is more challenging, since the binaries are largely
stripped. To address the problem, we resort to extracting the
native functions’ interfaces at the low-level Binder IPC. That
is, for each native API, we aim to recover the transaction id,
parameter, reply data types from the native binaries; such that
we can leverage the information to successfully invoke the
API; basically replicating the system service’s proxy transac-
tions to invoke the service API (path 7© in Figure 3).

4.2 Extracting Native Function Interfaces
In this section, we explain how we recover the native function
interfaces at low-level Binder IPC through binary analysis.

Fuzzing Target Locator

System
Binaries

Java
Services

Static
Analysis

Binary
Analysis Native

API
Interfaces

Extract Logs

Input
validation
Logs

Training
Static

Analysis

Other
Logs

AOSP and
Custom
ROMs

Collecting Training Samples

Input
Validation
Messages

Log
Analyzer Input

Spec

Target
Messages

(A)

(B)
(D)

(C) (E)

Submit Specs to
Fuzzer

Figure 2: Approach Overview

Figure 3: Remote Binder Transaction

To illustrate the process, we use a custom native service (sys-
tem_control), whose recovered implementation is shown in
Figure 4 (note that the recovered code is disassembled ARM
code. The C++ code shown is only used for readability).
Available Information at the Binary Level. To facilitate dis-
cussion, we note that recovering native function interfaces at
the low-level Binder IPC is possible thanks to certain available
information. Throughout our analysis of system library bina-
ries in the collected SmartTV samples (Section 9), we found
that while most of the symbol information were stripped,
certain basic symbols need to be preserved. Otherwise, the
libraries cannot be properly used. Particularly, the names of in-
terface classes (containing the API function implementations)
were preserved in order to support runtime type check [13].
Besides, the Virtual Functions Table (VFT) were preserved
due to a similar reason. We highlight in Figure 4 both avail-
able and absent symbols to ease discussion. Observe that the
class name BpSystemControl is available. All the low level
library APIs (e.g., writeInt32 and readInt32) that are used not
only by the proxy and the stub, but also by other classes, and
methods inherited from public base classes (e.g., onTransact)

need to retain their symbols. Methods specific to the (custom)
service (e.g., abc) unfortunately do not have their symbols. In
other words, given a native library, we know the list of func-
tion entries (from the VFT) but may not have their symbols
or function call interface.

Figure 4: Snippets from System_Control Native Proxy and
Stub (Blue boxes depict available symbols, while Red dashed
boxes depict absent symbols)

Our Method. We propose the following methodology to re-
construct the function interfaces in the native layer: we begin
by identifying the function bodies within the binder proxies
(e.g. lines 5-12 of BpSystemControl in Figure 4), analyze
them to extract the transaction id (1 in Figure 4) and parame-
ter types (Binder, int, int) inferred through the proxy’s
marshaling methods writeStrongBinder, writeInt32, and
writeInt32, respectively (in BpSystemControl). We finally

perform further analysis to handle the identification of cus-
tom data types (e.g., the recovered Binder is of sub-type
ISystemControlClient as depicted in the return type of
the stub’s unmarshaling method readStrongBinder). In the
following, we explain the individual steps.
(1) Identify function bodies of native binder transactions. As
stated earlier, each system service has an interface descriptor.
By performing a lookup for each descriptor, we can locate the
library binary that contains the corresponding proxy and stub
implementation. We rely on a naming convention of proxies
and stubs, that is, BpInterfaceClassName for proxies (e.g.,
BpSystemControl) and BnInterfaceClassName for stubs
(e.g., BnSystemControl). As such, based on the recovered
interface descriptor (e.g., SystemControl) and the naming
convention, we can infer the class names of proxy and stub.
We then can look up all the function entries from the corre-
sponding VFTs.
(2) Reconstruct function interfaces of low-level Binder
IPC. We disassemble the binary and build a control flow
graph for each function. As mentioned earlier, the par-
cel related function symbols are preserved in the disas-
sembled code. For example, as shown in Figure 4 (blue
boxes), writeInterfaceToken, writeStrongBinder and
writeInt32 were all preserved. To extract the arguments,
we traverse the CFG starting from the argument parcel con-
structors till the destructor calls, and collect invocations to
parcel read functions along the paths (e.g., writeInt32. To
extract the binder transaction Id, we trace back the first pa-
rameter of Binder()->transact(int, Parcel, Parcel,
int). Observe that we do not rely on the symbol information
for transact() to locate its invocation (since this particular
function name is removed as illustrated in the dashed box
in Figure 4), rather, we rely on its prototype (int, Parcel,
Parcel, int) as depicted in line 11 of BpSystemControl.

5 Input Generation Through Log-Guidance

The fuzzer should be able to generate smart inputs to success-
fully trigger the target APIs and uncover potential vulnerabili-
ties in deeper code regions, which may not be easily explored
otherwise. Under the presence of input-validation checks,
the API will terminate its execution if ill-formed inputs are
supplied, without triggering its underlying functionality. To
learn valid inputs, the existing approaches are mostly greybox
or whitebox, meaning that they resort to collecting feedback
about supplied inputs through source code (or binary) in-
strumentation or running the target program in an emulated
environment. However, the lack of source code for native ad-
ditions and the inability of existing emulator to run SmartTV
native proprietary services make this approach infeasible. In
other words, our fuzzer has to be blackbox.

To address this challenge, we resort to Android execution
logs to derive valid input specifications. In fact, for debug-

ging purposes, Android developers often accompany input-
validation checks with logging statements, indicating specific
details about the validation (e.g., reason for preventing the
ill-formed data from entering, responsible parameter, and ex-
pected correct input value). As such, these log messages can
be quite valuable in collecting feedback about the supplied
inputs and inferring specifications.

To collect input specifications from a target API execu-
tion log, we propose to perform the following (Component
(D) in Figure 2): we start by analyzing and processing the
API’s execution log to pinpoint target messages - i.e., those
uniquely triggered by the API, since the execution log also
contains a substantial number of other messages triggered
by concurrent processes. We then process the filtered-out tar-
get messages to identify those that reflect an input-validation
check. Since it is not trivial to distinguish input validations
from other messages, we rely on a supervised learning based
approach. Last, we analyze the selected input validations to
extract input specs, which will be used to guide input gener-
ation for subsequent fuzzing. This latter may in-turn lead to
new input validation messages and then another around of the
aforementioned analysis. The log analysis (except the training
process) is closely coupled with the fuzzing procedure.

More details about individual steps are discussed next.

5.1 Identifying Log Messages for Target API

Besides messages uniquely triggered by a target API, a target
log dump contains other information. Concurrent processes
may log messages to record program states, statistics, failures,
etc. Such messages often substantially out-number a target
API’s messages. Furthermore, due to the non-deterministic
nature of Android events, the target messages are often inter-
leaving with messages from other processes.

A plausible approach to pinpoint an API’s messages is to
use the PID of the triggered process. However, an API’s exe-
cution might span several processes with different identifiers.
As such, we cannot rely on this approach. Similarly, we could
plausibly rely on the TAG string - used by Android developers
to identify the source of a log message - to group similar mes-
sages and reduce the search space. However, this approach is
again infeasible since tags are non-unique across processes
(consider the tag DEBUG, often used by different processes),
and even vary within a process (e.g., tags often reflect class
names while a process may span several classes).

To address this challenge, we resort to a statistical method.
Intuitively, a message logged by a target API, should be con-
tained in all log dumps obtained after its execution. In con-
trast, the target message should not occur in other log dumps,
where the API was not executed. Thus, we could obtain the
target messages through performing a set difference between
log dumps obtained before and after invoking a target API.
However, due to non-determinism, other unrelated messages
might be fired during a target execution and thus would be

 Target Log at Time t 2’

 Baseline Log at Time t 2

 Target Log at Time t 1’

 Baseline Log at Time t 1

1

1

1

3

1

10

Figure 5: Log Excerpts before and after calling the (native) target API ImagePlayer.XYZ()

incorrectly predicted as a target message.

To illustrate this, consider the log dumps in Figure 5. The
log dumps at the top correspond to log messages at two dif-
ferent timestamps without executing the target API (hereafter
called baseline logs), while the excerpts at the bottom corre-
spond to the log messages after triggering the target XYZ(),
called hereafter target logs. Observe that target logs may con-
tain both target messages and non-related messages.

As shown in the figure (highlighted in green), triggering
this API leads to a libc fatal signal SIGABRT causing the im-
age player service to die. To filter out the target messages, we
perform set difference operations on all the target and base-
line logs. We can remove the noisy messages: 1 and 3 from
the target log at t ′1, and 1 from the target log at t ′2 since they
were all observed in the baseline logs. However, the message
"PlayMovies: java.net.UnknownHostException" spotted in
the two target logs as well as the message “BleRemoteCon-
trollerService: mRunnablerun” dumped in the target log t ′2
would be misclassified as a target message since they were
not observed in any baseline log.

Solution. To solve the problem, we rely on the empirical prob-
ability of a given message over a set of target logs and over
another set of baseline logs to estimate its likelihood of being
a target message. Intuitively, a message with a significantly
higher empirical probability in the target logs and a lower one
in the baseline logs indicates that it is likely a target message.

To calculate the probabilities, we begin by establishing a
set of baseline logs, via capturing the log dumps at timestamps
t1 to t10 - while launching a dummy app in each execution.
During fuzzing, we collect a set of target logs by executing the
target API repeatedly over timestamps t ′1 to t ′10. Note that the
design choice of launching the dummy app in the first scenario
aims to avoid flagging messages triggered by Android app
launching process as target messages. Afterwards, for each
message i in a target log, we check whether it occurs in the
other target and baseline logs to calculate the following score,
reflecting its likelihood of being a target message:

score(i) =

{
1 if ntarget

i
Ntarget ≥ 0.9 and nbaseline

i
Nbaseline ≤ 0.1

0, otherwise

where ntarget
i and nbaseline

i are the frequency of the message i
appearing in the target logs and the baseline logs, respectively.
Ntarget and Nbaseline are the number of the target and baseline
logs, respectively - (e.g., 10 each). The thresholds 0.9 and 0.1
are empirically selected to tolerate the inherent uncertainty.
Performing a pairwise comparison over all messages to find
whether a message appears in a specific log is quite expensive
and would not scale. To tackle the problem, we utilize (1) op-
timization strategies to reduce logs through removing similar
messages and (2) efficient string similarity measures to allow
fast and scalable calculations. More details in Appendix.

5.2 Identifying Input-Validation Messages
Now that we have filtered log messages unique to the API
execution, we aim to extract input validation messages (if
any) since they can be helpful in inferring input specification
for our fuzzing process. While it is easy for a human ana-
lyst to identify such messages, the automatic identification
is not. Input-validation messages are quite diverse, featuring
different syntactic structures, yet implying semantic similari-
ties. As such, a simple whitelisting approach (e.g., relying on
occurrences of specific keywords) would not suffice.

Consider the following input validation messages
logged by the Java APIs playSoundEffectVolume,
dispatchFocusChange and by the native API
AudioFlinger. createTrack (extracted from AOSP):

1 public void playSoundEffectVolume(int t, ..) {
2 if (t >= 9||t < 0) Log.w(T, " Value" + t + "out of range"); ...
3 public int dispatchFocusChange(AudioFocusInfo a, ..) {
4 if(a == null) throw IllegalArgumentException("Illegal null Info")

1 sp<IAudioTrack> AudioFlinger::createTrack(int t, uint32_t r}
2 if (t >= AudioTrack::NUM_STREAM_TYPES) {
3 LOGE("invalid stream type"); goto Exit;}
4 if (r > MAX_SAMPLE_RATE || r > mSampleRate*2) {
5 LOGE("Sample rate out of range: %d", mSampleRate);

As shown in the snippets, the native and Java APIs log
syntactically similar messages - i.e., containing the same key-
words to indicate a range check "out of range". More impor-
tantly, they also output semantically similar messages, which
do not necessarily follow a similar syntactic structure - e.g.,
"invalid type" and "illegal null". This indicates (1) the feasibil-
ity of learning from log messages in the Java implementation
to classify log messages from the native implementation; and
(2) the need of a sophisticated NLP technique as a simple
syntax driven method (e.g., keyword lookup) is insufficient.

Our method. We develop a novel method, leveraging the
observation that a large number of logging statements can
be statically extracted from the bytecode of Android ROMs.
Through string analysis, we can reconstruct a large set of log
message templates (i.e., parameterized strings), and through
static taint analysis, we can determine and label if they are
input-validation related. As such, we can use the labeled mes-
sage templates to train a classifier to predict if log messages
by native APIs (collected in the earlier step) are for input
validation. Note that due to the lack of symbols and the dif-
ficulty of string and taint analysis on native code, we cannot
directly determine if a native log message is for input valida-
tion. Additional classifiers can be constructed to determine
fine-grained categories (e.g., range and parameter equality
checks). It is worth noting that a more simplistic rule-based
pattern matching approach might also work for our scenario.
However, it may require comparing each target log message
with the whole set of labeled samples to determine if it is val-
idation related and its fine-grained category; and substantial
manual efforts may be needed to construct the rules.

Figure 6 outlines our overall procedure for extracting input
validation messages. Component (A) collects and automat-
ically labels the training samples (∼57000 messages) from
various Android frameworks. Component (B) uses the train-
ing corpus to train different classifiers: we leverage word2vec,
the state-of-the-art predictive model for learning word embed-
ding in raw text to build a feature vector for each message.
We then train a CNN classifier with the feature vectors as the
first layer of CNN. Details are discussed next.

5.2.1 Static Analysis for Training Samples Collection.

To build our training corpus, we perform an upfront static
analysis of 6 Android ROMs – AOSP 7.0, NVidia Shield,
Samsung Note10 (9.0), S9 (9.0), LG Q6 (8.1), and LG
Vista (7.1). Note that we selected both AOSP and cus-
tom ROMs to take into account potential logging style dif-
ferences introduced by custom ROM developers. As de-
picted in Figure 6 (A), for each ROM, we extract all en-
try points in the Java system services and manager classes
- e.g., buildRequestPermissionsIntent and request
BugReportWithDescription. We then build a CFG for
each entry and traverse it starting from the root node to col-
lect the following: (1) parameter related conditional nodes

(e.g., if (ArrayUtils.isEmpty(permissions)) and if
(ShareTitle.length() > 50)), (2) log statements (e.g.,
Log.d and Slog.d), and (3) IllegalArgumentException
related statements as they may indicate input validations. We
then trace back the string argument in the logging statements
to extract the messages, e.g., “ShareTitle ... characters”.

To differentiate input-related statements from other state-
ments, the static analysis leverages the following definitions:

Definition 5.1: A log statement is considered input-validation
related if it is control dependent on an input-validation check.

Definition 5.2: An input-validation check n is a predicate
that satisfies the following conditions: (1) at least one of the
operands is a parameter; (2) a logging statement directly
depends on it; (3) there exists a path from n to some exception
(including return with error code) such that there is no other
statement along the path except the logging statement (and
its transitively data-dependent instructions).

Intuitively, the termination must be solely caused by the
parameter not conforming to the check in n. Back to Figure 6,
both conditional statements are input validations since they
are directly followed by a log statement or its transitive data-
dependent instruction (e.g., String err="shareTitle.."),
which is in-turn followed by a return. Consequently, the ana-
lyzer can determine that the first messages "permission cannot
be null" and "shareTitle should be less than 50 char" are input
validations, while "Bugreport notification title.." is not.

Handling String Operations. Log messages are often con-
structed by concatenating several sub-strings, including con-
stants, parameters and return values of other functions. We use
backward slicing and forward constant propagation to transi-
tively resolve log arguments in log-related statements. Since
parameters cannot be statically resolved (i.e., user-supplied as
in "Bugreport notification title " + shareTitle), we use the
place holder $PARAM$ to denote their usage in the resolved
log messages as shown in the figure.

Categorizing Input-Validation Messages. Input validations
convey different parameter properties. We hence categorize in-
put validation messages into sub-classes, each denoting a spe-
cific validation property of the message, depending on the pre-
ceding input-validation check - e.g, equality check, size check,
non-empty string/buffer check. For example, the message
"permission cannot be null or empty" can be classified into the
category StringNotEmpty since the preceding predicate’s
first operand is a call to the method ArrayUtils.isEmpty
on the supplied parameter. Similarly, the second message
"shareTitle should be less .." is classified to the category
StringLength. Note that here the goal is to label messages
with their sub-category such that classifiers can be trained to
classify log messages from native code.
The analysis yielded 56315 messages, with 6269 positive sam-
ples (with different categories) and 50046 negative samples.

Java
Services

Manager
Classes

Static Analysis

Intent buildRequestPermissionsIntent(String[] permissions) {

 if (ArrayUtils.isEmpty(permissions))

 Log.d(“permission cannot be null or empty”);

 return;

void requestBugReportWithDescription(String shareTitle,….){

if (shareTitle.length() > 50) {

 String err = "shareTitle should be less than " +

 50 + " characters";

 throw new IllegalArgumentException(err);}

Slog.d(TAG, "Bugreport notification title" + shareTitle);

(StringNotEmpty, “permission cannot be null or empty”)

(StringLength, “shareTitle should be less than $VALUE$ char”)

(Negative, “Bugreport notification title $PARAM$”)

Input Validation

Input Validation StringNot
Empty

String
Length

Range
Check

is Input
Validation?

Train

$PARAM$ size should be at least 9

Log Dump of Native API:

Classify

Category: Size Check
$VALUE$: 9

(A) Training Data Collection (B) Log Classifier Training
Figure 6: Input Validation Classification

5.2.2 Log Classifier Training
As depicted in Figure 6 (B), the collected training data are
used to build a number of classifiers. The first one determines
if a (native) message is input-validation related. Additional
classifiers were trained to determine a fine-grained class of
input-validation messages. Here we use a CNN model with an
embedding layer, two convolutional layers with max pooling
layers and a fully-connected dense layer. Each convolutional
layer is a one dimensional layer with 128 filters and a kernel
size of 5. Each convolutional layer is followed by a max
pooling layer with pool_size = 2. There is one dense layer
following convolutional layers. We use the Adam optimizer,
with 0.001 learning rate.

The figure further depicts an illustration of how we uti-
lize the trained classifiers (in the fuzzing process). Given
the message "$PARAM$ size should be at least 9" in
a native API’s execution log, the classifiers predicts its cate-
gory RangeCheck and generated the spec value 9.

6 Dynamic Fuzzer.
To uncover potential vulnerabilities in the collected target
APIs, the Dynamic Fuzzer (C) in Figure 2 generates test
cases for each API and executes it within the correspond-
ing SmartTV. During this process, it leverages the execution
log to iteratively learn and generate valid inputs, and to assess
the execution output - i.e., (1) a new log message indicates
the fuzzer has reached a new execution state, and (2) the
occurrence of certain keywords indicates anomalous states.

Specifically, given a target API, the fuzzer starts without
any input specification. It invokes the API with a random input
and performs the log analysis in Section 5 to identify, classify
input-validation messages for the target API, and extract input
specification, if any. We use an example depicted in Figure 7
to walk through the procedure. Here, the target API is native

in the image.player service, identified by the recovered
function interface: transaction Id 5 and parameters (float,
float, int). At the beginning (iteration 1 in Figure 7), the
fuzzer randomly generates a value for each input parameter
(e.g., 100, 11, and 102). The resulted log is passed to the Log
Analyzer, which recognizes the target messages (highlighted
in the log dump in iteration 1). The target messages are fed to
our trained classifiers to pinpoint input validations and extract
possible input specs, namely, a valid range for x (which we
do not know to which parameter it actually corresponds).

In the second iteration, the fuzzer speculates that x denotes
the first parameter, hence generates a value 10 within the
range, without changing the second and third parameters. The
resulted log messages disclose a new input validation, indicat-
ing a parameter equality check: x and y should be the same.
This implies (1) the speculation of x being the first parameter
is likely correct; and (2) another parameter y should be iden-
tical to x. Note that a wrong speculation can be inferred by
observing the same input validation failure message.

In the third round, the fuzzer speculates y denotes the sec-
ond parameter and hence sets it to 10. Although the resulting
messages did not yield new input validations, they still indi-
cate valuable information; the fuzzer was able to reach a new
execution state of the target API thanks to the inputs learnt
during the previous iteration. At this stage - since no more
inputs can be extracted, the fuzzer starts a random mutation
procedure. Specifically, it randomly samples within the legit-
imate value ranges. In addition, it also samples beyond the
legitimate value range of each variable while fixing the (legal)
values of other variables. The detailed algorithm is elided.

To detect potential anomalies triggered by a test case, the
Fuzzer leverages two channels. On one hand, it inspects the
execution log to spot certain messages signaling cyber anoma-
lies (e.g., segmentation faults using keyword lookup). On

BleRemoteControllerService: mRunnable
ImagePlayerService: setScale sx:100.0, sy:11.0, isAutoCrop:1
uid=1000(system) Binder_2 expire 4 lines
chromium: Cast.CecHdmiInputState.Active=1
ImagePlayerService: setScale max x scale up or y scale up is 16
uid=1000(system) Binder_5 expire 2 lines

ImagePlayerService: setScale sx:10.0, sy:11.0, isAutoCrop:1
InstantRun: starting instant run server: is main process
ImagePlayerService: Scale x and y not the same
Searchables: No web search activity found
AsyncTaskServiceImpl: Submit a task: lln

Target MessagesLog Dump:

Category: Negative

Category: Range Check
$PARAM$: x
$VALUE$: 16

Iteration 1:

Random inputs:
(100, 11, 102)

Iteration 2:

Generate first value < 16
Fix rest parameter values
(10, 11, 102)

Category: Negative

Category: Param Equality
$PARAM$: x
$PARAM$: y

Iteration 3:

Generate second value = 10
Fix rest parameter values
(10, 10, 102)

art : Late-enabling -Xcheck:jniInstantRun: starting instant
run server: is main process
ImagePlayerService: setScale sx:10.0, sy:10.0, isAutoCrop:1
ImagePlayerService: setScale, current direction:2 [0:normal,
1:up, 2:down], current step:-1
ImagePlayerService: render, but displayFd can not ready
ImagePlayerService: post, but displayFd has not ready

Category: Negative

is Input Validation?

Figure 7: Extracting Seed Inputs from Log dumps for Native API -Transaction Id 5, (float, float, int)

the other hand, it employs an external observer to detect vi-
sual and audio anomalies that cannot be captured within the
SmartTV. Next, we discuss the details of the external observer.

7 External Observer
To detect visual and auditory anomalies, our fuzzing frame-

work features an external observer, responsible of monitoring
the physical states. The fuzzer triggers a MediaPlayer to play
visual/audio content before and after the test execution, and
leverages an HDMI capture device to redirect the output sig-
nals to the Observer for comparison. We opted to capture the
content before and after the test execution - rather than during
the execution, to ensure capturing persistent effects. For the
ease of comparison, the visual content is a still image video
with a 1 sec audio clip. To mask other screen content (e.g.,
clock), the player plays in full screen. We suppress other non-
deterministic factors (e.g., notifications) by disabling the cor-
responding components. While the fuzzer and MediaPlayer
are running within the SmartTV as two independent apps, the
Log Analyzer and Observer (Figure 2) are running out-of-box
in a desktop computer. Detecting an abnormal physical state
is performed by comparing captured states before and after
executing the test case. We use standard image and sound
waveform comparison algorithms to measure the observed
visual and audio differences. Details are elided.
8 Implementation

Our static analysis is implemented on top of WALA [10],
which provides comprehensive analysis support for Dalvik
code, including call graph and control flow graph construction,
and dependence analysis. Our binary analyzer is build on top
of Radare2 binary analysis framework [6]. We build the neu-
ral network models for classification using the open-source

neural-network library Keras [5]. Our fuzzer is implemented
on top of Randoop [7], a unit testing tool for Java that ran-
domly generates sequences of method invocations for the
classes under test and uses the results of the execution to
create assertions capturing the behavior of tested classes. As
it is not directly suitable for our testing goal, we customize
Randoop in the following four aspects. First, we ported it
as an Android app that executes the target APIs within a
background service. Second, we modified the test generation
process to leverage the output gained from the Log Analyzer.
Specifically, if the output reflects an input specification for a
parameter, the test generation process constructs inputs con-
forming to the specs. If the output reflects a new log state
(not input related), the test generation process fixes the cur-
rent input and moves to fuzzing other parameters. Third, we
further modified the test generation process to resort to ran-
dom fuzzing when no insights can be gained from the Log
Analyzer. Last, we extended the error detection module of
Randoop with our cyber / physical anomalies detection logic.

9 Evaluation
We run our log-guided fuzzing on 11 Android TVBoxes. We
discovered 37 security-critical flaws leading to various cyber
attacks (11), physical disturbances (16) and memory corrup-
tions (10). We reported the vulnerabilities to the responsible
vendors: NVidia ranked the cases as Critical and has already
patched them. Xiaomi has fixed the flaws. Here we report the
evaluation results of our proposed technique.

9.1 SmartTV Device Collection
Our samples include 11 popular Android TVBoxes, ranking
high according to different buyers’ guides in North America

Table 1: Target TVBox Devices.

Device Vendor OS Services Recovered API Breakdown
APIs Native Java Hybrid

MIBOX3 Xiaomi 6.0.1 5 49 49 0 0
X96 Ebox 6.0.1 7 101 91 6 4

RK MAX RockChip 6.0.1 6 76 0 34 42
SHIELD NVidia 7.0 17 73 33 13 27

X3 ZXIC 7.1 1 12 0 0 12
H96 Pro + Ebox 7.1 7 95 85 6 4

V88 RockChip 7.1.2 7 75 0 19 56
MIBOX S Xiaomi 8.1 2 31 0 0 31
RK3318 RockChip 9.0 1 29 0 0 29

Q+ CAT95S1 9.0 4 25 17 0 8
GT King Beelink 9.0 1 37 0 0 37

Table 2: Log Dumps Statistics per API.
Baseline Log Target Log Target FP FNRaw Reduced Raw Reduced Messages

Avg size 332 KB 81 KB 21 KB 13 KB 7 Avg
2900 Lines 376 Lines 141 Lines 79 Lines 139 Max 16% 5%

and Europe [1, 16, 19] from Dec 2018 to May 2020. Due
to geographical restrictions (i.e., certain TVBoxes are not
sold in our region), some of the samples are variants of the
models listed in [1, 16, 19]. Note that we could have expanded
our testing to include TVs with built-in monitors (e.g., Sony
Bravia). However, due to their cost difference, we limited our
testing to the TVBoxes. As shown in Table 1, our samples
cover 8 vendors and operate Android versions 6.0.1 to 9.
Breakdown of Vendor Additions. Columns 4-5 of Table 1
show the number of custom system services and APIs. On av-
erage, the SmartTVs include∼6 custom services, with NVidia
Shield having the highest number (17). These services intro-
duce all together 603 new APIs. Columns 6-9 further depict
the implementation style of these APIs: the Java ones account
for 13% on average. This clearly justifies the need for our
proposed testing, as it is very difficult to infer any implemen-
tation details of the rest APIs with the current state-of-the-art
Android binary analysis. Note that Java and hybrid APIs are
recovered through static bytecode analysis.

9.2 Recovered Native Functions Interfaces

Column 6 in Table 1 shows the number of native APIs re-
covered through our proposed binary analysis. In total, we
recovered a total of 275 native API interfaces, spanning 5

Table 3: Trained Classifiers Accuracy

Classifier # Positive Accuracy Precision Recall F1
Samples (%) (%) (%)

InputValidation 6269 95.02 94.19 91.65 92.9
Numerical const Equality 131 99.64 76.78 82.17 79.22

Range Check 372 99.82 95.25 98.11 96.62
Param Not 0 / NULL 3684 97.59 92.68 96.42 94.5

String Not Empty 189 99.78 88.4 96.58 92.23
String const Equality 259 99.71 83.22 93.23 87.86
String Prefix Equality 186 97.66 87.17 94.48 80.43
String Length Equality 232 95.13 79.78 83.07 81.63

String is File 107 98.77 77.65 84.12 78.98

devices. As shown, these native APIs account for the majority
of overall recovered APIs (44%). We note that that certain
vendors (e.g, ZXIC, RockChip, Beelink) did not introduce
custom system services at the native layer. Rather, their newly
introduced services are all defined at the Java layer. Hence,
there were no recovered native APIs in those devices.

Due to the lack of ground truth (no symbols), we cannot
explicitly validate the completeness of the recovered inter-
faces (i.e., number of recovered native functions), nor their
correctness (e.g, parameter types and count). To approximate
the completeness and correctness of our recovery approach,
we rely on the intuition that custom native APIs might be
used by other components in the system. Even if the regis-
tration site is at the native layer, other system components
and apps at the Java layer can still retrieve an instance of
the native services’ Binder proxies (IBinder instance), using
ServiceManager.getService(“service_name”) (where
“service_name” is the native service name) and invoke
corresponding native APIs through IBinder.transact().
Hence, by statically retrieving invocation sites to these na-
tive APIs and cross comparing them with our recovered in-
terfaces, we can approximate the validity of our approach.
Note that this approximate solution only samples the entire
space as certain native APIs might be exclusively used by
native components. Our solution works as follow: we start
by dissembling framework and preloaded apps and extract
corresponding entry points - i.e., public APIs in framework
classes, public methods in app components, such as onCreate
in Activities and onReceive in Broadcast Receivers. We then
build a CFG for each entry, traverse it to identify invocations
to ServiceManager.getService, and perform lightweight
data-flow analysis to extract the supplied service_name. If
it matches a native service, we use def-use analysis to locate
invocations to transact() on the returned IBinder instance
and extract the parameters: transaction code, data and reply
parcels. We perform further def-use analysis on the parcels to
extract interface parameter types (see Section 4).

Table 4 shows the comparison results for the static analysis
and the interface recovery module (Section 4) for the ROMs
defining native service(s). With the exception of Q+ in which
our static analysis did not find any used native APIs, it located
the usage of ∼73% of recovered APIs in the rest 4 ROMs.
Specifically, it identifies 9 native system services (Column 2),
and 184 native APIs (Columns 3 and 4) used within the Java
framework and preloaded apps (we note that APIs used in the
apps may also be used within the framework). As shown in
Column 5, each one of these used APIs had a perfect match
in our recovered API set - hence validating the correctness
of our interface recovery approach, and highlighting its high
coverage (no API has been missed).

Note that although we cannot corroborate these results for
the rest unused APIs, the fact the fuzzer can execute them
successfully implies that the interfaces are likely correct.

Table 4: Recovered Native Interfaces Validation Results

Device
Used # Used Native APIs % APIs matching % Used
Native Framework Preloaded Recovered APIs /

Services classes apps Interfaces Recovered
MIBOX3 2 43 7 100% 95.5%

X96 3 70 38 100% 76.9%
SHIELD 1 13 13 100% 39.3%
H96 Pro+ 3 71 36 100% 83.5%

Q+ 0 0 0 NA 0%

9.3 Evaluation of Log Analysis

Here we evaluate the effectiveness of our proposed strategies
to generate input specifications from the analyzed logs.

Identifying Target API Log Messages. Table 2 reports
statistics of the analyzed log dumps. Columns 2 and 4 show
the average size of a raw baseline log (i.e., before API invoca-
tion) and a raw target log (i.e., after invocation), respectively.
As shown, the size of target logs is smaller, since we purposely
clear the log buffer before each API execution. Columns 3
and 5 report the average reduced size of baseline and target
logs, respectively. The reduction is performed through log
normalization (e.g., normalizing concrete values to a common
symbolic space holder) and redundant message removal. As
shown, the reduction yields an average 75%, 38% decrease of
the raw baseline and target logs size, respectively, allowing
efficient analysis. Column 6 presents the average count of log
lines that our statistical analysis flagged as target messages.
As shown, the APIs triggered 7 messages (avg). Observe that
some APIs triggered no target messages at all, while others
triggered up to 139 messages. To measure the FP and FN of
our statistical method, we manually inspected the logs of 150
APIs. As shown, 16% of the cases were incorrectly flagged as
target messages, meanwhile, 5% were missed by our method.

Identifying and Classifying Input-validation Messages.
Table 3 reports the performance of a few classifiers. Column
2 reports the positive sample size for each classifier. Note
that the first classifier - for predicting input validations - was
trained on the whole dataset (∼57000), while the rest classi-
fiers - for predicting input validation categories - were trained
only on input validation messages (i.e., 6269). To evaluate
the constructed models. We used the standard 10-fold cross-
validation. We also ran it 10 times. As shown in Table 3, most
of the classifiers achieve very good accuracy, precision and
recall. Certain classifiers exhibit relatively lower precision
and recall due to the smaller positive sample size.

9.4 Testing Evaluation.
Testing Setup. We conduct our static and dynamic analysis,
log analysis, state capture and comparison in a 4-cores com-
puter (Intel®CoreTM i7-2600 CPU @ 3.40GHz). To redirect
the HDMI signals to the external observer, we use an HDMI
Video Capture Device (USB 3.0 1080P 60 FPS Video and
Audio Grabber). We use adb for testing orchestration. Our
conducted fuzzing takes on average ∼16 sec per test case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GT King

Q+

RK 3318

MIBOX S

V88

H96 Pro+

X3

SHIELD

RK MAX

X96

MIBOX3

At Least 1 log message At Least 1 Input validation Unuseful Input Validation

Figure 8: Availability and Breakdown of Observed Logs

More details can be found in Appendix.
Availability of Logs. A basic requirement for the success of
our proposed log-guided fuzzing is the availability of log mes-
sages, particularly those related to input validations. Besides,
we observe during our testing that not all input validations
are equally useful for instructing the fuzzer to generate valid
inputs; messages such as "invalid value" or "illegal input"
do not contain specifications about the inputs. Thus, another
important requirement for the success of our strategy is that
log messages should be useful enough to guide the fuzzer to
generate valid inputs and subsequently discover newer states.
We report in Figure 8, a detailed breakdown of these log crite-
ria observed during our testing of the APIs per SmartTV. As
shown, on average 87% APIs triggered at least 1 log message
and 46% triggered at least 1 input validation; meaning that
54% of the APIs do not have any input validation. Besides the
reason that developers may not wish to log failed validations,
this is also due to the fact that certain tested APIs had void pa-
rameters2. As shown in the same figure, 6.5% APIs triggered
a non-useful input validation, meaning that our technique is
most beneficial in the rest 39% cases.
Efficacy of Log-Guidance in Testing the APIs. To show-
case the significance of our log-guidance, we count the num-
ber of input validations observed over the testing of an API
and its effectiveness in uncovering new log states. We define
a new log state as a unique set of target messages dumped
during an API’s execution, not seen in any previous testing
iteration. The results are shown in Figure 9. The plot reads as
follows: the x-axis depicts the # of unique log states and the
y-axis shows the # of observed input validations. The bubbles
depict the percentage of the tested API exhibiting a unique
x-y combination. For instance, the 15% bubble at (2,1) means
that 15% of the APIs have one (useful) validation message,
which is leveraged by our technique to discover 2 unique log
states. All the bubbles above the x-axis, which sum up to 46%,
denote our technique can yield at least one new state.

2We test APIs with void parameters once, since they might also contain
vulnerabilities.

12 29

7

6

15

6

6

6 6

8

0

1

2

3

4

0 1 2 3 4 5 6

In
pu
t	V

al
id
at
io
ns

Unique	Log	States

Figure 9: Significance of Log-Guidance over the Tested APIs

Code Coverage Approximation. Due to the lack of
SmartTV additions’ source code, leveraging static code in-
strumentation to trace exercised code regions is not feasi-
ble. Leveraging dynamic binary instrumentation for the same
purpose is not feasible either since we cannot run the instru-
mented binaries in the (unrooted) smartTVs nor use existing
emulators because of hardware dependencies. Nonetheless, to
gauge the code coverage of our approach, we propose a sim-
ple approximation for the Java-level APIs (pure and hybrid
implementations). Since we can only observe the execution
log during testing, we propose to statically extract all mes-
sages logged by a target API’s implementation and compare
them with those observed during the execution. Ideally, the
static extraction of the log statements should be performed in
a path-sensitive fashion such that each code path is mapped
to an ordered sequence of (potentially) logged messages. A
sequence matching the log of a particular execution of the tar-
get API indicates that the code path has been covered during
execution. However, path-sensitive analysis is quite expen-
sive and would not scale to tackle deep code paths. Thus, we
propose to further simplify our approximation by statically
extracting the log messages through path-insensitive analysis
and looking for their occurrences in the target execution logs.
Note that this approach is inherently limited since (a) not all
code regions include a log statement and (b) more than one
log message might reside within a code region.

Figure 10 depicts the achieved results per ROM. As shown,
the approximate code coverage varies significantly among the
ROMs, ranging from 34% in H96 Pro+ and X96 to 80% in GT
King and MIBOX S. To understand the root causes behind the
missed code regions (i.e., a statically extracted message was
not identified in any execution log), we randomly selected
50 missed log messages and inspected their Java (bytecode)
implementations. The majority of the missed log statements
were guarded by conditions reflecting system-wide persis-
tent settings (e.g, device model, build info) or environment-
specific properties (like debug mode, network state). Since
these conditions were not satisfied and remained unaffected
during fuzzing, it is justifiable to miss those branch paths.

80%

44%

64% 62%
68%

72%
80%

34%

34%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

1

2

3

4

5

6

7

MIBOX S SHIELD RK 3318 V 88 RK MAX Q+ GT King X96 H96 Pro + X3

Avg # of static log messages per API

Avg # of static log messages covered during testing

Approximate Coverage Percentage

Figure 10: Coverage Approximation

9.5 Findings
In this section, we verify the validity of our log-guided fuzzing
in discovering security flaws in the tested SmartTV APIs.
Vulnerabilities Breakdown. By performing log-guided fuzz
testing – alongside our specialized feedback monitoring, we
uncovered 37 vulnerabilities in the collected TVBoxes. Table
5 reports a breakdown of the vulnerabilities. As shown, the
flaws can be exploited to cause consequences of disparate se-
curity levels; ranging from high-impact cyber threats (denoted
by CT), such as corrupting critical boot environment settings,
overwriting system files and accessing highly-sensitive data,
to memory corruptions (MC), and to significant physical dis-
turbances (PD), affecting the overall SmartTV experience.
As further shown in the Table, the vulnerabilities are pretty
prevalent, affecting each tested device (1 to 9 unique flaws per
device) and spanning over 11 distinct services and 30 unique
APIs (17% of recovered APIs). Observe that some of the APIs
led to different attacks depending on the supplied parameters.

A further dive into these vulnerabilities, particularly cyber
threats and physical disturbances (see representative cases in
Section 10) indicates that they are a consequence of weak and
missing access control enforcement by the SmartTV vendor
developers. The underlying functionality of the victim APIs
should not be available to third party and unprivileged apps.
In fact, similar functionalities (e.g., reading and overwriting
private files, manipulating system-wide display settings) are
all protected with high-privilege requirement in AOSP, hence
cannot be accessed by third-party apps. The memory corrup-
tions though, were caused by improper mediation of inputs
(e.g., supplied integer reflects an out-of-bound index value).
Vulnerabilities in Native APIs. Column 3 in Table 5 lists
the recovered names of the victim APIs. As shown, for APIs
whose definition lies within the native layer, we report the
corresponding binder transaction Id instead - since no symbols
are present. As depicted, 17 flaws (46%) were caused by
purely native APIs, clearly justifying the need for our binary
analysis for recovering native functions interfaces.

Significance of Log-Guided Fuzzing in Discovering the
Vulnerabilities. To showcase the significance of our log-
guided input inference, we report in Column 6 the num-
ber of victim APIs that triggered at least one (useful) in-
put validation message – which we leveraged to extract in-
put specifications and accordingly drive the next fuzzing it-
eration towards discovering the vulnerable code path. As
shown, 22 cases (59%) triggered at least one input valida-
tion message indicating various semantics about the sup-
plied inputs, including string format types (e.g., file paths
as in systemmix.Transaction2, gpio.Transaction1),
typical keywords in systemmix.Transaction16777215
and Display_manager.enableInterface, and valid input
ranges in Display_manager.setScreenScale, etc.

As mentioned in Section 6, our fuzzer further leverages
non-input related log messages - triggered by a target API, to
derive whether a new state has been uncovered thanks to the
current inputs and accordingly drive the next fuzzing iteration
(e.g., fix most recent log-inferred inputs and mutate others).
To showcase the prevalence and significance of non-input
related log messages in contributing to the vulnerabilities
discovery, we show in Column 7 the victim APIs which trig-
gered at least one non-input related log message after the
first fuzzing iteration. We observe that for all the 20 cases,
non-input related messages complemented the role of input
validation messages in discovering the vulnerabilities.

To further demonstrate the overall significance of our log-
guided fuzzing in discovering the vulnerabilities, we report
the time required to expose each vulnerability using a random
(Column 10) and log-guided approach (Column 11). Specif-
ically, we run our testing of the APIs (each API is tested
for a maximum 24 hours) with randomly generated and log-
inferred specifications (if any) and report the following: (A)
Our log-guided fuzzing outperforms random fuzzing in the
cases where the victim APIs logged an input specification:
(1) for the cases whose triggers are difficult to generate (72%
of the cyber threats, 59% cases with input validations, and
35% overall cases), random testing has timed-out without any
success. In contrast, the vulnerabilities were quickly exposed
using the log-generated specs. (2) In the rest cases - i.e., in-
puts can be generated using random approach, our approach
detects the vulnerabilities faster than random fuzzer. (B) Our
log-guided fuzzing performs comparably to random fuzzing
if no log-guided specs can be inferred. This is intuitive as our
approach falls back to random fuzzing in such cases.
Significance of Feedback Monitoring Channels in Detect-
ing the Vulnerabilities. Our proposed testing leverages two
channels - log feedback and external observer - to assess the
outcome of an executed test case. Columns 8-9 report the sig-
nificance of each channel in detecting the flaws. Observe that
most of the cyber threats (CT) and all the memory corruptions
(MC) can be detected by monitoring the logs. However, our
external observer is more suitable for detecting the physical
anomalies: 15/16 of the reported disturbances did not trigger

any crashes at the log level and thus would go undetected
without accounting for physical manifestations.

10 Case Studies
We discuss here 3 out of our discovered attacks. A description
of another selected attack is in Appendix.
Cyber Attack I: Complete Device Breakdown. Our fuzzer
uncovered that a custom API allows appending user-supplied
inputs to a critical file ("/dev/block/env"), which contains
important boot environment variables. If executed repeatedly,
the API leads to corrupting this critical file, subsequently
leading to a complete device breakdown as it cannot reboot
due to the corrupt boot variables - even under safe-mode.

Our proposed approach has enabled us to uncover this vul-
nerability as follows: Initially, our fuzzer generated random
inputs (String ="ABC", String = "DEF") according to
the recovered API’s function interface. The subsequent
executions led to several target log messages, which were
fed to our trained classifiers. The InputValidation classifier
flagged the message "[ubootenv] ubootenv variable
prefix is: ubootenv.var" as an input validation. The
sub-classifier StringPrefix (see Classifier 7 in Table 3 in
Section 9.3) further predicted a fine grained category of
the validation; namely string prefix validation. The fuzzer
then extracted the specification “String Prefix value is
"ubootenv.var"”. Note that such extraction is guided by
models learned from the training samples (Section 5.2.1).
With the guidance, in the next iteration, our fuzzer speculates
that ubootenv denotes the first string parameter and gen-
erates a new input (String = "ubootenv.var", String
= "DEF"). The following execution then triggered new
target messages: [ubootenv] update_bootenv_varible
name [ubootenv.var._deepcolor]: value [DEF]
and [ubootenv] Save ubootenv to /dev/block/env
succeed!, indicating that new states were explored. Observe
that without log-guidance, a random approach is unlikely to
discover such new states. As the last identified messages did
not indicate any input validations according to our classifiers
(but rather just a new state), our fuzzer continues to mutate the
variables while respecting the previously inferred specifica-
tions - e.g, by appending a random string "ABC" to the prefix
String = "ubootenv.var". The subsequent execution led
to similar log messages (i.e., update_bootenv_varible
name [ubootenv.var.ABC_deepcolor]: value [DEF]).
After 0.11h, we detected a SIGSEGV fault and an overall
system shutdown. Attempting to reboot the device afterwards
was not successful due to the corrupt boot variables.

Cyber Attack II: Read sensitive system files. Our
technique uncovers another flaw on one of the victim devices,
enabling unprivileged callers to access highly-sensitive
data stored anywhere on the device. Our log-guidance
facilitated the discovery of this flaw as follows: Our fuzzer
started by generating random inputs (String ="ABC",

Table 5: Details about Discovered Attacks
Flaw

Service API Description Victim Devices (s)
Log-Guided External Exposing Time

Type Input New state Feedback Feedback Random Guided
Inference Inference Inference

CT system_control Transaction Id 47 Corrupt boot environment variables H96 Pro 3 3 3 3 Timed out 0.11h
CT mount createRemoteDisk Overwrite System Directories Nvidia Shield 3 3 3 3 Timed out 4.71h
CT mount destroyRemoteDisk Delete Files in internal memory Nvidia Shield 3 3 3 3 Timed out 2.14h
CT window_manager dispatchMouse inject mouse coordinates V88, Max 7 7 7 3 0.03h 0.04h
CT window_manager dispatchMouseByCF inject mouse coordinates V88, Max 7 7 7 3 0.03h 0.03h
CT systemmix Transaction Id 16777215 Change persistent system properties Q+ 3 3 3 7 Timed out 0.14h
CT systemmix Transaction Id 2 read highly-sensitive data Q+ 3 3 3 7 Timed out 0.14h
CT gpio Transaction Id 1 overwrite certain system files Q+ 3 3 3 7 Timed out 0.19h
CT gpio Transaction Id 16777215 read highly-sensitive data Q+ 3 3 3 7 Timed out 0.15h
CT SubTitleService load create hidden files under /sdcard/ GT King 3 7 3 7 Time out 0.05h
CT CecService Transaction Id 1 reboot device into recovery mode MIBOX4 7 7 3 3 0.03h 0.03h
MC Imageplayer Transaction Id 2 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.15h 0.17h
MC Imageplayer Transaction Id 20 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.11h 0.10h
MC Imageplayer Transaction Id 15 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.45h 0.38h
MC Imageplayer Transaction Id 14 Memory Corruption MIBOX3, X96, H96 7 7 3 3 0.47h 0.53h
MC system_control Transaction Id 17 Memory Corruption H96 3 7 3 7 Timed out 0.07h
MC Display_manager getCurrentInterface Memory Corruption RK MAX 3 3 3 7 1.45h 0.11h
MC Display_manager enableInterface Memory Corruption RK MAX 3 3 3 7 Timed out 0.07h
MC Display_manager switchNextDisplayInterface Memory Corruption RK MAX 3 3 3 7 0.57h 0.23h
MC systemmix Transaction Id 16777215 Memory Corruption Q+ 3 7 3 7 Timed out 0.13h
MC drm setGamma Memory Corruption RK MAX 3 7 3 7 0.33h 0.11h
PD Display_manager switchNextDisplayInterface Drop HDMI signal V88, Max 3 3 7 3 0.05h 0.02h
PD Display_manager switchNextDisplayInterface Corrupt display Max 3 3 7 3 0.05h 0.03h
PD Display_manager getCurrentInterface Corrupt display Max 3 3 7 3 0.08h 0.02h
PD Display_manager setContrast Blackout display V88, Max 7 7 7 3 0.07h 0.1h
PD Display_manager setScreenScale Rescale display V88, Max 3 3 7 3 0.03h 0.02h
PD Display_manager enableInterface Drop HDMI Signal V88, Max 3 3 7 3 Timed out 0.02h
PD Display_manager setHue Manipulate color aspects V88, Max 7 3 7 3 0.38h 0.29h
PD Display_manager setSaturation Manipulate color aspects V88, Max 7 3 7 3 0.17h 0.19h
PD Display_manager setBrightness Manipulate color aspects V88, Max 7 3 7 3 0.18h 0.22h
PD system_control Transaction Id 13 Blackout Display X96, H96 3 3 7 3 0.11h 0.03h
PD system_control Transaction Id 16 Rescale display X96, H96, MIBOX3 7 7 7 3 0.54h 0.37h
PD system_control Transaction Id 16 Corrupt display X96, H96, MIBOX3 7 7 7 3 0.46h 0.33h
PD system_control Transaction Id 15 Disable mouse pointer X96, H96, MIBOX3 7 7 7 3 0.05h 0.03h
PD system_control Transaction Id 23 Mute Sound System X96, H96, MIBOX3 3 3 7 3 Timed out 0.02h
PD tvout setPosition Rescaling the display X3 7 7 7 3 0.14h 0.15h
PD tvout setNewSdf Stop streaming services X3 3 7 7 3 0.06h 0.02h

int = 3) according to the responsible API’s function
interface. The execution triggered the following messages:
SystemMixService::putFileData() filepath=ABC
count=3, SystemMixService: cannot open file ABC
to read and read data is . Our trained classifiers
flagged the second message as an input validation and as
a StringIsFile (by classifier 9 in Table 3). It accordingly
extracted the following specifications for the first parameter:
“a string parameter denotes a file”. Since there is only one
string parameter, in the following mutation, our fuzzer
generated the value "/data/system/passwd" - referring to
a valid file on the system. The fuzzer then uncovered
a new log state SystemMixService::putFileData()
filepath=/data/system/passwd count=3 and read
data is <co. Similar to the previous case study, our fuzzer
continued with random mutations to uncover other potential
new states - since no more specs were identified. Observe
that for this case, we log the returned value of the target API
and instrument our log analyzer to compare the value against
that of the supplied file content (known before hand). Note
that this intervention is done only for APIs with non-empty
return values and carried out automatically.

Physical Disturbance: Dropping HDMI Signal for a
Fake-Off Mode. Dropping the HDMI signal is a privileged
operation initiated by the system when turning off the TVBox
or when switching display interfaces. We found that this
functionality is accessible to non-privileged apps in a few
TVBoxes. Since a broken HDMI signal indicates a powered-

off source, it can be maliciously used to trick the user into
believing that the system is off (while it is still running). With
the help of other SmartTV peripherals, such as the remote
controller’s built-in mic (as reported in WikiLeaks’ Weeping
Angel case [9]), an attacker can exploit this functionality to
fake an off mode and spy on the SmartTV users.

11 Threats to Validity and Limitations
In this section, we discuss various factors that may affect the
validity of achieved results, and significance of log-guided
fuzzing, along with its limitations.

One validity threat lies in the selected SmartTV samples
in our study: The low-cost and limited number of SmartTVs
may not represent all respective Android based SmartTVs;
specially those from high-end vendors (e.g., Sharp, Sony). To
tackle this threat, we made sure to cover a reasonably diverse
set of devices (including those from popular vendors such as
Xiaomi and NVidia). Our dataset size is smaller than many
used in static analysis, nonetheless, for a dynamic analysis,
our set is aligned with the literature.

Our fuzzer is highly dependent on the availability of log
messages, particularly those related to input validations and
those signaling important feedback; which poses another
threat to our results. The amount and usefulness of execu-
tion logs obtained during our testing may not well represent
all logs of other SmartTVs’ additions. Besides, our approach
is reliant on the accuracy of target log messages identification.

We attempted to manage this threat through proposing a sta-
tistical method and classification models. Another threat to
validity lies in the lack of precise measurement of code cover-
age, due to the black-box nature of SmartTV native additions.
To mitigate the threat, we leverage the best resources available
and show that our technique is effective in finding vulnerabil-
ities and achieving good approximate coverage (measured by
the number of covered logging statements in the Java portion).

12 Related Work
Grammar Inference. During fuzzing, it is essential to gener-
ate inputs with valid formats. For the programs whose input
format (or grammar) is unknown, grammar inference can be
a viable approach. Most of the existing grammar inference
techniques are either whitebox or greybox. For instance, AU-
TOGRAM [27] and REINAM [36] conduct dynamic tainting
and symbolic execution respectively to infer input grammars.
Grimoire [23] infers the input grammar by instrumenting the
program and observing the code coverage for each input muta-
tion. REDQUEEN [20] does not directly infer grammars. By
observing branch conditions during fuzzing, it can detect key-
words and magic numbers in the inputs. Unfortunately, these
techniques require code instrumentation and collecting fine-
grained feedback such as code coverage or execution trace,
which is not feasible in the SmartTV fuzzing scenario. Some
grammar inference techniques are blackbox. For instance,
GLADE [22] can automatically synthesize program input
grammars from a set of program inputs, which are either ac-
cepted or rejected by the target program. While this approach
is more practical than the whitebox or greybox approaches,
it still requires a set of high-quality inputs (especially the
accepted inputs). Unfortunately, for SmartTV fuzzing, we do
not have any inputs to begin with. This is why we have to per-
form execution log analysis to infer potential specifications
and generate possibly good inputs, and rely on log-guided
fuzzing to increase code coverage.

Coverage-Guided Fuzzing. Evolutionary fuzzing that is
guided by a variety of coverage information (e.g., edge cov-
erage, calling contexts, and memory access patterns) has
approved to be very effective in finding vulnerabilities in
realworld programs. For instance, AFL [3] relies on code
coverage information to select and mutate seeds. AFL-
sensitive [33] further studies the impact of different cover-
age metrics. Some state-of-the-art fuzzers [37, 38] leverage
the code coverage to infer the input field format to improve
fuzzing performance. However, in SmartTV fuzzing, we can-
not obtain these kinds of coverage information. Since log mes-
sages are available, in this work, we develop a novel fuzzing
technique that is guided by the coverage of log messages.
Observing Anomalies through Fuzzing. Most state-of-the-
art fuzzers [3, 33] can detect potential vulnerabilities through
checking whether the target crashes. A few approaches though
(e.g., address sanitizer [2], thread sanitizer [8]) propose en-

hancements to the fuzzer’s ability to capture anomalous behav-
iors. As these fuzzers observe anomalies in-box, they cannot
detect physical anomalies, triggered by SmartTV APIs.
SmartTV Security. Oren et al. [29] describe attacks on
SmartTVs causing a large-scale compromise on the Internet,
due to flaws in combing broadband and broadcast systems in
HbbTV. Closely related to our research is [28], which eval-
uates the SmartTV apps. The evaluation reveals erroneous
practices in protecting critical data. In contrast, our work
focuses on flaws in the framework.
IoT Security. The IoT market has attracted the attention of
researchers. Zhang et al. [39] summarized security problems
of IoT devices, (e.g, LAN mistrust, implementation flaws). To
analyze IoT firmware, a few studies apply static analysis at
source code [25] or at binary level [30]. Other studies [34,
41] conduct black-box testing. Our work features log-guided
fuzzing. IOTFuzzer [24] employs fuzzing to discover memory
corruptions in IoT devices. In contrast, our work is more
general, detecting cyber and physical flaws.

13 Conclusion
To assess the security implications of SmartTV customization,
we develop a novel log-guided dynamic fuzzing technique.
Our approach provides a viable solution when instrumenta-
tion and collecting fine-grained execution feedback is not
feasible. To detect SmartTV-specific anomalies (i.e., visual
and auditory disturbances), we further propose a novel exter-
nal observer which can detect potential physical anomalies
triggered during fuzzing – which may not be detected in-box.
Our technique proved to be effective through discovering 37
vulnerabilities in 11 Android TVBoxes.

Acknowledgments

This research was supported, in part by NSERC under
grants RGPIN-07017, DGECR-00319, by NSF 1901242 and
1910300, and by ONR N000141712045, N000141410468,
N000141712947, and N00014-17-1-2893. The RUC author
was supported in part by NSFC under grant 62002361 and
U1836209, and the Fundamental Research Funds for the Cen-
tral Universities and the Research Funds of Renmin University
of China under grant 20XNLG03. Any opinions, findings, and
conclusions in this paper are those of the authors only and do
not necessarily reflect the views of our sponsors.

References

[1] 25 Best Android TV Boxes For 2020.
https://androidpcreview.com/best-android-tv-box/.

[2] Address sanitizer. https://github.com/google/sanitizers/
wiki/AddressSanitizer.

[3] Afl. http://lcamtuf.coredump.cx/afl/.

https://androidpcreview.com/best-android-tv-box/
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
http://lcamtuf.coredump.cx/afl/

[4] Demos. https://sites.google.com/site/smarttvdemos/.

[5] Keras: The deep learning library. https://keras.io.

[6] Radare2. https://www.radare.org/r/.

[7] Randoop. https://randoop.github.io/randoop/.

[8] Thread sanitizer. https://github.com/google/sanitizers/
wiki/ThreadSanitizerCppManual.

[9] Vault 7: Cia hacking tools revealed. https://
wikileaks.org/ciav7p1/cms/page_12353643.html.

[10] Wala. https://github.com/wala/WALA.

[11] What is the Best Way to Stare at Screens All Day?
http://time.com/4789208/screens-computer-eye-strain.

[12] Japanese cartoon triggers seizures in hundreds of
children. http://www.cnn.com/WORLD/9712/17/
video.seizures.update, 1997.

[13] The secret life of c++: Runtime type information and
casting. http://web.mit.edu/tibbetts/Public/inside-c/
www/rtti.html, 2015.

[14] Ring’s smart doorbell can leave your house vulnerable
to hacks. https://www.cnet.com/news/rings-smart-
doorbell-can-leave-your-house-vulnerable-to-hacks,
2016.

[15] Ransomware on smart tvs is here and removing it
can be a pain. https://www.pcworld.com/article/
3154226/security/ransomware-on-smart-tvs-is-here-
and-removing-it-can-be-a-pain.html, 2017.

[16] Best Android TV Box 2019. https:
//www.144hzmonitors.com/best-android-tv-box,
2019.

[17] Smart TV Market: Global Industry Trends.
https://www.researchandmarkets.com/research/
zrxx5w/250_billion?w=4, 2019.

[18] The Connected Future. https://www.ericsson.com/en/
mobility-report/internet-of-things-forecast, 2019.

[19] The 10 Best Android TV Boxes. https://wiki.ezvid.com/
best-android-tv-boxes, 2020.

[20] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In NDSS, 2019.

[21] Yann Bachy, Vincent Nicomette, Mohamed Kaâniche,
and Eric Alata. Smart-tv security: risk analysis and ex-
periments on smart-tv communication channels. Journal
of Computer Virology and Hacking Techniques, 15:61–
76, 2018.

[22] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy
Liang. Synthesizing program input grammars. In PLDI,
2017.

[23] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In USENIX Security, 2019.

[24] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. Iot-
fuzzer: Discovering memory corruptions in iot through
app-based fuzzing. In NDSS, 2018.

[25] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. on firmware: Finding vulnerabilities
in embedded systems using symbolic execution. In
USENIX Security, 2013.

[26] Miro Enev, Sidhant Gupta, Tadayoshi Kohno, and Shwe-
tak N. Patel. Televisions, video privacy, and powerline
electromagnetic interference. In CCS, 2011.

[27] Matthias Höschele and Andreas Zeller. Mining input
grammars from dynamic taints. In ASE, 2016.

[28] Marcus Niemietz, Juraj Somorovsky, Christian Mainka,
and Jörg Schwenk. Not so smart: On smart tv apps. In
SIoT, 2015.

[29] Yossef Oren and Angelos D. Keromytis. From the aether
to the ethernet—attacking the internet using broadcast
digital television. In USENIX Security, 2014.

[30] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice-
automatic detection of authentication bypass vulnerabil-
ities in binary firmware. In NDSS, 2015.

[31] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and
Stefan Mangard. Procharvester: Fully automated analy-
sis of procfs side-channel leaks on android. In ASIACCS,
2018.

[32] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi,
Daniel Genkin, and Kevin Fu. Light commands: Laser-
based audio injection on voice-controllable systems. In
USENIX Security, 2019.

[33] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and
Chengyu Song. Be sensitive and collaborative: Analyz-
ing impact of coverage metrics in greybox fuzzing. In
RAID, 2019.

[34] Zhiqiang Wang, Yuqing Zhang, and Qixu Liu. Rpfuzzer:
A framework for discovering router protocols vulnera-
bilities based on fuzzing. TIIS, 7(8):1989–2009, 2013.

[35] Arnold Wilkins, Jennifer Veitch, and Brad Lehman. Led
lighting flicker and potential health concerns: Ieee stan-
dard par1789 update. In ECCE, 2010.

[36] Zhengkai Wu, Evan Johnson, Wei Yang, Osbert Bastani,
Dawn Song, Jian Peng, and Tao Xie. Reinam: Rein-

https://sites.google.com/site/smarttvdemos/
https://keras.io
https://www.radare.org/r/
https://randoop.github.io/randoop/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://wikileaks.org/ciav7p1/cms/page_12353643.html
https://wikileaks.org/ciav7p1/cms/page_12353643.html
https://github.com/wala/WALA
http://time.com/4789208/screens-computer-eye-strain
http://www.cnn.com/WORLD/9712/17/video.seizures.update
http://www.cnn.com/WORLD/9712/17/video.seizures.update
http://web.mit.edu/tibbetts/Public/inside-c/www/rtti.html
http://web.mit.edu/tibbetts/Public/inside-c/www/rtti.html
https://www.cnet.com/news/rings-smart-doorbell-can-leave-your-house-vulnerable-to-hacks
https://www.cnet.com/news/rings-smart-doorbell-can-leave-your-house-vulnerable-to-hacks
https://www.pcworld.com/article/3154226/security/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.pcworld.com/article/3154226/security/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.pcworld.com/article/3154226/security/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.144hzmonitors.com/best-android-tv-box
https://www.144hzmonitors.com/best-android-tv-box
https://www.researchandmarkets.com/research/zrxx5w/250_billion?w=4
https://www.researchandmarkets.com/research/zrxx5w/250_billion?w=4
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://wiki.ezvid.com/best-android-tv-boxes
https://wiki.ezvid.com/best-android-tv-boxes

forcement learning for input-grammar inference. In
ESEC/FSE, 2019.

[37] Wei You, Xuwei Liu, Shiqing Ma, David Mitchel Perry,
Xiangyu Zhang, and Bin Liang. SLF: fuzzing without
valid seed inputs. In ICSE, 2019.

[38] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-
fuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In S&P, 2019.

[39] Nan Zhang, Soteris Demetriou, Xianghang Mi, Wenrui
Diao, Kan Yuan, Peiyuan Zong, Feng Qian, XiaoFeng
Wang, Kai Chen, Yuan Tian, Carl A. Gunter, Kehuan
Zhang, Patrick Tague, and Yue-Hsun Lin. Understand-
ing iot security through the data crystal ball: Where
we are now and where we are going to be. CoRR,
abs/1703.09809, 2017.

[40] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao-yong
Zhou, and XiaoFeng Wang. Leave me alone: App-level
protection against runtime information gathering on an-
droid. In S&P, 2015.

[41] Jixuan Zhou, Dan Feng, and Bo Li. A fuzzing method
based on dual variation strategy for cisco ios. In ICCC,
2017.

APPENDIX

A Optimization Strategies
Log Normalization. We normalize messages sharing a cer-
tain template to facilitate removing duplicate entries. As log
messages are generated by a print statement, similar messages
with slight variations appear quite frequently. We tolerate the
slight differences through normalizing numerical strings and
other string formats reflecting common entities (i.e., package
names, URLs, filenames, file paths, etc) to predefined values.
Efficient Similarity Measure To measure the similarity of
two messages, we abstract the messages into N-gram se-
quences (N=2 here) and calculate the number of common
N-grams. If this latter exceeds a threshold, we consider the
two to be similar. Specifically, given two messages, we cal-
culate the DICE Coefficient, a widely used lexicography for
measuring lexical associations. DICE is defined as the ratio
of the number of bigrams that are shared by the two messages
and the total number of bigrams in both events:

DICE(X ,Y) =
2∗ |bigrams(X)|∩ |bigrams(Y)|
|bigrams(X)|+ |Bigrams(Y)|

where X and Y are two messages. A DICE result of 1 indi-

Table 6: Time Consumption in Different Testing Phases.

Device
Time Consumption of 10,000 Tests (seconds)

Generate Analyze Compare Compare
& Execute Log Image Audio

Min 99 87,454 54,506 49,843
Max 322 164,089 70,973 83,355

Average 157 144,137 77,903 78,647
Avg per 1 test case 0.0233 15.78 6.9375 7.3409

cates identical messages and a 0 equals orthogonal ones. Note
that we consider two messages as similar if DICE > 0.8
B Testing Efficiency

We evaluate here achieved testing efficiency. We measure the
time incurred to generate and execute a test case, to analyze
the log output, and to compare the content before and after
executing each case. To give accurate estimates of the time
incurred, we ran the fuzzer over 10,000 test cases. As shown
in Table 6, the analysis is quite fast. Each test case takes on
average ∼16 seconds (The image and audio comparisons are
run concurrently on different cores). The log analysis incurs
the largest time overhead; however, it is still acceptable.

C Physical Disturbances

Manipulating Color Aspects. We detected a non-protected
API that allows manipulating color aspects (privileged on
AOSP). We implemented an app that leverages this to perform
the following: First, we manipulate the hue to shift the system
wide color scheme towards the blue spectrum. This shifting
can irritate the blue-light sensitive molecules in the retina,
negatively affecting the body’s circadian rhythms and the abil-
ity to sleep [11]. Second, we control the brightness to achieve
other consequences. Specifically, we build an app by learn-
ing from the notorious Pokemon Shock incident [12] where
more than 600 children suffered from convulsions, seizures
and vomiting after watching a Pokemon episode featuring a
5 sec flashing red light. According to epilepsy experts [12],
television epilepsies can be triggered when the viewer is im-
mersed on a scene displaying flashing and colorful lights. Our
POC exploits television epilepsy to perform the following:
The malicious app sends phishing emails to SmartTV users,
containing a link to a popular video with a lot of actions. The
link is largely genuine except that it is enhanced: once the link
is clicked, the app gets informed. In addition, the time periods
of action scenes (e.g., fighting) are pre-determined. Therefore,
when the app notices that the user starts playing the video, it
starts a timer simultaneously. When those scenes are reached,
it substantially flicks the display’s brightness, piggybacking
the rapidly changing movie contents.

	Introduction
	Background and Motivation
	Reverse Engineering Target Interfaces
	Assessing Execution Feedback

	Design Overview
	Fuzzing Target Locator
	Uncovering System Service APIs
	Extracting Native Function Interfaces

	Input Generation Through Log-Guidance
	Identifying Log Messages for Target API
	Identifying Input-Validation Messages
	Static Analysis for Training Samples Collection.
	Log Classifier Training

	Dynamic Fuzzer.
	External Observer
	Implementation
	Evaluation
	SmartTV Device Collection
	Recovered Native Functions Interfaces
	Evaluation of Log Analysis
	Testing Evaluation.
	Findings

	Case Studies
	Threats to Validity and Limitations
	Related Work
	Conclusion

